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Programming hints, condensed
Programming Hint 1: Use the “as” keyword liberally. (page 21)

Programming Hint 2: Never write recursive functions within a module. In combination with the TinyOS
coding conventions, this guarantees that all programs have bounded stack usage. (page 33)

Programming Hint 3: Never use malloc and free. Allocate all state in components. If your application
requirements necessitate a dynamic memory pool, encapsulate it in a component and try to limit the set of
users. (page 33)

Programming Hint 4: When possible, avoid passing pointers across interfaces; when this cannot be avoided
only one component should be able to modify a pointer’s data at any time. (page 34)

Programming Hint 5: Conserve memory by using enums rather than const variables for integer constants,
and don’t declare variables with an enum type. (page 37)

Programming Hint 6: Never, ever use the “packed” attribute in portable code. (page 38)

Programming Hint 7: Use platform independent types when defining message structures. (page 38)

Programming Hint 8: If you have to perform significant computation on a platform independent type or
access it many (hundreds or more) times, temporarily copy it to a native type. (page 39)

Programming Hint 9: Interfaces should #include the header files for the types they use. (page 40)

Programming Hint 10: Always #define a preprocessor symbol in a header file. Use #include to load the
header file in all components and interfaces that use the symbol. (page 41)

Programming Hint 11: If a component is a usable abstraction by itself, its name should end with C. If it is
intended to be an internal and private part of a larger abstraction, its name should end with P. Never wire to
P components from outside your package (directory). (page 50)

Programming Hint 12: Auto-wire Init to MainC in the top-level configuration of a software abstraction.
(page 52)

Programming Hint 13: When using layered abstractions, components should not wire across multiple
abstraction layers: they should wire to a single layer. (page 54)

Programming Hint 14: Never ignore combine warnings. (page 58)

Programming Hint 15: Keep tasks short. (page 66)

Programming Hint 16: If an event handler needs to make possibly long-executing command calls, post a
task to make the calls. (page 66)

Programming Hint 17: Don’t signal events from commands — the command should post a task that signals
the event. (page 68)

Programming Hint 18: Use a parameterized interface when you need to distinguish callers or when you
have a compile-time constant parameter. (page 123)

Programming Hint 19: If a component depends on unique, then #define the string to use in a header file,
to prevent bugs due to string typos. (page 130)
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Programming Hint 20: Whenever writing a module, consider making it more general-purpose and generic.
In most cases, modules must be wrapped by configurations to be useful, so singleton modules have few
advantages. (page 144)

Programming Hint 21: Keep code synchronous when you can. Code should be async only if its timing is
very important or if it might be used by something whose timing is important. (page 169)

Programming Hint 22: Keep atomic statements short, and have as few of them as possible. Be careful
about calling out to other components from within an atomic statement. (page 173)



Preface

This book provides an in-depth introduction to writing nesC code for the TinyOS 2.0 operating system.
While it goes into greater depth than the TinyOS tutorials on this subject, there are several topics that are
outside its scope, such as the structure and implementation of radio stacks or existing TinyOS libraries. It
focuses on how to write nesC code, and explains the concepts and reasons behind many of the nesC and
TinyOS design decisions. If you are interested in a brief introduction to TinyOS programming, then you
should probably start with the tutorials. If you’re interested in details on particular TinyOS subsystems you
should probably consult TEPs (TinyOS Enhancement Proposals), which detail the corresponding design
considerations, interfaces, and components. Both of these can be found in the doc/html directory of a
TinyOS distribution.

While some of the contents of this book are useful for 1.x versions of TinyOS, they do have several
differences from TinyOS 2.0 which can lead to different programming practices. If in doubt, referring to the
TEP on the subject is probably the best bet, as TEPs often discuss in detail the differences between 1.x and
2.0.

For someone who has experience with C or C++, writing simple nesC programs is fairly straightforward:
all you need to do is implement one or two modules and wire them together. The difficulty (and intellectual
challenge) comes when building larger applications. The code inside TinyOS modules is fairly analogous to
C coding, but configurations – which stitch together components – are not.

This book is a first attempt to explain how nesC relates to and differs from other C dialects, stepping
through how the differences lead to very different coding styles and approaches. As a starting point, this
book assumes that

1. you know C, C++, or Java reasonably well, understand pointers and that

2. you have taken an undergraduate level operating systems class (or equivalent) and know about concurrency,
interrupts and preemption.

Of course, this book is as much a description of nesC as it is an argument for a particular way of using
the language to achieve software engineering goals. In this respect, it is the product of thousands of hours of
work by many people, as they learned and explored the use of the language. In particular, Cory Sharp, Kevin
Klues, and Vlado Handziski have always pushed the boundaries of nesC programming in order to better
understand which practices lead to the simplest, most efficient, and robust code. In particular, Chapter 10 is
an edited version of a paper we wrote together, while using structs as a compile-time checking mechanism
in interfaces (as Timer does) is an approach invented by Cory.

This book is divided into four parts. The first part, Chapters 1–2, gives a high-level overview of TinyOS
and the nesC language. The second part, Chapters 3–7 goes into nesC and TinyOS at a level sufficient
for writing applications. The third part, not included in this online version of the text, goes into more
advanced TinyOS and nesC programming, as is sometimes needed when writing new low-level systems or
high performance applications. The book ends with an appendix summarizing the basic application-level
TinyOS APIs.
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Part I

TinyOS and nesC

1





Introduction

This book is about writing TinyOS systems and applications in the nesC language. This chapter gives a
brief overview of TinyOS and its intended uses. TinyOS is an open-source project which a large number of
research universities and companies contribute to. The main TinyOS website, http://www.tinyos.net,
has instructions for downloading and installing the TinyOS programming environment. The website has a
great deal of useful information which this book doesn’t cover, such as common hardware platforms and
how to install code on a node.

1.1 Networked, Embedded Sensors

TinyOS is designed to run on small, wireless sensors. Networks of these sensors have the potential to
revolutionize a wide range of disciplines, fields, and technologies. Recent example uses of these devices
include:

Golden Gate Bridge Safety. High-speed accelerometers collect synchonized data on the movement of
and oscillations within the structure of San Francisco’s Golden Gate Bridge. This data allows the maintainers
of the bridge to easily observe the structural health of the bridge in response to events such as high winds or
traffic, as well as quickly assess possible damage after an earthquake [10]. Being wireless avoids the need
for installing and maintaining miles of wires.

Volcanic Monitoring. Accelerometers and microphones observe seismic events on the Reventador and
Tungurahua volcanoes in Ecuador. Nodes locally compare when they observe events to determine their
location, and report aggregate data to a camp several kilometers away using a long-range wirelesss link.
Small, wireless nodes allow geologists and geophysicsts to install dense, remote scientific instruments [30],
obtaining data that answers otherwise questions about unapproachable environments.

Datacenter Provisioning. Data centers and enterprise computing systems require huge amounts of
energy, to the point at which they are placed in regions that have low power costs. Approximately 50% of the
energy in these systems goes into cooling, in part due to highly conservative cooling systems. By installing
wireless sensors across machine racks, the data center can automatically sense what areas need cooling and
can adjust which computers do work and generate heat [19]. Dynamically adapting these factors can greatly
reduce power consumption, making the IT infrastructure more efficient and reducing environmental impact.

While these three application domains are only a small slice of where networks of sensors are used, they
show the key differences between these networks and most other computing systems. First, these “sensor
networks” need to operate unattended for long periods of time. Second, they gather data from and respond to
an unpredictable environment. Finally, for reasons of cost, deployment simplicity, and robustness, they are
wireless. Together, these three issues – longevity, embedment, and wireless communication – cause sensor
networks to use different approaches than traditional, wired, and human-centric or machine-centric systems.

The sheer diversity of sensor network applications means that there are many network architectures,

3
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base station code
(nesC/TinyOS)

sensor code
(nesC/TinyOS)

gateway code
(Java, C, ...)

data sinkpatch of sensors Internetgateway

Figure 1.1: A typical sensor network architecture. Patches of ultra-low power sensors, running
nesC/TinyOS, communicate to gateway nodes through data sinks. These gateways connect to the larger
Internet.

Figure 1.2: A Telos sensor produced by Moteiv. The top of the node has the radio, sensors, and circuitry for
the USB connector. The bottom, not shown, has the processor and flash storage chip. The antenna is part of
the printed circuit board (PCB).

but a dominant portion of deployments tend to follow a common one, shown in Figure 1.1 [21, 26, 30] of
ultra-low power sensors self-organize to form an ad-hoc routing network to one or more data sink nodes.
These sensor sinks are attached to gateways, which are typically a few orders of magnitude more powerful
than the sensors: gateways run an embedded form of Linux, Windows, or other multitasking operating
system. Gateways have an Internet connection, either through a cell phone network, long-distance wireless,
or even just wired Ethernet.

Energy concerns dominate sensor hardware and software design. These nodes need to be wireless,
small, low-cost, and operate unattended for long periods. While it is often possible to provide large power
resources, such as large solar panels, periodic battery replacement, or wall power, to small number of
gateways, doing so to every one of hundreds of sensors is infeasible.

1.1.1 Anatomy of a Sensor Node (Mote)

Since energy consumption determines sensor node lifetime, sensor nodes, commonly referred to as motes,
tend to have very limited computational and communication resources. Instead of a full-fledged 32-bit or
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64-bit CPU with megabytes or gigabytes of RAM, they have 8-bit or 16-bit microcontrollers with a few
kilobytes of RAM. Rather than gigahertz, these microcontrollers run at 1-10 megahertz. Their low-power
radios can send tens to hundreds of kilobits per second, rather than 802.11’s tens of megabits. As a result,
software needs to be very efficient, both in terms of CPU cycles and in terms of memory use.

Figure 1.2 shows a sample node platform, the Telos, which is designed for easy experimentation and
low-power operation. It has a TI MSP430 16-bit microcontroller with 10kB of RAM and 48kB of flash
program memory. Its radio, a TI CC2420 which follows the IEEE 802.15.4 standard, can send up to 250kbps.
In terms of power, the radio dominates the system: on a pair of AA batteries, a Telos can have the radio on
for about 4 days. Lasting longer than four days requires keeping the node in a deep sleep state most of the
time, waking only when necessary, and sleeping as soon as possible.

The other mote discussed in this book, the micaz from Crossbow Technology is similar: it has an
Atmel ATmega128 8-bit microcontroller with 4kB of RAM, 128kB of flash program memory, uses the same
CC2420 radio chip, also runs off a pair of AA batteries and has a similar power consumption profile.

Networks, once deployed, gather data uninterrupted for weeks, months, or years. As the placement
of sensors is in and of itself very application-specific, it is rare for networks to need to support multiple
concurrent applications, or even require more than the occasional reprogramming. Therefore, unlike general-purpose
computing systems, which emphasize run-time flexibility and composability, sensor network systems tend
to be highly optimized. Often, the sensor suite itself is selected for the specific application: volcaninc
monitoring uses accelerometers and microphones, while datacenter provisioning uses temperature sensors.

1.2 TinyOS

TinyOS is a lightweight operating system specifically designed for low-power wireless sensors. TinyOS
differs from most other operating systems in that its design focuses on ultra low-power operation. Rather
than a full-fledged processor, TinyOS is designed for the small, low-power microcontrollers motes have.
Furthermore, TinyOS has very aggressive systems and mechanisms for saving power.

TinyOS makes building sensor network applications easier. It provides a set of important services and
abstractions, such as sensing, communication, storage, and timers. It defines a concurrent execution model,
so developers can build applications out of reusable services and components without having to worry about
unforeseen interactions. TinyOS runs on over a dozen generic platforms, most of which easily support
adding new sensors. Furthermore, TinyOS’s structure makes it reasonably easy to port to new platforms.

TinyOS applications and systems, as well as the OS itself, are written in the nesC language. nesC is
a C dialect with features to reduce RAM and code size, enable significant optimizations, and help prevent
low-level bugs like race conditions. Chapter 2 goes into the details on how nesC differs significantly from
other C-like languages, and most of this book is about how to best use those features to write robust, efficient
code.

1.2.1 What TinyOS provides

At a high level, TinyOS provides three things to make writing systems and applications easier:

• a component model, which defines how you write small, reusable pieces of code and compose them
into larger abstractions,

• a concurrent execution model, which defines how components interleave their computations as well
as how interrupt and non-interrupt code interact,

• application programming interfaces (APIs), services, component libraries and an overall component
structure that simplify writing new applications and services.
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Application

Timer RoutingSensors Radio

Figure 1.3: Example application architecture. Application code uses a timer to act periodically, sensors to
collect data, and a routing layer to deliver data to a sink.

The component model is grounded in nesC. It allows you to write pieces of reusable code which
explicitly declare their dependencies. For example, a generic user button component that tells you when a
button is pressed sits on top of an interrupt handler. The component model allows the button implementation
to be independent of which interrupt that is – e.g., so it can be used on many different hardware platforms
– without requiring complex callbacks or magic function naming conventions. Chapter 2 and Chapter 3
describe the basic component model.

The concurrent execution model enables TinyOS to support many components needing to act at the
same time while requiring little RAM. First, every I/O call in TinyOS is split-phase: rather than block until
completion, a request returns immediately and the caller gets a callback when the I/O completes. Since the
stack isn’t tied up waiting for I/O calls to complete, TinyOS only needs one stack, and doesn’t have threads.
Instead, Chapter 5 introduces tasks, which are lightweight deferred procedure calls. Any component can
post a task, which TinyOS will run at some later time. Because low-power devices must spend most of
their time asleep, they have low CPU utilization and so in practice tasks tend to run very soon after they are
posted (within a few milliseconds). Furthermore, because tasks can’t preempt each other, task code doesn’t
need to worry about data races. Low-level interrupt code (discussed in the advanced concurrency chapter,
Chapter 11) can have race conditions, of course: nesC detects possible data races at compile time and warns
you.

Finally, TinyOS itself has a set of APIs for common functionality, such as sending packets, reading
sensors, and responding to events. Uses of these are sprinkled throughpout the entire book, and presented
in more detail in Chapter 6 and Appendix A. In addition to programming interfaces, TinyOS also provides
a component structure and component libraries. For example, Chapter 12 describes TinyOS’s Hardware
Abstraction Architecture (HAA), which defines how to build up from low-level hardware (e.g. a radio
chip) to a hardware-independent abstraction (e.g. sending packets). Part of this component structure
includes resource locks, covered in Chapter 11, which enable automatic low-power operation, as well as
the component libraries that simplify writing such locks.

TinyOS itself is continually evolving. Within the TinyOS community, “Working Groups” form to tackle
engineering and design issues within the OS, improving existing services and adding new ones. This
book is therefore really a snapshot of the OS in time. As Chapter 12 discusses and Appendix A present,
TinyOS has a set of standard, stable APIs for core abstractions, but this set is always expanding as new
hardware and applications emerge. The best way to stay up to date with TinyOS is to check its web page
http://www.tinyos.net and participate in its mailing lists. The website also covers advanced TinyOS
and nesC features which are well beyond the scope of this book, including binary components, over-the-air
reprogramming services, debugging tools, and a nesC reference manual.

1.3 Example Application

To better understand the unique challenges faced by sensor networks, we walk through a basic data collection
application. Nodes running this application periodically wake up, sample some sensors, and send the data
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through an ad-hoc collection tree to a data sink (as in Figure 1.1). As the network must last for a year, nodes
spend 99% of their time in a deep sleep state.

In terms of energy, the radio is by far the most expensive part of the node. Lasting a year requires telling
the radio to be in a low power state. Low power radio implementation techniques are beyond the scope of
this book, but the practical upshot is that packet transmissions have higher latency. [23]

Figure 1.3 shows the four TinyOS APIs the application uses: low power settings for the radio, a timer,
sensors, and a data collection routing layer. When TinyOS tells the application that the node has booted, the
application code configures the power settings on the radio and starts a periodic timer. Every few minutes,
this timer fires and the application code samples its sensors. It puts these sensor values into a packet and
calls the routing layer to send the packet to a data sink.. In practice, applications tend to be more complex
than this simple example. For example, they include additional services such as a management layer which
allows an administrator to reconfigure parameters and inspect the state of the network, as well as over-the-air
programming so the network can be reprogrammed without needing to collect all of the nodes. However,
these four abstractions – power control, timers, sensors, and data collection – encompass the entire datapath
of the application.

1.4 Compiling and Installing Applications

You can download the latest TinyOS distribution, the nesC compiler, and other tools at http://www.tinyos.net.
Setting up your programming environment is outside the scope of this book; the TinyOS website has
step-by-step tutorials to get you started. One part of TinyOS is an extensive build system for compiling
applications. Generally, to compile a program for a sensor platform, one types make <platform>, e.g.,
make telosb. This compiles a binary. To install that binary on a node, you plug the node into your
PC using a USB or serial connection, and type make <platform> install. The tutorials go into
compilation and installation options in detail.

1.5 The rest of this book

The rest of this book goes into how to program in nesC and write TinyOS applications. It is divided into
three parts. The first is a short introduction to the major programming concepts of nesC. The second part
addresses basic application programming using standard TinyOS APIs. The third part digs a little deeper,
and looks into how those TinyOS APIs are implemented. For example, the third part describes how TinyOS
abstracts hardware, so you can write a driver for a new sensor.

Chapter by chapter, the book is structured as follows:

• Chapter 1 is this chapter.

• Chapter 2 describes the major way that nesC breaks from C and C-like languages: how programs are
built out of components, and how components and interfaces help manage programs’ namespaces.

• Chapter 3 presents components and how they interact via interfaces.

• Chapter 4 goes into greater detail into configurations, components which connect other components
together.

• Chapter 5 covers the basic TinyOS execution model and gives guidance on how and when to use
tasks.
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• Chapter 6 takes the material from the prior three chapters and brings it together into an example of
writing a full-fledged application that sends an alarm when a node observes a change in its environment.
In the process, it covers the major TinyOS APIs (timing, sensing, communication and storage).

• Chapter 7 details the PC-side tools for communicating with nodes connected over the serial port, and
covers the TinyOS serial stack and packet formats.

• Chapter 8 introduces more advanced component topics, such as parameterized interfaces and attributes.
While applications typically don’t use these mechanisms, they are indispensible when writing reusable
libraries and systems.

• Chapter 9 goes into wiring parameterized interfaces, which form the basis for most reusable systems.
After describing the basic mechanisms for managing interfaces keys, it goes through four examples
of increasing complexity.

• Chapter 10 presents eight common TinyOS design patterns: commonly useful and powerful ways of
organizing components.

• Chapter 11 concludes the advanced programming topics by covering concurrency. It describes
asynchronous code, the TinyOS task model, and power locks.

• Chapter 12 describes the Hardware Abstraction Architecture (HAA), the three-level hierarchy TinyOS
uses to raise low-level hardware abstractions to hardware-independent, application-level services.

• Chapter 13 goes step-by-step through an advanced application that identifies the location of an event
based on when nodes sense it. It uses lower-layer interfaces to implement time synchronization and
high-frequency sampling.

• Appendix A gives a concise overview of major TinyOS application interfaces.

Throughout the book, you will find programming hints: general best-use practices that we’ve distilled
from the many users of TinyOS and nesC. Page xv lists them all in one place.

Finally, the complete source code for example applications presented in this book (in Chapters 6, 7
and 13) is available in TinyOS’s contributed code directory, under the name “TinyOS Programming” — see
http://www.tinyos.net for details.



Names and Program Structure

Program structure is the most essential and obvious difference between C and nesC. C programs are composed
of variables, types and functions defined in files that are compiled separately and then linked together. nesC
programs are built out of components that are connected (“wired”) by explicit program statements; the nesC
compiler connects and compiles these components as a single unit. To illustrate and explain these differences
in how programs are built, we compare and contrast C and nesC implementations of two very simple “hello
world”-like mote applications, Powerup (boot and turn on a LED) and Blink (boot and repeatedly blink a
LED).

2.1 Hello World!

The closest mote equivalent to the classic “Hello World!” program is the “Powerup” application that simply
turn on one of the motes LEDs at boot, then goes to sleep.

A C implementation of Powerup is fairly simple:

#include "mote.h"

int main()

{

mote_init();

led0_on();

sleep();

}

Listing 2.1: Powerup in C

The Powerup application is compiled and linked with a “mote” library which provides functions to perform
hardware initialization (mote init), LED control (led0 on) and put the mote in to a low-power sleep mode
(sleep). The “mote.h” header file simply provides declarations of these and other basic functions. The usual
C main function is called automatically when the mote boots.1

The nesC implementation of Powerup is split into two parts. The first, the PowerupC module, contains
the executable logic of Powerup (what there is of it. . . ):

module PowerupC {

uses interface Boot;

uses interface Leds;

}

implementation {

1The C compiler, library and linker typically arrange for this by setting the mote’s hardware reset vector to point to a piece of
assembly code that sets up a C environment, then calls main.

9
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event void Boot.booted() {

call Leds.led0On();

}

}

Listing 2.2: PowerupC module in nesC

This code says that PowerupC interacts with the rest of the system via two interfaces, Boot and Leds,
and provides an implementation for the booted event of the Boot interface that calls the led0On2 command
of the Leds interface. Comparing with the C code, we can see that the booted event implementation takes the
place of the main function, and the call to the led0On command the place of the call to the led0 on library
function.

This code shows two of the major differences between nesC and C: where C programs are composed
of functions, nesC programs are built out of components that implement a particular service (in the case of
PowerupC, turning a LED on at boot-time). Furthermore, C functions typically interact by calling each other
directly, while the interactions between components are specified by interfaces: the interface’s user makes
requests (calls commands) on the interface’s provider, the provider makes callbacks (signals events) to the
interface’s user. Commands and events themselves are like regular functions (they can contain arbitrary C
code); calling a command or signaling an event is just a function call. PowerupC is a user of both Boot
and Leds; the booted event is a callback signaled when the system boots, while the led0On is a command
requesting that LED 0 be turned on.

nesC interfaces are similar to Java interfaces, with the addition of a command or event keyword to
distinguish requests from callbacks:

interface Boot {

event void booted();

}

interface Leds {

command void led0On();

command void led0Off();

command void led0Toggle();

...

}

Listing 2.3: Simple nesC interfaces

The second part of Powerup, the PowerupAppC configuration, specifies how PowerupC is connected to
TinyOS’s services:

configuration PowerupAppC { }

implementation {

components MainC, LedsC, PowerupC;

MainC.Boot -> PowerupC.Boot;

PowerupC.Leds -> LedsC.Leds;

}

Listing 2.4: PowerupAppC configuration in nesC

2LEDs are numbered in TinyOS, as different platforms have different color LEDs.
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Figure 2.1: Wiring Diagram for Powerup application
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Figure 2.2: The nesC compilation model. The nesC compiler loads and reads in nesC components, which it
compiles to a C file. This C file is passed to a native C compiler, which generates a mote binary.

This says that the PowerupAppC application is built out of three components (modules or configurations),
MainC (system boot), LedsC (LED control), and PowerupC (our powerup module). PowerupAppC explicitly
specifies the connections (or wiring) between the interfaces provided and used by these components. When
MainC has finished booting the system it signals the booted event of its Boot interface, which is connected
by the wiring in PowerupAppC to the booted event in PowerupC. This event then calls the led0On command
of its Leds interface, which is again connected (wired) by PowerupAppC to the Leds interface provided by
LedsC. Thus the call turns on LED 0. The resulting component diagram is shown in Figure 2.1 — this
diagram was generated automatically from PowerupAppC by nesdoc, nesC’s documentation generation
tool.

PowerupAppC illustrates the third major difference between C and nesC: wiring makes the connections
expressed by linking the C version of Powerup with its “mote” library explicit. In the C version, Powerup
calls a global function named led0 on which is connected to whatever library provides a function with
the same name; if two libraries provide such a function then (typically) the first one named on the linker
command line “wins”. Using a nesC configuration, the programmer instead explicitly selects which component’s
implementation of the function to use.

The nesC compiler can take advantage of this explicit wiring to build highly optimized binaries. Current
implementations of the nesC compiler (nesc1) take nesC files describing components as input and output a
C file. The C file is passed to a native C compiler that can compile to the desired microcontroller or processor.
Figure 2.2 shows this process. The nesC compiler carefully constructs the generated C file to maximize the
optimization abilities of the C compiler. For example, since it is given a single file, the C compiler can freely
optimize across call boundaries, inlining code whenever needed. The nesC compiler also prunes dead code
which is never called and variables which are never accessed: since there is no dynamic linking in nesC, it
has a complete picture of the application call graph. This speeds the C compilation and reduces program
size in terms of both RAM and code.
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2.2 Essential Differences: Components, Interfaces and Wiring

The three essential differences between C and nesC — components, interfaces and wiring — all relate to
naming and organizing a program’s elements (variables, functions, types, etc). In C, programs are broken
into separate files which are connected via a global namespace: a symbol X declared in one file is connected
by the linker to a symbol X defined in another file. For instance, if file1.c contains:

extern void g(void); /* declaration of g */

int main() /* definition of main */

{

g(); g();

}

and file2.c contains:

void g(void)

{

printf("hello world!");

}

then compiling and linking file1.c and file2.c connects the calls to g() in main to the definition
of g in file2.c. The resulting program prints “hello world!” twice.

Organizing symbols in a global namespace can be tricky. C programmers use a number of techniques to
simplify this task, including header files and naming conventions. Header files group declarations so they
can be used in a number of files without having to retype them, e.g. a header file file1.h for file1.c
would normally contain:

#ifndef FILE1_H

#define FILE1_H

extern void g(void); /* declaration of g */

#endif

Naming conventions are designed to avoid having two different symbols with the same name. For
instance, types are often suffixed with t guaranteeing that a type and function won’t have the same name.
Some libraries use a common prefix for all their symbols, e.g. Gtk and gtk for the GTK+ graphical
toolkit. Such prefixes remind users that functions are related and avoid accidental name collisions with
other libraries, but make programs more verbose.

nesC’s components provide a more systematic approach for organizing a program’s elements. A component
(module or configuration) groups related functionality (a timer, a sensor, system boot) into a single unit,
in a way that is very similar to a class in an object-oriented language. For instance, TinyOS represents
its system services as separate components such as LedsC (LED control, seen above), ActiveMessageC
(sending and receiving radio messages), etc. Only the service (component) name is global, the service’s
operations are named in a per-component scope: ActiveMessageC.SplitControl starts and stops the radio,
ActiveMessageC.AMSend sends a radio message, etc.

Interfaces bring further structure to components: components are normally specified in terms of the set
of interfaces (Leds, Boot, SplitControl, AMSend) that they provide and use, rather than directly in terms
of the actual operations. Interfaces simplify and clarify code because, in practice, interactions between
components follow standard patterns: many components want to control LEDs or send radio messages,
many services need to be started or stopped, etc. Encouraging programmers to express their components in
terms of common interfaces also promotes code reuse: expressing your new network protocol in terms of
the AMSend message transmission interface means it can be used with existing applications, using AMSend
in your application means that it can be used with any existing or future network protocol.
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Rather than connect declarations to definitions with the same name, nesC programs use wiring to specify
how components interact: PowerupAppC wired PowerupC’s Leds interface to that provided by the LedsC
component, but a two-line change could switch that wiring to the NoLedsC component (which just does
nothing):

components PowerupC, NoLedsC;

PowerupC.LedsC -> NoLedsC.Leds;

without affecting any other parts of the program that wish to use LedsC. In C, one could replace the “mote”
library used by Powerup by a version where the LED functions did nothing, but that change would affect all
LED users, not just Powerup.

2.3 Wiring and Callbacks

Leaving the component connection decisions to the programmer does more than just simplify switching
between multiple service implementations. It also provides an efficient mechanism for supporting callbacks,
as we show through the example of timers. TinyOS provides a variable number of periodic or deadline
timers; associated with each timer is a callback to a function that is executed each time the timer fires. We
first look at how such timers would be expressed in C, by modifying Powerup to blink LED 0 at 2Hz rather
than turn it on once and for all:

#include "mote.h"

timer_t mytimer;

void blink_timer_fired(void)

{

leds0_toggle();

}

int main()

{

mote_init();

timer_start_periodic(&mytimer, 250, blink_timer_fired);

sleep();

}

Listing 2.5: Powerup with blinking LED in C

In this example, the Blink application declares a global mytimer variable to hold timer state, and calls
timer start periodic to set up a periodic 250ms timer. Every time the timer fires, the timer implementation
performs a callback to the blink timer fired function specified when the timer was set up. This function
simply calls a library function that toggles LED 0 on or off.

The nesC version of Blink is similar to the C version, but uses interfaces and wiring to specify the
connection between the timer and the application:

module BlinkC {

uses interface Boot;

uses interface Timer;

uses interface Leds;

}

implementation {
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event void Boot.booted() {

call Timer.startPeriodic(250);

}

event void Timer.fired() {

call Leds.led0Toggle();

}

}

Listing 2.6: Powerup with blinking LED in nesC (slightly simplified)

The BlinkC module starts the periodic 250ms timer when it boots. The connection between the startPeriodic
command that starts the timer and the fired event which blinks the LED is implicitly specified by having the
command and event in the same interface:

interface Timer {

command void startPeriodic(uint32_t interval);

event void fired();

...

}

Finally, this Timer must be connected to a component that provides an actual timer. BlinkAppC wires
BlinkC.Timer to a newly allocated timer MyTimer:

configuration BlinkAppC { }

implementation {

components MainC, LedsC, new TimerC() as MyTimer, BlinkC;

BlinkC.Boot -> MainC.Boot;

BlinkC.Leds -> LedsC.Leds;

BlinkC.Timer -> MyTimer.Timer;

}

Listing 2.7: Powerup with blinking LED configuration (slightly simplified)

In the C version the callback from the timer to the application is a runtime argument to the timer start periodic
function. The timer implementation stores this function pointer in the mytimer variable that holds the timer’s
state, and performs an indirect function call each time the timer fires. Conversely, in the nesC version, the
connection between the timer and the Blink application is specified at compile-time in BlinkAppC. This
avoids the need to store a function pointer (saving precious RAM), and allows the nesC compiler to perform
optimizations (in particular, inlining) across callbacks.

2.4 Summary

Table 2.1 summarises the difference in how programs are structured in C, C++ and nesC. In C, the typical
high-level programming unit is the file, with an associated header file that specified and documents the file’s
behavior. The linker builds applications out of files by matching global names; where this is not sufficient
to express program structure (e.g. for callbacks), the programmer can use function pointers to delay the
decision of which function is called at what point.

C++ provides explicit language mechanisms for structuring programs: classes are typically used to
group related functionality, and programs are built out of interacting objects (class instances). An abstract
class can be used to define common class specification patterns (like sending a message); classes that wish to
follow this pattern then inherit from the abstract class and implement its methods — Java’s interfaces provide
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structural element C C++ nesC
program unit file class component
unit specification header file class declaration component specification
specification pattern — abstract class interface
unit composition name matching name matching wiring
delayed composition function pointer virtual method wiring

Table 2.1: Program Structure in C, C++ and nesC

similar functionality. Like in C, the linker builds applications by matching class and function names. Finally,
virtual methods provide a more convenient and more structured way than function pointers for delaying
beyond link-time decisions about what code to execute.

In nesC, programs are built out of a set of cooperating components. Each component uses interfaces
to specify the services it provides and uses; the programmer uses wiring to build an application out of
components by writing wiring statements, each of which connects an interface used by one component to
an interface provided by another. Making these wiring statements explicit instead of relying on implicit
name matching eliminates the requirement to use dynamic mechanisms (function pointers, virtual methods)
to express concepts such as callbacks from a service to a client.
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Components and interfaces

This chapter describes components, the building blocks of nesC programs. Every component has a signature,
which describes the functions it needs to call as well as the functions that others can call on it. A component
declares its signature with interfaces, which are sets of functions for a complete service or abstraction.
Modules are components that implement and call functions in C-like code. Configurations connect components
into larger abstractions. This chapter focuses on modules, and covers configurations only well enough to
modify and extend existing applications: Chapter 4 covers writing new configurations from scratch.

3.1 Component signatures

A nesC program is a collection of components. Every component is in its own source file, and there is a
1-to-1 mapping between component and source file names. For example, the file LedsC.nc contains the
nesC code for the component LedsC, while the component PowerupC can be found in the file PowerupC.nc.
Components in nesC reside in a global namespace: there is only one PowerupC definition, and so the nesC
compiler loads only one file named PowerupC.nc.

There are two kinds of components: modules and configurations. Modules and configurations can be
used interchangeably when combining components into larger services or abstractions. The two types of
components differ in their implementation sections. Module implementation sections consist of nesC code
that looks like C. Module code declares variables and functions, calls functions, and compiles to assembly
code. Configuration implementation sections consist of nesC wiring code, which connects components
together. Configurations are the major difference between nesC and C (and other C derivatives).

All components have two code blocks. The first block describes its signature, and the second block
describes its implementation:

module PowerupC { configuration LedsC {

// signature // signature

} }

implementation { implementation {

// implementation // implementation

} }

Listing 3.1: The signature and implementation blocks

Signature blocks in modules and configurations have the same syntax. Component signatures contain
zero or more interfaces. Interfaces define a set of related functions for a service or abstraction. For example,
there is a Leds interface for controlling node LEDs, a Boot interface for being notified when a node has
booted, and an Init interface for initializing a component’s state. A component signature declares whether it
provides or uses an interface. For example, a component that needs to turn a node’s LEDs on and off uses
the Leds interface, while the component that implements the functions that turns them on and off provides
the Leds interface. Returning to the two examples, these are their signatures:

19
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PowerupC

Boot Leds

LedsC

Leds

MainC

Boot

Init

Figure 3.1: PowerupC, LedsC, and MainC. Triangles are interfaces. Triangles pointing out from a
component are interfaces it uses, while triangles inside a component are interfaces it provides. A solid
box is a module, while a dashed box is a configuration.

module PowerupC { configuration LedsC {

uses interface Boot; provides interface Leds;

uses interface Leds; }

}

Listing 3.2: Signatures of PowerupC and LedsC

PowerupC is a module that turns on a node LED when the system boots. As we saw in Chapter 2, it
uses the Boot interface for notification of system boot and the Leds interface for turning on a LED. LedsC,
meanwhile, is a configuration which provides the abstraction of three LEDs that can be controlled through
the Leds interface. A single component can both provide and use interfaces. For example, this is the
signature for the configuration MainC:

configuration MainC {

provides interface Boot;

uses interface Init;

}

Listing 3.3: MainC’s signature

MainC is a configuration which implements the boot sequence of a node. It provides the Boot interface
so other components, such as PowerupC, can be notified when a node has fully booted. MainC uses the Init
interface so it can initialize software as needed before finishing the boot sequence. If PowerupC had state
that needed initialization before the system boots, it might provide the Init interface.

3.1.1 Visualizing components

Throughout this book, we’ll use a visual language to show components and their relationships. Figure 3.1
shows the three components we’ve seen so far: MainC, PowerupC, and LedsC.

3.1.2 The “as” keyword and clustering interfaces

The as keyword lets a signature provide an alternative name for an interface. For example, MainC uses
the as keyword to make its signature a bit clearer to the reader by using the name SoftwareInit for its Init
interface:

uses interface Init as SoftwareInit;
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Some signatures must use the keyword to distinguish multiple instances of the same interface. If a
component provides or uses an interface more than once, its signature must use the as keyword to give them
distinct names. For example, LedsC provides the abstraction of three LEDs through the Leds interface, but
it is a configuration and not executable code. The LedsC configuration connects the LEDs module, LedsP,
to components that provides the digital input-output lines which power the LEDs. The signature for LedsP
is as follows:

module LedsP {

provides {

interface Init;

interface Leds;

}

uses {

interface GeneralIO as Led0;

interface GeneralIO as Led1;

interface GeneralIO as Led2;

}

}

Listing 3.4: The LedsP module

A signature only needs to make sure that each interface instance has a unique name. For example, the
LedsP example above could use as only twice, and leave one interface instance as GeneralIO, so the three
would have the names Led0, Led1, and GeneralIO. However, in this case that would be confusing, so LedsP
renames all three instances of GeneralIO. Technically, interface declarations have an implicit use of as. The
statement

uses interface Leds;

is really shorthand for

uses interface Leds as Leds;

Generally, the keyword as is a useful tool for making components and their requirements clearer,
similarly to how variable and function names greatly affect code readability.

Programming Hint 1: USE THE “AS” KEYWORD LIBERALLY.

3.1.3 Clustering interfaces

The LedsP example shows one further detail about signatures: they can cluster used and provided interfaces
together. For example, these two versions of PowerupC are equivalent:

configuration PowerupC { configuration PowerupC {

uses interface Boot; uses {

uses interface Leds; interface Boot;

} interface Leds;

}

}

Listing 3.5: PowerupC and an alternative signature
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As these two are equivalent, there is no syntactical or code efficiency advantage to either approach: it is a
matter of style and what is more legible to the reader. Often component signatures declare the interfaces they
provide first, followed by the interfaces they use. This lets a reader clearly see the available functionality and
dependencies. For very complex components that perform many functions, however, this approach breaks
down, and signatures place related interfaces close to one another.

TinyOS detail: The names of all of the components described above end in the letters C and P. This
is not a requirement. It is a coding convention used in TinyOS code. Components whose names end in
C are abstractions that other components can use freely: the C stands for “component.” Some component
names end in P, which stands for “private.” In TinyOS, P components should not be used directly, as they
are generally an internal part of a complex system. Components use these two letters in order to clearly
distinguish them from interfaces.

3.2 Interfaces

Interfaces describe a functional relationship between two or more different components. The role a component
plays in this relationship depends on whether it provides or uses the interface. Like components, interfaces
have a 1-to-1 mapping between names and files: the file Leds.nc contains the interface Leds while the
file Boot.nc contains the interface Boot. Just as with components, interfaces are in a global namespace.
Syntactically, however, interfaces are quite different from components. They have a single block, the
interface declaration:

interface Boot { interface Leds {

// functions // functions

} }

Listing 3.6: Interface declarations for Leds and Boot

An interface declaration has one or more functions in it. Interfaces have two kinds of functions:
commands and events. Init and Boot are two simple interfaces, each of which has a single function. Init has
a single command, while Boot has a single event:

interface Init { interface Boot {

command error_t init(); event void booted();

} }

Listing 3.7: The Init and Boot interfaces.

TinyOS detail: The error t type returned by init is TinyOS’s normal way of reporting success or failure.
A value of SUCCESS represents success and FAIL represents general failure. Specific Exxx constants,
inspired in part by Unix’s errno, represent specific failures, e.g., EINVAL means “invalid value”.

Whether a function is a command or event determines which side of an interface – a user or a provider
– implements the function and which side can call it. Users can call commands and providers can signal
events. Conversely, users must implement events and providers must implement commands. Figure 3.3
shows this relationship in the visual language we use to describe nesC programs. For example, returning to
MainC and PowerupC, PowerupC is a user of Boot, while MainC is a provider of Boot:

configuration MainC { module PowerupC {

provides interface Boot; uses interface Boot;
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Figure 3.2: Interfaces have commands and events. Users call commands, and providers signal events.
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Figure 3.3: The Init and Boot interfaces.

uses interface Init as SoftwareInit; uses interface Leds;

} }

Listing 3.8: Signatures of MainC and PowerupC

Boot has a single event, Boot.booted. MainC provides Boot, so it signals the event when a node has
booted successfully. This signaling is a function call: the boot sequence calls Boot.booted on all of the
components that want to know when the system has come up. If a component – such as PowerupC – wants
to know when the node has booted, it uses the Boot interface.

Commands have the opposite implementation direction as events. Users call commands and providers
implement them. MainC uses Init so it can initialize software components before booting: it calls SoftwareInit.init
on the components that need initialization. Similarly, as PowerupC uses Leds, it can call commands such as
Leds.led0On. Conversely, a provider of Leds, such as LedsP, must implement the Leds commands.

Figure 3.3 shows the Boot and Init interfaces graphically. Init has a single command, init. A user of the
Init interface can call Init.init, while a provider of the Init interface must implement Init.init. Conversely,
a user of the Boot interface must implement the booted event, while a provider of the interface can signal
Boot.booted.
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At this point, the distinction between commands and events might seem pointless. After all, providing
an interface with a command is the same as using an interface with an event. In the case of interfaces
which only have commands or events but not both, this is true, and distinction is more for presentation
and legibility. Providing an interface means providing a service, whether that be controlling the LEDs on
a node or notifying components when the system has booted. Using an interface means using that service.
However, as we’ll soon see, many interesting interfaces have both commands and events, representing a
relationship between two components where both can call the other.

3.2.1 Generic Interfaces

The interfaces we’ve seen so far – Boot, Init, and Leds – are all type-free. The nesC language also supports
generic interfaces, which take one or more types as a parameter. For example, the Queue interface takes a
single parameter, which defines what it is a queue of:

interface Queue<t> {

command bool empty();

command uint8_t size();

command uint8_t maxSize();

command t head();

command t dequeue();

command error_t enqueue(t newVal);

command t element(uint8_t idx);

}

Listing 3.9: The Queue interface

The Queue<t> statement says that the queue interface takes a single type, t. The interface definition
can then refer to this type: enqueue takes a t as a parameter, while head, dequeue, and element return values
of type t. Interfaces can have more than one type, in which case the types are comma-delimited: <a, b>.

When a component declares a generic interface, it must specify its parameters. For example, if a
component needs to use a queue of 32-bit integers, its signature would include

module QueueUserC {

uses interface Queue<uint32_t>;

}

Listing 3.10: Using a queue of 32–bit integers

Finally, when connecting users to providers, interface types must match. For example, QueueUserC can
be connected to Queue32C below, but not Queue16C:

module Queue16C { module Queue32C {

provides interface Queue<uint16_t>; provides interface Queue<uint32_t>;

} }

Listing 3.11: Providing a 16–bit or a 32–bt queue

Generic interfaces prevent unnecessary code duplication. Without generic interfaces, for example, we’d
either need a separate Queue interface for every possible type needed, or Queue would have to take a generic
type that a program casts to/from, such as a void*. The former has the problem of code duplication (and
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UserButtonC

enable
disable notifyNotify Getget

Figure 3.4: Commands and events for UserButtonC.

file bloat), while the latter depends on runtime checking, which is notably deficient in C. Having a generic
queue enables compile-time checking for the values put in and out of a queue.

3.2.2 Bidirectional Interfaces

So far, we’ve only seen interfaces that have either commands or events, but not both. Bidirectional interfaces
declare both commands from a user to a provider as well as events from a provider to a user. For example,
this is the Notify interface, which allows a user to ask that it be notified of events, which can have data
associated with them:

interface Notify<val_t> {

command error_t enable();

command error_t disable();

event void notify(val_t val);

}

Listing 3.12: The Notify interface

The Notify interface has two commands, for enabling and disabling notifications. If notifications are
enabled, then the provider of the interface signals notify events. The Notify interface is generic, as depending
on the service, it might need to provide different kinds of data. Bidirectional interfaces enable components
to register callbacks without needing function pointers.

For instance, some hardware platforms have a button on them. A button lends itself well to the Notify
interface: a component can turn notifications of button pushes on and off. For example, UserButtonC is a
component that provides this abstraction:

configuration UserButtonC {

provides interface Get<button_state_t>;

provides interface Notify<button_state_t>;

}

Listing 3.13: UserButtonC

In addition to the Notify interface, which tells a user when the button state has changed, UserButtonC
provides the Get interface, which a component can use to actively query the state of the button. Figure 3.4
shows the call directions of the commands and events of UserButtonC.

A component that provides Notify must implement the commands enable and disable, and can signal the
notify event. A component that uses Notify can call the enable and disable commands, and must implement
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the notify event. In the case of UserButtonC, button state t describes whether the button is up or down.
Timer is another bidirectional interface. Timer is a generic interface, but it uses types in a slightly

different way than Get or Notify. The type in a Timer interface is not used in any of its commands or events.
Instead, the type represents a timer granularity. For example a Timer<TMilli> is a millisecond timer.1

while a Timer<TMicro> is a microsecond timer. Typing in this way enables nesC to check that the Timer
a component uses is the right granularity while only having a single Timer interface: you cannot wire a
microsecond timer to a component that needs a millisecond timer. This is a subset of the Timer interface; it
has additional, advanced operations which are elided for simplicity:

interface Timer<precision_tag> {

command void startPeriodic(uint32_t dt);

command void startOneShot(uint32_t dt);

command void stop();

event void fired();

// Advanced operations follow

}

Listing 3.14: Simplified Timer interface showing three commands and one event

The fired event signals in response to the start commands, which differ in whether they cause a series
of timer firings (startPeriodic) or a single fired event (startOneShot). The dt parameter specifies the timer
interval.

Timer differs from Notify in a subtle but significant way: the user controls the timing and number of
events. Notify allows users to turn events on and off; Timer allows users to control which events are signaled
and when. There is therefore a much tighter coupling between the commands and events. With Notify, it’s
possible that no events will ever be signaled even if Notify is enabled. With Timer, one can describe exactly
what events will be signaled based on what commands are called.

3.3 Component implementations

Modules and configurations differ in their implementation sections.

3.3.1 Modules

Module implementations are written in nesC’s dialect of the C language. At the level of single statements,
nesC is almost identical to C. It differs mainly in how code calls functions and variable scoping. As a
component must implement commands for interfaces it provides and events for interfaces it uses, a module’s
code must define these functions. For example, this is the module code for the PowerupC module:

module PowerupC {

uses interface Boot;

uses interface Leds;

}

implementation {

event void Boot.booted() {

call Leds.led0On();

}

1Note that a TMilli timer fires 1024 times per second, not 1000. This is due to the fact that many microcontrollers do not have
the ability to count at 1kHz accurately, but they can count at 1024Hz accurately.
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}

Listing 3.15: PowerupC module code

As PowerupC uses the Boot interface, and Boot has a single event, booted, PowerupC must provide an
implementation: event void Boot.booted() { ...}. When the provider of Boot signals this event,
PowerupC turns on LED 0 of the Leds interface. Modules invoke commands with the call keyword and
invoke events with the signal keyword. For this reason, you’ll often see the terms “call commands” and
“signal events.”

The Leds interface has three LEDs, mostly for historical reasons. They are named led0, led1, and led2.
In addition to turning LEDs on (e.g., led0On), the Leds interface allows you to turn them off (e.g., led0Off)
and toggle them (e.g., led0Toggle). For example, this component will cause system boot to enter an infinite
loop that toggles all three LEDs:

module PowerupToggleC {

uses interface Boot;

uses interface Leds;

}

implementation {

event void Boot.booted() {

while (1) {

call Leds.led0Toggle();

call Leds.led1Toggle();

call Leds.led2Toggle();

}

}

}

Listing 3.16: The module PowerupToggleC

For PowerupToggleC to do anything, we must specify which components providing Boot and Leds we
want to connect PowerupToggleC to. This is the role of the PowerupToggleAppC configuration which we
will write next.

3.3.2 A basic configuration

Modules allocate state and implement executable logic. However, like all components, they can only name
functions and variables within their local namespaces, i.e., those defined in their signature and implementation.
For one module to be able to call another, we have to map a set of names (generally interfaces) in one
component’s signature to a set of names in another component signature. In nesC, connecting two components
in this way is called wiring. Configurations, nesC’s second kind of component, contain these wirings.
Modules implement program logic, configurations connect components together into larger abstractions.

Configurations look very similar to modules. They have a specification and an implementation. This
is the PowerupToggleAppC configuration, which connects the PowerupToggleC module to the components
that provide the Boot and Leds interfaces.

configuration PowerupToggleAppC {}

implementation {

components MainC, LedsC, PowerupToggleC;

PowerupToggleC.Boot -> MainC.Boot;
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PowerupToggleC.Leds -> LedsC.Leds;

}

Listing 3.17: The PowerupToggleAppC configuration

A configuration must name which components it is wiring with the components keyword. Any number
of component names can follow components, and their order does not matter. The keyword remains plural
(components, not component) even if only a single component name follows. A configuration can have
multiple components statements. A configuration must name a component before it wires it. For example,
both of these are valid:

components MainC, LedsC;

components PowerupToggleC;

PowerupToggleC.Boot -> MainC.Boot;

PowerupToggleC.Leds -> LedsC.Leds;

components PowerupToggleC;

components MainC;

PowerupToggleC.Boot -> MainC.Boot;

components LedsC;

PowerupToggleC.Leds -> LedsC.Leds;

Listing 3.18: Example uses of the components keyword

Syntactically, configurations are very simple. They have three operators: ->, <- and =. The = operator
is used for wiring the configuration’s specification, as we will see in Chapter 4. The two arrows are for wiring
a configuration’s components to each other: the arrow connects an interface user to an interface provider.
The arrow points from the user to the provider, but resolves the call paths of bidirectional interfaces in both
directions (used to provided commands, and provided to used events). For example, the following two lines
have the same effect:

PowerupToggleC.Boot -> MainC.Boot;

MainC.Boot <- PowerupToggleC.Boot;

When PowerupToggleC calls Leds.led0Toggle, it names a function in its own local scope. The LedsC
component provides the Leds interface. Wiring the two maps the first to the second. This means that when
PowerupToggleC calls its Leds.led0Toggle, it actually calls LedsC’s Leds.led0Toggle. The same is true for
other calls of the Leds interface, such as Leds.led1On. The configuration PowerupToggleAppC provides a
mapping between the local namespaces of the two components.

Because PowerupToggleAppC is the top-level configuration of the PowerupToggle application, it does
not provide or use any interfaces: its signature block is empty. Later, in Chapter 4, we’ll introduce
configurations that provide and use interfaces.

3.3.3 Module variables

All module variables are private: interfaces are the only way that other components can access a variable.
The Get interface, mentioned above as part of the UserButtonC, is an example of such an abstraction. Get
has a very simple definition:

interface Get<val_t> {

command val_t get();

}
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Listing 3.19: The Get interface

Modules declare variables much like standard C. For example, this component implements a Get interface
which returns the number of times get has been called (i.e., acts like a counter):

module CountingGetC {

provides interface Get<uint8_t>;

}

implementation {

uint8_t count;

command uint8_t Get.get() {

return count++;

}

}

Listing 3.20: A Self–Incrementing Counter

Module variable declarations can have initializers, just like C:

uint8_t count = 1;

message_t packet;

message_t* packetPtr = &packet;

3.3.4 Generic Components

By default, components in TinyOS are singletons: only one exists. Every configuration that names a
singleton component names the same component. For example, if two configurations wire to LedsC, they are
wiring to the same code that accesses the same variables. A singleton component introduces a component
name that any configuration can use into the global namespace.

In addition to singleton components, nesC has generic components. Unlike singletons, a generic component
can have multiple instances. For example, while a low-level software abstraction of a hardware resource
is inherently a singleton – there is only one copy of a hardware register – software data structures are
instantiable. Being instantiable makes them reusable across many different parts of an application. For
example, the module BitVectorC provides the abstraction of a bit vector; rather than define macros or
functions to manipulate a bit vector a module can just use the interface BitVector and assume that a corresponding
configuration connects it to a BitVectorC of the proper width.

Earlier versions of nesC (1.0 and 1.1) did not support generic components. Whenever a component
requires a common data structure, a programmer had to make a copy of the data structure component
and give it a new name, or separate functionality and allocation by locally allocating data structures and
using library routines. For example, network protocols typically all implemented their own queue data
structures, rather than relying on a standard implementation. This code copying prevented code reuse,
forcing programmers to continually revisit common bugs and problems, rather than building on well-tested
libraries.

Generic components have the keyword generic before their signature:

generic module SineSensorC() { generic configuration TimerMilliC() {

provides interface Init; provides interface Timer<TMilli>;

provides interface Read<uint16_t>; }
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}

Listing 3.21: Generic module SineSensorC and generic configuration TimerMilliC

To use a generic component, a configuration must instantiate it with the new keyword. This is the
beginning of the code for the configuration BlinkAppC, the top-level configuration for the Blink application,
which displays a 3-bit counter on a mote’s LEDs using three timers:

configuration BlinkAppC {}

implementation {

components MainC, BlinkC, LedsC;

components new TimerMilliC() as Timer0;

components new TimerMilliC() as Timer1;

components new TimerMilliC() as Timer2;

/* Wirings below */

}

Listing 3.22: Instantiating a generic component

Generic components can take parameters, hence the parentheses in component signatures (generic
configuration TimerMilliC()) and instantiations (components new TimerMilliC() as Timer0;).
These parameters can be values of simple types, constant strings, or types. For example, BitVectorC takes a
16-bit integer denoting how many bits there are:

generic module BitVectorC(uint16_t maxBits) {

provides interface Init;

provides interface BitVector;

}

Listing 3.23: Signature of BitVectorC

The typedef keyword denotes a parameter to a generic component that is a type. The generic module
QueueC is a queue with a fixed maximum length. QueueC takes two parameters: the type that the queue
stores and the maximum length. By convention, we suffix all type arguments with t:

generic module QueueC(typedef queue_t, uint8_t queueSize) {

provides interface Queue<queue_t>;

}

Listing 3.24: QueueC signature

Chapter 8 goes into the details of writing new generic components.

3.4 Split-phase interfaces

Because sensor nodes have a broad range of hardware capabilities, one of the goals of TinyOS is to have a
flexible hardware/software boundary. An application that encrypts packets should be able to interchangeably
use hardware or software implementations. Hardware, however, is almost always split-phase rather than
blocking. In a split-phase operation the request that initiates an operation completes immediately. Actual
completion of the operation is signaled by a separate callback. For example, to acquire a sensor reading
with an analog-to-digital converter (ADC), software writes to a few configuration registers to start a sample.
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When the ADC sample completes, the hardware issues an interrupt, and the software reads the value out of
a data register.

Now, let’s say that rather than directly sampling, the sensor implementation actually samples periodically
and when queried gives a cached value. This may be necessary if the sensor needs to continually calibrate
itself. Magnetometer drivers sometimes do this due to the effect of the Earth’s magnetic field, as two
sensors oriented differently might have very different magnetometer floors. Drivers estimate the floor and
essentially return a measure of recent change, rather than an absolute value. From a querying standpoint,
the implementation of the sensor is entirely in software. This fact should not be apparent to the caller. For
ease of composition, sampling a self-calibrating magnetometer should be the same as a simple photoresistor.
But the magnetometer is a synchronous operation (it can return the result immediately) while the ADC is
split-phase.

The basic solution to this problem is to make one of the two look like the other: either give the
magnetometer a split-phase interface, or make the ADC synchronous by blocking until the sampling completes.
If the ADC interrupt is very fast, the ADC driver might be able to get away with a simple spin loop to wait
until it fires. If the interrupt is slow, then this wastes a lot of CPU cycles and energy. The traditional solution
for this latter case (e.g., in traditional operating systems) is to use multiple threads. When the code requests
an ADC sample, the OS sets up the request, puts the calling thread on a wait queue, starts the operation, and
then schedules another thread to run. When the interrupt comes in, the driver resumes the waiting thread
and puts it on the OS ready queue.

The problem with threads in embedded systems is that they require a good deal of RAM. Each thread
has its own private stack which has to be stored when a thread is waiting or idle. E.g., when a thread samples
a blocking ADC and is put on the wait queue, the memory of its entire call stack has to remain untouched
so that when it resumes it can continue execution. RAM is a very tight resource on current sensor node
platforms. Early versions of TinyOS ran in 512 bytes of RAM. When a thread is idle, its stack is wasted
storage, and allocating the right sized stack for all of the threads in the system can be a tricky business.
Additionally, while it is easy to layer threads on top of a split-phase interface, it is very difficult to do
the opposite. Because it’s a one-way street, while increasing amounts of RAM might allow threads at an
application level, the bottom levels of TinyOS— the core operating system — can’t require them, as they
preclude chips with leaner RAM resources than high-end microcontrollers.

TinyOS therefore takes the opposite approach. Rather than make everything synchronous through
threads, operations that are split-phase in hardware are split-phase in software as well. This means that
many common operations, such as sampling sensors and sending packets, are split-phase. An important
characteristic of split-phase interfaces is that they are bidirectional: there is a command to start the operation,
and an event that signifies the operation is complete. As a result, TinyOS programs only need a single stack,
saving RAM.

3.4.1 Read

The Read interface is the basic TinyOS interface for split-phase data acquisition. Most sensor drivers provide
Read, which is generic:

interface Read<val_t> {

command error_t read();

event void readDone(error_t err, val_t val);

}

Listing 3.25: The Read interface



3.5. Module memory allocation, avoiding recursion, and other details 32

For example, a sensor driver that generates a 16-bit value provides Read<uint16 t>. If the provider of
Read returns SUCCESS to a call to read, then it will signal readDone in the future, passing the Read’s result
back as the val parameter to the event handler.

3.4.2 Send

The basic TinyOS packet transmission interface, Send, is also a split-phase operation. However, it is slightly
more complex, as it requires passing a pointer for a packet to transmit:

interface Send {

command error_t send(message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);

command error_t cancel(message_t* msg);

command void* getPayload(message_t* msg);

command uint8_t maxPayloadLength(message_t* msg);

}

Listing 3.26: The split–phase Send interface

A provider of Send defines the send and cancel functions and can signal the sendDone event. Conversely,
a user of Send needs to define the sendDone event and can call the send and cancel commands. When a call
to send returns SUCCESS, the msg parameter has been passed to the provider, which will try to send the
packet. When the send completes, the provider signals sendDone, passing the pointer back to the user. This
pointer passing approach is common in split-phase interfaces that need to pass larger data items. The next
section discusses memory management in greater detail.

3.5 Module memory allocation, avoiding recursion, and other details

Besides power, the most valuable resource to mote systems is RAM. Power means that the radio and CPU
have to be off almost all the time. Of course, there are situations which need a lot of CPU or a lot of
bandwidth (e.g., cryptography or binary dissemination), but by necessity they have to be rare occurrences.
In contrast, the entire point of RAM is that it’s always there. The sleep current of the microcontrollers most
motes use today is, for the most part, determined by RAM.

Modules allocate memory by declaring variables which, following nesC’s scoping rules, are completely
private to the component. For example, the CountingGetC component (Listing 3.20, page 29) allocated
count as an 8-bit module-level variable, for a cost of 1 byte of RAM. Because TinyOS uses split-phase
operations and does not provide threads, there is no long-lived stack-allocated data. As a result, when a
TinyOS system is quiescent, these module variables represent the entire software state of the system.

Generally, nesC does not encourage dynamic memory allocation through malloc or other C library calls.
You can call them, but the lack of memory protection on most embedded microcontrollers makes their use
particularly risky. Figure 3.5 shows a typical memory layout on a microcontroller. The stack grows down
and the heap grows up, and since there is no hardware memory protection the two can collide, at which point
chaos is guaranteed.

Instead, you should allocate memory as module variables. For example, if a module needs a buffer with
which to hold sensor readings, it should allocate the buffer statically. In other cases, it is convenient to
create reusable abstract data types by packaging up some state and operations in a generic component, as
in BitVectorC (Listing 3.23, page 30) . Finally, components sometimes need to share a memory pool. A
common example of this is a set of components that share a pool of packet buffers. A shared pool allows
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Figure 3.5: Typical memory layout on a microcontroller. Because there is no memory protection, the stack
can easily overflow onto the heap or data.

multiple cooperating components to amortize their requirements, especially if it is unlikely all of them will
need a lot of memory at the same time. By avoiding all use of the heap, the only cause of run-time memory
failure is the stack.

To avoid stack overflow, TinyOS programs should avoid recursion and not declare any large local
variables (e.g. arrays). Avoiding recursion within a single module is easy, but in a component-based
language like nesC it’s very easy to unintentionally create a recursive loop across component boundaries.
For instance, let’s assume component A uses the Read interface to repeatedly sample a sensor provided
by component B, i.e. the readDone event handler in A calls B’s read command. If B happens to be a
simple sensor, it might choose to signal the readDone event directly within the implementation of the read
command. However, this program now contains an unintended recursive loop: A calls B’s read command
which signals A’s readDone event which calls B’s read command which . . .

To avoid such recursive loops, TinyOS follows a couple of coding conventions. First, split-phase
commands must never directly signal their callback — see Chapter 5.3.2 for more details. Second, the
relation between most TinyOS components is hierarchical: application components use interfaces provided
by system services, which themselves use interfaces provided by lower-level services, and so on down to
the raw hardware — this structure is discussed in depth in Chapter 12.

Finally, it’s worth noting that the stack may overflow because of extra stack usage caused by an interrupt
handler (Chapter 5) interrupting your regular computation (or, even worse, another interrupt handler which
is already using some of the stack space). You should always leave enough RAM free to handle the worst
case usage of your regular compuation and all interrupt handlers that can execute simultaneously.

Programming Hint 2: NEVER WRITE RECURSIVE FUNCTIONS WITHIN A MODULE. IN
COMBINATION WITH THE TINYOS CODING CONVENTIONS, THIS GUARANTEES THAT
ALL PROGRAMS HAVE BOUNDED STACK USAGE.

Programming Hint 3: NEVER USE MALLOC AND FREE. ALLOCATE ALL STATE IN
COMPONENTS. IF YOUR APPLICATION REQUIREMENTS NECESSITATE A DYNAMIC
MEMORY POOL, ENCAPSULATE IT IN A COMPONENT AND TRY TO LIMIT THE SET OF
USERS.

3.5.1 Memory ownership and split-phase calls

TinyOS programs contain many concurrent activities, e.g., even in a very simple program, radio message
transmission, sensor sampling and application logic. Ensuring that these activities do not step on each other
by accessing each other’s data out of turn is often a complex problem.

The only way that components can interact is through function calls, which are normally part of interfaces.
Just as in C, there are two basic ways that components can pass parameters: by value and by reference
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(pointer). In the first case, the data is copied onto the stack, so the callee can modify it or cache it freely. In
the second case, the caller and callee share a pointer to the data, and so the two components need to carefully
manage access to the data in order to prevent memory corruption.

The simplest solution to preventing data-sharing problems is to never store pointer parameters in module
variables. This is the approach used by some abstract data type components (see Chapter 10); it ensures that
any data-sharing is transitory, restricted to the duration of the command or event with the pointer parameter.

However, this approach is not practical for split-phase calls. Because the called component typically
needs access to the pointer while the operation is executing, it has to store it in a module variable. For
example, consider the basic Send interface:

interface Send {

command error_t send(message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);

command error_t cancel(message_t* msg);

command void* getPayload(message_t* msg);

command uint8_t maxPayloadLength(message_t* msg);

}

Listing 3.27: The Send interface

The important pair of functions in this example is send/sendDone. To send a packet, a component calls
send. If send returns SUCCESS, then the caller has passed the packet to a communication stack to use, and
must not modify the packet. The callee stores the pointer in a variable, enacts a state change, and returns
immediately. If the interface user modifies the packet after passing it to the interface provider, the packet
could be corrupted. For example, the radio stack might compute a checksum over the entire packet, then
start sending it out. If the caller modifies the packet after the checksum has been calculated, then the data
and checksum won’t match up and a receiver will reject the packet.

To avoid these kinds of problems, TinyOS follows an ownership discipline: at any point in time, every
“memory object” — a piece of memory, typically a whole variable or a single array element — should be
owned by a single module. A command like send is said to pass ownership of its msg argument from caller
to callee. When a split-phase interface has this kind of “pass” semantics, the completion event should have
the passed pointer as one of its parameters, to show that the object is being returned to its original owner.

Programming Hint 4: WHEN POSSIBLE, AVOID PASSING POINTERS ACROSS
INTERFACES; WHEN THIS CANNOT BE AVOIDED ONLY ONE COMPONENT SHOULD BE
ABLE TO MODIFY A POINTER’S DATA AT ANY TIME.

One of the trickiest examples of this pass approach is the Receive interface. At first glance, the interface
seems very simple:

interface Receive {

event message_t* receive(message_t* msg, void* payload, uint8_t len);

}

Listing 3.28: The Receive interface

The receive event is rather different than most events: it has a message t* as both a parameter and a
return value. When the communication layer receives a packet, it passes that packet to the higher layer
as a parameter. However, it also expects the higher layer to return it a message t* back. The basic idea
behind this is simple: if the communication layer doesn’t have a message t*, it can’t receive packets, as it
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has nowhere to put them. Therefore, the higher layer always has to return a message t*, which is the next
buffer the radio stack will use to receive into. This return value can be the same as the parameter, but it does
not have to be. For example, this is perfectly reasonable, if a bit feature-free, code:

event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len) {

return msg;

}

A receive handler can always copy needed data out of the packet and just return the passed buffer. There
are, however, situations when this is undesirable. One common example is a routing queue. If the node
has to forward the packet it just received, then copying it into another buffer is wasteful. Instead, a queue
allocates a bunch of packets, and in addition to a send queue, keeps a free list. When the routing layer
receives a packet to forward, it sees if there are any packets left in the free list. If so, it puts the received
packet into the send queue and returns a packet from the free list, giving the radio stack a buffer to receive
the next packet into. If there are no packets left in the free list, then the queue can’t accept the packet and so
just returns it back to the radio for re-use. The pseudocode looks something like this:

receive (m):

if I’m not the next hop, return m // Not for me

if my free list is empty, return m // No space

else

put m on forwarding queue

return entry from free list

One of the most common mistakes early TinyOS programmers encounter is misusing the Receive
interface. For example, imagine a protocol that does this:

event message_t* LowerReceive.receive(message_t* m, void* payload, uint8_t len) {

processPacket(m);

if (amDestimation(m)) {

signal UpperReceive.receive(m, payload, len);

}

return m;

}

The problem with this code is that it ignores the return value from the signal to UpperReceive.receive.
If the component that handles this event performs a buffer swap — e.g., it has a forwarding queue — then
the packet it returns is lost. Furthermore, the packet that it has put on the queue has also been returned to the
radio for the next packet reception. This means that, when the packet reaches the end of the queue, the node
may send something completely different than what it decided to forward (e.g., a packet for a completely
different protocol).

The buffer swap approach of the Receive interface provides isolation between different communication
components. Imagine, for example, a more traditional approach, where the radio dynamically allocates a
packet buffer when it needs one. It allocates buffers and passes them to components on packet reception.
What happens if a component holds on to its buffers for a very long time? Ultimately, the radio stack will
run out of memory to allocate from, and will cease being able to receive packets at all. By pushing the
allocation policy up into the communication components, protocols that have no free memory left are forced
to drop packets, while other protocols continue unaffected.

This approach speaks more generally of how nesC components generally handle memory allocation. All
state is allocated in one of two places: components, or the stack. A shared dynamic memory pool across
components makes it much easier for one bad component to cause others to fail. That is not to say that
dynamic allocation is never used. For example, the PoolC component provides a memory pool of a fixed
number of a single type. Different components can share a pool, dynamically allocating and deallocating as
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needed:

generic configuration PoolC(typedef pool_t, uint8_t POOL_SIZE) {

provides interface Pool<pool_t>;

}

Listing 3.29: The signature of PoolC

Bugs or resource exhaustion in components using a particular pool do not affect components using a
different, or no, pool.

3.5.2 Constants and saving memory

Modules often need constants of one kind or another, such as a retransmit count or a threshold. Using a
literal constant is problematic, as you’d like to be able to reuse a consistent value. This means that in C-like
languages, you generally use something like this:

const int MAX_RETRANSMIT = 5;

if (txCount < MAX_RETRANSMIT) {

...

}

The problem with doing this in nesC/TinyOS is that a const int might allocate RAM, depending on the
compiler (good compilers will place it in program memory). You can get the exact same effect by defining
an enum:

enum {

MAX_RETRANSMIT = 5

};

This allows the component to use a name to maintain a consistent value and does not store the value
either in RAM or program memory. This can even improve performance, as rather than a memory load, the
architecture can just load a constant. It’s also better than a #define, as it exists in the debugging symbol table
and application metadata. However, enum can only declare integer constants, so you should still use #define
for floating-point and string constants (but see Chapter 3.5.5 for a discussion of some of #define’s pitfalls).

Note, however, that using enum types in variable declarations can waste memory, as enums default to
integer width. For example, imagine this enum:

typedef enum {

STATE_OFF = 0,

STATE_STARTING = 1,

STATE_ON = 2,

STATE_STOPPING = 3

} state_t;

Here are two different ways you might allocate the state variable in question:

state_t state; // platform int size (e.g., 2-4 bytes)

uint8_t state; // one byte

Even though the valid range of values is 0-3, the former will allocate a native integer, which on a
microcontroller is usually 2 bytes, but could be 4 bytes on low power microprocessors. The second will
allocate a single byte. So you should use enums to declare constants, but avoid declaring variables of an
enum type.



37 3.5. Module memory allocation, avoiding recursion, and other details

Programming Hint 5: CONSERVE MEMORY BY USING ENUMS RATHER THAN CONST
VARIABLES FOR INTEGER CONSTANTS, AND DON’T DECLARE VARIABLES WITH AN
ENUM TYPE.

3.5.3 Platform Independent Types

To simplify networking code, TinyOS has traditionally used structs to define message formats and directly
access messages — this avoids the programming complexity and overheads of using marshalling and unmarshalling
functions to convert between host and network message representations. For example, the standard header
of a packet for the CC2420 802.15.4 wireless radio chip2 looks something like this:

typedef struct cc2420_header_t {

uint8_t length;

uint16_t fcf;

uint8_t dsn;

uint16_t destpan;

uint16_t dest;

uint16_t src;

uint8_t type;

} cc2420_header_t;

Listing 3.30: CC2420 packet header

That is, it has a one byte length field, a two-byte frame control field, a one byte sequence number, a two
byte group, a two byte destination, a two byte source, and one byte type fields. Defining this as a structure
allows you to easily access the fields, allocate storage, etc. The problem, though, is that the layout and
encoding of this structure depends on the chip you’re compiling for. For example, the CC2420 expects all of
these fields to be little-endian. If your microcontroller is big-endian, then you won’t be able to easily access
the bits of the frame control field. One commonly used solution to this problem is to explicitly call macros
that convert between the microcontroller and the chip’s byte order, e.g. macros like Unix’s htons, ntohl, etc.
However, this approach is error-prone, especially when code is initially developed on a processor with the
same byte order as the chip.

Another problem with this approach is due to differing alignment rules between processors. On an
ATmega128, the structure fields will be aligned on one-byte boundaries, so the layout will work fine. On an
MSP430, however, two-byte values have to be aligned on two-byte boundaries: you can’t load an unaligned
word. So the MSP430 compiler will introduce a byte of padding after the length field, making the structure
incompatible with the CC2420 and other platforms. There are a couple of other issues that arise, but the
eventual point is the same: TinyOS programs need to be able to specify platform-independent data formats
that can be easily accessed and used.

In TinyOS 1.x, some programs attempted to solve this problem by using gcc’s packed attribute to
make data structures platform independent. Packed tells gcc to ignore normal platform struct alignment
requirements and instead pack a structure tightly:

typedef struct RPEstEntry {

uint16_t id;

uint8_t receiveEst;

} __attribute__ ((packed)) RPEstEntry;

2Standard in that IEEE 802.15.4 has several options, such as 0-byte, 2-byte, or 8-byte addressing, and so this is just the format
TinyOS uses by default.
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Listing 3.31: The dreaded “packed” attribute in the 1.x MintRoute library

Packed allowed code running on an ATmega128 and on an x86 to agree on data formats. However,
packed has several problems. The version of gcc for the MSP430 family (used in Telos motes) doesn’t
handle packed structures correctly. Furthermore, packed is a gcc-specific feature, so code that uses it is not
very portable. And finally, while packed eliminates alignment differences, it does not change endianness:
int16 t maybe be big-endian on one platform and little-endian on another, so you would still have to use
conversion macros like htons.

Programming Hint 6: NEVER, EVER USE THE “PACKED” ATTRIBUTE IN PORTABLE
CODE.

To keep the convenience of specifying packet layouts using C types while keeping code portable,
nesC 1.2 introduced platform independent types. Simple platform independent types (integers) are either
big-endian or little-endian, independently of the underlying chip hardware. Generally, an external type is
the same as a normal type except that it has nx or nxle preceding it:

nx_uint16_t val; // A big-endian 16-bit value

nxle_uint32_t otherVal; // A little-endian 32-bit value

In addition to simple types, there are also platform independent structs and unions, declared with
nx struct and nx union. Every field of a platform independent struct or union must be a platform independent
type. Non-bitfields are aligned on byte boundaries (bitfields are packed together on bit boundaries, as usual).
For example, this is how TinyOS 2.0 declares the CC2420 header:

typedef nx_struct cc2420_header_t {

nxle_uint8_t length;

nxle_uint16_t fcf;

nxle_uint8_t dsn;

nxle_uint16_t destpan;

nxle_uint16_t dest;

nxle_uint16_t src;

nxle_uint8_t type;

} cc2420_header_t;

Listing 3.32: The CC2420 header

Any hardware architecture that compiles this structure uses the same memory layout and the same
endianness for all of the fields. This enables platform code to pack and unpack structures, without resorting
to macros or utility functions such as UNIX socket htonl and ntohs.

Programming Hint 7: USE PLATFORM INDEPENDENT TYPES WHEN DEFINING
MESSAGE STRUCTURES.

Under the covers, nesC translates network types into byte arrays, which it packs and unpacks on each
access. For most nesC codes, this has a negligible runtime cost. For example, this code

nx_uint16_t x = 5;

uint16_t y = x;

rearranges the bytes of x into a native chip layout for y, taking a few cycles. This means that if you need to
perform significant computation on arrays of multibyte values (e.g., encryption), then you should copy them
to a native format before doing so, then move them back to a platform independent format when done. A
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single access costs a few cycles, but thousands of accesses costs a few thousand cycles.

Programming Hint 8: IF YOU HAVE TO PERFORM SIGNIFICANT COMPUTATION ON A
PLATFORM INDEPENDENT TYPE OR ACCESS IT MANY (HUNDREDS OR MORE) TIMES,
TEMPORARILY COPY IT TO A NATIVE TYPE.

3.5.4 Global names

Components encapsulate functions and state, and wiring connects functions defined in different components.
However, nesC programs also need globally available types for common abstractions, such as error t (TinyOS’s
error code abstraction) or message t (networking buffers). Furthermore, nesC programs sometimes call
existing C library functions, either from the standard C library (e.g., mathematical functions like sin) or
functions from a personal library of existing C code (see Chapter 3.5.6).

In keeping with C, nesC uses .h header files and #include for this purpose. This has the added
advantage that existing C header files can be directly reused. For instance, TinyOS’s error t type and error
constants are defined in the TinyError.h file:

#ifndef TINY_ERROR_H_INCLUDED

#define TINY_ERROR_H_INCLUDED

enum {

SUCCESS = 0,

FAIL = 1, // Generic condition: backwards compatible

ESIZE = 2, // Parameter passed in was too big.

ECANCEL = 3, // Operation cancelled by a call.

EOFF = 4, // Subsystem is not active

EBUSY = 5, // The underlying system is busy; retry later

EINVAL = 6, // An invalid parameter was passed

ERETRY = 7, // A rare and transient failure: can retry

ERESERVE = 8, // Reservation required before usage

EALREADY = 9, // The device state you are requesting is already set

};

typedef uint8_t error_t;

#endif

Listing 3.33: TinyError.h, a typical nesC header file

Like a typical C header file, TinyError.h uses #ifndef/#define to avoid redeclaring the error constants
and error t when the file is included multiple times. Including a header file in a component is straightforward:

#include "TinyError.h"

module BehaviorC { ... }

implementation

{

error_t ok = FAIL;

}

Listing 3.34: Including a header file in a component

Just as in C, #include just performs textual file inclusion. As a result it is important to use #include in
the right place, i.e., before the interface, module or configuration keyword. If you don’t, you won’t get the
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behavior you expect. Similarly, in C, using #include <stdio.h> in the middle of a function is not likely
to work. . .

Unlike C where each file is compiled separately, constants, types and functions included in one component
or interface are visible in subsequently compiled components or interfaces. For instance, TinyError.h is
included by interface Init, so the following module can use error t, SUCCESS, etc:

module BadBehaviorC {

provides interface Init;

}

implementation

{

command error_t Init.init() {

return FAIL; // We’re bad, we always fail.

}

}

Listing 3.35: Indirectly including a header file

Programming Hint 9: INTERFACES SHOULD #INCLUDE THE HEADER FILES FOR THE
TYPES THEY USE.

Header files written for nesC occasionally include C function definitions, not just declarations. This
is practical because the header file ends up being included exactly once in the whole program, unlike in
C where it is included once per file (leading to multiple definitions of the same function). These uses are
however rare, as they go against the goal of encapsulating all functionality within components.

3.5.5 nesC and the C preprocessor

Preprocessor symbols #defined before a nesC’s file module, configuration or interface keyword are available
in subsequently loaded files, while those #defined later are “forgotten” at the end of the file:

// Available in all subsequently loaded files

#define GLOBAL_NAME "fancy"

interface Fancy {

// Forgotten at the end of this file

#define LOCAL_NAME "soon_forgotten"

command void fancyCommand();

}

Listing 3.36: Fancy.nc: C preprocessor example

However, relying directly on this behavior is tricky, because the preprocessor is run (by definition) before
a file is processed. Consider a module that uses the Fancy interface:

module FancyModule {

uses interface Fancy;

}

implementation {

char *name = GLOBAL_NAME;

}



41 3.5. Module memory allocation, avoiding recursion, and other details

Listing 3.37: FancyModule.nc: C preprocessor pitfalls

Compiling FancyModule will report that GLOBAL NAME is an unknown symbol. Why? The problem
is that the first step in compiling FancyModule.nc is to preprocess it. At that point, the Fancy interface
hasn’t been seen yet, therefore it hasn’t been loaded and the GLOBAL NAME #define is unknown. Later on,
when FancyModule is analyzed, the Fancy interface is seen, the Fancy.nc file is loaded and GLOBAL NAME
gets #defined. But this is too late to use it in FancyModule.nc.

There are two lessons to be drawn from this: first, as we’ve already seen, it’s best to use enum
rather than #define to define constants when possible. Second, if you must use #define, use it as you
would in C: place your definitions in a header file protected with #ifndef/#define, and #include this header
file in all components and interfaces that use the #define symbol. For instance, both Fancy.nc and
FancyModule.nc should

#include "Fancy.h"

where Fancy.h contains:

#ifndef FANCY_H

#define GLOBAL_NAME "fancy"

#endif

Listing 3.38: Fancy.h: the reliable way to use C preprocessor symbols

Programming Hint 10: ALWAYS #DEFINE A PREPROCESSOR SYMBOL IN A HEADER
FILE. USE #INCLUDE TO LOAD THE HEADER FILE IN ALL COMPONENTS AND
INTERFACES THAT USE THE SYMBOL.

3.5.6 C Libraries

Accessing a C library is easy. The implementation of the generic SineSensorC component uses the C
library’s sin function, which is defined in the math.h header file:

#include <math.h>

generic module SineSensorC() {

provides interface Init;

provides interface Read<uint16_t>;

}

implementation {

uint32_t counter;

void performRead() {

float val = sin(counter++ / 20.0);

signal Read.readDone(SUCCESS, val * 32768.0 + 32768.0);

}

...

}

Listing 3.39: Using a C library function

As with C, if you use a library, you also need to link with it. In this case, nesC programs using
SineSensorC need to link with the math library by passing the -lm option to ncc, the nesC compiler driver.
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3.6 Exercises

1. The Send interface has a command send and an event sendDone. Should you be able to call send
in the sendDone handler or should you have to wait until after the handler returns? Why? Write
pseudocode for the provider of both versions, and write pseudocode for a user of each version that
wants to send packets as quickly as possible.

2. Extend the Blink application so it displays the bottom bits of a random number rather than a counter.
Generate the random number from one of the random number generators in the TinyOS component
libraries (RandomMlcgC or RandomLfsrC).

3. Write an application that increments a 32-bit counter in an infinite loop. Every N increments, the
application toggles LED 0. Choose an N so you can observe the toggling visually. Try making the
counter a platform independent type. Does the toggling slow down? How much? Try a 16-bit value.

4. Write a PingPong application that runs on two nodes. When a node boots, it sends a broadcast packet
using the AMSend interface. When it receives a packet, it sends a packet. Toggle an LED whenever
a node sends a packet. How long does it take for the LED to stop toggling? Try different distances.
If it’s too fast to see, start a timer when the node receives a packet, and send a reply when the timer
fires. You’ll want to use the AMSenderC and AMReceiverC components.



Configurations and wiring

The previous chapter dealt predominantly with modules, which are the basic building blocks of a nesC
program. Configurations are the second type of nesC component. They assemble components into larger
abstractions.

In a nesC program, there are usually more configurations than modules. Except for low-level hardware
abstractions, any given component is built on top of other components, which are encapsulated in configurations.
For example, Figure 4.1 shows a routing stack (CollectionC) which depends on a single-hop packet layer
(ActiveMessageC), which is itself a configuration. This single-hop configuration wires the actual protocol
implementation module (e.g., setting header fields) to a raw packet layer on top of the radio (Link Layer).
This raw packet layer is a configuration that wires the module which sends bytes out to the bus over which
it sends bytes. The bus, in turn, is a configuration. These layers of encapsulation generally reach very low
in the system.

Encapsulating an abstraction in a configuration means that it can be ready-to-use: all we need to do is
wire to its provided interfaces. In contrast, if it were a module that uses and provides interfaces, then we’d
need to wire up dependencies and requirements as well. For example, a radio stack can use a wide range of
resources, including buses, timers, random number generators, cryptographic support, and hardware pins.
This is the signature of just one module of the CC1000 (a wireless radio chip from TI used in the mica2
family motes) radio stack:

module CC1000CsmaP {

provides {

interface Init;

interface SplitControl;

interface CsmaControl;

interface CsmaBackoff;

interface LowPowerListening;

}

uses {

interface Init as ByteRadioInit;

interface StdControl as ByteRadioControl;

interface ByteRadio;

interface CC1000Control;

interface CC1000Squelch;

interface Random;

interface Timer<TMilli> as WakeupTimer;

interface BusyWait<TMicro, uint16_t>;

interface ReadNow<uint16_t> as RssiNoiseFloor;

interface ReadNow<uint16_t> as RssiCheckChannel;

interface ReadNow<uint16_t> as RssiPulseCheck;

}

Listing 4.1: Signature of part of the CC1000 radio stack

43
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CollectionC
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CtpRoutingEngineP
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AMSenderC

AMSend

ActiveMessageC
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Figure 4.1: Some of the configurations in the CTP routing stack.

Rather than expecting a programmer to connect the stack up to all of these things, the entire stack can be
encapsulated in a single component (CC1000ActiveMessageC). This component connects all of the radio’s
subcomponents so their dependencies are needs are met.

Configurations also need to export interfaces. This kind of wiring, rather than connect a provider and a
user, maps one name to another. Interface exports allow configurations to manage the namespace in a nesC
program and act like modules in terms of providing or using interfaces. Managing the nesC namespace, and
correspondingly, interface exports, is one of the most challenging aspects of nesC programming, and so this
chapter goes over it in detail with many examples.

4.1 Configurations

Chapter 3 gave a brief introduction to configurations, showing examples of top-level configurations. Because
top-level configurations wire components together into a completed application, they neither provide nor use
interfaces. This lack of entries in the component signature is uncommon: most configurations are systems
or abstractions that other components can use.

Let’s revisit the syntax of a configuration. The first block of a configuration is its signature, which
states that interfaces that the component uses or provides. The second block of a configuration is its
implementation, which names components and wires them together. The implementation block of a configuration
names the components it is wiring with the components keyword. Any number of component names
besides zero can follow components, and their order does not matter. A configuration can have multiple
components statements.

A configuration wires component interfaces using the three wiring operators: ->, <-, and =. This
chapter discusses the -> and <- introduced in Chapter 3 in greater depth and introduces the = operator,
which allows configurations to provide and use interfaces.
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4.1.1 The -> and <- operators

The -> operators connect providers and users, binding callers and callees. Let’s return to the PowerupToggle
application and step through how its wiring works. The module PowerupToggleC (Listing 3.16, page 27)
uses the Leds interface. The configuration PowerupToggleAppC wires PowerupToggleC.Leds to LedsC.Leds:

configuration PowerupToggleAppC {}

implementation {

components MainC, LedsC, PowerupToggleC;

PowerupToggleC.Boot -> MainC.Boot;

PowerupToggleC.Leds -> LedsC.Leds;

}

Listing 4.2: The PowerupToggleAppC configuration revisited

In turn, LedsC maps LedsC.Leds to LedsP.Leds (see Chapter 4.1.2). The nesC wiring statements in
PowerupToggleAppC and LedsC connect the Leds.led0Toggle (a name local to PowerupToggleC) command
used in PowerupToggleC to LedsP’s identically-named Leds.led0Toggle command implementation. When
PowerupToggleC calls its Leds.led0Toggle command, it actually calls LedsP’s Leds.led0Toggle command
implementation. The same is true for other calls of the Leds interface, such as Leds.led1On. The PowerupToggleAppC
and LedsC configurations provide a mapping between the local namespaces of the PowerupToggleC and
LedsP modules. The C code generated (as an intermediate step) by the nesC compiler looks something like
this:

void LedsP__Leds__led0Toggle() { ... }

void PowerupToggleC__Leds__led0Toggle() {

LedsP__Leds__led0Toggle();

}

...

void PowerupToggleC__Boot__booted() {

while(1) {

call PowerupToggleC__Leds__led0Toggle();

call PowerupToggleC__Leds__led1Toggle();

call PowerupToggleC__Leds__led2Toggle();

}

}

Listing 4.3: C code generated from the PowerupToggleAppC configuration

All of these levels of indirection could add significant overhead. Toggling an LED takes two function
calls. In practice, however, the nesC compiler toolchain cuts out all of this overhead through extensive
inlining. All of those function calls collapse and the LED toggling logic is embedded in the while loop.

4.1.2 The = operator

The -> and <- operators connect concrete providers and users that the configuration names through the
components keyword. A direct wiring (a -> or <-) always goes from a user to a provider, resolving
command and event call paths.
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From the perspective of someone using a component, it shouldn’t be relevant whether the component is
a module or a configuration. Just like modules, configurations can provide and use interfaces. But as they
have no code, these interfaces must be defined in terms of other components. The only way a configuration
can provide or use an interface is to do so by proxy: it renames another component’s implementation as its
own. Configurations achieve this with the wiring operator, =. The = operator connects the interfaces in a
configuration’s signature to interfaces in components named in its components statements.

For example, this is the implementation of the configuration LedsC, which provides the Leds interface
by exporting the interface provided by LedsP:

configuration LedsC {

provides interface Leds;

}

implementation {

components LedsP, PlatformLedsC;

Leds = LedsP.Leds;

LedsP.Init <- PlatformLedsC.Init;

LedsP.Led0 -> PlatformLedsC.Led0;

LedsP.Led1 -> PlatformLedsC.Led1;

LedsP.Led2 -> PlatformLedsC.Led2;

}

Listing 4.4: The LedsC configuration

LedsC is a simple example of a configuration that connects a few small building blocks into a larger,
more useful abstraction. LedsP is a simple module whose code implements the Leds interface commands
by manipulating underlying digital IO lines accessed by the GeneralIO interface. PlatformLedsC provides
three such IO lines, and uses an Init interface which is wired to LedsP.Init to initialize LedsP at system boot
time.

From a programming standpoint, the configuration operators have two very different purposes. The ->
and <- operators combine existing components, completing existing signatures. The = operator defines
how a configuration’s interfaces are implemented. Like a module, a configuration is an abstraction defined
by a signature. Modules directly implement their functions (events from used interfaces, commands from
provided interfaces). Configurations delegate implementations to other components using the = operator.
For example, LedsC delegates the implementation of the Leds interface to LedsP.

4.1.3 Namespace Management

We saw in Chapter 3.1.2 the use of as to manage the names in a component signature, e.g., MainC has

uses interface Init as SoftwareInit;

The as keyword can also be used within configurations. Because nesC components are in a global
namespace, sometimes they have very long and descriptive names. For example, the lowest level (byte) SPI
bus abstraction on the ATmega128 is HplAtm128SpiC, which means, “This is the hardware presentation
layer component of the ATmega128 SPI bus.” Typing that in a configuration is painful and not very easy to
read. So, the slightly higher level abstraction, the configuration Atm128SpiC, names it like this:

component HplAtm128SpiC as HplSpi;

which makes the wiring significantly clearer. As was the case with interfaces, all components statements
have an implicit use of as:
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components MainC;

is just shorthand for

components MainC as MainC;

Another example of using as to clarify a configuration is found in CC2420ReceiveC, the receive path of
the CC2420 radio. This configuration wires packet logic to things like interrupts and status pins:

configuration CC2420ReceiveC {...}

implementation {

components CC2420ReceiveP;

components new CC2420SpiC() as Spi;

components HplCC2420PinsC as Pins;

components HplCC2420InterruptsC as InterruptsC;

// rest of the implementation elided

}

Listing 4.5: CC2420ReceiveC’s use of the as keyword

This example shows a common use of as: to name the result of instantiating a generic component
(CC2420SpiC). In fact, the use of as is required if the same generic component is instantiated twice in the
same configuration, as in the BlinkAppC example we saw earlier:

configuration BlinkAppC {}

implementation {

components MainC, BlinkC, LedsC;

components new TimerMilliC() as Timer0;

components new TimerMilliC() as Timer1;

components new TimerMilliC() as Timer2;

BlinkC.Timer0 -> Timer0.Timer;

BlinkC.Timer1 -> Timer1.Timer;

BlinkC.Timer2 -> Timer2.Timer;

...

}

Listing 4.6: Naming generic component instances

Without as, there would be no way to distinguish the three timers.
The as keyword makes configurations more readable and comprehensible. Because there is a flat

component namespace, some components have long and complex names which can be easily summarized.
Additionally, by using the as keyword, you create a level of indirection. E.g., if a configuration uses the
as keyword to rename a component, then changing the component only requires changing that one line.
Without the keyword, you have to change every place it’s named in the configuration.

4.1.4 Wiring Rules

If a component uses the as keyword to change the name of an interface, then wiring must use this name.
Returning to MainC and LedsP as examples:

configuration MainC { module LedsP {

provides interface Boot; provides {
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uses interface Init as SoftwareInit; interface Init;

} interface Leds;

}

uses {

interface GeneralIO as Led0;

interface GeneralIO as Led1;

interface GeneralIO as Led2;

}

Listing 4.7: MainC and LedsP

This wiring is valid:

MainC.SoftwareInit -> LedsP.Init;

but this is not:

MainC.Init -> LedsP.Init;

Finally, a configuration must name a component before it wires it. For example, this is a valid rewriting
of PowerupToggleAppC:

configuration PowerupToggleAppC {}

implementation {

components MainC, PowerupToggleC;

PowerupToggleC.Boot -> MainC.Boot;

component LedsC;

PowerupToggleC.Leds -> LedsC.Leds;

}

Listing 4.8: Valid alternate of PowerupToggleAppC

while this version is invalid:

configuration PowerupToggleAppC {}

implementation {

components PowerupToggleC;

PowerupToggleC.Boot -> MainC.Boot; // Invalid: MainC not named yet

component LedsC, MainC;

PowerupToggleC.Leds -> LedsC.Leds;

}

Listing 4.9: Invalid alternate of PowerupToggleAppC

4.1.5 Wiring Shortcuts

All interfaces have a type: it is not possible to wire, e.g., a Leds interface to a Boot interface, or a
Read<uint8 t> to a Read<int16 t>. As a result, when wiring you can sometimes elide one of the interface
names. For instance, you can change PowerupToggleAppC’s wiring section to:

components MainC, LedsC, PowerupToggleC;

PowerupToggleC.Boot -> MainC;

PowerupToggleC -> LedsC.Leds;
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On the left side, PowerupToggleC.Boot is an instance of the Boot interface. On the right side is MainC,
without an interface name. Because MainC only provides one instance of the Boot interface, nesC assumes
that this is the one you mean. Similarly, the wiring of component PowerupToggleC to interface Leds of
LedsC must be specifying PowerupToggleC’s Leds interface. So the two wiring statements are equivalent
to:

PowerupToggleC.Boot -> MainC.Boot;

PowerupToggleC.Leds -> LedsC.Leds;

These shortcuts also apply to export wirings:

configuration LedsC {

provides interface Leds;

}

implementation {

components LedsP;

Leds = LedsP;

...

}

Listing 4.10: LedsC revisited

The Leds interface of LedsC is wired to component LedsP, which implicitly resolves to the Leds interface
of LedsP. However, the following code is invalid, as you can’t omit the name of the exported interface:

= LedsP.Init;

Wiring shortcuts are based on interface types and whether the interface is provided or used, not names.
The BlinkC module has the following signature:

module BlinkC

{

uses interface Timer<TMilli> as Timer0;

uses interface Timer<TMilli> as Timer1;

uses interface Timer<TMilli> as Timer2;

uses interface Leds;

uses interface Boot;

}

Listing 4.11: BlinkC signature

If nesC sees the code

components new TimerMilliC() as Timer0;

BlinkC.Timer0 -> Timer0;

it knows that BlinkC.Timer0 is a used Timer<TMilli> interface. It searches the signature of Timer0 for a
provided instance of the same interface, and finds an unambiguous match, so it can correctly wire the two
even though a shortcut is used. If the wiring is ambiguous, then nesC cannot complete it, and it will report
an error. For example,

BlinkC -> Timer0.Timer;

is ambiguous because there are three interfaces that BlinkC uses which could wire to Timer0.Timer.
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4.2 Building abstractions

RandomC defines the standard TinyOS random number generator, a simple and heavily used abstraction:

configuration RandomC {

provides interface Init;

provides interface ParameterInit<uint16_t> as SeedInit;

provides interface Random;

}

implementation {

components RandomMlcgC;

Init = RandomMlcgC;

SeedInit = RandomMlcgC;

Random = RandomMlcgC;

}

Listing 4.12: The RandomC configuration

Mlcg stands for “multiplicative linear congruential generator.” In the default case, RandomC is a
wrapper around RandomMlcgC. There’s another implementation, RandomLfsrC, that is about twice as fast
but whose random numbers are not as good. Platforms or applications that need to use RandomLfsrC can
redefine RandomC to encapsulate RandomLfsrC instead.

4.2.1 Component naming

As we saw earlier, TinyOS makes the distinction between components that end in C (an externally usable
abstraction) and P (an internal implementation). Once you have written the signature for an externally
usable component, changing it is very hard: any number of other components might depend on it, and
changing it will cause compilation errors. In contrast, because an internal implementation is only wired to
by higher-level configurations within that software abstraction, their signatures are much more flexible. For
instance, changing the signature of LedsC would break almost all TinyOS code, but an internal change to
LedsP (and changing its wiring in LedsC) should not be apparent to the user.

Programming Hint 11: IF A COMPONENT IS A USABLE ABSTRACTION BY ITSELF, ITS
NAME SHOULD END WITH C. IF IT IS INTENDED TO BE AN INTERNAL AND PRIVATE
PART OF A LARGER ABSTRACTION, ITS NAME SHOULD END WITH P. NEVER WIRE TO
P COMPONENTS FROM OUTSIDE YOUR PACKAGE (DIRECTORY).

Let’s look at a complete (but very simple) example of how all of these issues are resolved in RandomC.
As shown above, RandomC maps to a specific implementation, RandomMlcgC. RandomMlcgC is a

configuration whose main purpose is to expose the random number implementation (RandomMlcgP) and
wire it to the boot sequence (we discuss component initialization further below):

configuration RandomMlcgC {

provides interface Init;

provides interface ParameterInit<uint16_t> as SeedInit;

provides interface Random;

}

implementation {

components RandomMlcgP, MainC;
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MainC.SoftwareInit -> RandomMlcgP; // Auto-initialize

Init = RandomMlcgP; // Allow for re-initialization

SeedInit = RandomMlcgP;

Random = RandomMlcgP;

}

Listing 4.13: The RandomMlcgC signature

RandomMlcgP is a software implementation. A platform that has a hardware random number generator
could have a different RandomMlcgP. Because this different implementation might have a different signature
— e.g., it might require accessing registers through an abstraction layer — it might also require a different
RandomMlcgC, to resolve these dependencies and present a complete abstraction.

In short, the configuration RandomC maps the standard number generator to a specific algorithm,
RandomMlcgC. The configuration RandomMlcgC encapsulates a specific implementation as a complete
abstraction. RandomMlcgP is a software implementation of the multiplicative linear congruential generator.
Similarly, there is also a RandomLfsrC, which is a linear feed shift register random number generator. Just
like RandomMlcgC, RandomLfsrC is a configuration that exports the interfaces of RandomLfsrP and wires
it to the boot sequence. This hierarchy of names means that a system can wire to a specific random number
generator if it cares which one it uses, or wire to the general one that TinyOS provides (RandomC). An
application can change what the default random number generator is by defining its own RandomC, which
maps to a different algorithm. The TinyOS developers can change and improve RandomMlcgP without
worrying about breaking application code. Finally, a platform implementer can replace RandomMlcgC with
an optimized, platform-specific version as long as it has the same signature as RandomMlcgC.

4.2.2 Component Initialization

RandomMlcgP provides the Init interface to seed the random number generator with the node’s identifier
(TOS NODE ID). TOS NODE ID is a global constant in the TinyOS program. The TinyOS tutorials
describe how to set it when you install a program on a mote. SeedInit starts the generator with a specific
seed:

module RandomMlcgP {

provides interface Init;

provides interface ParameterInit<uint16_t> as SeedInit;

provides interface Random;

}

implementation {

uint32_t seed;

/* Initialize the seed from the ID of the node */

command error_t Init.init() {

seed = (uint32_t)(TOS_NODE_ID + 1);

return SUCCESS;

}

/* Initialize with 16-bit seed */

command error_t SeedInit.init(uint16_t s) {

seed = (uint32_t)(s + 1);

return SUCCESS;

}

...

}
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Listing 4.14: Seed Initialization in RandomMlcgP

RandomMlcgC wires RandomMlcgP.Init in two different ways:

MainC.SoftwareInit -> RandomMlcgP; // Auto-initialize

Init = RandomMlcgP; // Allow for re-initialization

In the first wiring, RandomMlcgC wires RandomMlcgP.Init to the TinyOS boot sequence (MainC).
When TinyOS boots, it calls MainC’s SoftwareInit.init, and so it calls RandomMlcgP’s Init.init. In the
second, it equates its own RandomMlcgC.Init with RandomMlcgP.Init. If a component calls RandomMlcgC’s
Init.init, it actually calls RandomMlcgP’s Init.init.

The first wiring makes sure that RandomMlcgP has been properly seeded before an application starts. If
the application reseeds it by calling RandomMlcgC.Init or RandomMlcgC.SeedInit, no harm is done. But
by wiring to MainC, RandomMlcgC makes sure that an application (or protocol, or system) doesn’t have to
remember to initialize RandomMlcgC.

This technique — “auto-wiring” initialization — is used in many TinyOS abstractions. One very
common bug in TinyOS 1.x was to forget to initialize. This usually happens because many components
might be initializing the same component. This approach is wasteful, but since initialization only happens
once, it’s not a huge issue. The bigger issue is that a component often relies on someone else initializing.
For example, imagine two radio stacks, A and B. A initializes the timer system, B does not. A programmer
writes an application using radio stack A and forgets to initialize the timer system. Because radio stack A
does, everything works fine. The programmer then decides to switch to radio stack B, and nothing works:
neither the application nor the stack initialize the timers, and so the system just hangs.

The init commands of components using auto-wired initialization are called in an arbitrary order (see
Chapter 4.4 below). For software initialization – setting fields, etc. – this generally doesn’t matter (Init is
not supposed to call anything besides another Init). Hardware initialization is a much trickier problem, and
is generally handled on a per-platform basis. Refer to TEP 107 [14] for more details.

Programming Hint 12: AUTO-WIRE INIT TO MAINC IN THE TOP-LEVEL
CONFIGURATION OF A SOFTWARE ABSTRACTION.

4.3 Component Layering

RandomC shows how even a simple abstraction, such as a random number generator, can have several layers
within it. On one hand, this programming style makes components small and reusable: for people who
know them well, it makes building new systems the simple matter of combining existing building blocks
and maybe adding a bit of new logic. On the other hand, it means getting to the bottom of a component –
figuring out what it actually does – can be really frustrating to someone unfamiliar with the code. RandomC
is a good example of this layering. A programmer, wanting to find the implementation (module code) of the
random number generator, has to look at three files. RandomC points to RandomMlcgC, which points to
RandomMlcgP.

4.3.1 Extensibility

In practice, these layers of indirection are not particular to nesC: any system with complex libraries has
them. The difference is how those layers are written. In C code, you might see a series of functions that are
simple wrappers (e.g., printf as a call to fprintf passing stdout as the file stream): you traverse executable
code. In nesC code you traverse namespace mappings through configurations. The first few times you try
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to get to the bottom of a function, this difference can be a bit confusing, but it doesn’t take very long to
get used to it. You can also use the nesC’s nesdoc tool to navigate through an application’s wiring and find
where an interface is ultimately implemented — see the TinyOS tutorials for more information.

Just as in other languages, especially object-oriented ones, nesC software design has a tension between
how simple the implementations are and how easy it is to use or reuse them. The C++ standard template
library is infamous for this: it is amazingly powerful, general, and efficient, but understanding the implementations
is non-trivial. Putting all of a system’s functionality in a single module means a user doesn’t need to track
down call chains. But it means that modifying the system requires replacing or copying that entire file.
This leads to code replication, which greatly increases the lifetime of software bugs (if there’s a bug in the
copied code, you need to change all of the copies, and almost always forget one). Therefore, a lot of the core
TinyOS abstractions, such as timers and communication, tend to be composed of many small components.
This makes the systems more difficult to understand at a first read, but easy to tweak, replace, or modify
once you do.

4.3.2 Hardware specificity

Furthermore, there’s a tension between high-level APIs that are hardware independent and APIs that enable
a program to take advantage of all of the hardware capabilities. For example, some but not all radios have
multiple channels (frequencies). Some systems may want to take advantage of this functionality, and are
willing to assume they are using a particular radio chip in order to do so. Other systems may want to remain
hardware independent.

TinyOS uses component layering to make this possible. Let’s look at packet communication as an
example. The top-level component a platform needs to provide is called ActiveMessageC and is hardware
independent. 1 ActiveMessageC is almost always a configuration that layers on top of a chip-specific
component that provides additional interfaces. For example, this is the implementation of ActiveMessageC
for the micaz mote, which has a CC2420 radio chip:

configuration ActiveMessageC {

provides {

interface SplitControl;

interface AMSend[uint8_t id];

interface Receive[uint8_t id];

interface Receive as Snoop[uint8_t id];

interface Packet;

interface AMPacket;

interface PacketAcknowledgements;

}

}

implementation {

components CC2420ActiveMessageC as AM;

SplitControl = AM;

AMSend = AM;

Receive = AM.Receive;

Snoop = AM.Snoop;

Packet = AM;

AMPacket = AM;

PacketAcknowledgements = AM;

1TinyOS uses “active messages” [29], often abbreviated to AM, as its networking abstraction (see Chapter 6.3).
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}

Listing 4.15: ActiveMessageC for the CC2420

Don’t worry about the interfaces with brackets ([ and ]); they’re called parameterized interfaces and are
an advanced nesC topic covered in Chapter 9. ActiveMessageC merely exports a bunch of interfaces from
CC2420ActiveMessageC: interfaces for sending packets, receiving packets, and accessing packet fields (the
AMPacket and Packet interfaces). But if you look at the CC2420ActiveMessageC component, it provides
several interfaces which the micaz’s ActiveMessageC does not export:

configuration CC2420ActiveMessageC {

provides {

interface SplitControl;

interface AMSend[am_id_t id];

interface Receive[am_id_t id];

interface Receive as Snoop[am_id_t id];

interface AMPacket;

interface Packet;

interface CC2420Packet;

interface PacketAcknowledgements;

interface RadioBackoff[am_id_t amId];

interface LowPowerListening;

interface PacketLink;

}

}

Listing 4.16: The signature of CC2420ActiveMessageC

The hardware independent ActiveMessageC doesn’t export CC2420Packet, RadioBackoff, LowPowerListening,
or PacketLink. What ActiveMessageC does is a very common use of configurations. ActiveMessageC
adds no functionality: all it does is export CC2420ActiveMessageC’s interfaces and therefore give them
different, alternative names in the global namespace. Calling CC2420ActiveMessageC’s AMSend.send is
the same as calling ActiveMessageC’s AMSend.send. The difference lies in the kinds of assumptions the
caller can make. For example, it’s possible that if you wired a component to ActiveMessageC.AMSend and
CC2420ActiveMessageC.CC2420Packet, you might run into serious problems. It might be that a platform
has two radios, one of which is a CC2420, but ActiveMessageC doesn’t refer to the CC2420. In this case,
the component would access protocol fields that don’t exist, and chaos is guaranteed.

Programming Hint 13: WHEN USING LAYERED ABSTRACTIONS, COMPONENTS
SHOULD NOT WIRE ACROSS MULTIPLE ABSTRACTION LAYERS: THEY SHOULD WIRE
TO A SINGLE LAYER.

4.4 Multiple Wirings

Not all wirings are one-to-one. For example, this is part of the component CC2420TransmitC, a configuration
that encapsulates the transmit path of the CC2420 radio:

configuration CC2420TransmitC {

provides interface Init;

provides interface AsyncControl;

provides interface CC2420Transmit;
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provides interface CsmaBackoff;

provides interface RadioTimeStamping;

}

implementation {

components CC2420TransmitP;

components AlarmMultiplexC as Alarm;

Init = Alarm;

Init = CC2420TransmitP;

// further wirings elided

}

Listing 4.17: Fan–out on CC2420TransmitC’s Init

This wiring means that CC2420TransmitC.Init maps both to Alarm.Init and CC2420TransmitP.Init.
What does that mean? There certainly isn’t any analogue in C-like languages. In nesC, a multiple-wiring
like this means that when a component calls CC2420TransmitC’s Init.init, it calls both Alarm’s Init.init and
CC2420TransmitP’s Init.init. The order of the two calls is not defined.

4.4.1 Fan-in and Fan-out

This ability to multiply wire might seem strange. In this case, you have a single call point, CC2420TransmitC’s
Init.init, which fans-out to two callees. There are also fan-ins, which are really just a fancy name for
“multiple people call the same function.” But the similarity of the names “fan-in” and “fan-out” is important,
as nesC interfaces are bidirectional. For example, coming from C, wiring two components to RandomC.Random
doesn’t seem strange: two different components might need to generate random numbers. In this case, as
Random only has commands, all of the functions are fan-in. There are multiple callers for a single callee,
just like a library function.

But as nesC interfaces are bidirectional. if there is fan-in on the command of an interface, then when
that component signals an event on the interface, there is fan-out (multiple callees). Take, for example, the
power control interfaces, StdControl and SplitControl. StdControl is single-phase: it only has commands.
SplitControl, as its name suggests, is split-phase: the commands have completion events:

interface StdControl {

command error_t start();

command error_t stop();

}

interface SplitControl {

command error_t start();

event void startDone(error_t error);

command error_t stop();

event void stopDone(error_t error);

}

Listing 4.18: StdControl and SplitControl initialization interfaces

With StdControl, the service is started (stopped) by the time start (stop) returns, while with SplitControl, the
service is only guaranteed to have started when startDone is signaled.

In this wiring, there is fan-in on StdControl:

components A, B, C;

A.StdControl -> C;

B.StdControl -> C;
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Then either A or B can call StdControl to start or stop C. However, in this wiring, there are also
completion events, hence both fan-in and fan-out on SplitControl:

components A, B, C;

A.SplitControl -> C;

B.SplitControl -> C;

Either A or B can call SplitControl.start. When C issues the SplitControl.startDone event, though, both
of them are wired to it, so both A’s SplitControl.startDone and B’s SplitControl.startDone are called. The
implementation has no way of determining which called the start command.2

In summary, interfaces are not a one-to-one relationship. Instead, they are an n-to-k relationship, where
n is the number of users and k is the number of providers. Any provider signaling will invoke the event
handler on all n users, and any user calling a command will invoke the command on all k providers.

4.4.2 Uses of Multiple Wiring

In practice, multiple wirings allow an implementation to be independent of the number of components it
depends on. Remember that MainC (Listing 3.8, page 22) abstracts the boot sequence as two interfaces,
SoftwareInit and Boot. MainC calls SoftwareInit.init when booting so that software components can be
initialized before execution begins. MainC then signals Boot.booted once the entire boot sequence is over.
Many components need initialization. For example, in the very simple application RadioCountToLeds, there
are ten components wired to MainC.SoftwareInit. Rather than use many Init interfaces and call them in some
order, MainC just calls SoftwareInit once and this call fans-out to all of the components that have wired to
it.

Anecdote: Historically, multiple wirings come from the idea that TinyOS components can be thought
of as hardware chips. In this model, an interface is a set of pins on the chip. The term wiring comes from
this idea: connecting the pins on one chip to those of another. In hardware, though, you can easily connect N
pins together. For example, a given general-purpose IO pin on a chip might have multiple possible triggers,
or a bus have multiple end devices that are controlled with chip select pins. It turns out that taking this
metaphor literally has several issues. When TinyOS moved to nesC, these problems were done away with.
Specifically, consider this configuration:

configuration A {

uses interface StdControl;

}

configuration B {

provides interface StdControl;

uses interface StdControl as SubControl; // Called in StdControl

}

configuration C {

provides interface StdControl;

}

A.StdControl -> B.StdControl;

A.StdControl -> C.StdControl;

B.SubControl -> C.StdControl;

2There are ways to disambiguate this, through parameterized interfaces, which are covered in Chapter 9.



57 4.4. Multiple Wirings

Listing 4.19: Why the metaphor of “wires” is only a metaphor

If you take the multiple wiring metaphor literally, then the wiring of B to C joins it with the wiring of
A to B and C. That is, they all form a single “wire.” The problem is that under this interpretation, B’s call
to C is the same wire as A’s call to B. B enters an infinite recursion loop, as it calls SubControl, which calls
B.StdControl, which calls SubControl, and so on and so on. Therefore, nesC does not take the metaphor
literally. Instead, the wirings from one interface to another are considered separately. So the code

A.StdControl -> B.StdControl;

A.StdControl -> C.StdControl;

B.SubControl -> C.StdControl;

makes A’s calls to StdControl.start call B and C, and B’s calls to SubControl.start call C only.

4.4.3 Combine Functions

Fan-out raises an interesting question: if

call SoftwareInit.init()

actually calls ten different functions, then what is its return value?
nesC provides the mechanism of combine functions to specify the return value. A data type can have

an associated combine function. Because a fan-out always involves calling N functions with identical
signatures, the N results can be combined to a single value by N − 1 calls to a combine function, each
taking a pair of values of the result type. When nesC compiles the application, it auto-generates a fan-out
function which applies the combine function.

For example, TinyOS’s error type, error t is a very common result type. Its combine function is
ecombine:

error_t ecombine(error_t e1, error_t e2) {

return (e1 == e2) ? e1 : FAIL;

}

Listing 4.20: The combine function for error t

If both calls return the same value, ecombine returns that value. Otherwise, it returns FAIL. Thus
combining two SUCCESS values returns SUCCESS, combining two identical Exxx error codes returns that
code, and all other combinations return FAIL. This combine function is bound to error t with a nesC attribute
(attributes are covered in Chapter 8):

typedef uint8_t error_t @combine("ecombine");

When asked to compile the following configuration

configuration InitExample {}

implementation {

components MainC;

components AppA, AppB, AppC;

MainC.SoftwareInit -> AppA;

MainC.SoftwareInit -> AppB;
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MainC.SoftwareInit -> AppC;

}

Listing 4.21: Fan–out on SoftwareInit

the nesC compiler will generate something like the following code3:

error_t MainC__SoftwareInit__init() {

error_t result;

result = AppA__SoftwareInit__init();

result = ecombine(result, AppB__SoftwareInit__init());

result = ecombine(result, AppC__SoftwareInit__init());

return result;

}

Listing 4.22: Resulting code from fan–out on SoftwareInit

Combine functions should be associative and commutative, to ensure that the result of a fan-out call
does not depend on the order in which the commands (or event) are executed (in the case of fan-out, this
order is picked by the compiler).

Some return values don’t have combine functions, either due to programmer oversight or the semantics
of the data type. Examples of the latter include things like data pointers: if both calls return a pointer, say,
to a packet, there isn’t a clear way to combine them into a single pointer. If your program has fan-out on a
call whose return value can’t be combined, the nesC compiler will issue a warning along the lines of

“calls to Receive.receive in CC2420ActiveMessageP are uncombined”
or
“calls to Receive.receive in CC2420ActiveMessageP fan out, but there is no combine function specified

for the return value.”

Programming Hint 14: NEVER IGNORE COMBINE WARNINGS.

4.5 Generics versus Singletons

Configurations can be generics, just as modules can. For example, the standard TinyOS abstraction for
sending packets is the component AMSenderC, a generic that takes a single parameter, the AM (active
message) type of packet to be sent:

generic configuration AMSenderC(am_id_t AMId) {

provides {

interface AMSend;

interface Packet;

interface AMPacket;

interface PacketAcknowledgements as Acks;

}

}

Listing 4.23: AMSenderC signature

3The nesC compiler actually compiles to C, which it then passes to a native C compiler. Generally, it uses as the delimiter
between component, interface, and function names. By not allowing in the middle of names, the nesC compiler enforces
component encapsulation (there’s no way to call a function with a from within nesC and break the component boundaries).
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AM types allow TinyOS applications to send multiple types of packets: they are somewhat like ports in
UDP/TCP sockets. AM types are 8 bits. There is also a generic receiving component, AMReceiverC, which
takes an AM type as a parameter. AM types allow multiple components and subsystems to receive and send
packets without having to figure out whose packets are whose, unless two try to use the same AM type.

This raises the question: why aren’t all components generics? There are some low-level components that
inherently can’t be generics, such as those that provide direct access to hardware. Because these components
actually represent physical resources (registers, buses, pins, etc.), there can only be one. There are very few
of these low-level components though. More commonly, singletons are used to provide a global name
which many components can use. To provide better insight on why this is important, let’s step through what
generics are and how they work.

4.5.1 Generic components, revisited

Generic components allow many systems to use independent copies of a single implementation. For example,
a large application might include multiple network services, each of which uses one or more instances
of AMSenderC to send packets. Because all share a common implementation, bugs can be fixed and
optimizations can be applied in a single place, and over time they will all benefit from improvements.

While a generic component has a global name, such as AMSenderC, each instance has a local name. Two
separate references to new AMSenderC are two separate components. Take, for example, the application
configuration RadioCountToLedsAppC:

configuration RadioCountToLedsAppC {}

implementation {

components MainC, RadioCountToLedsC as App, LedsC;

components new AMSenderC(AM_RADIO_COUNT_MSG);

components new AMReceiverC(AM_RADIO_COUNT_MSG);

components new TimerMilliC();

components ActiveMessageC;

App.Boot -> MainC.Boot;

App.Receive -> AMReceiverC;

App.AMSend -> AMSenderC;

App.AMControl -> ActiveMessageC;

App.Leds -> LedsC;

App.MilliTimer -> TimerMilliC;

App.Packet -> AMSenderC;

}

Listing 4.24: RadioCountToLedsAppC

Because RadioCountToLedsAppC has to instantiate a new AMSenderC, that instance is private to
RadioCountToLedsAppC. No other component can name that AMSenderC’s interfaces or access its functionality.
For example, RadioCountToLedsAppC does not wire AMSenderC’s PacketAcknowledgements interface,
either through direct wiring via -> or through an export via =. Since this AMSenderC is private to
RadioCountToLedsAppC, that means no component can wire to its PacketAcknowledgements, because they
cannot name it.

While generics enable components to reuse implementations, sharing a generic among multiple components
requires a little bit of work. For example, let’s say you want to share a pool of packet buffers between
two components. TinyOS has a component, PoolC, which encapsulates a fixed-size pool of objects which
components can dynamically allocate and free. PoolC is a generic configuration that takes two parameters,
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the type of memory object in the pool and how many there are:

generic configuration PoolC(typedef pool_t, uint8_t POOL_SIZE) {

provides interface Pool<pool_t>;

}

Listing 4.25: PoolC

How do we share this pool between two different components? One way would be to write a configuration
that wires both of them to a new instance:

components A, B, new PoolC(message_t, 8);

A.Pool -> PoolC;

B.Pool -> PoolC;

But what if we don’t even know which two want to share it? For example, it might be that we just
want to have a shared packet pool, which any number of components can use. Making a generic’s interfaces
accessible across a program requires giving it a global name.

4.5.2 Singleton components, revisited

Unlike generics, singleton components introduce a global name for a component instance that any other
component can reference. So, to follow the previous example, one easy way to have a pool that any
component can use would be to write it as a singleton component, say PacketPoolC. But we’d like to be
able to do this without copying all of the pool code. It turns out that doing so is very easy: you just give a
generic instance a global name by wrapping it up in a singleton. For example, here’s the implementation of
PacketPoolC, assuming you want an 8-packet pool:

configuration PacketPoolC {

provides interface Pool<message_t>

}

implementation {

components new PoolC(message_t, 8);

Pool = PoolC;

}

Listing 4.26: Exposing a generic component instance as a singleton

All PacketPoolC does is instantiate an instance of PoolC that has 8 message t structures, then exports
the Pool interface as its own. Now, any component that wants to access this shared packet pool can just wire
to PacketPoolC.

While you can make singleton instances of generic components in this way, you can’t make generic
versions of singleton components. Singletons inherently have only a single copy of their code. Every
component that wires to PacketPoolC wires to the same PacketPoolC: there is no way to create multiple
copies of it. If you needed two packet pools, you could just make another singleton with a different name.

4.6 Exercises

1. Take the TinyOS demo application RadioCountToLeds and trace through its components to figure out
which components are auto-wired to SoftwareInit. There might be more than you expect: the Telos
platform, for example, has 10. Hint: you can use the nesdoc tool to simplify your task.
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2. If you want multiple components to handle a received packet, you must either not allow buffer-swapping
or must make a copy for all but one of the handlers. Write a component library that lets an application
create a component supporting a non-swapping reception interface. Hint: you’ll need to write a
singleton wrapper.
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Execution model

This chapter presents TinyOS’s execution model, which is based on split-phase operations, run-to-completion
tasks and interrupt handlers. Chapter 3 introduced components and modules, Chapter 4 introduced how to
connect components together through wiring. This chapter goes into how these components execute, and
how you can manage the concurrency between them in order to keep a system responsive. This chapter
focuses on tasks, the basic concurrency mechanism in nesC and TinyOS. We defer discussion of concurrency
issues relating to interrupt handlers and resource sharing to Chapter 11, as these typically only arise in very
high-performance applications and low-level drivers.

5.1 Overview

As we saw in Chapter 3.4, all TinyOS I/O (and long-running) operations are split-phase, avoiding the need
for threads and allowing TinyOS programs to execute on a single stack. In place of threads, all code in a
TinyOS program is executed either by a task or an interrupt handler. A task is in effect a lightweight deferred
procedure call: a task can be posted at anytime and posted tasks are executed later, one-at-a-time, by the
TinyOS scheduler. Interrupts, in contrast can occur at any time, interrupting tasks or other interrupt handlers
(except when interrupts are disabled).

While a task or interrupt handler is declared within a particular module, its execution may cross component
boundaries when it calls a command or signals an event (Figure 5.1). As a result, it isn’t always immediately
clear whether a piece of code is only executed by tasks or if it can also be executed from an interrupt handler.
Because code that can be excuted by an interrupt handler has to be much more aware of concurrency issues
(as it may be called at any time), nesC distinguishes between synchronous (sync) code that may only be
executed by tasks and asynchronous (async) code that may be executed by both tasks and interrupt handlers,
and requires that asynchronous commands or events be declared with the async keyword (both in interfaces
and in the actual module implementation).

Writing components that implement async functions requires a few advanced nesC features, and tasks
and synchronous code are sufficient for many applications so we defer further discussion of asynchronous
code and interrupt handlers to Chapter 11.

5.2 Tasks

A task is a simple deferred computation mechanism provided by nesC. Tasks have a return value of void,
take no parameters (this keeps the task scheduler very simple) and are declared with the task keyword:

task void setupTask() {

// task code

}

Using the post keyword schedules a task for later execution:

63
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RandomLfsrP
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interrupt handler

task execution (sync)

interrupt execution (async)

Figure 5.1: TinyOS execution model: both tasks (full lines) and interrupt handlers (dotted lines) cross
component boundaries.

event void Boot.booted() {

call Timer.startPeriodic(1024);

post setupTask();

}

In the above example, once TinyOS completes the boot sequence (signals Boot.booted to all components),
it will run setupTask.

Tasks are like any other module code. They can access variables, call commands, signal events, and
invoke internal or global C functions. The post operator is like calling a function: it has a return value of
error t. Posting a task always returns SUCCESS unless the task is already pending. Put another way, a
component cannot post multiple copies of the same task to run; however, once a task has started executing
it may repost itself.

This is the core TinyOS scheduler loop that runs after the system boots. This function never returns. It
executes tasks until the task queue is empty, then puts the microcontroller to sleep:

command void Scheduler.taskLoop() {

for (;;) {

uint8_t nextTask;

atomic {

while ((nextTask == popTask()) == NO_TASK) {

call McuSleep.sleep();

}

signal TaskBasic.runTask[nextTask]();

}

}

}

Listing 5.1: The main TinyOS scheduling loop from SchedulerBasicP.nc

Don’t worry about some of the advanced syntax in the loop (such as the []). In pseudocode, the function
is:

run forever:

while there are no tasks:

sleep

run next task

That’s it. TinyOS sleeps until an interrupt wakes up the processor. If the interrupt handler posted one or
more tasks, TinyOS runs tasks until there are no more left, then goes back to sleep. Since tasks are run one
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by one, they can’t preempt one another, and the next task doesn’t execute until the current one completes.
This property greatly simplifies writing tasks, and hence all sync code, as you don’t need any locks or
other mechanisms to protect shared variables. A sync routine can assume it has complete control over the
processor until it completes.

As an example, let’s look at the BaseStation application. BaseStation is a UART/radio bridge: it
forwards all radio packets it receives to the UART, and forwards all UART packets it receives to the radio.
Because the radio and UART might have different throughputs, BaseStation introduces a send queue in each
direction. When it receives a radio packet, it puts the packet on the UART send queue. When it receives a
UART packet, it puts the packet on the radio send queue.

BaseStationP, the module that implements the BaseStation application, uses tasks to pull packets off
the queues and send them. The receive handlers put packets on the queue and post the send task if the
application is not already sending. Here is pseudocode of the logic:

on receive packet:

if queue not full:

put packet on queue

if no send pending:

post send task

Tasks cannot take parameters. If a component needs to pass data to a task, it has to do so by storing
it in a component variable. For example, BaseStationP cannot pass a pointer to the message to send as a
parameter to sendTask. Instead, sendTask must pull the packet off of the queue directly.

5.2.1 Task timing

TinyOS normally runs tasks in the same order they’re posted (FIFO). A posted task won’t run until all tasks
posted before it complete. This means that tasks should be pretty short. If a component has a very long
computation to do, it should break it up into multiple tasks. A task can post itself, as once it is running it is
no longer on the queue.

It takes about 80 microcontroller clock cycles to post and execute a task on current mote platforms.
Generally, keeping task run times to at most a few milliseconds is a good idea. Because tasks are run to
completion, then a long-running task or large number of not-so-long-running tasks can introduce significant
latency (tens of milliseconds) between a task post and its execution. This usually isn’t a big deal with
application-level components. But there are lower-level components, such as radio stacks, that use tasks. For
example, if the packet reception rate is limited by how quickly the radio can post tasks to signal reception,
then a latency of 10ms will limit the system to 100 packets per second.

Consider these two cases. In both, there are five processing components and a radio stack. The mote
processor runs at 8MHz. Each processing component needs to do a lot of CPU work. In the first case,
the processing components post tasks that run for 5ms and repost themselves to continue the work. In the
second case, the processing components post tasks that run for 500us and repost themselves to continue the
work.

In the first case, the task posting overhead is 0.02%: 80 cycles overhead on 40,000 cycles of execution.
In the second case, the task posting overhead is 0.2%: 80 cycles overhead on 4,000 cycles of execution. So
the time to complete the executions isn’t significantly different. However, consider the task queue latency.
In the first case, when the radio stack posts a task to signal that a packet has been received, it expects to wait
around 25ms (5 processing tasks x 5ms each), limiting the system to 40 packets per second. In the second
case, when the radio stack posts the task, it expects to wait around 2.5ms (5 processing tasks x 500 us each),
limiting the system to 400 packets per second. Because the task posting cost is so low, using lots of short
running tasks improves the responsiveness of the system without introducing significant CPU overhead.

Of course, there’s often a tradeoff between lots of short tasks and the amount of state you have to allocate
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in a component. For example, let’s say you want to encrypt a chunk of data. If the encryption operation
takes a while (e.g., 10 milliseconds), then splitting it into multiple task executions would improve the overall
system responsiveness. However, if you execute it in a single task, then you can allocate all of the state and
scratch space you need on the stack. In contrast, splitting it across tasks would require keeping this state and
scratch space in the component. There is no hard rule on this tradeoff. But generally, long running tasks can
cause other parts of the OS to perform poorly, so should be avoided when possible.

Programming Hint 15: KEEP TASKS SHORT.

5.2.2 Timing and event handlers

The need for tasks to be short directly affects how you implement components, in particular, event handlers.
BaseStationP doesn’t directly send packets in its receive event handlers; instead, it posts tasks to send the
packets. It does this because the lower-level radio stack is signaling receive from within a task, presumably
after a bit of computation. If the call to send takes a lot of cycles, then the lower-level radio component will
not get a new buffer from the application until send completes. More generally, if the receive handler has
significant computation in it, then the radio has to wait for that to complete before it has a buffer into which
to receive the next packet.

While a single event handler may not be a big deal, an event handler may actually represent several
software layers. For example, a networking component may handle a receive event, perform a small
computation based on the packet, and then signal it to the next layer. Therefore, any given component
may be just one part of a long chain of event handlers. For this reason, if a handler needs to perform
significant computation, it is best to post a task. Doing so prevents a call chain from having multiple such
handlers.

Programming Hint 16: IF AN EVENT HANDLER NEEDS TO MAKE POSSIBLY
LONG-EXECUTING COMMAND CALLS, POST A TASK TO MAKE THE CALLS.

This is why BaseStationP uses tasks to send packets rather than do so directly in event handlers. While
tasks may in theory have to wait a while before they run, in practice tasks tend to be very short, and so there
is little latency between posting and execution.

5.3 Tasks and split-phase calls

Tasks do more than provide a way to maintain system responsiveness with a single stack. Tasks enable
nesC programs to have a flexible hardware/software boundary: software components can behave similarly
to hardware. Explaining why this is challenging requires a bit of a digression into how most peripherals,
such as sensors and radios, work.

5.3.1 Hardware versus software

Split-phase calls represent how most peripherals work. Software issues commands to a device, and some
time later the device indicates the operation is complete, typically with an interrupt. The device driver’s
interrupt handler signals the operation’s completion event. While the device is busy, the processor can
continue to issue instructions and do other useful work. Therefore, the command that starts the operation
can return immediately and allow the program to continue.

The key point is that, for hardware implementations, the interrupt handler invokes driver code. But what
happens if the implementation is purely software? For example, SineSensorC, which we saw in Chapter 3,
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is a purely software sensor that computes a sine value. As we want SineSensorC to be interchangeable
with hardware sensors, it provides the same split-phase interface, Read. When a component calls the read
comment, SineSensorC needs to signal readDone with the next reading.

5.3.2 Tasks and call loops

Let’s return to Read, the interface most sensors provide for users to generate sensor readings. Read has
a single command, read, and a single event, readDone. Let’s imagine we have a sensor that’s very noisy.
To try to filter out some of that noise, an application needs a simple filter component that smooths the raw
readings with an exponentially weighted moving average (EWMA):

module FilterMagC {

provides interface StdControl;

provides interface Read<uint16_t>;

uses interface Timer<TMilli>;

uses interface Read<uint16_t> as RawRead;

}

implementation {

uint16_t filterVal = 0;

uint16_t lastVal = 0;

error_t StdControl.start() {

return call Timer.startPeriodic(10);

}

command error_t StdControl.stop() {

return call Timer.stop();

}

event void Timer.fired() {

call RawRead.read();

}

event void RawRead.readDone(error_t err, uint16_t val) {

if (err == SUCCESS) {

lastVal = val;

filterVal *= 9;

filterVal /= 10;

filterVal += lastVal / 10;

}

}

command error_t Read.read() {

signal Read.readDone(SUCCESS, filterVal);

}

}

Listing 5.2: A troublesome implementation of a magnetometer sensor

The driver samples the magnetometer every 10 milliseconds and applies an EWMA to those values.
When the application samples this filtered value by calling Read.read, FilterMagC just signals Read.readDone
with the cached, filtered value.

On one hand, this approach is very simple and fast. On the other, it can lead to significant problems with
the stack. Imagine, for example, a component, FastSamplerC, that wants to sample a sensor many times
quickly (acquire a high frequency signal). It does this by calling Read.read in its Read.readDone handler:
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event void Read.readDone(error_t err, uint16_t val) {

buffer[index] = val;

index++;

if (index < BUFFER_SIZE) {

call Read.read();

}

}

Listing 5.3: Signal handler that can lead to an infinite loop

If, for some reason, an application wired FastSamplerC to FilterMagC, then there would be a long call
loop between read and readDone. If the compiler can’t optimize the function calls away, this will cause the
stack to grow significantly. Given that motes often have limited RAM and no hardware memory protection,
exploding the stack like this can corrupt data memory and cause the program to crash.

Programming Hint 17: DON’T SIGNAL EVENTS FROM COMMANDS — THE COMMAND
SHOULD POST A TASK THAT SIGNALS THE EVENT.

Of course, acquiring a high-frequency signal from our example Read implementation is a bit silly. As
the implementation is caching a value, sampling it more than once isn’t very helpful. But this call pattern
— issuing a new request in an event signaling request completion — is a common one.

The problems caused by this signaling raise the question of how FilterMagC is going to signal the
readDone event. It needs a way to schedule a function to be called later (like an interrupt). The right way to
do this is with a task. This is how our data filter component might look like implemented with a task:

module FilterMagC {

provides interface StdControl;

provides interface Read<uint16_t>;

uses interface Timer<TMilli>;

uses interface Read<uint16_t> as RawRead;

}

implementation {

uint16_t filterVal = 0;

... unchanged ...

task void readDoneTask() {

signal Read.readDone(SUCCESS, filterVal);

}

command error_t Read.read() {

post readDoneTask();

return SUCCESS;

}

}

Listing 5.4: An improved implementation of FilterMagC

When FilterMagC’s Read.read is called, FilterMagC posts readDoneTask and returns immediately. At
some point later, TinyOS runs the task, which signals Read.readDone with the filtered value.
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5.4 Exercises

1. Measure the CPU cycles it takes to post and run a task. You can do this by using a timer to measure
how many times a self-posting task can run within a period of time.

2. Sometimes, components introduce a spin loop by posting task that self-posts until a variable changes.
Why is this a bad idea, and what’s a better solution?

3. Write a singleton loopback interface, where a program can call Send and the component will signal
Receive. Be sure to respect buffer-swapping, and be careful of call loops.
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Applications

You have already seen several of the basic TinyOS components and interfaces, such as booting (MainC,
Boot), LED control (LedsC, Leds) and timing (TimerMilliC, Timer). In this chapter, we’ll present these
components in more detail, along with the other basic TinyOS subsystems (sensing, communication, storage).
We introduce and motivate all these subsystems through a running example, a simple anti-theft demo
application. By necessity, this anti-theft demo is somewhat platform-specific, as it uses specific light and
movement sensors to detect theft. However, as we discuss below, the fact that TinyOS is built over reusable
interfaces make the application trivial to port from the micaz with mts310 sensor board for which it was
written to any platform with equivalent communication and sensing capabilities.

Appendix A provides a more systematic overview of the major TinyOS services. Each service has a
brief description, a list of the components that provide it, and pointers to relevant TinyOS Enhancement
Proposals (TEPs) that provide a more detailed specification.

The complete code for the applications in this chapter can be found in TinyOS’s contributed code
directory (see Chapter 1.5).

6.1 The basics: timing, LEDs and booting

One of the simplest anti-theft device on sale is a simple blinking red light, designed to deter thieves by
making them believe that more must be going on. . .

Such a simple application is, unsurprisingly, trivial to build using TinyOS. We start with the application’s
main module, AntiTheftC:

module AntiTheftC {

uses {

interface Boot;

interface Timer<TMilli> as WarningTimer;

interface Leds;

}

}

implementation {

enum { WARN_INTERVAL = 4096, WARN_DURATION = 64 };

event void WarningTimer.fired() {

if (call Leds.get() & LEDS_LED0)

{ // Red LED is on. Turn it off, will switch on again in 4096-64ms.

call Leds.led0Off();

call WarningTimer.startOneShot(WARN_INTERVAL - WARN_DURATION);

}

else

{ // Red LED is off. Turn it on for 64ms.

call Leds.led0On();

71
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call WarningTimer.startOneShot(WARN_DURATION);

}

}

event void Boot.booted() {

// We just booted. Perform first LED transition.

signal WarningTimer.fired();

}

}

Listing 6.1: Anti–theft: simple flashing LED

Our application wants to show that it’s active and doing “something” using a red LED. However, a LED
is relatively power hungry, so we don’t want to leave it on all the time. Instead, we will turn it on for 64ms
every four seconds. We accomplish this by using a single timer: if the LED is off, we switch it on and ask
to be woken again in 64ms; if the LED is on, we switch it off and ask to be woken in 3.936s. This logic is
implemented by the WarningTimer.fired event, based on the commands and events provided by the Timer
and Leds interfaces:

interface Leds {

async command void led0On();

async command void led0Off();

async command void led0Toggle();

async command void led1On();

async command void led1Off();

async command void led1Toggle();

async command void led2On();

async command void led2Off();

async command void led2Toggle();

async command uint8_t get();

async command void set(uint8_t val);

}

Listing 6.2: The Leds interface

On a micaz, the red LED has number 0.1 WarningTimer.fired checks the status of this LED using the
Leds.get command, and turns it on or off as appropriate, using the led0On and led0Off commands. After
turning the LED on or off, the code also schedules itself to run again after the appropriate interval by using
WarningTimer.startOneShot to schedule a one-shot timer.

AntiTheftC needs to start blinking the red LED at boot time, so contains a handler for the booted event
from the Boot interface:

interface Boot {

event void booted();

}

Listing 6.3: The Boot interface

1The LEDs are numbered as LED colors are different on different platforms, e.g. the micaz has red, green and yellow LEDs
while the Telos has red, green and blue LEDs.
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As we saw earlier, the booted event of the Boot interface (provided by MainC) is signaled as soon as a
node has finished booting. All we need to do is execute the logic in WarningTimer.fired to initiate the first
LED transition. We could do this by replicating some of the code from WarningTimer.fired in the booted
event, but this would be wasteful and, in more complex cases, error-prone. Instead, the simplest approach
would be to pretend that the WarningTimer.fired event happened at boot-time. This kind of requirement is
not uncommon, so nesC allows modules to signal their own events (and call their own commands), as we
see in Boot.booted.

6.1.1 Deadline-based timing

As seen so far, AntiTheftC uses a simple “wake me up in n ms” one-shot timing interface to get periodic
events — it cannot use the simpler startPeriodic command as it is interspersing two timing periods (64ms
and 3936ms). However, such relative-time interfaces (the expiry time is specified as an offset from “now”)
have a well-known drawback: if one timer event is delayed by some other activity in the system, then all
subsequent activities are delayed. If these delays occur frequently, then the system “drifts”: instead of
blinking the LED every 4s, it might blink it (on average) every 4.002s.

This is clearly not a problem for our simple theft-deterrence system, but can be an issue in other contexts.
So we show below how the TinyOS timing system allows you to avoid such problems. First, let’s see the
full Timer interface:

interface Timer<precision_tag> {

// basic interface

command void startPeriodic(uint32_t dt);

command void startOneShot(uint32_t dt);

command void stop();

event void fired();

// status interface

command bool isRunning();

command bool isOneShot();

command uint32_t gett0();

command uint32_t getdt();

// extended interface

command void startPeriodicAt(uint32_t t0, uint32_t dt);

command void startOneShotAt(uint32_t t0, uint32_t dt);

command uint32_t getNow();

}

Listing 6.4: The full Timer interface

We have already seen the commands and events from the basic interface, except for stop which simply
cancels any outstanding fired events. The status interface simply returns a timer’s current settings. The
extended interface is similar to the basic interface, except that timings are specified relative to a base time
t0. Furthermore, the “current time” (in the timer’s units, since boot) can be obtained using the getNow
command. The startOneShotAt command requests a fired event at time t0+dt, and startPeriodicAt requests
fired events at times t0+dt, t0+2dt, t0+3dt, . . . . This may not seem like a very big change, but is sufficient to
fix the drift problem as this revised version of WarningTimer.fired shows:

uint32_t base; // Time at which WarningTimer.fired should’ve fired
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event void WarningTimer.fired() {

if (call Leds.get() & LEDS_LED0)

{ // Red LED is on. Turn it off, will switch on again in 4096-64ms.

call Leds.led0Off();

call WarningTimer.startOneShotAt(base, WARN_INTERVAL - WARN_DURATION);

base += WARN_INTERVAL - WARN_DURATION;

}

else

{ // Red LED is off. Turn it on for 64ms.

call Leds.led0On();

call WarningTimer.startOneShotAt(base, WARN_DURATION);

base += WARN_DURATION;

}

}

Listing 6.5: WarningTimer.fired with drift problem fixed

The base module variable contains the time at which WarningTimer.fired is expected to fire. By specifying
the timer deadline as an offset from base, rather than relative to the current time, we avoid any drift due to
WarningTimer.fired running late. We also update base every time we reschedule the timer, and initialise it
to the current time in Boot.booted (before starting the first timer):

base = call WarningTimer.getNow();

The TinyOS timers use 32-bit numbers to represent time. As a result, the millisecond timers (TMilli)
wrap around every 4̃8.5 days, and a microsecond timer wraps around nearly every hour. These times are
shorter than most expected sensor network deployments, so the timers are designed to work correctly when
time wraps around. The main user-visible effect of this is that the t0 argument to startOneShotAt and
startPeriodicAt is assumed to always represent a time in the past. As a result, values numerically greater
than the current time actually represent a time from before the last wrap around.

A final note: on typical sensor node platforms, the millisecond timer is based on a reasonably precise
32768Hz crystal. However, this does not mean that timings are perfectly accurate. Different nodes will
have slightly different crystal frequencies, which will drift due to temperature effects. If you need time to
be really accurate and/or synchronized across nodes, you will need to provide some form of networked time
synchronization.

6.1.2 Wiring AntiTheftC

The AntiTheftAppC configuration that wraps AntiTheftC up into a complete application contains no surprises.
It instantiates a new timer using the TimerMilliC generic component, and wires AntiTheftC to the LedsC
and MainC components that provide LED and booting support:

configuration AntiTheftAppC { }

implementation {

components AntiTheftC, MainC, LedsC;

components new TimerMilliC() as WTimer;

AntiTheftC.Boot -> MainC;

AntiTheftC.Leds -> LedsC;

AntiTheftC.WarningTimer -> WTimer;

}

Listing 6.6: Anti–Theft: application–level configuration
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6.2 Sensing

Sensing is, of course, one of the primary activities of a sensor network. However, there are thousands of
different sensors out there, measuring everything from light, sound and acceleration to magnetic fields and
humidity. Some sensors are simple analog sensors, others have digital interfaces or look like a counter
(e.g., wind velocity). Furthermore, the precision, sampling rate and jitter requirements vary greatly from
application to application: a simple environmental monitoring application might sample a few sensors every
5 minutes, while a seismic monitoring system might sample acceleration at a few kHz for several seconds,
but only once per day.

As a result, TinyOS does not offer a single unified way of accessing all sensors. Instead, it defines a set
of common interfaces for sampling sensors, and a set of guidelines for building components that give access
to particular sensors.

6.2.1 Simple sampling

The two main sampling interfaces are Read (which we saw in Chapter 3.4) and ReadStream, covering
respectively the case of acquiring single samples and sampling at a fixed rate (with low jitter). As a reminder,
Read provides a split-phase read command, that initiates sampling, and a readDone event that reports the
sample value and any error that occurred, for an arbitrary type val t:

interface Read<val_t> {

command error_t read();

event void readDone(error_t result, val_t val);

}

Listing 6.7: The Read interface

In common with most TinyOS split-phase interfaces, you can only start a single sample operation at a
time, i.e., calling read again before readDone is signaled will fail (read will not return SUCCESS). However
(again in common with other split-phase interfaces), it is legal to call read from the readDone event handler,
making it easy to perform back-to-back reads.

We can make our anti-theft application more realistic by detecting theft attempts. A first simplistic
attempt is based on the observation that stolen items are often placed in bags, pockets, etc, i.e., dark
locations. The DarkC module detects dark locations by periodically (every DARK INTERVAL) sampling
a light sensor (using the Read interface) and checking whether the light value is below some threshold
(DARK THRESHOLD). It then reports theft by turning the yellow LED (LED 2 on the micaz) on:

module DarkC {

uses {

interface Boot;

interface Leds;

interface Timer<TMilli> as TheftTimer;

interface Read<uint16_t> as Light;

}

}

implementation {

enum { DARK_INTERVAL = 256, DARK_THRESHOLD = 200 };

event void Boot.booted() {

call TheftTimer.startPeriodic(DARK_INTERVAL);

}



6.2. Sensing 76

event void TheftTimer.fired() {

call Light.read(); // Initiate split-phase light sampling

}

/* Light sample completed. Check if it indicates theft */

event void Light.readDone(error_t ok, uint16_t val) {

if (ok == SUCCESS && val < DARK_THRESHOLD)

call Leds.led2On(); /* ALERT! ALERT! */

else

call Leds.led2Off(); /* Don’t leave LED permanently on */

}

}

Listing 6.8: Anti–theft: detecting dark conditions

We could have implemented dark-detection within the existing AntiTheftC module, and reused the
existing WarningTimer. While this would slightly reduce CPU and storage requirements in the timer
subsystem, it would increase code complexity in AntiTheftC by mixing code for two essentially unrelated
activities. It is generally better to have a single module do one task (blinking a LED, detecting dark
conditions) well rather than build a complex module which tries to handle many tasks, paying a significant
price in increased complexity.

As is, DarkC is very simple: it initiates periodic sampling in its booted event. Four times a second,
TheftTimer.fired requests a new light sample using the split-phase Read interface representing the light
sensor (Light). If the sampling succeeds (ok == SUCCESS), then the light is compared to the threshold
indicating dark conditions and hence theft. DarkC does not check the error return from Light.read, as there
is no useful recovery action when light sampling cannot be initiated — it will retry the detection in 1/4s
anyway.

6.2.2 Sensor components

Sensors are represented in TinyOS by generic components offering the Read and/or ReadStream interfaces,
and possibly other sensor-specific interfaces (e.g., for calibration). A single component normally represents
a single sensor, e.g., PhotoC for the light sensor on the mts310 sensor board:

generic configuration PhotoC() {

provides interface Read<uint16_t>;

}

If two sensors are closely related (e.g., the X and Y axis of an accelerometer) they may be offered by
a single component. Similarly, if a sensor supports both single (Read) and stream (ReadStream) sampling,
the interfaces may be offered by the same generic component. However, neither of these is required: for
example, the mts300 sensor board has separate AccelXC, AccelXStreamC, AccelYC and AccelYStreamC
components for sampling its two-axis accelerometer. A single component simplifies the namespace, but
may lead to extra code and RAM usage in applications that don’t need, e.g., both axes or stream sampling.

Adding DarkC to our existing anti-theft application just requires wiring it to the light sensor, and its
other services:

configuration AntiTheftAppC { }

implementation {

... /* the wiring for the blinking red LED */ ...

components DarkC;

components new TimerMilliC() as TTimer;
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components new PhotoC();

DarkC.Boot -> MainC;

DarkC.Leds -> LedsC;

DarkC.TheftTimer -> TTimer;

DarkC.Light -> PhotoC;

}

Listing 6.9: Anti–Theft: wiring to light sensor

6.2.3 Sensor values, calibration

TinyOS 2.x specifies the general structure of sensor components such as PhotoC, but, because of the extreme
diversity of sensors, does not attempt to specify much else. The type used to report sensor values (uint16 t
for PhotoC), the meaning of the values reported by the sensor, the time taken to obtain a sample, the accuracy
of sensor values, calibration opportunities and requirements are all left up to the particular sensor hardware
and software. Thus, for example, the fact that 200 (DARK THRESHOLD) is a good value for detecting
dark conditions is specific to the particular photo-resistor used on the mts300 board, and to the way it is
connected to micaz motes (in series with a specific resistor, connected to the micaz’s microcontroller’s A/D
converter).

In some cases, e.g., temperature, it would be fairly easy to specify a standard interface, such as temperature
in 1/10◦K. However, forcing such an interface on temperature sensors might not always be appropriate: the
sensor might be more precise than 1/10◦K, or the code for doing the conversion to these units might take too
much time or space on the mote, when the conversion could be done just as easily when the data is recovered
from the sensor network. TinyOS leaves these decisions to individual sensor component designers.

6.2.4 Stream sampling

The ReadStream interface is more complex than Read, in part because it needs to support motes with limited
RAM: some applications need to sample more data at once than actually fits in memory. However, simple
uses of ReadStream remain quite simple, as we will see by building an alternate theft-detection mechanism
to DarkC. First, let’s see ReadStream:

interface ReadStream<val_t> {

command error_t postBuffer(val_t* buf, uint16_t count);

command error_t read(uint32_t usPeriod);

event void bufferDone(error_t result, val_t* buf, uint16_t count);

event void readDone(error_t result, uint32_t usActualPeriod);

}

Listing 6.10: ReadStream Interface

Like Read, ReadStream is a typed interface whose val t parameter specifies the type of individual
samples. Before sampling starts, one or more buffers (arrays of val t) must be posted with the postBuffer
command. Sampling starts once the read command is called (usPeriod is the sampling period in microseconds),
and continues until all posted buffers are full or an error occurs, at which point readDone is signalled. It
is also possible to post new buffers during sampling — this is often done in the bufferDone event which
is signalled as each buffer is filled up. By using two (or more) buffers, and processing (e.g., computing
statistics, or writing to flash) and reposting each buffer in bufferDone, a mote can sample continuously more
data than can fit in RAM.
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The simplest way to use ReadStream is to declare an array holding N sample values, post the buffer
and call read. The samples are available once readDone is signalled. We use this approach in MovingC, an
alternate component to DarkC that detects uses an accelerometer to detect movement — it’s hard to steal
something without moving it. MovingC samples acceleration at 100Hz for 1/10s, and reports theft when
the variance of the sample is above a small threshold (picked experimentally):

module MovingC {

uses {

interface Boot;

interface Leds;

interface Timer<TMilli> as TheftTimer;

interface ReadStream<uint16_t> as Accel;

}

}

implementation {

enum { ACCEL_INTERVAL = 256, /* Checking interval */

ACCEL_PERIOD = 10000, /* uS -> 100Hz */

ACCEL_NSAMPLES = 10, /* 10 samples * 100Hz -> 0.1s */

ACCEL_VARIANCE = 4 }; /* Determined experimentally */

uint16_t accelSamples[ACCEL_NSAMPLES];

task void checkAcceleration();

event void Boot.booted() {

call TheftTimer.startPeriodic(ACCEL_INTERVAL);

}

event void TheftTimer.fired() {

// Get 10 samples at 100Hz

call Accel.postBuffer(accelSamples, ACCEL_NSAMPLES);

call Accel.read(ACCEL_INTERVAL);

}

/* The acceleration read completed. Post the task to check for theft */

event void Accel.readDone(error_t ok, uint32_t usActualPeriod) {

if (ok == SUCCESS)

post checkAcceleration();

}

/* Check if acceleration variance above threshold */

task void checkAcceleration() {

uint8_t i;

uint32_t avg, variance;

for (avg = 0, i = 0; i < ACCEL_NSAMPLES; i++) avg += accelSamples[i];

avg /= ACCEL_NSAMPLES;

for (variance = 0, i = 0; i < ACCEL_NSAMPLES; i++)

variance += (int16_t)(accelSamples[i] - avg) * (int16_t)(accelSamples[i] - avg);

if (variance > ACCEL_VARIANCE * ACCEL_NSAMPLES)

call Leds.led2On(); /* ALERT! ALERT! */

else

call Leds.led2Off(); /* Don’t leave LED permanently on */

}

event void Accel.bufferDone(error_t ok, uint16_t *buf, uint16_t count) { }
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}

Listing 6.11: Anti–theft: detecting movement

The basic structure of MovingC is identical to DarkC: sampling is initiated four times a second (TheftTimer.fired)
and, if sampling is successful, the samples are checked to see if they indicate theft (Accel.readDone). The
three main differences are:

• postBuffer is called to register the acceleration buffer before sampling starts

• MovingC must implement the bufferDone event, which is signalled when each posted buffer is full —
here we do not need to do anything as we are sampling into a single buffer

• the samples are checked in a separate task (checkAcceleration), to avoid making the execution of
Accel.readDone take too long (Chapter 5.2.2)

The wiring for MovingC is identical to DarkC, except that it wires to a streaming accelerometer sensor:

components new AccelXStreamC();

...

MovingC.Accel -> AccelXStreamC;

6.3 Single-hop networking

TinyOS uses a typical layered network structure, as shown in Figure 6.1. The networking stack is composed
of a set of layers, each of which defines a header and footer layout, and includes a variable-size payload
space for the layer above; the highest layer (usually the application) just holds the application data. Each
layer’s header typically includes a “type” field that specifies the meaning of that layer’s payload and hence
the payload’s layout — this makes it easy to use multiple independent packets in a single application. For
instance, in Figure 6.1 there are two kinds of packets: packets containing messages for application 1, built
over layer2a, itself built over layer1 and packets containing messages for application 3, built over layer2b,
itself built over layer1.

The lowest networking layer exposed in TinyOS is called active messages (AM) [29]. AM is typically
implemented directly over a mote’s radio, and provides unreliable, single-hop packet transmission and
reception. Each packet is identified by an AM type, an 8-bit integer that identifies the packet type. The
name “active messages” comes from the fact that the type is used to automatically dispatch received packets
to an appropriate handler: in a sense, packets (messages) are active because they identify (via their type)
code to be executed.

A variable of type message t holds a single AM packet. Each packet can hold a user-specified payload
of up to TOSH DATA LENGTH bytes — normally 28 bytes, but this can be changed at compile-time up to
255 bytes.2 Note that increasing TOSH DATA LENGTH increases the size of every message t variable so
may cause substantial RAM usage increases.

Some simple mote applications are built directly over AM, whilst more complex applications typically
use higher-level protocols such as dissemination and collection which we discuss in the next section. These
higher-level protocols are themselves built over AM. It is worth noting that the interfaces used to access AM
(AMSend, Receive) are sometimes reused in some higher-level protocols (e.g. tree collection uses Receive)
— this makes switching between protocols easier and encourages code reuse.

2Some radios may impose a lower limit.
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header1 payload1 footer1Layer1

header2b payload2b footer2bLayer2b

application3 dataApplication3

payload2aLayer2a

application1 dataApplication1

footer2aheader2a

Figure 6.1: TinyOS packet layout

6.3.1 Sending packets

Our anti-theft application currently reports theft by lighting a LED, which is unlikely to be very effective.
A much better approach would be to alert someone, e.g., by sending them a radio message. This message
should contain as its payload the identity of the node being stolen. As discussed in Chapter 3.5.3, TinyOS
payloads are always defined using platform-independent types to ensure interoperability. So the definition
of the theft report payload is a simple platform independent struct, declared in the antitheft.h header
file:

#ifndef ANTITHEFT_H

#define ANTITHEFT_H

typedef nx_struct theft {

nx_uint16_t who;

} theft_t;

...

#endif

The AMSend (“active message send”) interface contains all the commands needed to fill-in and send
packets:

interface AMSend {

command error_t send(am_addr_t addr, message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);

command error_t cancel(message_t* msg);

command uint8_t maxPayloadLength();

command void* getPayload(message_t* msg, uint8_t len);

}
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Listing 6.12: The AMSend interface

The send command and sendDone event are used to perform split-phase transmission of an AM packet
stored in a message t packet buffer; the addr parameter specifies the packet destination and may be TOS BCAST ADDR
to request a broadcast. AM packets have source addresses, which can be retrieved with the AMPacket
interface. A node’s AM address is usually – but not always – the same as its TOS NODE ID. Technically,
TOS NODE ID is a unique identifier for a node, while the AM address is the address of its radio interface.
A node with two radios, for example, could have different AM addresses on the two.

Because the user-payload of a packet buffer may be at different offsets on different platforms (with
different radios) or when using different communication layers, AMSend provides a getPayload command to
obtain a pointer to the payload. The getPayload command requires that the user pass the size of their payload
so that it can ensure that there is enough space in the buffer (it returns NULL if there isn’t enough space)
— applications wishing to send variable-sized messages can call maxPayloadLength to find the maximum
possible payload size.

Putting all this together, the reportTheft function sends theft-report packets to any nearby listeners:

uses interface AMSend as Theft;

...

message_t reportMsg; // The theft report message buffer

bool sending; // Don’t try and send while a send is in progress

void reportTheft() {

theft_t *payload = call Theft.getPayload(&reportMsg, sizeof(theft_t));

if (payload && !sending)

{ // We can send if we’re idle and the payload fits

payload->who = TOS_NODE_ID; // Report that *we* are being stolen!

// And send the report to everyone (TOS_BCAST_ADDR)

if (call Theft.send(TOS_BCAST_ADDR, &reportMsg, sizeof(theft_t)) == SUCCESS)

sending = TRUE;

}

}

event void Theft.sendDone(message_t *msg, error_t error) {

sending = FALSE; // Our send completed

}

Listing 6.13: Anti–Theft: reporting theft over the radio

The reportTheft function refuses to attempt a send if its payload doesn’t fit in reportMsg (payload ==
NULL), or if a previous send is still in progress (sending is true): during transmission the packet buffer
is “owned” (Chapter 3.5.1) by the communication stack, so should not be touched. The code checks for
failure in transmission (so that it can update sending correctly), but doesn’t otherwise attempt to retry failed
transmissions, or to check whether the theft report was received by anyone. It simply relies on the fact that
MovingC will call reportTheft repeatedly when a “theft” is in progress, so one of the messages is likely to
get through:

if (variance > ACCEL_VARIANCE * ACCEL_NSAMPLES)

{

call Leds.led2On(); /* ALERT! ALERT! */

reportTheft();

}
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Most high-level TinyOS subsystems are started and stopped automatically, either when the system boots,
or on-demand based on usage. This is however not true of the AM-based radio and serial communication
stacks for two main reasons. First, communication is typically power-hungry (e.g., most radios use as much
power as an active microcontroller even when not actively receiving or transmitting packets), so leaving a
communication stack permanently on is not necessarily a good idea. Second, AM-based packet reception
is inherently asynchronous: unlike, e.g., sampling which is application-driven, there is nothing in the code
on a mote that specifies when packets are expected to be received. Thus, the communication stack cannot
switch itself on and off on-demand. Instead, applications must use the split-phase SplitControl interface we
saw earlier to start and stop the radio:

interface SplitControl {

command error_t start();

event void startDone(error_t error);

command error_t stop();

event void stopDone(error_t error);

}

Listing 6.14: The SplitControl interface

MovingC switches the radio on at boot-time, and waits until the radio starts before initiating sampling
to avoid sending a message while the radio is off:

uses interface SplitControl as CommControl;

...

event void Boot.booted() {

call CommControl.start();

}

event void CommControl.startDone(error_t ok) {

// Start checks once communication stack is ready

call TheftTimer.startPeriodic(ACCEL_INTERVAL);

}

event void CommControl.stopDone(error_t ok) { }

This code ignores the error code in startDone, as there’s not any obvious recovery step to take if the
radio will not start.

6.3.2 Receiving packets

MovingC uses hard-wired constants for the check intervals and the acceleration-variance threshold. If these
are inappropriate for some contexts (e.g., a moving vehicle may have some background vibration), then the
code has to be changed and recompiled with new values, and then reinstalled in the sensor network. A better
approach is to change the code once to allow remote configuration, using AM packets with the following
payload (also declared in antitheft.h):

typedef nx_struct settings {

nx_uint16_t accelVariance;

nx_uint16_t accelInterval;

} settings_t;

AM Packets reception is provided by the TinyOS Receive interface (also seen earlier):
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interface Receive {

event message_t* receive(message_t* msg, void* payload, uint8_t len);

}

Listing 6.15: The Receive interface

As discussed in Chapter 3.5.1, implementations of Receive.receive receive a packet buffer which they
can either simply return, or hang onto as long as they return a different buffer. In the case of MovingC we
choose the first option, as we are done with the settings once we have read them out of the packet:

uses interface Receive as Settings;

...

uint16_t accelVariance = ACCEL_VARIANCE;

event message_t *Settings.receive(message_t *msg, void *payload, uint8_t len) {

if (len >= sizeof(settings_t)) // Check the packet seems valid

{ // Read settings by casting payload to settings_t, reset check interval

settings_t *settings = payload;

accelVariance = settings->accelVariance;

call TheftTimer.startPeriodic(settings->accelInterval);

}

return msg;

}

task void checkAcceleration() {

...

if (variance > accelVariance * ACCEL_NSAMPLES)

{

call Leds.led2On(); /* ALERT! ALERT! */

reportTheft();

}

}

Listing 6.16: Anti–Theft: changing settings

6.3.3 Selecting a communication stack

Nothing in the code seen so far specifies which communication stack is used for theft reports, or which
AM types distinguish theft reports from settings updates. This information is specified in configurations, by
wiring to the components representing the desired communication stack: these components have compatible
signatures, making it easy to switch between stacks:

configuration ActiveMessageC { configuration SerialActiveMessageC {

provides interface SplitControl; provides interface SplitControl;

... ...

} }

generic configuration AMSenderC(am_id_t id) { generic configuration SerialAMSenderC(...) {

provides interface AMSend; provides interface AMSend;

... ...

} }

generic configuration AMReceiverC(am_id_t id) { generic configuration SerialAMReceiverC(...) {

provides interface Receive; provides interface Receive;
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... ...

} }

Listing 6.17: Serial vs Radio–based AM components

ActiveMessageC contains the SplitControl interface to start and stop the communication stack. Instantiating
AMSenderC with a particular AM type creates a component that provides an AMSend interface that will
queue a single packet for transmission, independently of all other AMSenderC instances. This makes life
simpler for modules using AMSend: as long as they only send one packet at a time, they can be assured that
they can always enqueue their packet. Finally, instantiating AMReceiverC with AM type k and wiring the
Receive interface to your code automatically dispatches received packets of type k to your Receive.receive
event handler.

The anti-theft application uses radio-based communication (the mts300 sensor board physically interferes
with serial connections):

enum { AM_THEFT = 42, AM_SETTINGS = 43 };

...

components ActiveMessageC;

components new AMSenderC(AM_THEFT) as SendTheft;

components new AMReceiverC(AM_SETTINGS) as ReceiveSettings;

MovingC.CommControl -> ActiveMessageC;

MovingC.Theft -> SendTheft;

MovingC.Settings -> ReceiveSettings;

6.4 Multi-hop networking: collection, dissemination and base stations

A mote network is typically more complex than a set of motes within direct radio range (often only 30m/100ft
on current motes) of each other. Instead, multi-hop networks use motes to relay messages when the sender
and receiver are not in direct radio range. Furthermore, one or more base station motes physically connected
to a PC-class device, and usually line-powered, relay information to and from the wider world. Thus,
considered as a whole, a sensor network application has three parts (Figure 6.2):

• Mote code: the code running on the motes in the network. Interactions between motes take the form
of sending and receiving radio messages.

• Base Station code: the code running on the base station mote. It interacts with the other motes via
radio messages, and exchanges packets with the PC over a serial connection.

• PC code: the code running on the PC.

TinyOS provides two basic multi-hop networking abstractions: tree collection, and dissemination. In
tree collection, the motes organize themselves into a routing tree centered on a particular mote, the root,
which is often a base station mote. All messages sent in the tree automatically flow to the root (e.g. following
the links shown in Figure 6.2). Collection trees are typically used to collect information (e.g. sensor data)
from a sensor network.

Dissemination efficiently distributes a value (which can be a structure with several fields) across the
whole mote network. Furthermore, any mote can update the value, and the whole network will eventually
settle on the value from the most recent update. Dissemination is often used for runtime configuration of
mote applications.

In the rest of this section, we’ll adapt AntiTheft to use collection and dissemination rather than ActiveMessageC
for its theft report and configuration. In particular, we show how the base station mote sets itself up as the
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Figure 6.2: A typical sensor network

root of the collection tree to report theft settings to the PC, and how it disseminates new settings received
from the PC. Chapter 7 presents the PC-side of the mote connection.

6.4.1 Collection

Sending a message via a collection tree is very similar to using AM, except that messages do not have a
destination address (the tree root is the implicit destination). Thus collection trees use the Send interface,
which is identical to AMSend except for the lack of an addr parameter to the send command:

interface Send {

command error_t send(message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);

command error_t cancel(message_t* msg);

command uint8_t maxPayloadLength();

command void* getPayload(message_t* msg, uint8_t len);

}

Listing 6.18: The Send interface

As a result, the code in MovingC for reporting a theft over a collection tree is nearly identical to that
from Chapter 6.3.1:

uses interface Send as Theft;

...

message_t reportMsg; // The theft report message buffer

bool sending; // Don’t try and send while a send is in progress

void reportTheft() {

theft_t *payload = call Theft.getPayload(&reportMsg, sizeof(theft_t));

if (payload && !sending)

{ // We can send if we’re idle and the payload fits

payload->who = TOS_NODE_ID; // Report that *we* are being stolen!

// And send the report to the root

if (call Theft.send(&reportMsg, sizeof(theft_t)) == SUCCESS)



6.4. Multi-hop networking: collection, dissemination and base stations 86

sending = TRUE;

}

}

event void Theft.sendDone(message_t *msg, error_t error) {

sending = FALSE; // Our send completed

}

Listing 6.19: Anti–Theft: reporting theft over a collection tree

6.4.2 Dissemination

The dissemination service is accessed by an interface parameterized by the type of value being disseminated:

interface DisseminationValue<t> {

command const t* get();

command void set( const t* );

event void changed();

}

Listing 6.20: DisseminationValue interface

The dissemination values are sent across the network, so the type passed to DisseminationValue should
be a platform-independent type (Chapter 3.5.3). In our case, we reuse the settings t type we defined in
Chapter 6.3.2, which contains new acceleration variance and check intervals. The code in MovingC to
receive and handle new settings is simple:

uses interface DisseminationValue<settings_t> as Settings;

...

/* New settings received, update our local copy */

event void Settings.changed() {

const settings_t *newSettings = call Settings.get();

accelVariance = newSettings->accelVariance;

call TheftTimer.startPeriodic(newSettings->accelInterval);

}

Listing 6.21: Anti–Theft: settings via a dissemination tree

6.4.3 Wiring collection and dissemination

Like AM itself, the collection and dissemination services must be explicitly started, this time via the
non-split-phase StdControl interface:

interface StdControl {

command error_t start();

command error_t stop();

}

Listing 6.22: The StdControl interface
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Furthermore, as they are built over AM, the radio must be started first. As a result, the AntiTheft boot
sequence is now slightly more complex (as earlier, we don’t check error codes as there is no obvious recovery
step):

uses interface SplitControl as CommControl;

uses interface StdControl as CollectionControl;

uses interface StdControl as DisseminationControl;

...

event void Boot.booted() {

call CommControl.start();

}

event void CommControl.startDone(error_t ok) {

// Start multi-hop routing and dissemination

call CollectionControl.start();

call DisseminationControl.start();

// Start checks once communication stack is ready

call TheftTimer.startPeriodic(ACCEL_INTERVAL);

}

AM types identify different kinds of messages in a mote network. In a similar fashion, collection and
dissemination use 8-bit identifiers to allow for multiple independent collection trees and for multiple values
to be disseminated. As with AM, these identifiers are specified as arguments to the CollectionSenderC and
DisseminatorC generic components that provide access to collection and dissemination:

enum { COL_THEFT = 54, DIS_THEFT = 55 };

...

components ActiveMessageC, DisseminationC, CollectionC;

MovingC.CommControl -> ActiveMessageC;

MovingC.CollectionControl -> CollectionC;

MovingC.DisseminationControl -> DisseminationC;

/* Instantiate and wire our collection service for theft alerts */

components new CollectionSenderC(COL_THEFT) as TheftSender;

MovingC.Theft -> TheftSender;

/* Instantiate and wire our dissemination service for theft settings */

components new DisseminatorC(settings_t, DIS_THEFT);

MovingC.Settings -> DisseminatorC;

6.4.4 Base station for collection and dissemination

For collection and dissemination to be useful, something must consume the messages sent up the collection
tree, and produce new values to disseminate. In the case of AntiTheft, we assume a PC with a serial
connection to a base station mote displays theft reports and allows the theft detection settings to be changed.
Here we just show how the base station mote is setup to forward tree collection theft reports and disseminate
theft settings; Chapter 7 presents the libraries and utilities that are used to write PC applications that
communicate with mote networks.

The base station for AntiTheft is a separate nesC program. In other applications, base stations and
regular motes run the same nesC code but are distinguished using some other means (e.g. many applications
specify that a mote with identifier 0 is a base station).

A base station mote communicates with the PC via AM over the serial port, using SerialActiveMessageC.
The mote and the PC exchange settings (PCSettings) and theft reports (PCTheft):

configuration AntiTheftRootAppC { }
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implementation {

components AntiTheftRootC;

components SerialActiveMessageC,

new SerialAMReceiverC(AM_SETTINGS) as PCSettings,

new SerialAMSenderC(AM_THEFT) as PCTheft;

AntiTheftRootC.SerialControl -> SerialActiveMessageC;

AntiTheftRootC.RSettings -> PCSettings;

AntiTheftRootC.STheft -> PCTheft;

...

}

When the base station receives new settings, it simply calls the change command in the DisseminationUpdate
interface:

interface DisseminationUpdate<t> {

command void change(t* newVal);

}

Listing 6.23: The DisseminationUpdate interface

The call to change automatically triggers the dissemination process:

module AntiTheftRootC {

uses interface DisseminationUpdate<settings_t> as USettings;

uses interface Receive as RSettings;

...

/* When we receive new settings from the serial port, we disseminate

them by calling the change command */

event message_t *RSettings.receive(message_t* msg, void* payload, uint8_t len)

{

if (len == sizeof(settings_t))

call USettings.change((settings_t *)payload);

return msg;

}

Listing 6.24: AntiTheft base station code: disseminating settings

To receive theft reports, the base station mote must mark itself as the root of the collection tree using the
RootControl interface:

interface RootControl {

command error_t setRoot();

command error_t unsetRoot();

command bool isRoot();

}

Listing 6.25: The RootControl interface

Once a mote is the root of the collection tree, it receives the messages sent up the tree via a regular
Receive interface. In the case of the AntiTheft base station mote, it simply forwards the payload of these
messages (a theft t value) to the serial port via its STheft interface:
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module AntiTheftRootC {

uses interface RootControl;

uses interface Receive as RTheft;

uses interface AMSend as STheft;

...

event void CommControl.startDone(error_t error) {

...

// Set ourselves as the root of the collection tree

call RootControl.setRoot();

}

message_t fwdMsg;

bool fwdBusy;

/* When we (as root of the collection tree) receive a new theft alert,

we forward it to the PC via the serial port */

event message_t *RTheft.receive(message_t* msg, void* payload, uint8_t len) {

if (len == sizeof(theft_t) && !fwdBusy)

{

/* Copy payload from collection system to our serial message buffer

(fwdTheft), then send our serial message */

theft_t *fwdTheft = call STheft.getPayload(&fwdMsg, sizeof(theft_t));

if (fwdTheft != NULL) {

*fwdTheft = *(theft_t *)payload;

if (call STheft.send(TOS_BCAST_ADDR, &fwdMsg, sizeof *fwdTheft) == SUCCESS)

fwdBusy = TRUE;

}

}

return msg;

}

event void STheft.sendDone(message_t *msg, error_t error) {

fwdBusy = FALSE;

}

}

Listing 6.26: AntiTheft base station code: reporting thefts

The base station application must wire the serial port (already shown), and the collection and dissemination
interfaces used in the code above. Reception of messages from a tree is specified by indexing a parameterized
interface with the tree collection identifier; parameterized interfaces are presented in detail in Chapter 8. The
resulting collection and dissemination wiring is:

configuration AntiTheftRootAppC { }

implementation {

... boot, serial and radio wiring ...

components DisseminationC, new DisseminatorC(settings_t, DIS_THEFT);

AntiTheftRootC.DisseminationControl -> DisseminationC;

AntiTheftRootC.USettings -> DisseminatorC;

components CollectionC;

AntiTheftRootC.CollectionControl -> CollectionC;

AntiTheftRootC.RootControl -> CollectionC;

AntiTheftRootC.RTheft -> CollectionC.Receive[COL_THEFT];
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Figure 6.3: Sample volume specification and resulting flash layout for a micaz mote

}

Listing 6.27: AntiTheft base station wiring

6.5 Storage

Many motes include some amount of flash-based non-volatile storage, e.g., 512kB on the micaz. TinyOS
divides this non-volatile storage into volumes. A volume is a contiguous region of storage with a certain
format and that can be accessed with an associated interface. TinyOS defines three basic storage abstractions:
Log, Block and Config. Log is for append-only writes and streaming reads, Block is for random-access reads
and write, and Config is for small items of configuration data. Log and Config have the advantage that their
more limited interface allows for atomic operations: when a write to a Log or Config volume completes, it
is guaranteed to be written. In contrast, the Block interface has a separate commit operation.

TinyOS uses this abstraction-on-a-volume approach rather than a more traditional filing system for two
main reasons. First, it is simpler, reducing code and RAM requirements for applications using permanent
storage. Second, sensor networks are normally dedicated to a single application, which should have a
reasonable knowledge of its storage requirements. Thus, the full generality of a filing system is typically
not required.

6.5.1 Volumes

The division of a mote’s flash chip into volumes is specified at compile-time, by a simple XML configuration
file. Flash chips have different sizes, and different rules on how they can be divided, so the volume
specification is necessarily chip-specific. By convention, the volume configuration for chip C is found
in a file named volumes-C.xml. For instance Figure 6.3 shows a volumes-at45db.xml file specifying
two volumes for the Atmel AT45DB chip found on the micaz (see TEP 103 [4] for a specification of the
volume configuration format). The first volume is named LOGTEST, starts at an offset of 128kB and is
256kB long. The second is named CONFIGTEST and is 4.5kB with no offset specified: some offset will be
picked at compile-time.

A storage abstraction is mapped to a specific volume by instantiating the component implementing the
abstraction (LogStorageC, BlockStorageC, and ConfigStorageC) with the volume identifier (prefixed with
VOLUME ) as argument, e.g.,:

generic configuration ConfigStorageC(volume_id_t volid) {

provides interface Mount;

provides interface ConfigStorage;

} ...
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components new ConfigStorageC(VOLUME_CONFIGTEST) as MyConfiguration;

Listing 6.28: ConfigStorageC signature

A volume can be associated with at most one instance of one storage abstraction. A storage abstraction
instance has to be associated with a volume so that the underlying code can generate an absolute offset into
the chip from a relative offset within a volume. For instance, address 16k on volume LOGTEST is address
144k on the AT45DB.

6.5.2 Configuration data

As it currently stands, anti-theft motes lose their settings when they are switched off. We can fix this by
storing the settings in a small configuration volume:

<volume_table>

<volume name="AT_SETTINGS" size="512"/>

</volume_table>

configuration AntiTheftAppC { }

implementation {

...

components new ConfigStorageC(VOLUME_AT_SETTINGS) as AtSettings;

MovingC.Mount -> AtSettings;

MovingC.ConfigStorage -> AtSettings;

}

Configuration volumes must be mounted before use, using the split-phase Mount interface:

interface Mount {

command error_t mount();

event void mountDone(error_t error);

}

Listing 6.29: Mount interface for storage volumes

Once mounted, the volume is accessed using the ConfigStorage interface:

interface ConfigStorage {

command error_t read(storage_addr_t addr, void* buf, storage_len_t len);

event void readDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error);

command error_t write(storage_addr_t addr, void* buf, storage_len_t len);

event void writeDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error);

command error_t commit();

event void commitDone(error_t error);

command storage_len_t getSize();

command bool valid();

}

Listing 6.30: ConfigStorage interface
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Figure 6.4: ConfigStorage: Writes and Commits

ConfigStorage volumes are somewhat unusual in that they effectively keep two copies of their contents:
the contents as of the last commit and the new, as-yet-to-be-committed contents. The purpose here is to
guarantee that configuration data is not lost: if a mote crashes during configuration updates, the data last
committed is still present and uncorrupted. Reads always read the last-committed data, while writes update
the new copy — you cannot see the data that has been written until after a successful commit. However,
writes are still updates: if a configuration volume contains 10 bytes, and bytes 2 and 3 are updated with a
write and the volume is then committed, the new contents are bytes 0-1 and 4-9 from before the write, and
bytes 2-3 from the write, as shown in Figure 6.4. Because configuration volumes must store multiple copies
of data to provide reliability, the actual available size is less than the space reserved for them in the volumes
file. The actually available size is returned by the getSize command.

While configuration volumes aim to prevent data loss, there are still two cases where they may not
contain valid data: when the volume is first created,3 or if the flash contents get corrupted by some external
physical process (hopefully unlikely). The valid command can be used to find out whether a configuration
volume contains valid data.

Putting all this together, adapting MovingC to have permanent settings is not too hard: the configuration
volume is mounted and read at boot time, and new settings are saved when they are received. The following
simplified excerpts show the basic boot-time logic, with error-checking removed for simplicity:

uses interface Mount;

uses interface ConfigStorage;

...

settings_t settings;

event void Boot.booted() {

settings.accelVariance = ACCEL_VARIANCE; // default settings

settings.accelInterval = ACCEL_INTERVAL;

call Mount.mount();

}

event void Mount.mountDone(error_t ok) {

if (call ConfigStorage.valid())

call ConfigStorage.read(0, &settings, sizeof settings);

else

call CommControl.start();

}

event void ConfigStorage.readDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error) {

3This really means: when this division of the flash is first used on this particular mote — there is no actual “format”-like
operation.
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call CommControl.start();

}

Listing 6.31: Anti–Theft: reading settings at boot time

The current settings are simply saved as a module-level settings t variable, which is read if the volume
is valid and left with default values if not. Updating the settings simply involves calling write and commit
(again with error-checking removed):

event void Settings.changed() {

settings = *call Settings.get();

call ConfigStorage.write(0, &settings, sizeof settings);

}

event void ConfigStorage.writeDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error) {

call ConfigStorage.commit();

}

event void ConfigStorage.commitDone(error_t error) {

call TheftTimer.startPeriodic(settings.accelInterval);

}

Listing 6.32: Anti–Theft: saving configuration data

6.5.3 Block and Log storage

Block and Log storage are two abstractions for storing large amounts of data. Log is intended for logging:
it provides reliability (each write is a separate transaction), at the cost of limited random access: writes are
append-only, reads can only seek to recorded positions. Block is a lower-level abstraction which allows
random reads and writes, but provides no reliability guarantees. Also, Block only allows any given byte
to be written once between two whole-volume erases. Block is often used to store large items, such as
programs for Deluge, the network reprogramming system.

In this section, we will use Block and Log to build FlashSampler, a two-level sampling application. The
system will periodically collect 32k samples of an accelerometer, storing the data in a Block storage volume.
It will then log a summary of this sample to a circular log. As a result, the system will at all times have the
most recent measurement with full fidelity, and some number of older measurements with reduced fidelity.

For the micaz with the same mts300 sensor board used for the anti-theft application, the following
volumes file specifies FlashSampler’s log and block volumes – 64kB for the latest sample (SAMPLES) and
the rest for the long-term log (SAMPLELOG):

<volume_table>

<volume name="SAMPLES" size="65536"/>

<volume name="SAMPLELOG" size="458752"/>

</volume_table>

Like the other storage abstractions, block storage is accessed by instantiating the BlockStorageC component
with the volume identifier and using its BlockRead and BlockWrite interfaces:

generic configuration BlockStorageC(volume_id_t volid) {

provides interface BlockWrite;

provides interface BlockRead;
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}

Listing 6.33: BlockStorageC signature

To sample to flash, we use the the BlockWrite interface:

interface BlockWrite {

command error_t write(storage_addr_t addr, void* buf, storage_len_t len);

event void writeDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error);

command error_t erase();

event void eraseDone(error_t error);

command error_t sync();

event void syncDone(error_t error);

}

Listing 6.34: The BlockWrite interface

All commands are split-phase: erase erases the flash before the first use, write writes some bytes, and
sync ensures that all outstanding writes are physically present on the flash.

FlashSampler uses BlockWrite and the ReadStream sampling interface we saw earlier to simultaneously
sample and save results to the flash. For this to work, it needs to use two buffers: while one is being sampled,
the other is written to the flash. The maximum sampling rate will thus be limited by both the sensor’s
maximum sampling rate and the flash’s maximum write rate. This scheme is implemented in the following
AccelSamplerC component, as a split-phase sample-to-flash command provided by a Sample interface (not
shown):

// in flashsampler.h:

enum {

SAMPLE_PERIOD = 1000,

BUFFER_SIZE = 512, // samples per buffer

TOTAL_SAMPLES = 32768, // must be multiple of BUFFER_SIZE

};

module AccelSamplerC

{

provides interface Sample;

uses interface ReadStream<uint16_t> as Accel;

uses interface BlockWrite;

}

implementation

{

uint16_t buffer1[BUFFER_SIZE], buffer2[BUFFER_SIZE];

int8_t nbuffers; // how many buffers have been filled

command void Sample.sample() {

// Sampling requested, start by erasing the block

call BlockWrite.erase();

}

event void BlockWrite.eraseDone(error_t ok) {

// Block erased. Post both buffers and initiate sampling

call Accel.postBuffer(buffer1, BUFFER_SIZE);
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call Accel.postBuffer(buffer2, BUFFER_SIZE);

nbuffers = 0;

call Accel.read(SAMPLE_PERIOD);

}

event void Accel.bufferDone(error_t ok, uint16_t *buf, uint16_t count) {

// A buffer is full. Write it to the block

call BlockWrite.write(nbuffers * sizeof buffer1, buf, sizeof buffer1);

}

event void BlockWrite.writeDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error) {

// Buffer written. TOTAL_SAMPLES is a multiple of BUFFER_SIZE, so

// once we’ve posted TOTAL_SAMPLES / BUFFER_SIZE buffers we’re done.

// As we started by posting two buffers, the test below includes a -2

if (++nbuffers <= TOTAL_SAMPLES / BUFFER_SIZE - 2)

call Accel.postBuffer(buf, BUFFER_SIZE);

else if (nbuffers == TOTAL_SAMPLES / BUFFER_SIZE)

// Once we’ve written all the buffers, flush writes to the buffer

call BlockWrite.sync();

}

event void BlockWrite.syncDone(error_t error) {

signal Sample.sampled(error);

}

event void Accel.readDone(error_t ok, uint32_t usActualPeriod) {

// If we didn’t use all buffers something went wrong, e.g., flash writes were

// too slow, so the buffers did not get reposted in time

signal Sample.sampled(FAIL);

}

}

Listing 6.35: Simultaneously sampling and storing to flash (most error–checking ommitted)

The second part of FlashSampler reads a sampled block, summarizes it, and writes it to a circular log.
The summary is simply a 128x downsample (by averaging) of the original sample, and is thus 512 bytes
long.

Reading the block is done using the BlockRead interface

interface BlockRead {

command error_t read(storage_addr_t addr, void* buf, storage_len_t len);

event void readDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error);

command error_t computeCrc(storage_addr_t addr, storage_len_t len,

uint16_t crc);

event void computeCrcDone(storage_addr_t addr, storage_len_t len,

uint16_t crc, error_t error);

command storage_len_t getSize();

}

Listing 6.36: The BlockRead interface

which provides split-phase commands to read from a block and compute CRCs. The log abstraction supports
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both circular and linear logs, but the choice must be made on a per-volume basis at compile time:

generic configuration LogStorageC(volume_id_t volid, bool circular) {

provides interface LogWrite;

provides interface LogRead;

}

Listing 6.37: LogStorageC signature

The LogWrite interface provides split-phase erase, append and sync commands, and a command to
obtain the current append offset:

interface LogWrite {

command error_t append(void* buf, storage_len_t len);

event void appendDone(void* buf, storage_len_t len, bool recordsLost,

error_t error);

command storage_cookie_t currentOffset();

command error_t erase();

event void eraseDone(error_t error);

command error_t sync();

event void syncDone(error_t error);

}

Listing 6.38: The LogWrite interface

However, many modules only need append: new logs start out empty, and logs are often intended to
be persistent so are only rarely erased under programmer control, unlike an abstraction like block which is
often erased before each use. Similarly, logs only really need to use sync either if the data is very important
and must definitely not be lost, or if the mote is about to reboot, losing any cached data. For instance,
FlashSampler’s sample summarization code uses only append:

// in flashsampler.h:

enum { SUMMARY_SAMPLES = 256, // total samples in summary

// downsampling factor: real samples per summary sample

DFACTOR = TOTAL_SAMPLES / SUMMARY_SAMPLES };

module SummarizerC {

provides interface Summary;

uses interface BlockRead;

uses interface LogWrite;

}

implementation

{

uint16_t summary[SUMMARY_SAMPLES], samples[DFACTOR];

uint16_t index; // of next summary sample to compute

void nextSummarySample();

command void Summary.summarize() {

// Summarize the current sample block

index = 0;
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nextSummarySample();

}

void nextSummarySample() {

// Read DFACTOR samples to compute the next summary sample

call BlockRead.read(index * DFACTOR * sizeof(uint16_t), samples, sizeof samples);

}

event void BlockRead.readDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error) {

// Average the DFACTOR samples which will become one summary sample

uint32_t sum = 0;

uint16_t i;

for (i = 0; i < DFACTOR; i++) sum += samples[i];

summary[index++] = sum / DFACTOR;

// Move on to the next sample summary, or log the whole summary if we’re done

if (index < SUMMARY_SAMPLES)

nextSummarySample();

else

call LogWrite.append(summary, sizeof summary);

}

event void LogWrite.appendDone(void* buf, storage_len_t len, bool recordsLost,

error_t error) {

// Summary saved!

signal Summary.summarized(error);

}

// Unused split-phase operations

event void BlockRead.computeCrcDone(storage_addr_t addr, storage_len_t len,

uint16_t crc, error_t error) { }

event void LogWrite.eraseDone(error_t error) { }

event void LogWrite.syncDone(error_t error) { }

}

Listing 6.39: Logging a sample summary (error–checking ommitted)

Logs are read sequentially using the split-phase read command of the LogRead interface:

interface LogRead {

command error_t read(void* buf, storage_len_t len);

event void readDone(void* buf, storage_len_t len, error_t error);

command storage_cookie_t currentOffset();

command error_t seek(storage_cookie_t offset);

event void seekDone(error_t error);

command storage_len_t getSize();

}

Listing 6.40: The LogRead interface

The log implementations guarantee that the data written by a single LogWrite.append operation will be
either fully present, or fully absent, so we know that the log will not contain any partial summaries. So we
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could for instance read the log from the beginning, in 512 byte chunks (the size of one summary) and know
that we have read a valid summary sample.

Log storage also provides limited seek support. The LogRead and LogWrite interfaces contain the
following command

command storage_cookie_t currentOffset();

which returns a cookie that represents the position at which the next read or append will start. These
cookies are not offsets in the log volume; they just contain enough information to allow the log storage
implementation to find that position in the log. LogRead’s split-phase seek command can seek to such
cookies.

This would allow, e.g., the FlashSampler application to report the position of the samples to a PC, and
then reread specific samples on demand.

6.6 Exercises

1. Port the anti-theft application to a different platform than the micaz, by writing new theft detection
code tailored to the particular sensors you have available.

2. Extend the anti-theft application so that motes notice the theft reports sent by neighboring motes and
report them locally by blinking LED 1.

3. Extend the anti-theft application so that the user can select between the light-level (DarkC) and
acceleration (MovingC) theft detection methods, and switch the LED 0 blinking on or off.

4. Add code to FlashSampler to transfer samples and sample summaries to the PC over the serial port.
Allow the user to (re)request specific sample summaries or erase all the summaries.



Mote-PC communication

This chapter shows how to build a PC application that talks to motes. As we saw in Chapter 6.4, a PC
typically interacts with a mote network by exchanging packets with a distinguished base station mote
(occasionally, several motes) over a serial connection (Figure 6.2, page 85). The PC code in this chapter is
written in Java, using the Java libraries and tools distributed with TinyOS. TinyOS also includes libraries and
tool support for other languages (e.g., C). Please refer to the TinyOS documentation for more information on
these other languages. The TinyOS Java code for communicating with motes is found under the net.tinyos
package.

7.1 Basics

At the most basic level, PCs and motes exchange packets that are simply sequences of bytes, using a protocol
inspired by, but not identical to, RFC 1663 [24] (more details on the protocol can be found in TEP 113 [7]).
This packet exchange is not fully reliable: the integrity of packets is ensured by the use of a CRC, but invalid
packets are simply dropped. Furthermore:

• Packets sent from a PC to a mote are acknowledged by the mote (but there is no retry if no acknowledge
is received) - this prevents the PC from overloading the mote with packets.

• Packets sent from a mote to a PC are not acknowledged.

While it is possible to write mote communication code by reading and writing the raw bytes in packets,
this approach is tedious and error-prone. Furthermore, any changes to the packet layout (e.g., adding a new
field, changing the value of a constant used in the packets) requires corresponding changes throughout the
code.

These problems are avoided on motes by using nesC’s external types (Chapter 3.5.3) to specify packet
layouts, and named constants to specify specific values. Two tools, mig and ncg, allow these packet layouts
and constants to be used in PC programs: mig (for “message interface generator”) generates code to encode
and decode a byte array whose layout is specified by a nesC external type, and ncg (for “nesC constant
generator”) extracts named constants from a nesC program. Both tools generate code for multiple languages,
including Java.

7.1.1 Serial Communication Stack

Like the radio stack (Chapter 6.3), the TinyOS serial stack follows a layered structure (Figure 6.1, page 80).
The lowest level of the TinyOS serial communication stack is defined in TEP 113, and deals with the
exchange of packets over an unreliable serial connection. Like radio packets, these are (in most cases)
“active message” packets. In the rest of this chapter, we will use message to mean the payload of a serial
AM packet, with different message types identifier by their AM type.

The layout of serial AM packets is defined using external types:

99
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typedef nx_struct serial_header {

nx_uint16_t dest; /* packet destination */

nx_uint16_t src; /* packet sender */

nx_uint8_t length; /* payload length, in bytes */

nx_uint8_t group; /* identifies a specific sensor network */

nx_uint8_t type; /* AM type */

} serial_header_t;

typedef nx_struct serial_packet {

serial_header_t header;

nx_uint8_t data[];

} serial_packet_t;

Listing 7.1: Serial AM Packet layout

The type field is used to dispatch the payload (data[]). Serial AM packets have no footer. The dest
(destination) and src (sender) fields are not directly relevant to packets exchanged over a serial connection,
as the sender and destination are normally implicit. Similarly, group is not relevant: it is used to distinguish
different motes participating in separate applications but sharing a physical connection. These fields are
included for consistency with AM packets sent over a radio, and are used in some base station mote
applications and ignored by others. For instance, in the BaseStation application that forwards radio AM
packets to/from a PC (as serial AM packets):

• From BaseStation to the PC: src, dest and group are as in the received radio AM packet.

• From the PC to BaseStation: the transmitted radio AM packet has its destination set to dest, but sets
its sender and group to those of the BaseStation mote.

With these choices, a PC with a BaseStation mote behaves much like a PC with a directly-attached mote
radio.

Conversely, the TestSerial application (part of the standard TinyOS distribution) ignores these three
fields. TestSerial is a application designed to test serial connectivity: the mote and the PC simply send
each other messages containing consecutive numbers. The mote displays the low-order three bits of these
numbers on its LEDs, while the PC simply prints these numbers. TestSerial uses the following simple
external type to specify its message layout:

typedef nx_struct test_serial_msg {

nx_uint16_t counter;

} test_serial_msg_t;

Listing 7.2: TestSerial packet layout

Serial AM packets containing a test serial msg t message are identified by an AM type field of 9.
Figure 7.1 shows the resulting connection between serial packet t and test serial msg t external types (the
figure does not show the lowest, packet-exchange layer as it is not specified using external types).

7.2 Using mig

The mig tool generates a class that represents a value of a given nesC nx struct M 1. This class provides
methods to read, write and report properties of the fields of M . Given a mig-generated class for M , the

1It is also possible to use mig with regular C structures, but the resulting code is mote-specific, as different motes have different
endianness and different rules for laying out C structures.
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countertest_serial_msg

data[]dest src length group type=9serial_packet_t

header

Figure 7.1: TestSerial packet layout
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Figure 7.2: Mig and External Types

net.tinyos.message package provides classes and methods that allow you to send and receive serial AM
packets whose payload is a value of type M .

Mig-generated classes represent structure values using a backing array, a byte array that stores the
structure value in the same representation as it has on the mote, and hence the same representation as in
TinyOS packets. Figure 7.2 shows a typical situation, with a mote sending a serial AM packet to a PC. On
the mote, the packet is represented by x, a pointer to a serial packet t. The representation of x is the same as
the representation of the packet on the serial connection to the PC. On the PC itself, a mig-generated class
uses a backing array containing the same bytes to represent a serial header t (the external type for serial AM
packet headers) value.

Mig-generated classes supports all features of C structures, including bitfields, arrays, unions, and nested
structures. They allow you to perform all the operations (and more) that you can do on structures in nesC
programs:

• Create a new (all fields initialised to zero) structure value.

• Cast part of one structure to another (e.g., cast the data[] field of serial packet t to test serial msg t).
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• Read and write any field.

• Obtain information on a field: its offset, size, signedness, etc.

• Obtain the byte array representing a particular structure value.

The classes generated by mig are subclasses of net.tinyos.message.Message, to simplify writing generic
code that can handle multiple message layouts. The main public function of the Message class is to provide
access to the backing array of a mig-generated class. The backing array is a slice of a Java byte[] array,
specified by an offset and length. This array, offset and length are returned by the following three methods:

public byte[] dataGet();

public int baseOffset();

public int dataLength();

Listing 7.3: Backing array methods

For instance, in Figure 7.2, the mig-generated class for serial header t takes a 7-byte slice starting at
offset 0 of the 9-byte array representing the whole serial AM packet. The use of a slice of a byte[] array
allows a mig-generated class to represent a value stored within another mig-generated class, supporting the
“casting” of part of one structure to another.

For test serial msg t, the basic constructor and methods of the mig-generated TestSerialMsg class are:2

• TestSerialMsg(): create a new (fields initialised to zero) test serial msg t value.

• static int offset counter(): Return the offset (in bytes) of the counter field in a test serial msg t
structure.

• get counter(): Return the value of the counter field.

• set counter(int value): Modify the value of the counter field.

7.2.1 Sending and receiving mig-generated packets

The net.tinyos.message package provides a class MoteIF (for “mote interface”) that makes it simple to
transmit and receive messages specified by a mig-generated class.

Before using MoteIF, you need to open a connection to your base station mote. This is done by
calling the net.tinyos.packet.BuildSource.makePhoenix method, which takes as argument a packet source
name. This packet source name specifies how you reach the base station mote (e.g., through a serial port)
and all the relevant parameters (e.g., device name, baud rate, etc). In the rest of this section, we will
use "serial@COM1:telosb" as our packet source, which denotes serial communication over serial port
COM1: at the normal Telos mote baud rate (115200 baud). Most Java programs that use MoteIF take a
command-line argument that specifies the actual packet source. Chapter 7.4 discusses packet sources, and
their motivation, in more detail.

Using MoteIF and mig, the code to transmit test serial msg t messages is quite simple, as this simplified
excerpt from the TestSerial.java file shows. Transmission of consecutive packets is performed using
MoteIF’s send method, which takes an object of a mig-generated class as argument:

public class TestSerial ... {

2See the mig documentation for a complete description of the generated constructors and methods.
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private MoteIF moteIF;

...

public void sendPackets() {

int counter = 0;

// Create uninitialized TestSerialMsg

TestSerialMsg payload = new TestSerialMsg();

try {

while (true) {

System.out.println("Sending packet " + counter);

payload.set_counter(counter);

moteIF.send(0, payload); // send payload to mote

counter++;

try {Thread.sleep(1000);}

catch (InterruptedException exception) {}

}

}

catch (IOException exception) {

System.err.println("Exception thrown when sending packets. Exiting.");

System.err.println(exception);

}

}

public static void main(String[] args) throws Exception {

/* Open connection to the mote, and start sending packets */

PhoenixSource phoenix = BuildSource.makePhoenix("serial@COM1:telosb", null);

MoteIF mif = new MoteIF(phoenix);

TestSerial serial = new TestSerial(mif);

serial.sendPackets();

}

}

Listing 7.4: Sending packets with mig and MoteIF

Received packets are handled following the AM “dispatch to a per-message handler” model. The
registerListener method takes an object O of a mig-generated class and a handler as arguments. The object
O specifies the AM type and layout, the handler must implement the net.tinyos.messages.MessageListener
interface:

public interface MessageListener {

public void messageReceived(int to, Message m);

}

Listing 7.5: Interface for handling received packets

When the handler is called, to is the destination address from the received packet, and m is a clone of O
containing the payload of the received packet.

The resulting additions to TestSerial.java are simply to declare a messageReceived method, and
register it as the handler for test serial msg t in TestSerial’s constructor:

public class TestSerial implements MessageListener {

public TestSerial(MoteIF moteIF) {

this.moteIF = moteIF;

// Register this class as a handler for test_serial_msg_t AM packets

this.moteIF.registerListener(new TestSerialMsg(), this);
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}

public void messageReceived(int to, Message message) {

// The actual type of ’message’ is ’TestSerialMsg’

TestSerialMsg msg = (TestSerialMsg)message;

System.out.println("Received packet sequence number " + msg.get_counter());

}

}

Listing 7.6: Receiving packets with mig and MoteIF

Note that the messageReceived method is called in a thread that is private to MoteIF. Your method must
ensure that any accesses to shared data are appropriately synchronized with the rest of your program.

Both message transmission and reception need to know the AM type used to identify a particular
message — transmission needs to set the AM type field (type in serial packet t), and reception needs to
know which messages correspond to which AM type so that it can dispatch packets correctly. To support
this, mig-generated classes contain an AM type field, accessed by the amType and amTypeSet methods.
When mig generates a message class for structure X , it sets a default value for amType by looking for an
enum constant named AM X (with X in upper case). For instance, the default AM type for nx struct
test serial msg is the value of AM TEST SERIAL MSG (defined in TestSerial.h).

When there is no such constant in the source code, or when a message is used with several AM types,
you must set the correct AM type using amTypeSet before calling the send or registerListener methods.

7.3 Using ncg

The ncg tool extracts enum constants from a nesC program or C header file, and generates a Java (or
other language) file containing constants with the same name and value. This avoids specifying identical
constants in two places (always a maintenance problem) when, e.g., your packets use “magic” values to
represent commands, specify the size of arrays, etc.

Consider for instance the TinyOS Oscilloscope demo application where each mote periodically reports
groups of sensor readings. Oscilloscope has a header file (Oscilloscope.h) that defines its message and
associated constants:

enum {

NREADINGS = 10, /* Number of readings per message. */

DEFAULT_INTERVAL = 256, /* Default sampling period. */

AM_OSCILLOSCOPE = 0x93

};

typedef nx_struct oscilloscope {

nx_uint16_t version; /* Version of the interval. */

nx_uint16_t interval; /* Sampling period. */

nx_uint16_t id; /* Mote id of sending mote. */

nx_uint16_t count; /* Readings start at count*NREADINGS */

nx_uint16_t readings[NREADINGS];

} oscilloscope_t;

Listing 7.7: Constants and packet layout for Oscillscope application

Oscilloscope’s Java GUI displays a graph of the sensor readings for each motes. To know the reading
number (i.e., the position of readings on the graph X axis), it needs to know both the value of the count field
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and the value of the NREADINGS constants. It therefore uses a mig-generated class to decode received
oscilloscope t messages, and ncg to extract the NREADINGS value:

public class Constants {

public static final byte NREADINGS = 10;

...

}

Listing 7.8: Class generated by ncg

The handler for oscilloscope t messages can now fetch the readings array from the received message,
and store its values in the Java data array at offset count * NREADINGS:

public void messageReceived(int to, Message msg) {

OscilloscopeMsg omsg = (OscilloscopeMsg)msg;

int start = omsg.get_count() * Constants.NREADINGS;

// get_readings returns a Java array with elements corresponding to

// the values in the nesC array

int readings[] = omsg.get_readings();

for (int i = 0; i < readings.length; i++)

data[start + i] = readings[i];

}

Listing 7.9: Simplified code to save received samples

The implementation of ncg relies on running the nesC compiler in a special mode, and is thus able
to extract the values of enum constants defined by expressions and uses of nesC’s special unique and
uniqueCount functions (see Chapter 9), not just simple constants. However, as a result, ncg also has two
limitations:

• It cannot extract the values of #define constants, as these are handled by the C preprocessor and
invisible to ncg.

• If the header file or nesC program passed to ncg has compile errors, then ncg will not produce any
output.

7.4 Packet Sources

The Java mote interface uses packet sources to abstract the different ways to talk to a mote. These include:

• direct serial connections

• remote (over Ethernet) serial connections

• connections to simulated motes

• connection via serial forwarders, which allow several programs to talk to the same mote

A packet source has the form connection@arguments, where connection is a word that specifies the
kind of connection (serial for direct serial connections, sf for serial forwarders, etc) and arguments is the
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arguments needed by the connection (e.g., serial port device name and baud rate as in serial@COM1:115200).
Executing

java net.tinyos.packet.BuildSource

prints a summary of all packet sources and their arguments. As mentioned above, most Java programs have
some way of specifying the packet source that should be used to connect to the base station mote, e.g., an
environment variable (usually MOTECOM), a command-line argument, or a field in a GUI.

One of the more important packet sources is the serial forwarder. The serial forwarder is a Java program3

that connects to a mote and forwards packets to and from its (multiple) clients. These clients connect to the
serial forwarder via TCP/IP. Using a serial forwarder serves multiple purposes:

• Allow remote access to a base station mote, so that, e.g., a GUI can access a sensor network from a
remote location.

• Allow both a regular application and a debugging system to talk to the same base station mote. For
instance, it’s often useful to simply display all packets received from a mote (using the net.tinyos.tools.Listen
Java program) without having to change your code.

• Split your application into multiple independent parts, each of which can talk to the mote. For
instance, the TestSerial.java application could be split into separate receive and transmit applications
which would talk independently to the mote via a serial forwarder.

7.5 Example: Simple Reliable Transmission

As we saw at the beginning of this chapter, the basic mote-PC communication infrastructure is unreliable:
packets are checked for integrity but there is no retransmission in case of failure. In this section, we show
how to build a simple reliable and reusable message transmission layer, and use it to build a reliable version
of the TestSerial application. The focus of this section is on showing how to build a generic, reusable mote
communication layer in Java.

The code for this simple reliable transmission protocol can be found in the “TinyOS Programming”
section of TinyOS’s contributed code directory (Chapter 1.5), under the name ReliableSerial. This directory
contains the Java (ReliableMoteIF class) and nesC (ReliableSerialC component) implementations of this
protocol, and ReliableTestSerial, a version of the nesCTestSerial application built over ReliableSerialC.

7.5.1 Reliable Transmission Protocol

The reliable message transmission protocol is very simple. Messages are sent with a “cookie” (changed on
every transmission) and are repeatedly sent (after a timeout) until an acknowledgement with the same cookie
is received. Transmissions are not overlapped: transmission of message2 does not start until message1 has
been acknowledged.

On the reception side, duplicates (detected by the presence of an identical cookie) are suppressed before
passing the message on to the upper layer. However, even duplicate messages are acknowledged, as it is
possible that the earlier acknowledgements were lost.

In concrete terms, two kinds of packets are used by this protocol: a message transmission packet
(reliable msg t) and an acknowledgment packet (ack msg t). These packets are shown in Figure 7.3, along
with the TestSerial messages that are transmitted by the ReliableTestSerial application.

3There are also C and C++ implementations.
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countertest_serial_msg_t

data[]dest src length group typeserial_packet_t

data[]cookiereliable_msg_t

ack_msg_t cookie

typedef nx_struct {
  nx_uint8_t cookie;
  nx_uint8_t data[];
} reliable_msg_t;

typedef nx_struct {
  nx_uint8_t cookie;
} ack_msg_t;

Figure 7.3: Reliable Transmission Packet Layouts

7.5.2 Reliable Transmission in Java

The ReliableMoteIF class contains the Java implementation of the simple reliable message transmission
protocol. It uses mig to generate AckMsg and ReliableMsg so that it can build and decode ack msg t
and reliable msg t packets respectively. ReliableMoteIF uses ncg to access the retransmission timeout
(ACK MSG TIMEOUT) specified in the nesC implementation (the ReliableSerialC component).

This class is implementing a generic reusable layer, so should be capable of transmitting and receiving
an arbitrary message whose layout is specified by a mig-generated class. As a result, the interface is so
similar to that of of MoteIF that ReliableMoteIF we simply make it a subclass of MoteIF. We first show the
transmission side:

import net.tinyos.packet.*;

import net.tinyos.message.*;

import java.io.*;

class ReliableMoteIF extends MoteIF {

/* Build an object for performing reliable transmission via ’base’ */

public ReliableMoteIF(PhoenixSource base) {

super(base);

/* Register handler (’ackMsgReceived’ method below) for receiving acks */

super.registerListener

(new AckMsg(), new MessageListener() {

public void messageReceived(int to, Message m) {

ackMsgReceived((AckMsg)m);

}

});

}

/* Send side */

/* --------- */

private Object ackLock = new Object(); /* For synchronization with ack handler */

private short sendCookie = 1; /* Next cookie to use in transmission */

private boolean acked; /* Set by ack handler when ack received */

private final static int offsetUserData = ReliableMsg.offset_data(0);
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/* Send message ’m’ reliably with destination ’to’ */

public void send(int to, Message m) throws IOException {

synchronized (ackLock) {

/* Build a reliable_msg_t packet with the current cookie and the payload in m,

* total packet size is ’m.dataLength() + offsetUserData’ */

ReliableMsg rmsg = new ReliableMsg(m.dataLength() + offsetUserData);

rmsg.set_cookie(sendCookie);

System.arraycopy(m.dataGet(), m.baseOffset(),

rmsg.dataGet(), offsetUserData,

m.dataLength());

/* Repeatedly transmit ’rmsg’ until the ack handler tells us an ack is received. */

acked = false;

for (;;) {

super.send(to, rmsg);

try {

ackLock.wait(RelConstants.ACK_TIMEOUT);

}

catch (InterruptedException e) { }

if (acked)

break;

System.err.printf("retry\n");

}

/* Pick a new cookie for the next transmission */

sendCookie = (short)((sendCookie * 3) & 0xff);

}

}

/* Handler for ack messages. If we see an ack for the current transmission,

* notify the ’send’ method. */

void ackMsgReceived(AckMsg m) {

synchronized (ackLock) {

if (m.get_cookie() == sendCookie) {

acked = true;

ackLock.notify();

}

}

}

... receive side ...

}

Listing 7.10: Reliable Transmission Protocol in Java –Transmission

The send method is synchronized to enforce the rule that a message must be acknowledged before the
next message is sent.

This code relies on the fact that the ackMsgReceived handler executes in a different thread than send.
After sending a message, the send thread goes to sleep for ACK MSG TIMEOUT ms. When an acknowledgment
is received, ackMsgReceived checks the cookie against that of the message being transmitted. If it is
equal, acked is set to true and the send thread is woken up. If no acknowledgement is received within
ACK MSG TIMEOUT ms, send will resend the message and wait again. Note that acknowledgments
received when send is not waiting are effectively ignored, as they should be.

After transmission is successful, send picks a new cookie — we multiply the old value by three just to
make it clear that these cookies are not sequence numbers. . .

The embedding of the user’s message in a reliable msg t packet is simply done by using System.arrayCopy
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to copying data between the backing arrays of the user’s and reliable msg t’s mig-generated classes. Note
also how the mig-generated offset data method is used to find the payload offset in reliable msg t (see
the offsetUserData constant). This code is very similar to MoteIF’s embedding of user messages in serial
packets.

Reliable reception is implemented by overriding MoteIF.registerListener. Note however that our reliable
transmission protocol only knows about one message type (it has no equivalent to AM’s type field), so you
can only actually register a listener for one message type:

class ReliableMoteIF extends MoteIF {

...

/* Receive side */

/* ------------ */

private Message template;

private MessageListener listener;

/* Build a reliable receive handler for ’template’ messages */

public void registerListener(Message m, MessageListener l) {

template = m;

listener = l;

/* Register handler (reliableMsgReceived method below) for receiving

* reliable_msg_t messages */

super.registerListener

(new ReliableMsg(),

new MessageListener() {

public void messageReceived(int to, Message m) {

reliableMsgReceived(to, (ReliableMsg)m);

}

});

}

private short recvCookie; /* Cookie of last received message */

void reliableMsgReceived(int to, ReliableMsg rmsg) {

/* Acknowledge all received messages */

AckMsg ack = new AckMsg();

ack.set_cookie(rmsg.get_cookie());

try {

super.send(MoteIF.TOS_BCAST_ADDR, ack);

}

catch (IOException e) {

/* The sender will retry and we’ll re-ack if the send failed */

}

/* Don’t notify user of duplicate messages */

if (rmsg.get_cookie() != recvCookie) {

recvCookie = rmsg.get_cookie();

/* Extract payload from ’rmsg’ and copy it into a copy of ’template’.

* The payload is all the data in ’rmsg’ from ’offsetUserData’ on */

Message userMsg = template.clone(rmsg.dataLength() - offsetUserData);

System.arraycopy(rmsg.dataGet(), rmsg.baseOffset() + offsetUserData,

userMsg.dataGet(), 0,

rmsg.dataLength() - offsetUserData);

listener.messageReceived(to, userMsg);

}
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}

}

Listing 7.11: Reliable Transmission Protocol in Java –Reception

The protocol implementation part of reliableMsgReceived is straightforward: it simply acknowledges
all received messages, and ignores consecutive messages with the same cookie. Its main complexity is in
extracting the payload from received reliable msg t packets and building a message that follows the users
template object. This task is accomplished by using the clone(n) method of Message, which makes a
copy of a message with a new backing array. The data from the payload portion of the backing array of the
received reliable msg t packet is then simply copied over to this new backing array. Again, this code is very
similar to that found in MoteIF to extract the payload from a received serial packet.

7.5.3 Reimplementing TestSerial

Switching TestSerial’s Java code to use the new reliable transmission layer is very straightforward because
ReliableMoteIF is a subclass of MoteIF. We just construct a ReliableMoteIF object in main:

public static void main(String[] args) throws Exception {

/* Open connection to the mote, and start sending packets */

PhoenixSource phoenix = BuildSource.makePhoenix("serial@COM1:telosb", null);

MoteIF mif = new ReliableMoteIF(phoenix);

TestSerial serial = new TestSerial(mif);

serial.sendPackets();

}

Listing 7.12: A reliable TestSerial.java

7.6 Exercises

1. ReliableMoteIF is not a proper replacement for MoteIF because our reliable transmission protocol
only supports a single message type. Extend reliable msg t, ReliableMoteIF and ReliableSerialC (the
nesC reliable protocol implementation) with an AM-type-like dispatch field.

2. Implement a simple PC application that talks to the AntiTheft base station mote of Chapter 6.4.4, to
print theft report and allow the user to change theft-detection settings.

3. Improve the performance of the reliable transmission protocol by allowing multiple outstanding un-acknowledged
packets using, e.g., a windowed protocol.
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Advanced components

Chapter 3 introduced components to a level of detail sufficient for building applications. This chapter
presents more advanced component topics that implementing services typically requires, such as writing
generic components and using parameterized interfaces.

8.1 Generic Components Review

Generic components (introduced in Chapter 3.3.4) provide code reuse through a code-copying mechanism:
each instance of a generic component is effectively a new (non-generic) component with the parameter
values substituted in. For instance, instantiating BitVectorC

generic module BitVectorC(uint16_t maxBits) {

provides interface Init;

provides interface BitVector;

}

implementation {

uint8_t bits[(maxBits + 7) / 8];

...

}

with

configuration MyAppC { }

implementation {

components new BitVectorC(77) as MyVector, MyAppP;

MyAppP.BitVector -> MyVector;

}

is effectively the same as creating a copy of BitVectorC.nc with maxBits=77:

module MyVector {

provides interface Init;

provides interface BitVector;

}

implementation {

uint8_t bits[(77 + 7) / 8];

...

}

Generic components use a code-copying approach for two reasons: simplicity and types. If generic
modules did not use a code-copying approach, then there would be a single copy of the code that works for
all instances of the component. This is difficult when a generic component can take a type as a argument,
as allocation size, offsets, and other considerations can make a truly single copy infeasible. Even non-type
arguments can create such problems, as they can be used to specify array sizes, switch case values, etc. For
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similar reasons, C++ templates create a copy of code for each different set of template arguments.
Finally, even when it would be possible to share code across instances, it would require adding an

argument, similar to the this pointer of object-oriented languages, to all of the functions. This argument
would indicate which instance is executing. Additionally, all variable accesses would have to offset from
this pointer. In essence, the execution time and costs of functions might change significantly (offsets rather
than constant accesses). In order to provide simple, easy to understand and run-time efficient components,
nesC uses a code-copying approach, sacrificing possible reductions in code size.

Code-copying applies to configurations as well as modules. Copying a module copies executable code
and variables into the final application. Copying a configuration copies component and wiring statements,
possibly leading to further component instantiations:

generic configuration DoubleBitVectorC(uint16_t maxBits) {

provides interface Init;

provides interface BitVector as Bits1;

provides interface BitVector as Bits2;

}

implementation {

components new BitVector(maxBits) as BV1;

components new BitVector(maxBits) as BV2;

Init = BV1; // Calling Init.init initialises

Init = BV2; // both bitvectors

Bits1 = BV1;

Bits2 = BV2;

}

Listing 8.1: Instantiation within a generic configuration

Instantiating DoubleBitVectorC will create, and wire, two bit vectors. In summary, a generic module
defines a piece of repeatable executable logic, while a generic configuration defines a repeatable pattern of
composition between components. As Chapter 9 will show, generic configurations can be very powerful and
are often the most intricate part of service implementations.

Unlike standard components, generics can only be named by the configuration that instantiates them.
For example, in the case of MyAppC, no other component can wire to the BitVectorC that it instantiates.
The generic is private to MyAppC. The only way it can be made accessible is to wire its interfaces — in the
case of MyAppC, the bit vector is made accessible to MyAppP only. One way to make an instance generally
available is to create a singleton configuration and exporting the necessary interfaces. For example, let’s say
you needed a bit vector to keep track of which of 37 system services are running or not. You want many
components to be able to access this vector, but BitVectorC is a generic. So you write a component like this:

configuration SystemServiceVectorC {

provides interface BitVector;

}

implementation {

components MainC, new BitVectorC(37);

MainC.SoftwareInit -> BitVectorC;

BitVector = BitVectorC;

}

Listing 8.2: The fictional component SystemServiceVectorC

Now many components can refer to this particular bit vector. SystemServiceVectorC could have exported
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BitVectorC.Init rather than wiring it to MainC, but that would have just required this wiring to be performed
elsewhere. While you can make a singleton out of a generic by instantiating it within one, the opposite is
not true: a component is either instantiable or not.

8.2 Writing Generic Modules

As the examples above showed, the body of a generic module (configuration) is simply a module (configuration)
which can use the generic’s arguments as types, constants, etc. Another example is the queue implementation,
QueueC:

generic module QueueC(typedef queue_t, uint8_t queueSize) {

provides interface Queue<queue_t>;

}

implementation {

queue_t queue[queueSize];

uint8_t head = 0, tail = 0, size = 0;

command queue_t Queue.head() {

return queue[head];

}

...

Listing 8.3: QueueC excerpt

QueueC uses queue t like a regular C type, declaring an array (queue) and returning a queue t value
(Queue.head), The queueSize parameter behaves like a C constant, so can be used to size the queue array.

8.2.1 Type Arguments

Unlike C++ templates, generic components are type-checked when they are declared. By default, the only
operations allowed on type arguments are declaring variables and copying values. For instance, you can do

queue_t x, y;

x = y;

but not

queue_t x, y;

x = y + 1;

as nesC would not know what this meant if, e.g., queue t was a C structure.
However, some components have type arguments that only make sense as some kind of integer (signed

8-bit integer, unsigned 32-bit integer, etc). For those cases, generic component type parameters can be
suffixed with @integer() to allow the use of integer operations on values of that type. For instance, this
ConstantSensorC component is a generic implementation of Read returning a constant value:

generic module ConstantSensorC(typedef width_t @integer(), uint32_t val) {

provides interface Read<width_t>;

}

implementation

{

task void senseResult() {

signal Read.readDone(SUCCESS, (width_t)val);
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}

command error_t Read.read() {

return post senseResult();

}

}

Listing 8.4: A generic constant sensor

The type of values returned by ConstantSensorC’s Read interface is width t, and the constant returned is
the integer val. The @integer() is necessary to make the cast to width t in senseResult legal: an integral
value like val can be cast to any integer type, but not to some unknown type.1

Instantiations of ConstantSensorC must use an integer type for width t:

components new ConstantSensorC(uint16_t, 23) as C1; // legal

components new ConstantSensorC(struct X, 39) as C2; // compile-time error

There is also an @number() suffix, that restricts the type parameter to an integer or floating-point type,
and the operations to those legal on all such types. The @integer() and @number() suffixes are another
examples of nesC’s attributes, which we saw earlier in the declaration of combine functions (Chapter 4.4.3)
and which will be covered in more detail in Chapter 8.4.

8.2.2 Abstract Data Types as Generics

Abstract data types (ADTs) in TinyOS are usually represented in one of two ways: as generic modules
or through an interface with commands that take by-reference arguments. With a module, the ADT state
is stored in module variables and accessed by commands from provided interfaces. For example, many
TinyOS components access queues through the Queue typed interface:

interface Queue<t> {

command bool empty();

command uint8_t size();

command uint8_t maxSize();

command t head();

command t dequeue();

command error_t enqueue(t newVal);

command t element(uint8_t idx);

}

Listing 8.5: Queue interface (repeated)

The Queue ADT implementation, QueueC, takes the a queue type and size as parameters:

generic module QueueC(typedef queue_t, uint8_t queueSize) {

provides interface Queue<queue_t>;

}

implementation {

queue_t queue[queueSize];

uint8_t head = 0, tail = 0, size = 0;

command bool Queue.empty() {

1Note that removing the cast from the source code would not change anything, as the cast is implied by passing val to
Read.readDone, whose second argument is of type width t.
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return size == 0;

}

command uint8_t Queue.size() {

return size;

}

command uint8_t Queue.maxSize() {

return queueSize;

}

command queue_t Queue.head() {

return queue[head];

}

command queue_t Queue.dequeue() {

queue_t t = call Queue.head();

if (!call Queue.empty()) {

if (++head == queueSize) head = 0;

size--;

}

return t;

}

command error_t Queue.enqueue(queue_t newVal) {

if (call Queue.size() < call Queue.maxSize()) {

queue[tail++] = newVal;

if (tail == queueSize) tail = 0;

size++;

return SUCCESS;

}

else {

return FAIL;

}

}

command queue_t Queue.element(uint8_t idx) {

idx += head;

if (idx >= queueSize) idx -= queueSize;

return queue[idx];

}

}

Listing 8.6: QueueC implementation

Consistency issues can arise when multiple components share an ADT. In general, an abstract data type
implementation’s commands should behave correctly even if there are multiple clients. However, it is up to
the clients to handle consistency issues across multiple calls: if client A calls Queue.size in two different
tasks and client B calls Queue.enqueue, then client A may get different sizes, depending on the order of
the calls. These issues are more complex for abstract data types such as BitVectorC that can be used from
asynchronous code — see Chapter 11 for more discussion on this topic.

8.2.3 ADTs in TinyOS 1.x

TinyOS 1.x uses only the second approach, an interface with by-reference parameters, because it does
not have generic modules. For example, the Maté virtual machine supports scripting languages with typed
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variables, and provides functionality for checking and setting types. In this case, the ADT is a script variable.
In the interface MateTypes below, a MateContext* is a thread and a MateStackVariable* is a variable:

interface MateTypes {

command bool checkTypes(MateContext* context, MateStackVariable* var, uint8_t type);

command bool checkMatch(MateContext* context, MateStackVariable* v1, MateStackVariable* v2);

command bool checkValue(MateContext* context, MateStackVariable* var);

command bool checkInteger(MateContext* context, MateStackVariable* var);

command bool isInteger(MateContext* context, MateStackVariable* var);

command bool isValue(MateContext* context, MateStackVariable* var);

command bool isType(MateContext* context, MateStackVariable* var, uint8_t type);

}

Listing 8.7: Representing an ADT through an interface in TinyOS 1.x

The MateTypes interface is provided by a non-generic module (MTypeCheck) that accesses and the
actual MateStackVariable objects are declared in various other modules. The consistency issues are similar
to when ADTs are provided by generic modules: if two clients use an ADT interface to access the same
variable, then: the ADT should ensure each operation behaves consistently, and clients should deal with any
higher-level consistency issues.

8.3 Parameterized Interfaces

One way to provide multiple independent instances of the same interface is to implement the interface in
a generic module and instantiate it multiple times. However, this has two drawbacks. First, it wastes code
space. Second, in many cases, the multiple instances are not really fully independent, but need to perform
some degree of cooperation. For instance, the TinyOS timer component (HilTimerMilliC) virtualizes a
platform’s hardware timer: it implements multiple logical timers on top of a single hardware timer. From
the application programmer’s perspective there are, e.g., 10 independent Timer interfaces, but the timer
implementation needs to set the single hardware timer to the earliest deadline amongst these 10 timers.

One way HilTimerMilliC could provide multiple timers is by having a long signature:

configuration HilTimerMilliC {

provides interface Timer<TMilli> as Timer0;

provides interface Timer<TMilli> as Timer1;

provides interface Timer<TMilli> as Timer2;

provides interface Timer<TMilli> as Timer3;

...

provides interface Timer<TMilli> as Timer100;

}

Listing 8.8: Timers without parameterized interfaces

While this works, it is somewhat painful and leads to a lot of repeated code. Every instance needs to
have its own implementation. That is, there will be 100 different startPeriodic functions, even though they’re
almost completely identical. Another approach could be to have a call parameter to the Timer interface that
specifies which timer is being changed, sort of like a file descriptor in POSIX file system calls. In this case,
HilTimerMilliC would look like this

configuration HilTimerMilliC {
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provides interface Timer;

}

Listing 8.9: Timers with a single interface

Components that use timers would have some way of generating unique timer identifiers, and would
pass them in every call:

call Timer.startPeriodic(timerDescriptor, 1024); // Fire at 1Hz

While this approach works – it doesn’t lead to multiple implementations – passing the parameter is
generally unnecessary, in that components generally allocate some number of timers and then only use
those timers. That is, the set of timers a component uses – and the size of the set – are generally known at
compile time. Making the caller pass the parameter at runtime is therefore unnecessary, and could possibly
introduce bugs (e.g., if the wrong descriptor is passed).

There are other situations when a component wants to provide a large number of interfaces, such
as communication. Active messages have an 8-bit type field, which is essentially a protocol identifier
(Chapter 6.3). In the Internet, the valid protocol identifiers for IP are well specified,2 and many port numbers
for TCP are well established. When a node receives an IP packet with protocol identifier 6, it knows that
this is a TCP packet and dispatches it to the TCP stack. Active messages need to perform a similar function,
albeit without the standardization of IANA: a network protocol needs to be able to register to send and
receive certain AM types. Like timers, with basic interfaces there are two ways to approach this: code
redundancy or run-time parameters. That is, to handle AM type 15, you could either have a packet layer
providing 256 named Send interfaces:

components NetworkProtocolP, PacketLayerC;

NetworkProtocolP.Send -> PacketLayerC.Send15;

or the network protocol code could look like this:

call Send.send(15, msg, sizeof(payload_t));

Neither of these solutions is very appealing. The first leads to a lot of redundant code, wasting code
memory. Furthermore, the use of hardwired names can easily lead to maintenance problems and/or bugs:
returning to the timers, if a sensor filter and a routing stack both wire to Timer3, there’s no way to separate
them without changing the code text of one of them to read “Timer4.” One way to manage the namespace
would be to have components leave their timers unwired and then expect the application to resolve all of
them. But this places a large burden on an application developer. For example, a small application that builds
on top of a lot of large libraries might have to wire eight different timers. Additionally, this approach leads
to system components that are not self-contained, working abstractions: they have remaining dependencies
that an application developer needs to resolve.

The second approach (passing extra arguments) is superior to the first at first glance, but it turns out
to have even more significant problems, especially in the context of nesC’s component model. First, in
many cases the identifier is known at compile-time. Requiring the caller to pass it as a run-time parameter is
unnecessary and is a possible source of bugs. Second, and more importantly, it pushes identifier management
into the caller. For example, returning again to timers:

call Timer.startPeriodic(timerDescriptor, 1024); // Fire at 1Hz

From the calling component’s perspective, it doesn’t care which timer it’s using. All it cares is that
it has its own timer. Making the identifier part of the call forces the module to know (and manage) the
identifier name. The third and largest problem, however, is not with calls out to other components but with

2http://www.iana.org/assignments/protocol-numbers
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calls in from other components. In Timer, for example, how does the timer service signal a fired() event to
the correct component? Because the identifier is a runtime parameter, the only way is for Timer.fired() to
fan-out to all timers, and have them all check the identifier.

8.3.1 Parameterized interfaces and configurations

To support abstractions that provide sets of interfaces, nesC has parameterized interfaces. A parameterized
interface is essentially an array of interfaces, and the array index is the parameter. For example, this is the
signature of HilTimerMilliC:

configuration HilTimerMilliC {

provides interface Init;

provides interface Timer<TMilli> as TimerMilli[uint8_t num];

provides interface LocalTime<TMilli>;

}

Listing 8.10: HilTimerMilliC signature

HilTimerMilliC is a platform-specific configuration that presents a millisecond granularity timer stack.
By providing 256 separate instances of Timer, HilTimerMilliC can support up to 256 independent timers.
Calling Timer.startPeriodic on one interface instance will cause that instance to signal Timer.fired events.
Normally, components don’t wired directly to HilTimerMilliC. Instead, they use TimerMilliC, which presents
a simpler interface (see Chapter 6.1).

Packet communication is another example use of parameterized interfaces. ActiveMessageC is a platform-specific
configuration for single-hop packet communication:

configuration ActiveMessageC {

provides {

interface Init;

interface SplitControl;

interface AMSend[uint8_t id];

interface Receive[uint8_t id];

interface Receive as Snoop[uint8_t id];

interface Packet;

interface AMPacket;

interface PacketAcknowledgements;

}

}

Listing 8.11: ActiveMessageC signature

AMSend, Receive, and Snoop are all parameterized interfaces. Their parameter is the AM type of the
message (the protocol identifier). Normally, components don’t wire directly to ActiveMessageC. Instead,
they use AMSenderC, AMReceiverC, which present a simpler interface (see Chapter 6.3). However, some
test applications for the basic AM abstraction, such as TestAM, use ActiveMessageC directly. The module
TestAMC sends and receives packets:

module TestAMC {

uses {
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...

interface Receive;

interface AMSend;

...

}

}

Listing 8.12: Signature of TestAMC

TestAMAppC is the configuration that wires up the TestAMC module:

configuration TestAMAppC {}

implementation {

components MainC, TestAMC as App;

components ActiveMessageC;

MainC.SoftwareInit -> ActiveMessageC;

App.Receive -> ActiveMessageC.Receive[240];

App.AMSend -> ActiveMessageC.AMSend[240];

...

}

Listing 8.13: Wiring TestAMC to ActiveMessageC

Note that TestAM has to wire SoftwareInit to ActiveMessageC because it doesn’t use the standard
abstractions, which auto-wire it. This configuration means that when TestAMC calls AMSend.send, it calls
ActiveMessageC.AMSend number 240, so sends packets with protocol identifier 240. Similarly, TestAMC
receives packets with protocol identifier 240. Because these constants are specified in the configuration, they
are not bound in the module: from the module’s perspective, they don’t even exist. That is, from TestAMC’s
perspective, these two lines of code are identical:

TestAMC.AMSend -> ActiveMessageC.AMSend240; // Not real TinyOS code

TestAMC.AMSend -> ActiveMessageC.AMSend[240];

The difference lies in the component with the parameterized interface. The parameter is essentially
another argument in functions of that interface. In ActiveMessageC.AMSend, for example, the parameter
is an argument passed to it in calls to send() and which it must pass in signals of sendDone(). But the
parameterized interface gives you two key things. First, it automatically fills in this parameter when
TestAMC calls send (nesC generates a stub function to do so, and inlining makes the cost negligible).
Second, it automatically dispatches on the parameter when ActiveMessageC signals sendDone (nesC generates
a switch table based on the identifier).

8.3.2 Parameterized interfaces and modules

In reality, ActiveMessageC is a configuration that encapsulates a particular chip’s radio stack, and that
stack may itself be a configuration. For instance, for the CC2420 radio, ActiveMessageC encapsulates the
CC2420ActiveMessageC configuration, which itself encapsulates the CC2420ActiveMessageP module:

module CC2420ActiveMessageP {

provides {

interface AMSend[am_id_t id];

...

}



8.3. Parameterized Interfaces 122

}

Listing 8.14: A possible module underneath ActiveMessageC

Within CC2420ActiveMessageP, this is what the parameterized interface looks like:

command error_t AMSend.send[am_id_t id](am_addr_t addr, message_t* msg, uint8_t len) {

cc2420_header_t* header = getHeader( msg );

header->type = id;

...

}

Listing 8.15: Parameterized interface syntax

The interface parameter precedes the function argument list, and the implementation can treat it like any
other argument. Basically, it is a function argument that the nesC compiler fills in when components are
composed. When CC2420ActiveMessageP wants to signal sendDone, it pulls the protocol identifier back
out of the packet and uses that as the interface parameter:

event void SubSend.sendDone(message_t* msg, error_t result) {

signal AMSend.sendDone[call AMPacket.type(msg)](msg, result);

}

Listing 8.16: Dispatching on a parameterized interface

If the AM type of the packet is 240, then the dispatch code nesC generates will cause this line of code
to signal the sendDone wired to ActiveMessageC’s AMSend[240] interface, which in this case is ultimately
wired to TestAMC’s AMSend.sendDone.

CC2420ActiveMessageP.Receive looks similar to sendDone. The AM implementation receives a packet
from a lower level component and dispatches on the AM type to deliver it to the correct component.
Depending on whether the packet is destined to the local node, it signals either Receive.receive or Snoop.receive:

event message_t* SubReceive.receive(message_t* msg, void* payload, uint8_t len) {

if (call AMPacket.isForMe(msg)) {

return signal Receive.receive[call AMPacket.type(msg)](msg, payload, len - CC2420_SIZE);

}

else {

return signal Snoop.receive[call AMPacket.type(msg)](msg, payload, len - CC2420_SIZE);

}

}

Listing 8.17: How active message implementations decide on whether to signal to Receive or Snoop

The subtraction of CC2420 SIZE is because the lower layer has reported the entire size of the packet,
while to layers above AM the size of the packet is only the data payload (the entire size minus the size of
headers and footers, that is, CC2420 SIZE).

Parameterized interfaces get the best of both worlds. Unlike the name-based approach (e.g. Send240)
described above, there is a single implementation of the call. Additionally, since the parameter is a value,
unlike a name it can be configured and set. E.g., a component can do something like this:

#ifndef ROUTING_TYPE
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#define ROUTING_TYPE 201

#endif

RouterP.AMSend -> PacketSenderC.AMSend[ROUTING_TYPE];

Listing 8.18: Defining a parameter

Pushing constants into wiring avoids the pitfalls of using runtime parameters. Because the constant is
set at compile-time, nesC can automatically fill it in and dispatch based on it, simplifying the code and
improving the efficiency of outgoing function invocations.

Note that you can also wire entire parameterized interfaces:

configuration CC2420ActiveMessageC {

provides interface AMSend[am_id_t id];

} {...}

configuration ActiveMessageC {

provides interface AMSend[am_id_t id];

}

implementation {

components CC2420ActiveMessageC;

AMSend = CC2420ActiveMessageC;

}

Listing 8.19: Wiring full parameterized interface sets

Programming Hint 18: USE A PARAMETERIZED INTERFACE WHEN YOU NEED
TO DISTINGUISH CALLERS OR WHEN YOU HAVE A COMPILE-TIME CONSTANT
PARAMETER.

8.3.3 Defaults

Because a module’s call points are resolved in configurations, a common compile error in nesC is to forget
to wire something. The equivalent in C is to forget to include a library in the link path, and in Java it’s
to include a jar. Usually, a dangling wire represents a bug in the program. With parameterized interfaces,
however, often they don’t.

Take, for example, the Receive interface of ActiveMessageC. Most applications receive a few AM types,
maybe 15 at most: they don’t respond to or use every protocol ever developed. However, there’s this call in
CC2420ActiveMessageP:

return signal Receive.receive[call AMPacket.type(msg)](msg, payload, len - CC2420_SIZE);

On one hand, if all of the nodes in the network run the same executable, it’s possible that none of them
will ever send a packet of, say, AM type 144. However, if there are other nodes nearby, or if packets are
corrupted but still pass a CRC check (this is rare, but does happen), then it’s very possible that a node which
doesn’t care about protocol 144 will receive a packet of this type. Therefore nesC expects the receive event
to have a handler: it needs to execute a function when this happens. But the application doesn’t wire to
Receive[144], and making a developer wire to all of the unwired instances is unreasonable, especially as
they’re all null functions (in the case of Receive.receive, the handler just returns the packet passed to it).

To avoid this problem, nesC provides default handlers. A default handler is an implementation of a
function that’s used if no implementation is wired in. If a component wires to the interface, then that
implementation is used. Otherwise, the call (or signal) goes to the default handler. For example, CC2420ActiveMessageP
has the following default handlers:
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default event message_t* Receive.receive[am_id_t id](message_t* msg, void* p, uint8_t len) {

return msg;

}

default event message_t* Snoop.receive[am_id_t id](message_t* msg, void* p, uint8_t len) {

return msg;

}

default event void AMSend.sendDone[uint8_t id](message_t* msg, error_t err) {

return;

}

Listing 8.20: Default events in an active message implementation

In the TestAM application, TestAMAppC wires TestAMC to ActiveMessageC.Receive[240]. Therefore,
on the Telos or micaz platform, when the radio receives a packet of AM type 240, it signals TestAMC’s
Receive.receive. Since the application doesn’t use any other protocols, when it receives an active message
of any other type it signals CC2420ActiveMessageP’s default handler.

Default handlers can be dangerous, as they circumvent compile-time checks that component interfaces
are connected. Using them carelessly can cause code to work improperly. For example, while CC2420ActiveMessageP
has a default handler for Send.sendDone, TestAMC does not have a default handler for Send.send. Otherwise,
you could forget to wire TestAMC.Send and the program would compile fine but never send packets.
Defaults should only be used when an interface is not necessary for the proper execution of a component.
This almost always involves parameterized interfaces, as it’s rare that all of the parameter values are used.

8.4 Attributes

Attributes are a way to associate metadata with program statements. nesC attributes are based on the
approach taken with Java annotations [6, Chapter 9]. The full details are beyond the scope of this document,
but it’s worthwhile to present the most common attributes and how they are used. nesC attributes look
like Java annotations. An attribute declaration is a struct declaration where the name is preceded by @.
Attributes can therefore have fields, which can be initialized. We’ve already seen three attributes, @integer,
@number, and @combine. For instance, the combine attribute we saw in Chapter 4.4.3 takes a string as
argument, behaving as if3 it were declared by:

struct @combine {

char *function_name;

};

// Using the combine attribute in a type definition

typedef uint8_t error_t @combine("ecombine");

The declaration of error t is annotated with the string "ecombine", specifying the name of the combine
function for error t. The argument in parentheses actually uses the same syntax (minus the {}) as a regular
C initializer for the attribute’s struct definition.

User-defined attributes can be attached to most names (components, interfaces, typedefs, variables,
functions, etc) in nesC programs:

struct @atleastonce { };

3combine is built in to the nesC compiler.
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configuration LedsC {

provides interface Init @atleastonce();

provides interface Leds;

}

Listing 8.21: nesC attributes

This example shows the declaration of the atleastonce attribute, which has no fields. The configuration
LedsC annotates its Init interface with the attribute. By default, the @atleastonce attribute doesn’t do
anything. But the nesC compiler has tools to output information about an application, including attributes.
Part of the default TinyOS compilation process includes running a script that checks wiring constraints,
of which atleastonce is one (the others are atmostonce, exactlyonce). The tool checks that an interface
annotated with atleastonce is wired to at least once. In the case of something like Init, the utility of this
check is pretty clear: you can check at compile time that your component is being initialized.

Attributes provide a way to extend the nesC language without introducing new keywords, which could
break older code. The current common attributes are:

• @spontaneous: this function might be called from outside the nesC program, and so should not be
pruned by nesC’s dead code elimination. This attribute is needed for interrupt handlers and whenever
you want to link binaries (e.g., with TOSSIM).

• @C: this function should be considered a C, rather than a nesC, function. Specifically, if a component
defines a function with this attribute, then it is not made private to the component. This attribute is
needed for when C code needs to call nesC code (e.g., in TOSSIM).

• @hwevent: this function will be called as a result of a hardware interrupt. Implies spontaneous.

• @atomic hwevent: this function will be called as a result of a hardware interrupt, and will execute
in an atomic section. Implies spontaneous. The distinction between this attribute and @hwevent is
needed so nesC can know whether additional atomic sections are needed.

• @atmostonce: this interface must be wired to zero or one times.

• @atleastonce: this interface must be wired one or more times.

• @exactlyonce: this interface must be wired to once, no more, no less.

• @integer: this type parameter to a generic component must be an integer. This attribute allows
generic components to use integer operations (arithmetic, shifts, bit-operations) on the type, which is
important for things like scaling timers.

• @number: this type parameter to a generic component must be an integer or floating-point type. This
attribute allows generic components to use arithmetic operations on the type.

• @combine: this attribute is used to specify a combine function for a type when the type is declared.
It takes a parameter, a string of the name of the combine function.

Earlier versions of nesC used gcc’s attribute syntax to specify these attributes, however this is now
deprecated. You may however still see it in some older code, e.g., in TinyOS 1.x:

module RealMain { ... }

implementation {

int main() __attribute__ ((C, spontaneous)) {

...
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8.5 Exercises

1. The standard QueueC implementation uses an array to store the queue. Write an alternative implementation
that uses a linked list. The maximum size of the list should be a parameter to the generic component’s
constructor.

2. Extend your linked-list to provide an additional interface, List, which allows insertion, deletion, and
peeking at any point in the list.

3. Write a stack data structure component that takes a max stack depth and data type as parameters.

4. Write an additional dispatch layer on top of AM, which provides a parameterized interface to a single
AM id by adding a one-byte header.



Advanced wiring

Chapter 4 introduced the basics of nesC component wiring, explaining the three wiring operators and how
multiple wirings work. Chapter 8 introduced parameterized interfaces, which enable a single component
implementation to efficiently provide an interface to many clients. Much of the most intricate nesC programming
involves using parameterized interfaces. This chapter focuses on generic configurations, and how they can
use parameterized interfaces to provide robust and flexible abstractions.

9.1 unique() and uniqueCount()

Parameterized interfaces were originally intended to support abstractions like active messaging. It turns out,
however, that they are much more powerful than that. If you look at the structure of most basic TinyOS
2.0 abstractions, there’s a parameterized interface in there somewhere. The ability to specify compile-time
constants outside of modules, combined with dispatch, means that we can use parameterized interfaces to
distinguish between many different callers. A component can provide a service through a parameterized
interface, and every client that needs to use the service can wire to a different parameter identifier. For
split-phase calls, this means that you can avoid fan-out on the completion event. Consider these two
examples:

components RouterC, SourceAC, SourceBC;

SourceAC.Send -> RouterC;

SourceBC.Send -> RouterC;

versus

components RouterC, SourceAC, SourceBC;

SourceAC.Send -> RouterC.Send[0];

SourceBC.Send -> RouterC.Send[1];

In both cases, SourceAC and SourceBC can call Send.send. In the first case, when RouterC signals
Send.sendDone, that signal will fan-out to both SourceAC and SourceBC, who will have to determine —
by examining the message pointer, or internal state variables — whether the event is intended for them or
someone else. In the second case, however, if RouterC keeps the parameter identifier passed in the call to
Send, then it can signal the appropriate completion event. E.g., SourceBC calls Send.send, RouterC stores
the identifier 1, and when it signals sendDone it signals it on Send.sendDone[1](...).

The combination of parameterized interfaces and generic configurations allows TinyOS 2 to virtualize
abstractions at compile time, using only as much memory as is needed and without using function pointers.
Let’s return to the timer example, where this abstraction is particularly powerful. The timer component
HilTimerMilliC has the following signature:

configuration HilTimerMilliC {

provides interface Timer<TMilli>[uint8_t];

127
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}

Listing 9.1: Partial HilTimerMilliC signature

Because Timer is parameterized, many different components can wire to separate interface instances.
When a component calls Timer.startPeriodic, nesC fills in the parameter identifier, which the timer implementation
can use to keep track of which timer is being told to start. Similarly, the timer implementation can signal
Timer.fired on specific timer instances.

For things such as network protocols, where the parameter to an interface is a basis for communication
and interoperability, the actual parameter used is important. For example, if you have two different compilations
of the same application, but one wires a protocol with

RouterC.Send -> ActiveMessageC.Send[210];

while the other wires it with

RouterC.Send -> ActiveMessageC.Send[211];

then they will not be able to communicate. In these cases, the parameter used is shared across nodes, and
so needs to be globally consistent. Similarly, if you had two protocols wire to the same AM type, then this
is a basic conflict that an application developer is going to have to resolve. Generally, protocols use named
constants (enums) to avoid these kinds of typos.

9.1.1 unique

With timers and the Send client example above, however, there is no such restriction. The parameter
represents a unique client identifier, rather than a piece of shared data. A client doesn’t care which timer it
wires to, as long as it wires to one that nobody else does. For this case, rather than force clients to guess
identifiers and hope there is no collision, nesC provides a special compile-time function, unique().

It is a compile-time function because it is resolved at compile time. When nesC compiles an application,
it replaces each call to unique() by an integer. The unique function takes a string key as an argument, and
promises that every instance of the function with the same key will return a unique value. Two calls to
unique with different keys can return the same value. So if two components, AppOneC and AppTwoC, both
want timers, they could do this

AppOneC.Timer -> HilTimerMilliC.Timer[unique("Timer")];

AppTwoC.Timer -> HilTimerMilliC.Timer[unique("Timer")];

and be assured that they will have distinct timer instances.1 If there are n calls to unique, then the unique
values will be in the range of 0..n− 1.

9.1.2 uniqueCount

In these examples – Timer and Send – there is an additional factor to consider: each client requires the
component to store some amount of state. For example, RouterC has to keep track of pending messages,
and timer systems have to keep track of the period of each timer, how long until it fires, and whether it’s
active. Because the calls to unique define the set of valid client identifiers, nesC has a second compile-time
function, uniqueCount(). This function also takes a string key. If there are n calls to unique with a given
key (returning values 0..n − 1), then uniqueCount returns n. Like unique, uniqueCount is resolved at
compile-time so can be used, e.g., to set array sizes.

1In practice, clients rarely call unique() directly. Instead, these calls are encapsulated inside generic configurations, as we will
see below. One common problem with unique() encountered in TinyOS 1.x is that a mistyped key will generate a non-unique value
and possibly cause very strange behavior.
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Being able to count the number of unique clients allows a component to allocate the right amount of state
to support them. Early versions of nesC didn’t have the uniqueCount function: components were forced to
allocate a fixed amount of state. If there were more clients than the state could support, one or more would
fail at runtime. If there were fewer clients than the state could support, then there was wasted RAM. Because
a component can count the number of clients and know the set of client identifiers that will be used, it can
promise that each client will be able to work and use the minimum amount of RAM needed. Returning to
the timer example from above:

AppOneC.Timer -> HilTimerMilliC.Timer[unique("Timer")];

AppTwoC.Timer -> HilTimerMilliC.Timer[unique("Timer")];

and HilTimerMilliC could allocate state for each client:

timer_t timers[uniqueCount("Timer")];

Assuming the above two were the only timers, then HilTimerMilliC would allocate two timer structures.
If we assume that AppOneC.Timer was assigned identifier 0 and AppTwoC.Timer was assigned identifier 1,
then HilTimerMilliC can directly use the parameter as an index into the state array.

9.1.3 Example: HilTimerMilliC and VirtualizeTimerC

This isn’t how HilTimerMilliC works: it’s actually a bit more complicated, as it is a configuration built
out of a set of generic components (see Chapter 9.3). As hardware platforms differ in their timer hardware
support, HilTimerMilliC is a platform-specific component. Typically (Figure 9.1), it builds up a single timer
from hardware counters and interrupts, then virtualizes this single timer into many timers. The virtualizing
component, VirtualizeTimerC, stores state for each of the timers it provides, and schedules the single timer
it uses to fire when the next provider needs to fire. VirtualizeTimerC is a generic module:

generic module VirtualizeTimerC(typedef precision_tag, int max_timers) {

provides interface Timer<precision_tag> as Timer[uint8_t num];

uses interface Timer<precision_tag> as TimerFrom;

}

Listing 9.2: VirtualizeTimerC

HilTimerMilliC must pass the number of timers in the system, obtained using uniqueCount(), to the new
VirtualizeTimerC instance:

configuration HilTimerMilliC {

provides interface Init;

provides interface Timer<TMilli> as TimerMilli[uint8_t num];

provides interface LocalTime<TMilli>;

}

implementation {

enum {

TIMER_COUNT = uniqueCount(UQ_TIMER_MILLI)

};

components new VirtualizeTimerC(TMilli, TIMER_COUNT);

TimerMilli = VirtualizeTimerC;x

// More code for wiring VirtualizeTimerC.TimerFrom

}
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Figure 9.1: Partial component structure of a typical HilTimerMilliC.

Listing 9.3: Instantiating VirtualizeTimerC

Rather than directly pass a string to uniqueCount(), HilTimerMilliC passes UQ TIMER MILLI, which
is a #define (from Timer.h) for the string “HilTimerMilliC.Timer”. This is a common approach in TinyOS.
Using a #define makes it harder to run into bugs caused by errors in the string: chances are that a typo in
the uses of the #define will be a compile time error. This is generally a good practice for components that
depend on unique strings.

Programming Hint 19: IF A COMPONENT DEPENDS ON UNIQUE, THEN #DEFINE THE
STRING TO USE IN A HEADER FILE, TO PREVENT BUGS DUE TO STRING TYPOS.

VirtualizeTimerC, in turn, allocates an array of timer state structures, whose size is determined by its
max timers parameter:

enum {

NUM_TIMERS = max_timers,

END_OF_LIST = 255,

};

typedef struct {

// details elided

} Timer_t;

Timer_t m_timers[NUM_TIMERS];

Listing 9.4: VirtualizeTimerC state allocation

When a client calls VirtualizeTimerC’s Timer interface (through HilTimerMilliC), the parameter indicates
which client is making the call. VirtualizeTimerC uses the client ID as an index into the state array. For
example:

void startTimer(uint8_t num, uint32_t t0, uint32_t dt, bool isoneshot) {
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Timer_t* timer = &m_timers[num];

// update timer structure

}

command void Timer.startPeriodic[uint8_t num](uint32_t dt) {

startTimer(num, call TimerFrom.getNow(), dt, FALSE);

}

This software structure assumes that each component that needs a timer wires to HilTimerMilliC’s
parameterized TimerMilli using a call to unique, passing UQ TIMER MILLI as the key:

SomeComponentC.Timer -> HilTimerMilliC.TimerMilli[unique(UQ_TIMER_MILLI)];

Requiring a programmer to know a service’s key is problematic and bug-prone. While a #define for the key
reduces programming errors compared to actual strings, it’s still very easy for a programmer to accidentally
use the wrong key, especially if an application uses many services. Finding such a bug is a nightmare. This
is essentially a problem of code duplication: even though every Timer user wants to wire in the same way,
each one has to repeat a particular code sequence. Generic configurations solve this problem: in practice,
services don’t require users to wire to parameterized interfaces.

9.2 Generic Configurations

Generic modules are a way to reuse code and separate common abstractions into well-tested building
blocks (there only needs to be one FIFO queue implementation, for example). nesC also has generic
configurations, which are a very powerful tool for building TinyOS abstractions and services. However, just
as configurations are harder for a novice programmer to understand than modules, generic configurations
are a bit more challenging than generic modules.

The best way to describe what role a generic configuration can play in a software design is to start from
first principles:

A module is a component that contains executable code; a configuration defines relationships between
components to form a higher-level abstraction; a generic module is reusable piece of executable code;
therefore, a generic configuration is a reusable set of relationships that form a higher-level abstraction.

Several examples in this book have mentioned and described HilTimerMilliC. But if you look at TinyOS
code, there is only one component that references it. Although it is a very important component, programs
never directly name it. It is the core part of the timer service, but applications that need timers instantiate a
generic component named TimerMilliC.

Before delving into generic configurations, however, let’s consider what code looks like without them.
Let’s say we have HilTimerMilliC, and nothing more. Many components need timers; HilTimerMilliC
enables this through its parameterized interface. Remember that HilTimerMilliC encapsulates an instance
of VirtualizeTimerC, whose size parameter is a call to unique(UQ TIMER MILLI). This means that if a
component AppP needs a timer, then its configuration AppC must wire it like this:

enum {

TIMER_KEY = unique(UQ_TIMER_MILLI)

};

AppP.Timer -> HilTimerMilliC.TimerMilli[TIMER_KEY];

Note in passing that this snippet (and the earlier definition of HilTimerMilliC) take advantage of the fact
that the body of configurations can contain type and constant declarations, whose scope extends to the end
of the configuration’s implementation section. Providing a name like TIMER KEY for a unique value is
one of the most common ways this facility is used.
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9.2.1 TimerMilliC

TimerMilliC is TinyOS’s standard standard millisecond timer abstraction, designed to simplify usage of
TinyOS’s virtualized timer service, HilTimerMilliC. TimerMilliC is a generic configuration that provides a
single Timer interface. Its implementation wires this interface to an instance of the underlying parameterized
Timer interface using the right unique key. This means that unique() is called in only one file; as long as
all components allocate timers with TimerMilliC, there is no chance of a key match mistake. TimerMilliC’s
implementation is very simple:

generic configuration TimerMilliC() {

provides interface Timer<TMilli>;

}

implementation {

components TimerMilliP;

Timer = TimerMilliP.TimerMilli[unique(UQ_TIMER_MILLI)];

}

Listing 9.5: The TimerMilliC generic configuration

TimerMilliP is a singleton configuration that auto-wires HilTimerMilliC to the boot sequence and exports
HilTimerMilliC’s parameterized interface:

configuration TimerMilliP {

provides interface Timer<TMilli> as TimerMilli[uint8_t id];

}

implementation {

components HilTimerMilliC, MainC;

MainC.SoftwareInit -> HilTimerMilliC;

TimerMilli = HilTimerMilliC;

}

Listing 9.6: TimerMilliP auto–wires HilTimerMilliC to Main.SoftwareInit

TimerMilliC encapsulates a wiring pattern — wiring to the timer service with a call to unique — for
other components to use. When a component instantiates a TimerMilliC, it creates a copy of the TimerMilliC
code, which includes a call to unique(UQ TIMER MILLI). The code

components X, new TimerMilliC();

X.Timer -> TimerMilliC;

is essentially identical to:

components X, TimerMilliP;

X.Timer -> TimerMilliP.TimerMilli[unique(UQ_TIMER_MILLI)];

Let’s step through the complete wiring path for an application that creates a timer. BlinkAppC wires the
BlinkC module to its three timers:

configuration BlinkAppC{}

implementation {

components MainC, BlinkC, LedsC;

components new TimerMilliC() as Timer0;

components new TimerMilliC() as Timer1;

components new TimerMilliC() as Timer2;
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BlinkC -> MainC.Boot;

MainC.SoftwareInit -> LedsC;

BlinkC.Timer0 -> Timer0;

BlinkC.Timer1 -> Timer1;

BlinkC.Timer2 -> Timer2;

BlinkC.Leds -> LedsC;

}

Listing 9.7: The Blink application

The HilTimerMilliC configuration wires its Timer interface to a the VirtualizeTimerC timer virtualization
component (Chapter 9.1.3). Thus, wiring BlinkC.Timer0 to Timer0 establishes this wiring chain:

BlinkC.Timer0 -> Timer0.Timer

enum { K = unique(UQ_TIMER_MILLI) };

Timer0.Timer = TimerMilliP.TimerMilli[K]

TimerMilliP.TimerMilli[K] = HilTimerMilliC[K]

HilTimerMilliC[K] = VirtualizeTimerC.Timer[K]

Listing 9.8: The full module–to–module wiring chain in Blink (BlinkC to VirtualizeTimerC)

BlinkC and VirtualizeTimerC are the two modules; the intervening components are all configurations.
When nesC compiles this code, all of the intermediate layers will be stripped away, and BlinkC.Timer0.start
will be a direct function call on VirtualizeTimerC.Timer[...].start.

Many of TinyOS’s basic services use this pattern of a generic configuration managing a keyspace (a set
of identifiers, see Chapter 10.3) for a parameterized interface. Sometimes the mapping is more complex than
TimerMilliC, as we will see below when we describe BlockStorageC, one of TinyOS’s non-volatile-storage
abstractions.

9.2.2 CC2420SpiC

Another, more complex example of using generic configurations is CC2420SpiC. This component provides
access to the CC2420 radio over an SPI bus. When the radio stack software wants to interact with the radio,
it makes calls on an instance of this component. For example, telling the CC2420 to send a packet if there
is a clear channel involves writing to one of the radio’s registers (TXONCCA). To write to the register, the
stack sends a small series of bytes over the bus, which basically say “I’m writing to register number X with
value Y.” The very fast speed of the bus means that small operations such as these can made synchronous
without any significant concurrency problems.

In addition to small register reads and writes, the chip also supports accessing the receive and transmit
buffers, which are 128-byte regions of memory, as well as the radio’s configuration memory, which stores
things such as cryptographic keys and the local address (which is used for determining whether to send an
acknowledgment). These operations may take a while, so are split-phase. For example, before the stack
writes to TXONCCA to send a packet, it must first execute a split-phase write of the packet contents with
the CC2420Fifo interface (the receive and transmit buffers are FIFO memories).

All of the operations boil down to four interfaces:

• CC2420Strobe: Access to a command register. Writing a command register tells the radio to take an
action, such as transmit a packet, clear its packet buffers, or transition to transmit mode. This interface
has a single command, strobe, which writes to the register.
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• CC2420Register: Access to a data register. These registers can be both read and written, and store
things such as hardware configuration, addressing mode, and clear channel assessment thresholds.
This interface supports reads and writes as single-phase operations.

• CC2420Ram: Access to configuration memory. This interface supports both reads and writes, as
split-phase operations.

• CC2420Fifo: Access to the receive and transmit FIFO memory buffers. This interface supports both
reads and writes, as split-phase operations. While one can write to the receive buffer, the CC2420
supports this only for debugging purposes.

A component that needs to interact with the CC2420 instantiates an instance of CC2420SpiC:

generic configuration CC2420SpiC() {

provides interface Resource;

provides interface CC2420Strobe as SFLUSHRX;

provides interface CC2420Strobe as SFLUSHTX;

provides interface CC2420Strobe as SNOP;

provides interface CC2420Strobe as SRXON;

provides interface CC2420Strobe as SRFOFF;

provides interface CC2420Strobe as STXON;

provides interface CC2420Strobe as STXONCCA;

provides interface CC2420Strobe as SXOSCON;

provides interface CC2420Strobe as SXOSCOFF;

provides interface CC2420Register as FSCTRL;

provides interface CC2420Register as IOCFG0;

provides interface CC2420Register as IOCFG1;

provides interface CC2420Register as MDMCTRL0;

provides interface CC2420Register as MDMCTRL1;

provides interface CC2420Register as TXCTRL;

provides interface CC2420Ram as IEEEADR;

provides interface CC2420Ram as PANID;

provides interface CC2420Ram as SHORTADR;

provides interface CC2420Ram as TXFIFO_RAM;

provides interface CC2420Fifo as RXFIFO;

provides interface CC2420Fifo as TXFIFO;

}

Listing 9.9: CC2420SpiC

CC2420SpiC takes the implementation of the SPI protocol (CC2420SpiP) and wires it to the platform’s
raw SPI implementation. The raw SPI implementation has two interfaces: SpiByte, for writing a byte as
a single-phase operation, and SpiPacket, for writing a series of bytes as a split-phase operation. The SPI
protocol is bidirectional. To read bytes from the chip, the stack has to write onto the bus. The chip also
writes onto the bus, but it is clocked by the CPU’s writes. The write operation therefore takes a uint8 t as
the byte to write, and return a uint8 t byte representing the reply.

The protocol implementation uses an interesting approach to have a simple implementation that can
also find compile-time wiring errors. While CC2420SpiC provides each register as a separate interface, the
executable logic (CC2420SpiP) provides a parameterized interface:
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configuration CC2420SpiP {

provides interface CC2420Fifo as Fifo[ uint8_t id ];

provides interface CC2420Ram as Ram[ uint16_t id ];

provides interface CC2420Register as Reg[ uint8_t id ];

provides interface CC2420Strobe as Strobe[ uint8_t id ];

}

Listing 9.10: CC2420SpiP

Each CC2420 register has a unique identifier, which is a small integer. Having a separate implementation
for each register operation wastes code space and the code repetition would be an easy way to introduce
bugs. So CC2420SpiP has a single implementation, which takes a compile-time parameter, the register
identifier. However, not all values of a uint8 t are valid registers, so allowing components to wire directly to
the parameterized interface could lead to invalid wirings. Of course, CC2420SpiP could incorporate some
run-time checks to make sure that register values are valid, but this wastes CPU cycles, especially when the
parameters should always be valid. So CC2420SpiC maps a subset of the valid parameters into interface
instances. It only maps a subset because there are some debugging registers the stack doesn’t need to use.
The implementation looks like this:

configuration CC2420SpiC { ...}

implementation {

...

components CC2420SpiP as Spi;

SFLUSHRX = Spi.Strobe[CC2420_SFLUSHRX];

SFLUSHTX = Spi.Strobe[CC2420_SFLUSHTX];

SNOP = Spi.Strobe[CC2420_SNOP];

SRXON = Spi.Strobe[CC2420_SRXON];

SRFOFF = Spi.Strobe[CC2420_SRFOFF];

STXON = Spi.Strobe[CC2420_STXON];

STXONCCA = Spi.Strobe[CC2420_STXONCCA];

SXOSCON = Spi.Strobe[CC2420_SXOSCON];

SXOSCOFF = Spi.Strobe[CC2420_SXOSCOFF];

}

Listing 9.11: CC2420SpiC mappings to CC2420SpiP

This approach gives us the best of both worlds: there is a single function for writing to a strobe register,
which takes as an argument which register to write to, and the argument does not need run-time checking.
However, the caller does not have to provide this identifier, and so cannot by accident specify an invalid one.
Components that wire to CC2420SpiC can only wire to valid strobe registers, and rather than doing

call CC2420Strobe.strobe(CC2420_STXONCCA);

they write

call TXONCCA.strobe();

Let’s look at what this means at a function level. As we saw above, every component which wires to
TXONCCA on an instance of CC2420SpiC wires to Spi.Strobe[CC242 TXONCCA]. This wiring terminates
in the CC2420SpiP module:

async command cc2420_status_t Strobe.strobe[ uint8_t addr ]() {

return call SpiByte.write(addr);
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}

Listing 9.12: The strobe implementation

which writes a single byte to the bus and returns the status result. To step through each layer,

1. A component (e.g., CC2420TransmitP) calls TXONCCA.strobe() on an instance of CC2420SpiC

2. The nesC wiring transforms this call into CC2420SpiP.Strobe[CC2420 TXONCCA].strobe()

After optimizations and inlining, the original statement call TXONCCA.strobe() effectively becomes

call SpiByte.write(CC2420_TXONCCA);

with possible further optimization down into the SPI layer (it might just inline SpiByte.write into the
function, removing any need for function calls).

If a function has an argument which is one of a small number of constants, consider defining it as a few
separate functions to prevent bugs. If the functions of an interface all have an argument that’s almost always
a constant within a large range, consider using a parameterized interface to save code space. If the functions
of an interface all have an argument that’s a constant within a large range but with only certain valid values,
implement it as a parameterized interface but expose it as individual interfaces, to both minimize code size
and prevent bugs.

9.2.3 AMSenderC

HilTimerMilliC virtualizes a hardware timer and makes independent instances available via a parameterized
interface. TimerMilliC is thus reasonably simple: all it really does is encapsulate a wiring with unique() to
prevent client collisions and to simplify wiring.

Active messages are slightly different. The basic platform-supplied active message component, ActiveMessageC,
provides AMSend, parameterized by the AM identifier. However, ActiveMessageC can only have a single
packet outstanding at any time. If it is already sending a packet and a component calls AMSend.send,
ActiveMessageC returns FAIL or EBUSY. From the perspective of a caller, this is a bit of a pain. If it wants
to send the packet, it has to wait until the radio is free, but doesn’t have a very easy way of figuring out when
this will occur.

TinyOS 1.x had a global (not parameterized) sendDone event, which the radio would signal whenever
it finished sending any packet. That way, if a component tried to send and received a FAIL, it could try to
resend when it handled the global sendDone event. This mostly works, except that if multiple components
wire to sendDone, then the fan-out determines the priority of the send requests. E.g., if a hog of a component
handles sendDone and happens to be first in the fan-out, it will always get first dibs and will monopolize the
radio.

TinyOS 2.0 solves this problem through the AMSenderC component, which is a generic configuration.
AMSenderC is a virtualized abstraction: every instance of AMSenderC acts like ActiveMessageC. That is,
each AMSenderC can handle a single outgoing packet. This means that each component that wires to an
AMSenderC can act independently of the other components, and not worry about fan-out scheduling. The
one-deep queue of ActiveMessageC is replaced by N one-deep queues, one for each of the N clients.

A one-deep queue per AMSenderC isn’t sufficient. There’s also the question of what order the senders
get to send their packets. Under the covers, what the active message layer does is maintain an array of
N pending packets, where N is the number of AMSenderC components. Each AMSenderC is a client
of the active message sending abstraction, and so has a client identifier that indexes into this array. The
implementation keeps track of the last client that was able to send a packet, and makes sure that everyone
else waiting gets a chance before that client does again (this is known as round-robin scheduling).
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Figure 9.2: AMSenderC components

Accomplishing this is a little trickier than TimerMilliC, because a request to send has a few parameters.
With Timer, those parameters (period, single-shot vs. repeat) are state that the timer implementation has to
keep track of in the first place. With AMSenderC, it’s a bit different: those parameters just need to be stored
until the call to the underlying ActiveMessageC. The send queue could just store all of these parameters,
that uses up 4 extra bytes of RAM per entry (2 for the destination, 1 for the AM type, and 1 for the length).

It turns out that the Packet and AMPacket interfaces have operations exactly for this situation. They
allow a component to get and set packet fields. For example, a component can call Packet.setLength to
set the length field and recover it with Packet.length. Components that just need basic send or receive
abstractions can just use AMSend or Receive. The Packet interface, though, allows data structures such as
queues to store temporary state within the packet and then recover it when it’s time to actually send so it can
be passed as parameters. This means that the AM send queue with n clients allocates a total of (2n +1) bytes
of state, as pointers on microcontrollers are usually 2 bytes (on the intelmote2, though, they’re four bytes,
so it allocates 4n+1).

This means that the AMSenderC abstraction needs to do the following things:

1. Provide an AMSend interface

2. Store the AMSend.send parameters before putting a packet on the queue

3. Statically allocate a single private queue entry

4. Store a send request packet in the queue entry when its entry is not occupied

5. When it’s actually time to send the packet, reconstitute the send parameters and call ActiveMessageC

AMSenderC has one additional complication: keyspaces (sets of identifiers). ActiveMessageC provides
AMSend based on the AM type keyspace while the send queue has a client identifier keyspace for keeping
track of which AMSenderC is sending. Because the queue needs to be able to send any AM type, it uses
a parameterized AMSend and directly wires to ActiveMessageC.AMSend. Figure 9.2 shows the resulting
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components: AMQueueEntryP implements the per-client logic needed to queue packets for a particular AM
identifier, AMQueueImplP implements the queue, and AMQueueP wires the queue to ActiveMessageC. At
runtime, a typical execution is:

1. Client calls AMSenderC’s AMSend.send

2. This calls end in module AMQueueEntryP, which stores the length, AM identifier, and destination in
the packet

3. AMQueueEntryP is a client of AMQueueImplP and calls Send.send with its client identifier

4. AMQueueImplP checks that the client’s queue entry is free and puts the packet into it.

5. Some time later, AMQueueImplP pulls the packet off the queue and calls AMSend.send on ActiveMessageC
with the parameters that AMQueueEntryP stored.

6. When ActiveMessageC signals AMSend.sendDone, AMQueueImplP signals Send.sendDone to AMQueueEntryP,
which signals AMSend.sendDone to the original calling component.

This is the code for AMSenderC:

generic configuration AMSenderC(am_id_t AMId) {

provides {

interface AMSend;

interface Packet;

interface AMPacket;

interface PacketAcknowledgements as Acks;

}

}

implementation {

components new AMQueueEntryP(AMId) as AMQueueEntryP;

components AMQueueP, ActiveMessageC;

AMQueueEntryP.Send -> AMQueueP.Send[unique(UQ_AMQUEUE_SEND)];

AMQueueEntryP.AMPacket -> ActiveMessageC;

AMSend = AMQueueEntryP;

Packet = ActiveMessageC;

AMPacket = ActiveMessageC;

Acks = ActiveMessageC;

}

Listing 9.13: The AMSenderC generic configuration

A send queue entry is responsible for storing send information in a packet:

generic module AMQueueEntryP(am_id_t amId) {

provides interface AMSend;

uses{

interface Send;

interface AMPacket;

}

}



139 9.2. Generic Configurations

implementation {

command error_t AMSend.send(am_addr_t dest,

message_t* msg,

uint8_t len) {

call AMPacket.setDestination(msg, dest);

call AMPacket.setType(msg, amId);

return call Send.send(msg, len);

}

command error_t AMSend.cancel(message_t* msg) {

return call Send.cancel(msg);

}

event void Send.sendDone(message_t* m, error_t err) {

signal AMSend.sendDone(m, err);

}

command uint8_t AMSend.maxPayloadLength() {

return call Send.maxPayloadLength();

}

command void* AMSend.getPayload(message_t* m) {

return call Send.getPayload(m);

}

}

Listing 9.14: AMSendQueueEntryP

The queue itself sits on top of ActiveMessageC:

configuration AMQueueP {

provides interface Send[uint8_t client];

}

implementation {

components AMQueueImplP, ActiveMessageC;

Send = AMQueueImplP;

AMQueueImplP.AMSend -> ActiveMessageC;

AMQueueImplP.AMPacket -> ActiveMessageC;

AMQueueImplP.Packet -> ActiveMessageC;

}

Listing 9.15: AMQueueP

Finally, within AMSendQueueImplP, the logic to send a packet looks like this:

nextPacket();

if (current == QUEUE_EMPTY) {

return;

}

else {

message_t* msg;



9.2. Generic Configurations 140

am_id_t id;

am_addr_t addr;

uint8_t len;

msg = queue[current];

id = call AMPacket.getType(msg);

addr = call AMPacket.getDestination(msg);

len = call Packet.getLength(msg);

if (call AMSend.send[id](addr, msg, len) == SUCCESS) {

...

...

}

Listing 9.16: AMSendQueueImplP pseudocode

9.2.4 BlockStorageC

One of the most difficult parts of nesC programming is using parameterized interfaces and managing their
keyspaces. As we saw in Chapter 6.5, BlockStorageC is one of TinyOS’s three storage abstractions, and
provides random read/write access to a storage volume (a contiguous area on a flash chip). BlockStorageC
is a good example of using generics, because it is non-trivial use of wiring to build an abstraction from
underlying components. BlockStorageC deals with four different sets of parameterized interfaces.

Every volume has a unique identifier, and every BlockStorageC is associated with a single volume.
However, there can be multiple BlockStorageC components accessing multiple volumes, and not all volumes
may have BlockStorageC components (they may be unused or accessed by a different abstraction). A client
has to be associated with a volume so that the underlying code can generate an absolute offset into the chip
from a relative offset within a volume. E.g., if a 1MB flash chip is divided into two 512kB volumes, then
address 16k on volume 1 is address 528k on the chip. This means that there are at least two keyspaces. The
first keyspace is the volume ID keyspace, and the second is the client ID keyspace.

In practice, there is a third keyspace, which is used to arbitrate access amongst all clients to the flash chip
(see Chapter 11.2). This keyspace is shared between block clients, logging clients, and other abstractions
that need exclusive access to the flash chip. So, all in all, BlockStorageC has to manage three different
keyspaces:

1. Client key: which block storage client this is (for block storage client state)

2. Chip key: which client to the flash chip this is (for arbitration of the shared resource)

3. Volume key: which volume this client accesses (for calculating absolute offsets in the chip)

Both the client key and chip key are generated with unique(). The client key is only among BlockStorageC
components, so it uses a string UQ BLOCK STORAGE defined in BlockStorage.h. The chip key is shared
across all components that use underlying chip. In the case of the AT45DB chip (used in the micaz platform),
the string is UQ AT45DB defined in At45db.h. The volume key (VOLUME XXX) is not generated by
unique, as it is generated from the XML file that specifies the flash chip layout (Figure 6.3, page 90).

After all of that introduction, you might think that BlockStorageC is many lines of code. It isn’t: it only
has four wiring statements, which we’ll step through one by one:

generic configuration BlockStorageC(volume_id_t volid) {

provides {

interface BlockWrite;

interface BlockRead;
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}

}

implementation {

enum {

BLOCK_ID = unique(UQ_BLOCK_STORAGE),

RESOURCE_ID = unique(UQ_AT45DB)

};

components BlockStorageP, WireBlockStorageP, StorageManagerC, At45dbC;

BlockWrite = BlockStorageP.BlockWrite[BLOCK_ID];

BlockRead = BlockStorageP.BlockRead[BLOCK_ID];

BlockStorageP.At45dbVolume[BLOCK_ID] -> StorageManagerC.At45dbVolume[volid];

BlockStorageP.Resource[BLOCK_ID] -> At45dbC.Resource[RESOURCE_ID];

}

Listing 9.17: BlockStorageC

The first two lines,

BlockWrite = BlockStorageP.BlockWrite[BLOCK_ID];

BlockRead = BlockStorageP.BlockRead[BLOCK_ID];

make the BlockWrite and BlockRead interfaces clients of the service that implements them, BlockStorageP.
When a component wired to a BlockStorageC calls to read or write from a block, nesC automatically
includes a client ID into the call by the time it reaches the implementation.

The next line

BlockStorageP.At45dbVolume[BLOCK_ID] -> StorageManagerC.At45dbVolume[volid];

translates between the client and volume keyspaces. When BlockStorageP makes a call on the StorageManagerC,
it includes the client ID in the call as an outgoing parameter. This client ID is bound to a volume ID. nesC
automatically builds a switch statement that translates between the two, so that when StorageManagertC
receives the call, nesC has filled in the volume ID as the parameter.

The final line,

BlockStorageP.Resource[BLOCK_ID] -> At45dbC.Resource[RESOURCE_ID];

is what allows the block storage client to cooperate with other clients (blocking and logging) for access to
the actual flash chip. BlockStorageP makes each of its clients a client of the flash chip resource manager
(Chapter 11.2).

Overall, the logic goes like this:

1. A component accesses volume V through an instance of BlockStorageC with client id C

2. The component calls BlockStorageC to read from a block

3. It becomes a call on BlockStorageP with with parameter C

4. BlockStorageP notes that there is a call pending, stores the arguments in the state allocated for C, and
requests the Resource with C, which maps to resource id R

5. BlockStorageP receives the resource for client R (which maps back to C)

6. BlockStorageP requests operations on StorageManagerC with C, which maps to volume V
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The two complicated parts are the mapping between key spaces. In the case of the client id and resource
id, the keyspaces are used to distinguish different callers, especially for storing state. The volume keyspace,
however, is a little different. It is used to calculate an offset into the storage medium. The motivation for
its being a parameter of a parameterized interface is a bit different. It is more like AMSend, where the
value is a constant and can be easily decoupled from the implementation. Rather than passing a volume ID
into a module and forcing it to include the constant as an argument to every function call, putting it into a
configuration lets nesC automatically generate code to include the constant in all calls and a dispatch table
for all events.

9.3 Reusable Component Libraries

Implementing a solid and efficient timer subsystem is very difficult. TinyOS makes the task simpler by
having a library of reusable components (tos/lib/timer) that provide many of the needed pieces of
functionality. This library is a good example of a set of generic components which can be assembled to
build useful abstractions: each supported microcontroller provides a timer system by layering these library
components on top of some low-level hardware abstractions. Because many microcontrollers have several
clock sources, most of these library components are generic components, so that a platform can readily
provide several timer systems of different fidelities.

For example, this is the full code for HilTimerMilliC on the micaz platform — it is similar, but not
identical to the typical structure shown in Figure 9.1, page 130. It is defined in tos/platforms/mica,
which contains common abstractions across the entire mica family (e.g., mica2, mica2dot, micaz):

#include "Timer.h"

configuration HilTimerMilliC {

provides interface Init;

provides interface Timer<TMilli> as TimerMilli[uint8_t num];

provides interface LocalTime<TMilli>;

}

implementation {

enum {

TIMER_COUNT = uniqueCount(UQ_TIMER_MILLI)

};

components AlarmCounterMilliP, new AlarmToTimerC(TMilli),

new VirtualizeTimerC(TMilli, TIMER_COUNT),

new CounterToLocalTimeC(TMilli);

Init = AlarmCounterMilliP;

TimerMilli = VirtualizeTimerC;

VirtualizeTimerC.TimerFrom -> AlarmToTimerC;

AlarmToTimerC.Alarm -> AlarmCounterMilliP;

LocalTime = CounterToLocalTimeC;

CounterToLocalTimeC.Counter -> AlarmCounterMilliP;

}

Listing 9.18: The full code of HilTimerMilliC

The only singleton component in this configuration is AlarmCounterMilliP, which is an abstraction of a
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low-level microcontroller timer. HilTimerMilliC uses three generic components on top of AlarmCounterMilliP
to provide a full timer system:

• CounterToLocalTimerC turns a hardware counter into a local timebase;

• AlarmToTimerC turns an Alarm interface, which provides an interrupt-driven one-shot timer, into a
Timer interface, which provides a synchronous timer with greater functionality;

• VirtualizeTimerC virtualizes a single Timer into n Timers, where n is a component argument.

All of the generics have the type TMilli as one of their arguments. These type arguments make sure that
timer fidelities are not accidentally changed. For instance, VirtualizeTimerC

generic module VirtualizeTimerC(typedef precision_tag, int max_timers)

{

provides interface Timer<precision_tag> as Timer[uint8_t num];

uses interface Timer<precision_tag> as TimerFrom;

}

...

Listing 9.19: VirtualizeTimerC virtualizes a single timer

takes a single timer of fidelity precision tag and virtualizes it into timer count timers of precision tag. The
timer library also has components that translate between precisions.

HilTimerMilliC takes an interrupt-driven hardware timer — AlarmCounterMilliP — and turns it into
a virtualized timer. It does this with three steps. The first step turns the interrupt-driven Alarm into a
task-based Timer, with the generic component AlarmToTimerC:

AlarmToTimerC.Alarm -> AlarmCounterMilliP;

The second step virtualizes a single timer into many timers:

VirtualizeTimerC.TimerFrom -> AlarmToTimerC;

HilTimerMilliC then exports the parameterized timer interface:

TimerMilli = VirtualizeTimerC;

Additionally, some aspects of the timer system require being able to access a time base, for example, to
specify when in the future a timer fires. So HilTimerMilliC takes a hardware counter and turns it into a local
time component,

CounterToLocalTimeC.Counter -> AlarmCounterMilliP;

then exports the interface:

LocalTime = CounterToLocalTimeC;

Many of the components in the timer library are generics because a platform might need to provide
a wide range of timers. For example, depending on the number of counters, compare registers, and their
width, a platform might provide millisecond, microsecond, and 32kHz timers. The variants of the MSP430
chip family that some platforms use, for example, can easily provide 32-bit millisecond and 32kHz timers
with a very low interrupt load.

Generic modules work very well for abstractions that have to allocate per-client state, such as timers. A
generic module allows you to specify the size – the number of clients – in the configuration that instantiates
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the module, rather than within the module itself. For example, if VirtualizeTimerC were not a generic, then
inside its code there would have to be a uniqueCount() with the proper key.

Programming Hint 20: WHENEVER WRITING A MODULE, CONSIDER MAKING IT MORE
GENERAL-PURPOSE AND GENERIC. IN MOST CASES, MODULES MUST BE WRAPPED BY
CONFIGURATIONS TO BE USEFUL, SO SINGLETON MODULES HAVE FEW ADVANTAGES.

9.4 Exercises

1. Use the TinyOS timer library to create a second-granularity timer abstraction, TimerSecondC. If you
virtualize on top of a TimerMilliC, then the low-level timer only needs to scan one timer entry for
all of the second-granularity timers. Be careful with the unique key to your HilTimerSecondC’s
parameterized interface.

2. The standard TinyOS collection layer, CTP (found in tos/lib/net/ctp), routes packets across
multiple hops to a data sink node. CTP has a send queue of depth C + F , where C is the number of
sending clients and F is the size of its pool of packets for forwarding. This means that a client can get
up to 1

C+F of the available link throughput. Change CtpForwardingEngineP and CollectionSenderP
so that there is a separate client queue, which sits on top of a single entry in CtpForwardingEngineP’s
queue, causing a client to get at most 1

C·F of the link throughput.

3. Write a barrier for an arbitrary number of clients. A barrier is a concurrency primitive that blocks
until all threads reach it. In TinyOS, since there are no threads, this means block until all callers reach
it. Write a split-phase interface, Barrier, which has a single command, wait and a single event
pass. When all clients have called wait, the barrier should signal pass to all of them.



Design Patterns

To quote the Gang of Four, design patterns are “descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context.” [3] In the components we’ve seen
so far, we see several recurring patterns, such as the use of parameterized interfaces to implement services
with multiple clients (VirtualizeTimerC, Chapter 9.1.3), or one component wrapping another (RandomC,
Chapter 4.2). In this chapter, in the spirit of the Gang of Four’s original design patterns work, we attempt to
formalize a number of these patterns, based on our observations during TinyOS’s development.

This chapter presents eight nesC design patterns: three behavioral (relating to component interaction):
Dispatcher, Decorator and Adapter, three structural (relating to how applications are structured): Service
Instance, Placeholder and Facade and two namespace (management of identifiers such as message types):
Keyspace and Keymap. Each pattern’s presentation follows the model of the Design Patterns book. Each
one has an Intent, which briefly describes its purpose. A more in-depth Motivation follows, providing
an example drawn from TinyOS. Applicable When provides a succinct list of conditions for use and a
component diagram shows the Structure of how components in the pattern interact.1 In addition to our
usual conventions for component diagrams, we attach folded sub-boxes to components to show relevant
code snippets (a floating folded box represents source code in some other, unnamed, component). The
diagram is followed by a Participants lists explaining the role of each component. Sample Code shows an
example nesC implementation, and Known Uses points to some uses of the pattern in TinyOS. Consequences
describes how the pattern achieves its goals, and notes issues to consider when using it. Finally, Related
Patterns compares to other relevant patterns.

10.1 Behavioral: Dispatcher

Intent
Dynamically select between a set of operations based on an identifier. Provides a way to easily extend

or modify a system by adding or changing operations.
Motivation

At a high level, sensor network applications execute operations in response to environmental input such
as sensor readings or network packets. The operation’s details are not important to the component that
presents the input. We need to be able to easily extend and modify what inputs an application cares about,
as well as the operation associated with an input.

For example, a node can receive many kinds of active messages (packets). Active messages (AM) have
an 8-bit type field, to distinguish between protocols. A flooding protocol uses one AM type, while an
ad-hoc routing protocol uses another. ActiveMessageC, the component that signals the arrival of a packet,
should not need to know what processing a protocol performs or whether an application supports a protocol.
ActiveMessageC just delivers packets, and higher level communication services respond to those they care
about.

1This diagram is omitted for the Keyspace pattern as it is not concerned with component interactions.

145
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The traditional approach to this problem is to use function pointers or objects, which are dynamically
registered as callbacks. In many cases, even though registered at run time, the set of operations is known at
compile time. Thus these callbacks can be replaced by a dispatch table compiled into the executable, with
two benefits. First, this allows better cross-function analysis and optimization, and secondly it conserves
RAM, as no pointers or callback structures need to be stored.

Such a dispatch table could be built for the active message example by using a switch statement in
ActiveMessageC. But this is very inflexible: any change to the protocols used in an application requires a
change in a system component.

A better approach in TinyOS is to use the Dispatcher pattern. A Dispatcher invokes operations using a
parameterized interface, based on a data identifier. In the case of ActiveMessageC, the interface is Receive
and the identifier is the active message type field. ActiveMessageC is independent of what messages
the application handles, or what processing those handlers perform. Adding a new handler requires a
single wiring to ActiveMessageC. If an application does not wire a receive handler for a certain type,
ActiveMessageC defaults to a null operation.

Another example of a Dispatcher is the scheduler of the Maté virtual machine that was implemented
for TinyOS 1.x. Each instruction is a separate component that provides the MateBytecode interface. The
scheduler executes a particular bytecode by dispatching to the instruction component using a parameterized
MateBytecode interface. The instruction set can be easily changed by altering the wiring of the scheduler.
Applicable When

• A component needs to support an externally customisable set of operations.

• A primitive integer type can identify which operation to perform.

• The operations can all be implemented in terms of a single interface.

Structure

Dispatcher

Operations[id]

interface Op

Operation1
Op1

components Dispatcher, Operation2;
Dispatcher.Operations[KEY2] -> Operation2.Op2;

Operation2
Op2

Participants

• Dispatcher: invokes its parameterized interface based on an integer type.

• Operation: implements the desired functionality and wires it to the dispatcher.

Sample Code
CC1000ActiveMessageP is the component in the TI CC1000 radio stack responsible for dispatching

received messages. The lower-level components in this radio stack pass all received messages (even those
destined for other motes) to CC1000ActiveMessageP’s SubReceive interface. This module dispatches
messages intended for this mote to its parameterized Receive interface, and those intended for other motes
to its parameterized Snoop interface:
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module CC1000ActiveMessageP {

provides interface Receive[am_id_t id];

provides interface Receive as Snoop[am_id_t id];

provides interface AMPacket;

uses interface Receive as SubReceive;

}

implementation {

event message_t* SubReceive.receive(message_t* msg, void* payload, uint8_t len

) {

if (call AMPacket.isForMe(msg))

return signal Receive.receive[call AMPacket.type(msg)](msg, payload, len);

else

return signal Snoop.receive[call AMPacket.type(msg)](msg, payload, len);

}

...

}

Dispatchers can be wired too directly. This application receives two kinds of messages by wiring directly
to ActiveMessageC:

configuration AppC {}

implementation {

components AppP, ActiveMessageC;

AppP.ClearIdMsg -> ActiveMessageC.Receive[AM_CLEARIDMSG];

AppP.SetIdMsg -> ActiveMessageC.Receive[AM_SETIDMSG];

}

However, dispatchers are often encapsulated in a generic configuration to simplify their use. Rather
than have a component wire to a parameterized interface, it wires to a generic configuration that takes the
parameter as an argument. For example, rather than wire directly to ActiveMessageC to receive packets,
applications instantiates an AMReceiverC:

generic configuration AMReceiverC(am_id_t amId) {

provides interface Receive;

provides interface Packet;

provides interface AMPacket;

}

implementation {

components ActiveMessageImplP as Impl;

Receive = Impl.Receive[amId];

Packet = Impl;

AMPacket = Impl;

}

Listing 10.1: AMReceiverC

Rewriting AppC using AMReceiverC gives:

configuration AppC {}

implementation {

components AppP,

new AMReceiverC(AM_CLEARIDMSG) as ClearId,

new AMReceiverC(AM_SETIDMSG) as SetId;

AppP.ClearIdMsg -> ClearId;

AppP.SetIdMsg -> SetId;



10.1. Behavioral: Dispatcher 148

}

Known Uses
The Active Messages networking layer (ActiveMessageC), and tree collection protocol (CollectionC)

use a dispatcher for packet reception. They also provide a parameterized packet sending interface, so
services can easily match packet sends to reception handlers.

The Atmel AT45DB family flash chip implementation uses a parameterized interface to map storage
volume identifiers to storage volume characteristics (see the At45dbStorageManagerC component in Chapter 12.1.1).

The TinyOS 1.x Maté virtual machine uses a dispatcher to allow easy customization of instruction sets.

Consequences
By leaving operation selection to nesC wirings, the dispatcher’s implementation remains independent

of what an application supports. However, finding the full set of supported operations can require looking
at many files. Sloppy operation identifier management can lead to dispatch problems. If two operations
are wired with the same identifier, then a dispatch will call both, which may lead to resource conflicts, data
corruption, or memory leaks from lost pointers. For example, the Receive interface uses a buffer swap
mechanism to pass buffers between the radio stack and network services, in which the higher component
passes a new buffer in the return value of the event. If two services are wired to a given Receive instance,
only one of their pointers will be passed and the second will be lost. Wiring in this fashion is a compile-time
warning in nesC, but it is still a common bug for novice TinyOS developers.

The key aspects of the dispatcher pattern are:

• It allows you to easily extend or modify the functionality an application supports: adding an operation
requires a single wiring.

• It allows the elements of functionality to be independently implemented and re-used. Because each
operation is implemented in a component, it can be easily included in many applications. Keeping
implementations separate can also simplify testing, as the components will be smaller, simpler, and
easier to pinpoint faults in. The nesC compiler will automatically inline small operations, or you can
explicitly request inlining; thus this decomposition has no performance cost.

• It requires the individual operations to follow a uniform interface. The dispatcher is usually not well
suited to operations that have a wide range of semantics. As all implementations have to meet the
same interface, broad semantics leads to the interface being overly general, pushing error checks from
compile-time to run-time. An implementor forgetting a run-time parameter check can cause a hard to
diagnose system failure.

The compile-time binding of the operation simplifies program analysis and puts dispatch tables in the
compiled code, saving RAM. Dispatching provides a simple way to develop programs that execute in
reaction to their environment.

Related Patterns

• Service Instance: a service instance creates many instances of an implementation of an interface,
while a dispatcher selects between different implementations of an interface.

• Placeholder: a placeholder allows an application to select an implementation at compile-time, while
a dispatcher allows it to select an implementation at runtime.

• Keyspace: the identifiers used to identify a Dispatcher’s operation typically form a Global Keyspace.
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10.2 Structural: Service Instance

Intent
Allows multiple users to have separate instances of a particular service, where the instances can collaborate

efficiently. The basic mechanism for virtualizing services.

Motivation
Sometimes many components or subsystems need to use a system abstraction, but each user wants a

separate instance of that service. We don’t know how many users there will be until we build a complete
application. Each instance requires maintaining some state, and the service implementation needs to access
all of this state to make decisions.

For example, a wide range of TinyOS components need timers, for everything from network timeouts
to sensor sampling. Each timer appears independent, but they all operate on top of a single hardware clock.
An efficient implementation thus requires knowing the state of all of the timers. If the implementation can
easily determine which timer has to fire next, then it can schedule the underlying clock resource to fire as
few interrupts as possible to meet this lowest timer’s requirement. Firing fewer interrupts allows the CPU to
sleep more, saving energy and increasing lifetime.

The traditional object-oriented approach to this problem is to instantiate an object representing the
service and use another class to coordinate state. The closest nesC equivalent would involve instantiating
a generic module for each timer, and using another module to coordinate state. However, instantiating one
module per timer leads to duplicated code and requires inter-module coordination in order to figure out how
to set the underlying hardware clock. Inter-module coordination could be avoided by setting the clock to
a fixed rate and maintaining a counter for each Timer, but this would be inefficient: timer fidelity requires
firing at a high rate, but it wastes energy to fire at 1KHz if the next timer is in four seconds.

The Service Instance pattern provides a solution to these problems. Using this pattern, each user of a
service can have its own (virtual) instance, but instances share code and can access each other’s state. A
component following the Service Instance pattern provides its service via a parameterized interface; each
user wires to a unique instance of the interface using unique. The underlying component receives the unique
identity of each client in each command, and can use it to index into a state array. The component can
determine at compile-time how many instances exist using the uniqueCount function and dimension the
state array accordingly.

In most cases, components following the service instance pattern are made available to the user via a
generic component that provides a non-parameterized interface, automating the use of unique. For instance,
HilTimerMilliC follows the Service Instance pattern, but most TinyOS code uses the TimerMilliC generic
component.

Applicable When

• A component needs to provide multiple instances of a service, but does not know how many until
compile time.

• Each service instance appears to its user to be independent of the others.

• The service implementation needs to be able to easily access the state of every instance.

Structure
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NUSERS = uniqueCount(“Service”);
StateType state[NUSERS];

ServiceProvider

Svc[id]

ResourceImpl

AResourceUsedResource

User2
Svc

interface Service

interface Resource

User1

Svc

components User2, ServiceProvider;
User2.Svc -> ServiceProvider.Svc[unique(“Service”)];

Participants

• ServiceProvider: allocates state for each instance of the service and coordinates underlying resources
based on all of the instances.

• ResourceImpl: an underlying system resource that ServiceProvider multiplexes/demultiplexes service
instances on.

Sample Code
HilTimerMilliC uses a VirtualizeTimerC to present a Service Instance of millisecond precision timers.

VirtualizeTimerC takes a single underlying timer and virtualizes it to n timers for others to use:

generic module VirtualizeTimerC( typedef precision_tag, int max_timers ) {

provides interface Timer<precision_tag> as Timer[ uint8_t num ];

uses interface Timer<precision_tag> as TimerFrom;

}

Listing 10.2: VirtualizeTimerC

It takes two parameters, a type for the Timer precision tag (TMilli, etc), and the number of timers (the
number of service instances). Instantiating TimerMilliC to create a new timer thus involves many files:

1. TimerMilliC, which wires to HilTimerMilliC’s parameterized interface with a call to unique passing
UQ TIMER MILLI

2. Timer.h, a header file that defines the unique key as UQ TIMER MILLI

3. HilTimerMilliC, which instantiates a VirtualizeTimerC with a call to uniqueCount passing UQ TIMER MILLI

4. VirtualizeTimerC, which provides n virtualized timers

5. the underlying per-platform components that provide the single Timer to be virtualized

Known Uses
Most TinyOS services follow the Service Instance pattern, though most services (e.g. TimerMilliC,

BlockStorageC from Chapter 6 or Atm128I2CMasterC from Chapter 13) hide it behind a programmer-friendly
generic component.

The generic arbiter implementations such as FcfsArbiterC (Chapter 11) expose the Service Instance
pattern to the programmer, as does VirtualizeTimerC.
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In a similar vein, the epidemic dissemination protocol Drip (available via the DisseminatorC generic
component) uses the service instance pattern to maintain epidemic state for each disseminated value.
Consequences

The key aspects of the Service Instance pattern are:

• It allows many components to request independent instances of a common system service: adding an
instance requires a single wiring.

• It controls state allocation, so the amount of RAM used is scaled to exactly the number of instances
needed, conserving memory while preventing run-time failures due to many requests exhausting
resources.

• It allows a single component to coordinate all of the instances, which enables efficient resource
management and coordination.

Because the pattern scales to a variable number of instances, the cost of its operations may scale linearly
with the number of users. For example, if setting the underlying clock interrupt rate depends on the timer
with the shortest remaining duration, an implementation might determine this by scanning all of the timers,
an O(n) operation.

If many users require an instance of a service, but each of those instances are used rarely, then allocating
state for each one can be wasteful. The other option is to allocate a smaller amount of state and dynamically
allocate it to users as need be. This can conserve RAM, but requires more RAM per real instance (client
IDs need to be maintained), imposes a CPU overhead (allocation and deallocation), can fail at run-time
(if there are too many simultaneous users), and assumes a reclamation strategy (misuse of which would
lead to leaks). This long list of challenges makes the Service Instance an attractive – and more and more
commonly used – way to efficiently support application requirements. There are situations, however, when
a component internally re-uses a single service instance for several purposes: for example, the Maté virtual
machine code propagation component uses a single timer instance for several different timers which never
operate concurrently.
Related Patterns

• Dispatcher: a service instance creates many instances of an implementation of an interface, while a
dispatcher selects between different implementations of an interface.

• Keyspace: a Service Instance’s instance identifiers form a Local Keyspace.

10.3 Namespace: Keyspace

Intent
Provide namespaces for referring to protocols, structures, or other entities in a program.

Motivation
A typical sensor network program needs namespaces for the various entities it manages, such as protocols,

data types, or structure instances. Limited resources mean names are usually stored as small integer keys.
For data types representing internal program structures, each instance must have a unique name, but

as they are only relevant to a single mote, the names can be chosen freely. These local namespaces are
usually dense, for efficiency. The Service Instance pattern (Section 10.2) uses a local namespace to identify
instances. In contrast, communication requires a shared, global namespace: two motes/applications must
agree on an element’s name. As a mote may only use a few elements, global namespaces are typically
sparse. The Dispatcher pattern (Section 10.1) uses a global namespace to select operations.
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The Keyspace patterns provide solutions to these problems. Using these patterns, programs can refer to
elements using identifiers optimised for their particular use. Components using the Keyspace patterns often
take advantage of a parameterized interface, in which the parameter is an element in a Keyspace. Local
Keyspaces are designed for referring to local data structures (e.g., arrays) and are generated with unique;
Global Keyspaces are designed for communication and use global constants (normally defined using enum).

The AM identifiers used to distinguish message types form a Global Keyspace. ActiveMessageC uses
these AM identifiers in conjunction with a Dispatcher to execute the appropriate message handlers found in
other components. Local Keyspaces have other uses than identifying clients in the Service Instance pattern:
the Maté virtual machine uses a Local Keyspace to identify locks corresponding to resources used by Maté
programs. These lock identifiers are allocated with unique as the Maté virtual machine can be compiled
with varying sets of resources.
Applicable When

• A program must keep track of a set of elements or data types.

• The set is known and fixed at compile-time.

Sample Code
The AM identifiers for the SoundLocalizer application (Chapter 13) are defined as global constants:

enum {

AM_COORDINATION_MSG = 101,

AM_DETECTION_MSG = 102

};

which are then used when instantiating the AMSenderC and AMReceiverC generic components that allow
SoundLocalizer to send and receive messages:

component SynchronizerC;

components new AMReceiverC(AM_COORDINATION_MSG) as CReceive;

components new AMReceiverC(AM_DETECTION_MSG) as DReceive;

components new AMSenderC(AM_DETECTION_MSG) as DSend;

SynchronizerC.RCoordination -> CReceive;

SynchronizerC.RDetection -> DReceive;

SynchronizerC.SDetection -> DSend;

Within the radio stack, these AM identifiers are placed into the type field of outgoing messages. This
same type field is used to dispatch received messages:

command error_t AMSend.send[am_id_t id](am_addr_t addr,

message_t *amsg,

uint8_t len) {

radio_header_t* header = getHeader(amsg);

header->type = id;

...

}

message_t *received(message_t *msg, void *payload, uint8_t len) {

radio_header_t* header = getHeader(msg);

msg = signal Receive.receive[header->type](msg, payload, len);

...

}

The TinyOS 1.x Maté lock subsystem identifies locks by small integers:
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module MLocks {

provides interface MateLocks as Locks;

}

implementation {

MateLock locks[MATE_LOCK_COUNT];

command void Locks.lock(MateContext* uint8_t lockNum) {

locks[lockNum].holder = context;

context->heldSet[lockNum / 8] |= 1 << (lockNum % 8);

}

...

Locks are allocated in components providing shared resources:

module OPgetsetvar1M { ... } // a shared variable

implementation {

typedef enum {

MATE_LOCK_1_0 = unique("MateLock"),

MATE_LOCK_1_1 = unique("MateLock"),

} LockNames;

...

module OPbpush1M { ... } // a shared buffer

implementation {

typedef enum {

MATE_BUF_LOCK_1_0 = unique("MateLock"),

MATE_BUF_LOCK_1_1 = unique("MateLock"),

} BufLockNames;

...

and uniqueCount is used to find the total number of locks:

enum {

MATE_LOCK_COUNT = uniqueCount("MateLock")

};

Known Uses
Many components use Local Keyspaces: they are a fundamental part of the Service Instance pattern.

See for example the timer service, HilTimerMilliC, or the client identifiers of many lower-level system
components such as Atm128AdcC (Atmel ATmega128 A/D converter) or Stm25pSectorC (ST M25P flash
chip).

Maté uses a Local Keyspace to keep track of Maté shared resource locks (see above).
Active Messages (ActiveMessageC) uses a Global Keyspace for Active Message types.
The TinyOS storage abstractions use a Global Keyspace to identify flash-chip volumes. In this case,

the global constants are picked by an external tool (tos-storage-at45db for the Atmel AT45DB chip family)
rather than explicitly by the programmer. This relieves the programmer of the burden of picking values,
while still allowing several applications to use the same volumes.

The TinyDB sensor-network-as-database application [20] uses a Global Keyspace for its attributes; in
this case, however, the keyspace is composed of strings, which are then mapped to a Local Keyspace using
a table.
Consequences

Keyspaces allow a component to refer to data items or types through a parameterized interface. In a
Local Keyspace, unique ensures that every element has a unique identifier. Global Keyspaces can also have
unique identifiers, but this requires external namespace management.

As Local Keyspaces are generated with unique, mapping names to keys (e.g., for debugging purposes)
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is not obvious. The nesC constant generator, ncg, can be used to extract this information.
Keyspaces are rarely used in isolation; they support other patterns such as Dispatcher and Service

Instance.
Related Patterns

• Keymap: two Keyspaces are often related, e.g., one Service Instance may be built on top of another,
requiring a mapping between two Keyspaces. The Keymap pattern provides an efficient way of
implementing such maps.

• Service Instance: the identifiers used to identify individual services form a Local Keyspace.

• Dispatcher: the identifiers used by a dispatcher are typically taken from a Global Keyspace.

10.4 Namespace: Keymap

Intent
Map keys from one keyspace to another. Allows you to translate global, shared names to local, optimized

names, or to efficiently subset another keyspace.
Motivation

Mapping between namespaces is often useful: it allows motes to use a global, sparse namespace for easy
cross-application communication and an internal, compact namespace for efficiency.

The Drip epidemic dissemination protocol uses the Keyspace and Keymap patterns to allow a user
to configure parameters at run-time. A component registers a parameter with the DisseminatorC generic
component with a Global Keyspace, so it can be named in an application-independent manner. The user
modifies a parameter by sending a key-value pair using an epidemic protocol, which distributes the change to
every mote. Drip maintains a special “trickle” timer for each key-value pair, accessed via a Local Keyspace
for efficiency. A Keymap maps the global key to the local key.

Keymaps are also useful for mapping between two local keyspaces, when some service, based on the
Service Instance pattern, accesses a subset of the resources provided by another service, also based on the
Service Instance pattern.

For instance, the Atmel AT45db implementation of the BlockStorageC, LogStorageC and ConfigStorageC
components (Chapter 6.5) identify their respective clients with their own local keyspace. All three are built
upon the lower-level At45dbC component, which also identifies its clients with its own local keyspace. Each
client of, e.g., BlockStorageC is thus indirectly a client of At45dbC. A keymap maps BlockStorageC’s client
identifiers to At45dbC’s client identifiers.

Maps could be implemented using a table and some lookup code. However, this has several problems. If
we want to store this table in ROM, then it must be initialised in one place. However, this conflicts with the
desire to specify keys in separate components (either with unique or with constants). If the table is stored
in RAM, then keys can be specified in separate components, but RAM is in very short supply on motes.
Finally, keys of Global Keyspaces are sparse, so the resulting tables would be large and waste space.

Instead, we can use nesC’s wiring to build Keymaps. By mapping a parameterized interface indexed
with one key to another parameterized interface indexed by a second key, we can have the nesC compiler
generate the map at compile-time. Additionally, as the map exists as an automatically generated switch
statement, it uses no RAM.
Applicable When

• An application uses global identifiers for communication (or other purposes) and wishes to map them
to local identifiers for efficiency.
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• Two services are implemented following the Service Instance pattern, and the first service needs an
instance of the second service for each of its own instances.

• The identifiers are integer constants.

• The map is known at compile-time.

Structure

Service1

Svc2[id1]

interface Service1

components Service1, Service2, User2;
User2.Svc -> Service1.Svc1[KEY1];
Service1.Svc2[KEY1] -> Service2.Svc2[KEY2];

User2
Svc

User1

Svc Svc1[id1]
Service2

Svc2[id2]

interface Service2

Participants

• Service1: service accessed via key 1, dependent on Service2.

• Service2: service accessed via key 2.

Sample Code
The DisseminatorC generic component creates a new key-value pair for use with the Drip dissemination

protocol:

enum { DISS_CONFIG = 42 };

components new DisseminatorC(struct configuration, DISS_CONFIG);

DisseminatorC is implemented using the underlying DisseminationEngineP component, which identifies
key-value pairs by the global key value, and the DisseminationTimerP which identifies “trickle” timer
components using a local keyspace. DisseminatorC builds the keymap that connects the global drip keys to
the local “trickle” timer keys:

generic configuration DisseminatorC(typedef t, uint16_t key) {

provides interface DisseminationValue<t>;

provides interface DisseminationUpdate<t>;

}

implementation {

enum { TIMER_ID = unique(UQ_DISSEMINATION_TRICKLETIMER) };

components DisseminationEngineP;

components DisseminationTimerP;

DisseminationEngineP.TrickleTimer[key] ->

DisseminationTimerP.TrickleTimer[TIMER_ID];

...

}

In this example, a user can generate a new configuration value, and distribute it based on the DISS CONFIG

key. DisseminatorEngineP uses the global key to refer to the value, but DisseminationTimerP can use a local
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key to refer to the state it maintains for its “trickle” timers. The wiring compiles down to a simple switch
statement that calls DisseminationTimerP with the proper local key.

BlockStorageC provides a simple read/write abstraction over a flash chip volume. Internally, BlockStorageC
is implemented using a Service Instance pattern provided by the BlockStorageP component. Each client of
BlockStorageP is also a client of At45dbC (this simplifies BlockStorageC’s implementation). As At45dbC
has other clients, BlockStorageC must map BlockStorageP identifiers to At45dbC identifiers:

generic configuration BlockStorageC(volume_id_t volid) {

provides interface BlockWrite;

provides interface BlockRead;

}

implementation {

enum {

BLOCK_ID = unique(UQ_BLOCK_STORAGE),

AT45DB_ID = unique(UQ_AT45DB)

};

components BlockStorageP, At45dbC;

BlockWrite = BlockStorageP.BlockWrite[BLOCK_ID];

BlockRead = BlockStorageP.BlockRead[BLOCK_ID];

BlockStorageP.Resource[BLOCK_ID] -> At45dbC.Resource[AT45DB_ID];

...

}

Let’s assume that when BLOCK ID is 2, AT45DB ID is 4. Then, when a request comes in for BlockRead[2]
(or BlockWrite[2]) interface, BlockStorageP makes a request on its Resource[2] interface. The keymap
translates this request into a request on At45dbC.Resource[4], as desired.
Known Uses

The Drip dissemination protocol – described above – uses a Keymap.
The TinyOS storage system for the ST M25P and Atmel AT45DB family flash chips (the latter described

above) use a Keymap.
Consequences

A Keymap uses nesC wiring to allow components to transparently map between different keyspaces. As
with Keyspaces, the Keymap must be fixed at compile-time.

A Keymap translates into a switch at compile-time. It thus doesn’t use any RAM; its speed depends
on the behaviour of the C compiler used to compile nesC’s output.

Keymaps only support mapping between integers. If you need, e.g., to map from strings to a Local
Keyspace, you will need to build your own map.
Related Patterns

• Keyspace: A Keymap establishes a map from one keyspace to another.

10.5 Structural: Placeholder

Intent
Easily change which implementation of a service an entire application uses. Prevent inadvertent inclusion

of multiple, incompatible implementations.
Motivation

Many TinyOS systems and abstractions have several implementations. For example, there are many
ad-hoc tree routing protocols, including two (Ctp, Lqi) in the TinyOS core, but they all expose the same
interfaces (StdControl, Send, Receive, etc). The standardized interface allows applications to use any of
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the implementations without code changes. Simpler abstractions can also have multiple implementations.
For example, the LedsC component actually turns the LEDs on and off, while the NoLedsC component,
which provides the same interface, has null operations. During testing, LedsC is useful for debugging, but
in deployment it is a significant energy cost and usually replaced with NoLedsC.

Sometimes, the decision of which implementation to use needs to be uniform across an application. For
example, if a hypothetical network health monitoring subsystem wires to Ctp, while an application uses Lqi,
two routing trees will be built, wasting resources. As every configuration that wires to a service names it,
changing the choice of implementation in a large application could require changing many files. Some of
these files, such as the network health monitor might be part of the system; an application writer should not
have to modify them.

One option is for every implementation to use the same component name, and put them in separate
directories. Manipulating the nesC search order allows an application to select which version to use.
However, this forces every implementation of the placeholder into a separate directory and precludes the
possibility of including two implementations, even if they can interoperate.

The Placeholder pattern offers a solution. A placeholder configuration represents the desired service
through a level of naming indirection. All components that need to use the service wire to the placeholder.
The placeholder itself is just “a pass through” of the service’s interfaces to a particular implementation.
These implementations should have a name that is related to the placeholder, e.g. RandomLfsrC and
RandomMlcgC are two implementations of RandomC. Placeholders for system components are provided
by TinyOS itself, but can be overridden by creating a replacement placeholder. Components can still wire
to a specific implementation by name. As the level of indirection is solely in terms of names – there is no
additional code generated – it imposes no CPU overhead.
Applicable When

• A component or service has multiple, possibly mutually exclusive, implementations.

• Many subsystems and parts of your application need to use this component/service.

• You need to easily switch between the implementations.

Structure

Placeholder

ActualSvc

Svc = Actual;

User1

Svc

User2

Svc

components User2, Placeholder;
User2.Svc -> Placeholder.Svc;

interface Service

Alternate
Svc

Implementation
Svc

Participants

• Placeholder: the component that all other components wire to. It encapsulates the implementation
and exports its interfaces with pass-through wiring. It has the same signature as the Implementation
component.

• Implementation: the specific version of the component.
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Sample Code
The Telos platform uses a Placeholder to map ActiveMessageC to its radio stack, CC2420ActiveMessageC:

configuration ActiveMessageC {

provides {

interface Init;

interface SplitControl;

interface AMSend[uint8_t id];

interface Receive[uint8_t id];

interface Receive as Snoop[uint8_t id];

interface Packet;

interface AMPacket;

interface PacketAcknowledgements;

}

}

implementation {

components CC2420ActiveMessageC as AM;

Init = AM;

SplitControl = AM;

AMSend = AM;

Receive = AM.Receive;

Snoop = AM.Snoop;

Packet = AM;

AMPacket = AM;

PacketAcknowledgements = AM;

}

Listing 10.3: Telos ActiveMessageC

The Ctp and Lqi tree-routing protocols provide CtpCollectionC and LqiCollectionC components in
separate directories. They also provide a placeholder CollectionC component that wires to CtpCollectionC
or LqiCollectionC. Components that wish to use the default tree-collection wire to CollectionC, leaving the
choice of tree-routing protocol to the application. Components that wish to use a specific tree-collection
algorithm wire, e.g., to CtpCollectionC.
Known Uses

Hardware-independent abstractions which have multiple implementations are often placeholders. For
instance, each platform must map the ActiveMessageC and HilTimerMilliC components to a platform-specific
implementation. In many cases, like CC2420ActiveMessageC, this implementation is specific to a particular
radio chip but portable across mote platforms. Leaving the mapping of ActiveMessageC to the platform can
be important if a mote has two radios and one should be used as the default.

CollectionC is the placeholder for tree-collection routing protocols DisseminatorC is the placeholder for
key-value dissemination protocols, and RandomC is the placeholder for random-number generation.
Consequences

The key aspects of the Placeholder pattern are:

• Establishes a global name that users of a common service can wire to.

• Allows you to specify the implementation of the service on an application-wide basis.

• Does not require every component to use the Placeholder’s implementation.
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By adding a level of naming indirection, a Placeholder provides a single point at which you can choose an
implementation. Placeholders create a global namespace for implementation-independent users of common
system services. As using the Placeholder pattern generally requires every component to wire to the
Placeholder instead of a concrete instance, incorporating a Placeholder into an existing application can
require modifying many components. However, the nesC compiler optimises away the added level of wiring
indirection, so a Placeholder imposes no run-time overhead. The Placeholder supports flexible composition
and simplifies use of alternative service implementations.
Related Patterns

• Dispatcher: a placeholder allows an application to select an implementation at compile-time, while a
dispatcher allows it to select an implementation at runtime.

• Facade: a placeholder allows easy selection of the implementation of a group of interfaces, while a
facade allows easy use of a group of interfaces. An application may well connect a placeholder to a
facade.

10.6 Structural: Facade

Intent
Provides a unified access point to a set of inter-related services and interfaces. Simplifies use, inclusion,

and composition of the subservices.
Motivation

Complex system components, such as a filesystem or networking abstraction, are often implemented
across many components. Higher-level operations may be based on lower-level ones, and a user needs
access to both. Complex functionality may be spread across several components. Although implemented
separately, these pieces of functionality are part of a cohesive whole that we want to present as a logical
unit.

For example, the Matchbox filing system from TinyOS 1.x provides interfaces for reading and writing
files, as well as for metadata operations such as deleting and renaming. Separate modules implement each
of the interfaces, depending on common underlying services such as reading blocks.

One option would be to put all of the operations in a single, shared interface. This raises two problems.
First, the nesC wiring rules mean that a component that wants to use any command in the interface has to
handle all of its events. In the case of a file system, all the operations are split-phase; having to handle a
half dozen events (readDone, writeDone, openDone, etc.) merely to be able to delete a file is hardly usable.
Second, the implementation cannot be easily decomposed into separate components without introducing
internal interfaces, as the top-level component will need to call out into the subcomponents. Implementing
the entire subsystem as a single huge component is not easy to maintain.

Another option is to export each interface in a separate component (e.g., MatchboxRead, MatchboxWrite,
MatchboxRename, etc.). This increases wiring complexity, making the abstraction more difficult to use. For
a simple open, read, and write sequence, the application would have to wire to three different components.
Additionally, each interface would need a separate configuration to wire it to the subsystems it depends on,
increasing clutter in the component namespace. The implementer needs to be careful with these configurations,
to prevent inadvertent double-wirings.

The Facade pattern provides a better solution to this problem. The Facade pattern provides a uniform
access point to interfaces provided by many components. A Facade is a nesC configuration that defines a
coherent abstraction boundary by exporting the interfaces of several underlying components. Additionally,
the Facade can wire the underlying components, simplifying dependency resolution.
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A nesC Facade has strong resemblances to the object oriented pattern of the same name. The distinction
lies in nesC’s static model. An object-oriented Facade instantiates its subcomponents at run-time, storing
pointers and resolving operations through another level of call indirection. In contrast, as a nesC Facade is
defined through naming (pass through wiring) at compile time, there is no run time cost.
Applicable When

• An abstraction, or series of related abstractions, is implemented across several separate components.

• It is preferable to present the abstraction in whole rather than in parts.

Structure
Facade

User
SvcImpl1
Svc

interface Service1

interface Service2

SvcImpl2
Svc

Svc2

Svc1

Svc2

Svc1

components Svc1Impl, Svc2Impl;
Svc1 = Svc1Impl.Svc;
Svc2 = Svc2Impl.Svc;

components User, Facade;
User.Svc1 = Facade.Svc1;
User.Svc2 = Facade.Svc2;

Participants

• Facade: the uniform presentation of a set of related services.

• SvcImpl: the separate implementations of each service composing the Facade.

Sample 1.x Code
The Matchbox filing system uses a Facade to present a uniform filesystem abstraction. File operations

are all implemented in different components, but the top-level Matchbox configuration provides them in a
single place. Each of these components depends on a wide range of underlying abstractions, such as a block
interface to non-volatile storage; Matchbox wires them appropriately, resolving all of the dependencies.

configuration Matchbox {

provides {

interface FileRead[uint8_t fd];

interface FileWrite[uint8_t fd];

interface FileDir;

interface FileRename;

interface FileDelete;

}

}

implementation {

// File operation implementations

components Read, Write, Dir, Rename, Delete;

FileRead = Read.FileRead;

FileWrite = Write.FileWrite;

FileDir = Dir.FileDir;

FileRename = Rename.FileRename;

FileDelete = Delete.FileDelete;

// Wiring of operations to sub-services omitted
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}

Listing 10.4: The Matchbox facade

Sample 2.x Code
The CC2420 radio stack is broken up into three call paths: control, transmission, and reception. The

top-level CC2420CsmaC component presents these three paths together as a single abstraction using a
Facade:

configuration CC2420CsmaC {

provides interface Init;

provides interface SplitControl;

provides interface Send;

provides interface Receive;

provides interface PacketAcknowledgements as Acks;

uses interface AMPacket;

}

implementation {

components CC2420CsmaP as CsmaP;

Init = CsmaP;

SplitControl = CsmaP;

Send = CsmaP;

Acks = CsmaP;

AMPacket = CsmaP;

components CC2420ControlC;

Init = CC2420ControlC;

AMPacket = CC2420ControlC;

CsmaP.Resource -> CC2420ControlC;

CsmaP.CC2420Config -> CC2420ControlC;

components CC2420TransmitC;

Init = CC2420TransmitC;

CsmaP.SubControl -> CC2420TransmitC;

CsmaP.CC2420Transmit -> CC2420TransmitC;

CsmaP.CsmaBackoff -> CC2420TransmitC;

components CC2420ReceiveC;

Init = CC2420ReceiveC;

Receive = CC2420ReceiveC;

CsmaP.SubControl -> CC2420ReceiveC;

components RandomC;

CsmaP.Random -> RandomC;

components LedsC as Leds;

CsmaP.Leds -> Leds;

}

Listing 10.5: The CC2420CsmaC uses a Facade

Known Uses
Stable, commonly used abstract boundaries such as radio stacks (CC2420CsmaC, CC1000CsmaRadioC)

and storage (BlockStorageC) often use a Facade. This allows them to implement complex abstractions in
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smaller, distinct parts, which simplifies code.
Consequences

The key aspects of the Facade pattern are:

• Provides an abstraction boundary as a set of interfaces. A user can easily see the set of operations the
abstraction support, and only needs to include a single component to use the whole service.

• Presents the interfaces separately. A user can wire to only the needed parts of the abstraction, but be
certain everything underneath is composed correctly.

A Facade is not always without cost. Because the Facade names all of its sub-parts, they will all be
included in the application. While the nesC compiler attempts to remove unreachable code, this analysis is
necessarily conservative and may end up keeping much useless code. In particular, unused interrupt handlers
are never removed, so all the code reachable from them will be included every time the Facade is used. If
you expect applications to only use a very narrow part of an abstraction, then a Facade can be wasteful.
Related Patterns

• Placeholder: a placeholder allows easy selection of the implementation of a group of interfaces, while
a facade allows easy use of a group of interfaces. An application may well connect a placeholder to a
facade.

10.7 Behavioral: Decorator

Intent
Enhance or modify a component’s capabilities without modifying its implementation. Be able to apply

these changes to any component that provides the interface.
Motivation

We often need to add extra functionality to an existing component, or to modify the way it works without
changing its interfaces. For instance, the standard LogStorageC component provides a LogWrite interface
to log data to a region of flash memory. In some circumstances, we would like to introduce a RAM write
buffer on top of the interface. This would reduce the number of times the application talks to the flash chip,
improving performance and conserving energy.

Adding a buffer to the LogStorageC component forces all logging applications to allocate the buffer.
As some application may not able to spare the RAM, this is undesirable. Providing two versions, buffered
and unbuffered, replicates code, reducing reuse and increasing the possibility of incomplete bug fixes. It is
possible that several implementers of the interface – any component that provides LogWrite – may benefit
from the added functionality. Having multiple copies of the buffering version, spread across several services,
further replicates code.

There are two traditional object-oriented approaches to this problem: inheritance, which defines the
relationship at compile time through a class hierarchy, and decorators, which define the relationship at run
time through encapsulation. As nesC is not an object-oriented language, and has no notion of inheritance,
the former option is not possible. Similarly, run-time encapsulation is not readily supported by nesC’s static
component composition model and imposes overhead in terms of pointers and call forwarding. However,
we can use nesC’s component composition and wiring to provide a compile time version of the Decorator.

A Decorator component is typically a generic module that provides and uses the same interface type,
such as LogWrite. The provided interface adds functionality on top of the used interface. For example
we show a BufferedLogC component that sits on top of a LogWrite provider. It implements its additional
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functionality by aggregating several writes to BufferedLogC writes into a single write to the underlying
LogWrite interface.

Using a Decorator can have further benefits. In addition to augmenting existing interfaces, they can
introduce new ones that provide alternative abstractions. For example, BufferedLogC provides a synchronous
(not split phase) FastLog interface; a call to FastLog writes directly into the buffer.

Finally, separating added functionality into a Decorator allows it to apply to any implementation. For
example, a packet send queue Decorator can be interposed on top of any networking abstraction that provides
the Send interface; this allows flexible interpositioning of queues and queueing policies in a networking
system.
Applicable When

• You wish to extend the functionality of an existing component without changing its implementation,
or

• You wish to provide several variants of a component without having to implement each possible
combination separately.

Structure

Decorator Original
SvcOrigSvc

Ext

// implement Svc, Ext
// using Orig

interface Service

interface Extension

OldUser

Svc

NewUser

Ext

components NewUser, Decorator;
NewUser.Ext -> Decorator.Ext;

components OldUser, Decorator;
OldUser.Svc -> Decorator.Svc;

Participants

• Original: the original service.

• Decorator: the extra functionality added to the service.

Sample Code
The standard LogWrite interface (Chapter 6.5) includes split-phase erase, append and sync operations.

BufferedLogC adds buffering to the LogData operations, and, additionally, supports a FastLog interface
with a non-split-phase append operation (for small writes only):

generic module BufferedLogC(unsigned int bufsize) {

provides interface LogWrite;

provides interface FastLog;

uses interface LogWrite as UnbufferedLog;

}

implementation {

uint8_t buffer1[bufsize], buffer2[bufsize];

uint8_t *buffer;

command result_t FastLog.append(void *data, storage_len_t n) {

if (bufferFull()) {

call UnbufferedLog.append(buffer, offset);
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// ... switch to other buffer ...

}

// ... append to buffer ...

}

Known Uses
The TransformAlarmC and TransformCounterC generic components transform the precision and width

of Alarm and Counter interfaces.
The ArbitratedReadC generic component adds automatic resource arbitration to a Read interface, and

ArbitratedReadStreamC does the same for a ReadStream interface.
Consequences

Applying a Decorator allows you to extend or modify a component’s behavior though a separate component:
the original implementation can remain unchanged. Additionally, the Decorator can be applied to any
component that provides the interface. To allow reuse, Decorators are normally generic components.

In most cases, a decorated component should not be used directly, as the Decorator is already handling
its events. The Placeholder pattern (Section 10.5) can be used to help ensure this.

Additional interfaces are likely to use the underlying component, creating dependencies between the
original and extra interfaces of a Decorator. For instance, in BufferedLogC, FastLog uses UnbufferedLog,
so concurrent requests to FastLog and Log are likely to conflict: only one can access the UnbufferedLog at
once.

Decorators are a lightweight but flexible way to extend component functionality. Interpositioning is a
common technique in building networking stacks, and Decorators enable this style of composition.
Related Patterns

• Adapter: An Adapter presents the existing functionality of a component with a different interface,
rather than adding additional functionality and preserving the current interface.

10.8 Behavioral: Adapter

Intent
Convert the interface of a component into another interface, without modifying the original implementation.

Allow two components with different interfaces to interoperate.
Motivation

Sometimes, a piece of functionality offered by a component with one interface needs to be accessed
by another component via a different interface. For instance, the low-level Alarm interface is efficient but
signals its “fired” event in an interrupt handler, exposing its users to the complexity of interrupt-driven
programming. Using the Timer interface is preferable in most cases, as it is much easier to write correct
task-level code.

Manually implementing Timer instead of Alarm for every timer, or even once for every platform, is
undesirable: some of the repeated code would likely contain bugs and lead to maintenance problems if the
Timer or Alarm interfaces change. Instead, the AlarmToTimerC Adapter implements a Timer interface in
terms of Alarm’s operations.

An Adapter is a component (normally generic) which provides an interface of type A, e.g. Timer, and
uses an interface of type B, , e.g. Alarm, and implements the operations of A in terms of those of B. An
Adapter may also need to implement functionality not provided by the B interface, e.g. Timer provides
periodic and one-shot timing events while Alarm only has one-shot events. More generally, an Adapter may
provide several interfaces A1, . . . , An and implement them in terms of several used interfaces B1, . . . , Bm.
Applicable When
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• You wish to provide the functionality of an existing component with a different interface.

Structure

Adapter
Original
SvcOldNew

// implement New
// using Old

interface NewService

interface OldService

User

Svc

components User, Adapter;
User.Svc -> Adapter.New;

Participants

• Original: the original service.

• Adapter: implements the new interface in terms of the functionality offered by the old.

Sample Code
The AlarmToTimerC converts the interrupt-driven (async) Alarm interface to a task-driven (not async)

Timer interface, and implements Timer’s periodic events in terms of Alarm’s one-shot events:

generic module AlarmToTimerC(typedef precision_tag)

{

provides interface Timer<precision_tag>;

uses interface Alarm<precision_tag,uint32_t>;

}

implementation {

uint32_t m_dt;

bool m_oneshot;

void start(uint32_t t0, uint32_t dt, bool oneshot) {

m_dt = dt;

m_oneshot = oneshot;

call Alarm.startAt(t0, dt);

}

command void Timer.startPeriodicAt(uint32_t t0, uint32_t dt) {

start(t0, dt, FALSE);

}

command void Timer.startOneShotAt(uint32_t t0, uint32_t dt) {

start(t0, dt, TRUE);

}

task void fired() {

if(m_oneshot == FALSE)

start(call Alarm.getAlarm(), m_dt, FALSE);

signal Timer.fired();

}

async event void Alarm.fired() {
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post fired();

}

...

}

Listing 10.6: AlarmToTimerC implementation

Known Uses
In TinyOS, hardware resources such as A/D converters are presented by a hardware abstraction layer

(HAL) which offers high-level, but hardware-specific interfaces and a hardware independent layer (HIL)
which offers high-level, platform-independent interfaces (see Chapter 12). The HIL layer is typically an
Adapter over the HAL layer. For example, see the AdcP A/D converter component for the ATmega128.

TinyOS’s provides a number of Adapters to simplify implementation of a mote’s timer subsystem,
including AlarmToTimerC (seen above), and CounterToLocalTimeC (convert a Counter to a LocalTime
interface).
Consequences

An Adapter allows a component to be reused in circumstances other than initially planned for, without
changing the original implementation.

In many cases, a component used with an Adapter cannot be used independently in the same application,
as the Adapter will already be handling its events. As with the Decorator, the Placeholder pattern (Section 10.5)
can help ensure this.

An Adapter can be used to adapt many different implementations of its used interfaces if it doesn’t
embody assumptions or behavior specific to a particular adapted component. Like Decorators, Adapters are
normally generic components to allow reuse.

Adding an additional layer to convert between interfaces may increase the application’s resource consumption
(ROM, RAM and execution time).
Related Patterns

• Decorator: A Decorator adds functionality to an existing component while preserving its original
interface. An Adapter presents existing (and possibly additional) functionality via a different interface.



Concurrency

So far, the code we’ve looked at has been split-phase and runs in tasks (synchronous). This programming
model is sufficient for almost all application-level code. High-performance applications and low-level device
drivers sometimes require additional functionality and concurrency models. This chapter describes two such
additional mechanisms, asynchronous code and resource locks. Asynchronous code is a feature of the nesC
language, while resource locks are a set of TinyOS components and mechanisms.

11.1 Asynchronous code

Tasks allow software components to emulate the split-phase behavior of hardware. But they have much
greater utility than that. They also provide a mechanism to manage preemption in the system. Because
tasks run atomically with respect to one another, code that runs only in tasks can be rather simple: there’s
no danger of another execution suddenly taking over and modifying data under you. However, interrupts do
exactly that: they interrupt the current execution and start running preemptively.

11.1.1 The async keyword

As we saw in Chapter 5, nesC distinguishes between synchronous (sync) and asynchronous (async) code.
Commands and events that can run preemptively from interrupt handlers (and therefore asynchronously with
regards to tasks), must be labeled with the async keyword, both in the interface where the command or event
is declared and in the module where the command or event is implemented. As a result, an async command
or event, or a function reachable from an async command or event can only call or signal async commands
and events (nesC will tell you when you break this rule). This rule means thats its clear from looking at an
interface or module which code is synchronous and which is asynchronous. For example, the Send interface
is purely synchronous as no commands or events are marked with async:

interface Send {

command error_t send(message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);

command error_t cancel(message_t* msg);

command void* getPayload(message_t* msg);

command uint8_t maxPayloadLength(message_t* msg);

}

Listing 11.1: The Send interface

In contrast, the Leds interface is purely asynchronous:

interface Leds {

167
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async command void led0On();

async command void led0Off();

async command void led0Toggle();

... more commands declared with async ...

}

Listing 11.2: The Leds interface

All interrupt handlers are automatically async, and so they cannot include any sync functions in their
call graph. The one and only way that an interrupt handler can execute a sync function is to post a task. A
task post is allowed from an async context, but the resulting task runs in a synchronous context.

For example, consider a packet layer on top of a UART. When the UART receives a byte, it signals an
interrupt. In the interrupt handler, software reads the byte out of the data register and puts it in a buffer.
When the last byte of a packet is received, the software needs to signal packet reception. But the receive
event of the Receive interface is sync. So in the interrupt handler of the final byte, the component posts a
task to signal packet reception.

11.1.2 The cost of async

This raises the question: If tasks introduce latency, why use them at all? Why not make everything async?
The reason is simple: race conditions, in particular data races. The basic problem with preemptive execution
is that it can modify state underneath an ongoing computation, which can cause a system to enter an
inconsistent state. For example, consider this command, toggle, which flips the state bit and returns the
old one:

bool state;

async command bool toggle() {

if (state == 0) {

state = 1;

return 1;

}

if (state == 1) {

state = 0;

return 0;

}

}

Listing 11.3: Toggling a state variable

Now imagine this execution, which starts with state = 0:

toggle()

state = 1;

-> interrupt

toggle()

state = 0

return 0;

return 1;

Listing 11.4: A call sequence that could corrupt a variable
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In this execution, when the first toggle returns, the calling component will think that state is equal to 1.
But the last assignment (in the interrupt) was to 0.

This problem can be much worse when a single statement can be interrupted. For example, on micaz
or Telos motes, writing or reading a 32-bit number takes more than one instruction. It’s possible that an
interrupt executes in between two instructions, so that part of the number read is of an old value while
another part is of a new value.

This problem — data races — is particularly pronounced with state variables. For example, imagine this
is a snippet of code from AMStandard, the basic packet abstraction in TinyOS 1.x, with a bunch of details
omitted. The state variable indicates whether the component is busy.

command result_t SendMsg.send ... {

if (!state) {

state = TRUE;

// send a packet

return SUCCESS;

}

return FAIL;

}

Listing 11.5: State transition that is not async–safe

If this command were async, then it’s possible between the conditional if (!state) and the assignment
state = TRUE that another component jumps in and tries to send as well. This second call will see state
to be false, set state to true, start a send and return SUCCESS. But then the first caller will result, send state
to true again, start a send, and return SUCCESS. Only one of the two packets will be sent successfully, but
barring additional error checks in the call path, it can be hard to find out which one, and this might introduce
all kinds of bugs in the calling components. Note that to avoid this problem, the send command isn’t async.

Programming Hint 21: KEEP CODE SYNCHRONOUS WHEN YOU CAN. CODE SHOULD
BE ASYNC ONLY IF ITS TIMING IS VERY IMPORTANT OR IF IT MIGHT BE USED BY
SOMETHING WHOSE TIMING IS IMPORTANT.

11.1.3 Atomic statements and the atomic keyword

The problems interrupts introduce means that programs need a way to execute snippets of code that won’t
be preempted. nesC provides this functionality through atomic statements. For example:

command bool increment() {

atomic {

a++;

b = a + 1;

}

}

Listing 11.6: Incrementing with an atomic statement

The atomic block promises that these variables can be read and written atomically. In practice, on
all current mote platforms, atomic statements are implemented by disabling and conditionally-reenabling
interrupts around the body of the atomic statement (this typically costs just a few cycles). In theory, a nesC
implementation could allow incrementA and incrementC to preempt each other in this code snippet, as they
access disjoint variables:
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async command bool incrementA() {

atomic {

a++;

b = a + 1;

}

}

async command bool incrementC {

atomic {

c++;

d = c + 1;

}

}

Listing 11.7: Incrementing with two independent atomic statements

However, in practice implementing this is tricky, can have significant overhead and makes dealing
with I/O devices (including a microcontroller’s built-in peripherals) difficult.1 Thus you should assume
that atomic statements disable interrupts, and program in consequence (in particular, see the discussion on
avoiding lengthy computation in atomic statements below).

nesC goes further than providing atomic statements: it also checks to see whether variables aren’t
protected properly and issues warnings when this is the case. For example, if b and c from the prior example
didn’t have atomic statements, then nesC would issue a warning because of possible self-preemption. The
rule for when a variable has to be protected by an atomic statement is simple: if it is accessed from an async
function, then it must be protected. nesC’s analysis is sensitive to call sites: if you have a function that does
not include an atomic statement, but is always called from within an atomic statement, the compiler won’t
issue a warning.

While you can make data race warnings go away by liberally sprinkling your code with atomic statements,
you should do so carefully. On one hand, disabling and enabling interrupts around an atomic statement does
have a CPU cost (a few cycles), so you want to minimize how many you have. On the other, shorter atomic
statements delay interrupts less and so improve system concurrency. The question of how long an atomic
statement runs is a tricky one, especially when your component has to call another component.

For example, the SPI bus implementation on the ATmega128 has a resource arbiter (Chapter 11.2) to
manage access to the bus. The arbiter allows different clients to request the resource (the bus) and informs
them when they’ve been granted it. However the SPI implementation doesn’t want to specify the arbiter
policy (e.g., first come first served vs. priority), so it has to be wired to an arbiter. This decomposition has
implications for power management. The SPI turns itself off when it has no users, but it can’t know when
that is without calling the arbiter (or replicating arbiter state). This means that the SPI has to atomically see
if it’s being used, and if not, turn itself off:

atomic {

if (!call ArbiterInfo.inUse()) {

stopSpi();

}

}

In this case, the call to inUse is expected to be very short (in practice, it’s probably reading a state variable). If
someone wired an arbiter whose inUse command took 1ms, then this could be a problem. The implementation
assumes this isn’t the case. Sometimes (like this case), you have to make these assumptions, but it’s good to
make as few as possible.

1The interested reader may wish to read about software-transactional-memory implementation techniques.
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11.1.4 Managing state transitions

The most basic use of atomic statements is for state transitions within a component. Usually, a state transition
has two parts, both of which are determined by the existing state and the call: the first is changing to a new
state, the second is taking some kind of action. Looking at the AMStandard example once again:

if (!state) {

state = TRUE;

// send a packet

return SUCCESS;

}

else {

return FAIL;

}

If state is touched by an async function, then you need to make the state transition atomic. But you don’t
want to make the entire block an atomic statement, as sending a packet could take a long enough time that
it causes the system to miss an interrupt. So the code does something like this:

uint8_t oldState;

atomic {

oldState = state;

state = TRUE;

}

if (!oldState) {

//send a packet

return SUCCESS;

}

else {

return FAIL;

}

If state were already true, it doesn’t hurt to just set it true. This takes fewer CPU cycles than the
somewhat redundant statement of

if (state != TRUE) {state = TRUE;}

In this example, the state transition occurs in the atomic block, but then the actual processing occurs
outside it, based on the state the component started in.

11.1.5 Example: CC2420ControlP

Let’s look at a real example. This component is CC2420ControlP, which is part of the CC2420 radio stack.
CC2420ControlP is responsible for configuring the radio’s various I/O options, as well as turning it on and
off. Turning the CC2420 radio has four steps:

1. Turn on the voltage regulator (0.6ms)

2. Acquire the SPI bus to the radio (time depends on contention)

3. Start the radio’s oscillator by sending a command over the bus (0.86ms)

4. Put the radio in RX mode (0.2ms)

Some of the steps that take time are split-phase and have async completion events (particularly, 1 and
3). The actual call to start this series of events, however, is SplitControl.start, which is sync. One way to
implement this series of steps is to assign each step a state and use a state variable to keep track of where



11.1. Asynchronous code 172

you are. However, this turns out to not be necessary. Once the start sequence begins, it continues until it
completes. So the only state variable you need is whether you’re starting or not. After that point, every
completion event is implicitly part of a state. E.g., the startOscillatorDone event implicitly means that the
radio is in state 3. Because SplitControl.start is sync, the state variable can be modified without any atomic
statements:

command error_t SplitControl.start() {

if ( m_state != S_STOPPED )

return FAIL;

m_state = S_STARTING;

m_dsn = call Random.rand16();

call CC2420Config.startVReg();

return SUCCESS;

}

Listing 11.8: The first step of starting the CC2420 radio

The startVReg command starts the voltage regulator. This is an async command. In its completion
event, the radio tries to acquire the SPI bus:

async event void CC2420Config.startVRegDone() {

call Resource.request();

}

Listing 11.9: The handler that the first step of starting the CC2420 is complete

In the completion event (when it receives the bus), it sends a command to start the oscillator:

event void Resource.granted() {

call CC2420Config.startOscillator();

}

Listing 11.10: The handler that the second step of starting the CC2420 is complete

Finally, when the oscillator completion event is signaled, the component tells the radio to enter RX mode
and posts a task to signal the startDone event. It has to post a task because oscillatorDone is async, while
startDone is sync. Note that the component also releases the bus for other users.

async event void CC2420Config.startOscillatorDone() {

call SubControl.start();

call CC2420Config.rxOn();

call Resource.release();

post startDone_task();

}

Listing 11.11: Handler that the third step of starting the CC2420 radio is complete

Finally, the task changes the radio’s state from STARTING to STARTED:

task void startDone_task() {

m_state = S_STARTED;
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signal SplitControl.startDone( SUCCESS );

}

Listing 11.12: State transition so components can send and receive packets

An alternative implementation could have been to put the following code in the startOscillatorDone
event:

atomic {

m_state = S_STARTED;

}

The only possible benefit in doing so is that the radio could theoretically accept requests earlier. But
since components shouldn’t be calling the radio until the startDone event is signaled, this would be a bit
problematic. There’s no chance of another task sneaking in between the change in state and signaling the
event when both are done in the startDone task.

Programming Hint 22: KEEP ATOMIC STATEMENTS SHORT, AND HAVE AS FEW OF
THEM AS POSSIBLE. BE CAREFUL ABOUT CALLING OUT TO OTHER COMPONENTS
FROM WITHIN AN ATOMIC STATEMENT.

11.1.6 Tasks, revisited

Chapter 5 introduced tasks as a way to defer computation and keep a nesC program responsive. They play
an additional, critical role, however, with respect to asynchronous code. Tasks are the only way a component
can transition from async to sync. Written as an interface, a task looks like this:

interface TaskBasic {

async command error_t post();

event void run();

}

All split-phase interfaces with an asynchronous command and a synchronous completion event must go
through a task.

Note that the opposite direction – a sync command and async event – is rare. Such an interface would
be for a service that can only be invoked from a task, but which requires the user to handle an interrupt.
Because the event is async, any state shared between the command and event must be protected with atomic
statements. Therefore, making the command async as well can enable a program to call it directly from the
event, while typically not requiring any greater degree of code complexity.

11.2 Power locks

Atomic statements allow a component to execute a code block without interruption. However, low-level
drivers often need to perform a series of split-phase operations on a single hardware resource without
interference from any other part of the system. These drivers cannot use atomic statements — the completion
of even the first operation occurs in a different function (the event handler) which clearly cannot be in the
same atomic statement. Furthermore, disabling interrupts (as atomic statements normally do) for the length
of time it takes to perform even one split-phase operation would probably be a bad idea.

In these situations, the atomicity is not on the processor – it’s OK if other code executes – but rather on
the hardware resource itself. To enable writing such drivers, TinyOS has power locks, which can be used
to get exclusive access to a particular, typically hardware, resource. In addition to managing concurrency,
power locks also manage energy and help configure hardware. While applications almost never see them,



11.2. Power locks 174

power locks constitute a key part of the internals of TinyOS and are important for most low-level systems
work.

11.2.1 Example lock need: link layer acks

Link-layer packet communication is one such example. TinyOS link-layer stacks support acknowledgements
through the PacketAcknowledgements interface. When a node receives a packet destined to it, it immediately
transmits a tiny packet in response, acknowledging reception. On the transmit side, the stack waits a short
period for this link-layer ack, and reports whether it heard the ack. Minimizing the time the transmitter has
to wait is critical for performance, so a receiver wants to send the ack as soon as possible.

Thinking through this problem from a programming standpoint, the receiver part of the radio stack needs
to go through these steps:

• Read the packet out of the radio

• Inspect the packet to see if it should send an ack

• Switch the radio to transmit mode

• Send the ack

• Return the radio to receive mode

Each of these steps is typically a separate split-phase operation. On the CC2420 radio, for example, each
operation requires sending a command that reads or writes data over an SPI bus. This SPI bus, however,
is shared across many chips and subsystems: a flash storage driver might want to use the SPI bus to read
data at the same time a node is receiving a packet. We can’t rely on the SPI bus component to schedule
multiple outstanding requests, as it might try interleaving a large flash write operation between two of the
radio stack’s. We need a way for the radio stack to request exclusive access to the bus so it can quickly
perform its five operations, then release the bus for others to use.

There are numerous other cases where low-level systems need exclusive access to a hardware or software
resource, either for correctness or latency; we’ll cover a few examples later.

11.2.2 Split-phase locks

TinyOS supports exclusive access to resources through split-phase locks. Traditionally, locks such as
mutexes and semaphores are blocking constructs that protect critical sections or shared data structures.
However, as TinyOS does not have blocking calls, its locks must be split-phase. A component calls a
command to request a power lock and receives an event when it acquires the lock. For historical reasons,
the lock interface is named Resource:

interface Resource {

async command error_t request();

async command error_t immediateRequest();

event void granted();

async command void release();

async command uint8_t getId();

}

Listing 11.13: The Resource interface
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To acquire a lock, a component typically calls request. At some point later, it receives a granted event,
signaling that it can use whatever the lock protects. The command immediateRequest is an optimization: it
allows a component to acquire an idle lock in a single-phase operation. If immediateRequest returns FAIL
then the lock is already held and the component must call request. Components release a lock with the
release command.

Abstractions that require locking typically provide the Resource interface. Calling functional interfaces
without holding the lock is typically forbidden, and may cause bugs or undesirable system behavior. For
example, this is the abstraction nodes with an MSP430 microcontroller provide for an SPI bus:

generic configuration Msp430Spi0C() {

provides interface Resource;

provides interface SpiByte;

provides interface SpiPacket;

uses interface Msp430SpiConfigure;

}

Listing 11.14: Msp430Spi0C signature

Similarly, this is the abstraction for the ADC:

generic configuration Msp430Adc12ClientC() {

provides {

interface Resource;

interface Msp430Adc12SingleChannel;

interface Msp430Adc12MultiChannel;

interface Msp430Adc12Overflow;

}

}

Listing 11.15: Msp320Adc12ClientC signature

11.2.3 Lock internals

TinyOS power locks manage concurrency, energy, and configuration of shared hardware resources. Power
locks have three sub-components:

• An arbiter, which controls the locking policy;

• A power manager, which controls the energy policy;

• and one or more configurators, which configure hardware for a client.

Figure 11.1 shows how these three parts fit together. The arbiter is the central point of control. An arbiter
receives lock requests from clients, and calls the power manager and configurators based on those requests.
Locks use parameterized interfaces and unique() to maintain a queue of pending lock requests. Each lock
client has a unique lock ID, and the lock implementation uses uniqueCount() to maintain a queue of the
proper length.

11.2.4 Energy management

TinyOS uses locks for much more than just establishing exclusive access. It also uses locks to decide when
to power peripherals on and off. Take the SPI bus as an example. Microcontrollers often have several
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Figure 11.1: Power lock architecture.

low-power states, which differ in terms of which chip subsystems and interrupt sources are active. The
lowest power state is typically one where a node can only wake up in response to one specific hardware
counter or an external interrupt source: systems such as buses and ADCs are powered down and do not
operate. Therefore, if TinyOS can disable the SPI bus when it’s not in use, then the microcontroller can
possibly save power.

Locks provide an easy way to automatically manage energy, lifting the burden from an application
programmer. When a lock falls idle – it’s released and there are no pending requests – it can power down the
system it protects. When a lock becomes busy – it receives a request while in the idle state – it can power
up the system. Depending on the nature of the underlying hardware, locks can either give a brief timeout
before powering down or do so immediately.

Power locks support a “default owner,” a component to which the lock reverts when it falls idle. This
default owner is responsible for the power lock’s energy management policy. A default owner uses a slightly
different interface than Resource, as it never requests a lock. Instead, the arbiter always grants it an idle lock
and notifies the default owner when there is a pending request. In response to a request, the default owner
can power up the hardware and, once powered, release its lock:

interface ResourceDefaultOwner {

async event void granted();

async command error_t release();

async command bool isOwner();

async event void requested();

async event void immediateRequested();

}

Listing 11.16: The ResourceDefaultOwner interface
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Figure 11.2: MSP430 USART stack. Instantiating an SPI client creates a wiring to the power lock’s
Resource interface, and couples that with a configuration interface. Before the arbiter grants the bus to
the SPI client, it calls the SPI configuration code. The same is true of an I2C client.

11.2.5 Hardware configuration

In addition to controlling power states, power locks can configure hardware. Take, for example, the ADC
on a microcontroller. ADCs typically have several configuration parameters, such as which pin’s voltage to
measure and what reference voltage to compare it to. While the power lock could just expect each client to
do this configuration, it can also make the user’s job easier by doing it automatically. When a configuration
instantiates an ADC client, it passes its configuration parameters to the client component. These parameters
are then passed to a configurator, which is wired in to the arbiter. Before the arbiter grants the lock to a
client, it calls the corresponding configurator in order to set up the hardware as needed. When the client
releases the lock, the arbiter unconfigures the hardware and returns to to a ready state:

interface ResourceConfigure {

async command void configure();

async command void unconfigure();

}

Listing 11.17: The ResourceConfigure interface

11.2.6 Example: MSP430 USART

The MSP430 USART0 (Universal Synchronous/Asynchronous Receiver/Transmitter) is a generic bus that
software can configure for a variety of uses. The USART can be used as a UART (serial port), an SPI (Serial
Peripheral Interface), or an I2C (Inter-Integrated Circuit) bus. These three protocols share the same set of
hardware pins, and so the software configuration tells the MSP430 how to clock them.

Software drivers use the bus protocols by instantiating a generic component, such as Msp430Spi0C,
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Msp430Uart0C, and Msp430I2COC. Each of these provides their functional interfaces and a Resource
interface. Finally, they use a hardware-specific configuration interface. In the case of the SPI, for example,
a client needs to configure the bus speed. This allows a client to place itself on the configurator path.
Figure 11.2 shows this component structure.

11.2.7 Power lock library

TinyOS has a small library of reusable power lock components, which can be found in tos/system. They
include:

• Two arbiters with different scheduling policies: FcfsArbiterC (first-come, first-served) and RoundRobinArbiterC
(round-robin)

• Two power managers: ImmediatePowerManagerC and DeferredPowerManagerC

• Numerous configurators: as configurators are hardware-specific, they are spread throughout the code
base, and are mostly in tos/chips

If you want more detailed information on power locks, their performance, and use, please refer to TEPs
108 [13] and 115 [11], and to the paper describing them [12].

11.3 Exercises

1. The MSP430 ADC has a deferred power manager. Its timeout used to be 100ms, but after some
experiments it was changed to a timeout of 20ms. Why 20ms? Hint: look at how long it takes for the
voltage reference to stabilize.

2. Why don’t radios typically have a power lock?

3. Compute the CPU cost of an atomic statement. Write a nested atomic section, where there is one
atomic statement within another. Does the overhead go up?

4. Most interrupt handlers are themselves atomic: they are completely within an atomic statement.
Try writing a UART byte reception interrupt handler that is re-entrant (can re-execute while already
executing). Why is it hard? Can you do it without any atomic statements at all?



Device drivers and the hardware
abstraction architecture (HAA)

By their very nature, sensor network applications are often platform-specific: the application uses a particular
set of sensors on a mote-specific sensor board, to measure application-specific conditions. The hardware,
and hence the application, is typically not directly reusable on another mote platform. Furthermore, some
applications may want to push a mote platform to its limits, e.g., to maximize sampling rate, or minimize the
latency in reacting to an external event. Getting to these limits normally requires extensive platform-specific
tuning, including platform-specific code (possibly even written in assembly language).

Conversely, large portions of sensor network applications are portable: multi-hop network protocols,
radio stacks for commonly available radio chips, signal processing, etc. need little or no change for a new
platform. Thus, while a sensor network application is not typically directly portable, TinyOS should make
it easy to port applications to new platforms by minimizing the extent of the necessary changes.

12.1 Portability and the hardware abstraction architecture

TinyOS’s main tool to maximize portability while maintaining easy access to platform-specific features is a
multi-level hardware abstraction architecture (HAA), shown in Figure 12.1. The device driver components
that give access to a mote’s various hardware resources are divided into three categories:

• The hardware interface layer (HIL): a device driver is part of the HIL if it provides access to a
device (radio, storage, timers, etc) in a platform-independent way, using only hardware independent
interfaces.

The functionality of the HIL is limited by what is available on multiple platforms. For instance, while
some flash chips incorporate some form of write protection, this functionality is not common to all
flash chips, so not reflected in the storage layer HIL (Chapter 6.5).

Except for the sensors, all the components (for communication, storage, etc) we used for the anti-theft
demo in Chapter 6 are part of the HIL.

• The hardware adaptation layer (HAL): device drivers in the HAL simplify the use of the often complex
underlying hardware, by exposing it via high-level interfaces. For instance, the HAL for the Atmel
AT45DB-family of flash chips provides operations to read and write parts of the flash’s storage blocks,
while automatically managing the flash chip’s 2 RAM buffers.

HAL components are platform-specific, but should use hardware independent interfaces when possible.
For instance, the Alarm interface used internally in the micaz’s HilTimerMilliC component (Chapter 9.2.1)
is provided by a micaz-specific AlarmCounterMilliP component, but used by the portable AlarmToTimerC
component that implements a Timer interface given an Alarm interface.

179
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Figure 12.1: TinyOS’s three-level Hardware Abstraction Architecture

• The hardware presentation layer (HPL): device drivers in the HPL sit directly above the hardware
without abstracting away any of its functionality. The goal of HPL components is to hide irrelevant
differences between similar hardware and to present hardware functionality in a nesC-friendly fashion.

For instance, on the micaz platform, the HplAtm128GeneralIOC exposes the ATmega128’s 53 digital
I/O pins as 53 GeneralIO interfaces, hiding the slightly different instruction sequences needed to
perform some operations on some I/O pins (some I/O pins can be set atomically in a single assembly
instruction, while others require interrupts to be disabled to guarantee atomicity).

As shown in Figure 12.1, a device’s HIL is normally built on top of the device’s HAL, which is itself
built on top of the HPL.

The behaviour, name and specifications of TinyOS’s hardware independent layers are specified in TinyOS
Enhancement Proposals (TEPs), and the hardware abstraction architecture itself is described in TEP 2 [8].
TEPs do not specify the contents of the HAL or HPL for any hardware, but do sometimes provide guidelines
on HAL structure, and on the use of hardware independent interfaces in the HAL and HPL.

12.1.1 Examples

Figure 12.2 illustrates a typical example of the hardware abstraction architecture: the structure of the
storage for two different flash chips, Atmel’s AT45DB041B serial data flash, and ST’s M25P serial NOR
flash. Both chips support the three HIL storage abstractions that we saw in Chapter 6.5, BlockStorageC,
LogStorageC and ConfigStorageC. However, the implementations of these abstractions is different for each
chip. The HAL layers for each chip are composed of different numbers of components, and provide different
interfaces:

configuration At45dbC {

provides interface At45db;

...

}

module At45dbStorageManagerC {

provides interface At45dbVolume[volume_id_t volid];
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}

configuration Stm25pSectorC {

provides interface Stm25pSector as Sector[uint8_t id];

...

}

The AT45DB041B HAL is provided by two components: At45dbC provides a single interface (At45db)
with erase, read, write and CRC-computation commands, and manages a small on-flash-chip cache. The
At45dbStorageManagerC component returns the configuration of a specific TinyOS storage volume given
its id. In contrast, the ST M25P HAL is provided by a single component, Stm25pSectorC, which combines
high-level erase, read, write and CRC computation (in the Stm25pSector interface) with volume management.
Stm25pSectorC provides a parameterized interface where the interface parameter identifies each individual
HAL user.

The two chips, and hence the two storage HPLs have one significant similarity: both chips are accessed
via an SPI bus. As a result, each platform must provide glue code that connects the platform-independent
(but chip-dependent) HPL code to a platform-specific SPI bus implementation. For the ST M25P, this
connection is specified by the platform-specific HplStm25pSpiC component, and Stm25pSpiC contains
platform-independent code with low-level erase, read, write and CRC computation operations. For the
AT45DB041B, each platform must implement the HplAt45dbC component which provides low-level erase,
read, write, CRC computation, status and cache management operations.

HAA structures vary significantly across devices. For instance, Figure 12.3 summarizes TinyOS’s
support for timers on the micaz platform. At the lowest layer, four HPL components provide access to the
four ATmega128 timers. Two of these timers (0 and 2) are 8-bit, and two (1 and 3) are 16-bit. Furthermore,
timer 0 supports an “asynchronous” mode where it is clocked by an external (usually 32768Hz) crystal, while
the other timers are clocked from the same source as the microcontroller, an external 7.37MHz crystal on
the micaz. On the micaz, timer 0 is dedicated to implementing TinyOS’s timer subsystem, HilTimerMilliC:

configuration HilTimerMilliC {

provides interface Init;

provides interface Timer<TMilli> as TimerMilli[uint8_t num];

provides interface LocalTime<TMilli>;
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}

The user-level timer components, TimerMilliC (and LocalTimeMilliC) are simple portable wrappers over
HilTimerMilliC (see Chapter 9.2.1). At the HAL level, the micaz provides 32-bit counters and alarms using
1/32768s and µs time units. The Alarm and Counter interfaces provided by these components are hardware
independent, as are the component names (Alarm32khz32C, etc). However, these components need not be
provided by all platforms, and the number of available alarms — three in the case of the micaz— varies
from platform to platform. As a result, these components belong to the HAL rather than the HIL. However,
the use of the same names and interfaces across platforms does simplify writing reasonably portable code
with timing requirements that cannot be satisfied by the fully portable TimerMilliC component. Finally, as
the figure shows, timers 1 and 3 are dedicated to supporting the micaz’s HAL layer, but timer 2 is unused
and available to an application that needs it.

12.1.2 Portability

While a program or component that uses only device drivers that are part of the HIL could be viewed as
being “fully” portable, the reality is more complex. Different motes have different hardware resources, and
hence end up supporting different HILs: for instance, a hypothetical “Ghost” mote without a flash chip or
other form of permanent storage will not support the log storage abstraction of Chapter 6.5. Therefore, the
FlashSampler application from Chapter 6.5.3 would not be portable to “Ghost” motes.

In contrast, the anti-theft application from the first part of Chapter 6 depends on a light sensor component
(PhotoC) and an accelerometer component (AccelXStreamC) which are not part of the HIL — these two
components are specific to a particular sensor board (mts310) for a particular platform (micaz). However,
the anti-theft code accesses these components via hardware independent interfaces (Read and ReadStream
respectively), so is fairly easy to port to a different mote as long as it provides equivalent sensors: only
the sensor component names and detection thresholds (DARK THRESHOLD and ACCEL VARIANCE)
should need changing.

In summary, applications that use only HIL components, or access HAL components via hardware-independent
interfaces should be easily portable to motes which meet the application’s hardware requirements. The more
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the application accesses HAL or HPL components, especially via hardware-specific interfaces, the harder it
becomes to port.

12.2 Device drivers

A TinyOS program can choose to access a particular hardware device via its HPL, HAL and HIL components.
However, not all devices have or need HIL components: if a device exists on only one platform or sensor
board and does not much ressemble any other device, then it is unlikely that anyone will have written a
device-independent HIL specification. Additionally, some hardware does not really offer any hardware
independent interface. For instance, the behavior and configuration of an A/D converter is intimately tied
to the specific analog sensor which is connected to the converter. As a result, there is no real hardware
independent A/D interface, and hence no A/D HIL.

The choice between HPL, HAL and HIL is at one level a choice between ease of use, portability,
functionality and performance. The HPL components, which expose the raw hardware, provide of course
the best functionality and performance. The HIL components are the most portable, and typically the easiest
to use. The HAL components are usually a compromise between these two extremes. However, beyond
differences in functionality, the different hardware abstraction layers also differ in how they handle multiple
clients, i.e. perform access control, and in how they manage power usage. In the rest of this chapter, we
examine these last two issues in greater detail.

12.2.1 Access control

Device drivers need to perform access control to prevent problems when multiple parts of a program try to
access the same device (because TinyOS only runs a single application, access control across applications
is not an issue). For instance, the ATmega128 A/D converter can only sample one channel at a time, so in a
program where the radio needs to check signal strength on the antenna and the user’s code needs to sample
the current temperature, some coordination will be needed to avoid the radio and the user’s code corrupting
each other’s requests.

TinyOS 1.x mostly relied on detecting conflicts and programmer discipline to deal with access control
issues. For instance, a request to perform A/D conversion would return an error if some other part of the
program was already using the A/D converter:

/* Let’s read temperature! */

if (call ADC.getData() == FAIL)

/* oops, we need to try again */

post tryAgain();

In practice, this didn’t work. Programmers omitted error checking, or could not figure out good error
recovery strategies. Furthermore, these error paths were unlikely (e.g. would only occur if the radio and
application actually tried to sample at the same time), so were not well tested. Finally, the resulting code
is often complex, so hard to get right, understand and maintain. Evolution of the rest of the system makes
life even more complicated: user code that samples temperature without checking the error codes will, e.g.,
work fine with a radio stack that does not sample signal strength. However, if the radio stack is changed to
one that does sample signal strength, then the user’s application code may suddenly stop working.

As a result, TinyOS 2 takes a much more systematic approach to access control. All device driver
components are expected to fit in to one of three access control classes:

• Dedicated. A dedicated driver has a single user, who has full control over device. Examples include
most HPL components.
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• Virtualized. A virtualized driver has multiple users, each of which appears to have its own instance
of the device. However, the underlying implementation creates this illusion by multiplexing a single
underlying resource. For instance, each instance of a TimerMilliC component is an independent timer,
but they are all implemented over a single hardware timer, as discussed in Chapter 9.2.1.

• Shared. A shared driver has multiple users, who coordinate their use of the device via the the Resource
interface (Chapter 11.2). The HAL components for both of the storage chips we saw above (Atmel
AT45DB041B and ST M25P) are shared drivers.

The definitions of these three classes uses the term “user” to informally refer to entities like the radio
stack, the user’s application code, etc. In practice, a “user” of a driver is ultimately some nesC module which
is wired to some component or interface representing an instance of the driver.

12.2.2 Access control examples

A dedicated driver has a single instance, normally a component with a specific name. HPL drivers are
normally dedicated; examples include HplAtm128Timer2C (HPL for timer 2 of the ATmega128 microcontroller),
HplMsp430I2C0C (HPL for the I2C bus 0 on the TI MSP430 microcontroller). For example, in the following
excerpt:

module HplAtm128Timer2C

{

provides interface HplAtm128Timer<uint8_t> as Timer;

provides interface HplAtm128TimerCtrl8 as TimerCtrl;

provides interface HplAtm128Compare<uint8_t> as Compare;

} implementation {

async command uint8_t Timer.get() { return TCNT2; }

async command void Timer.set(uint8_t t) { TCNT2 = t; }

...

}

we see that HplAtm128Timer2C provides only functional interfaces (Timer, TimerCtrl, Compare) which
are very simple wrappers over the raw hardware (the TCNT2 timer 2 counter register in this excerpt).
Because there are no issues with sharing a the resource with other users, dedicated drivers offer the lowest
performance and latency overhead — operations are performed immediately and with no checking.

Nothing prevents multiple users from wiring to HplAtm128Timer2C and using timer 2 in a conflicting
fashion. An HPL implementer can prevent such multiple wirings using nesC’s @atmostonce() wiring
attribute (Chapter 8.4), e.g.:

provides interface HplAtm128Timer<uint8_t> as Timer @atmostonce();

However, using these attributes is currently uncommon as it sometimes causes complications: with the
change above, it would no longer be possible to split code using timer 2 into two separate (but tightly
cooperating) modules that both wire to HplAtm128Timer2C.

Dedicated drivers are not always low-level components. For instance, the ActiveMessageC radio link
layer abstraction is a dedicated driver with the following signature:

configuration ActiveMessageC {

provides {

interface SplitControl;

interface AMSend[uint8_t id];

interface Receive[uint8_t id];

interface Receive as Snoop[uint8_t id];
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interface Packet;

interface AMPacket;

interface PacketAcknowledgements;

}

}

Listing 12.1: ActiveMessageC signature

ActiveMessageC provides a means of powering the radio on and off (see the discussion of power management
below) and interfaces to send, receive and inspect packets. However, it does not provide an easy way for
multiple users to cooperate in sending packets via the AMSend interface — like in TinyOS 1.x, if the radio
is currently sending a packet, a second send command will simply fail with an error result (EBUSY):

/**

* Send a packet

* @return ... EBUSY if the abstraction cannot send now but

* will be able to later

*/

command error_t send(am_addr_t addr, message_t* msg, uint8_t len);

The AMSenderC component we saw in Chapter 6 is a virtualized driver built over ActiveMessageC and,
like most virtualized drivers, is a generic component:

generic configuration AMSenderC(am_id_t AMId) {

provides {

interface AMSend;

interface Packet;

interface AMPacket;

interface PacketAcknowledgements as Acks;

}

}

AMSenderC offers the same interfaces to send and inspect packets as ActiveMessageC, though the id

parameter to the AMSend interface has become AMSenderC’s AMId generic component parameter. Instances
of such virtualized drivers are simply created by instantiating the generic component:

components new AMSenderC(AM_THEFT) as SendTheft;

MovingC.AMSend -> SendTheft;

...

The practical difference between AMSenderC and ActiveMessageC is that each instance of AMSenderC
can have one outstanding packet, where ActiveMessageC allowed only one outstanding packet for the whole
system — AMSenderC is virtualized while ActiveMessageC is dedicated. In general, virtualized drivers are
a lot easier to use as you can ensure that your code always has a resource (a packet transmission slot, a
timer, etc) available when it requires one, rather than having to deal with sharing the resource with the rest
of the system. As a result, most HIL drivers are virtualized. However, virtualized drivers have two costs.
First, managing and selecting between the requests from all users adds some runtime overhead. Second, the
latency of any individual operation is unpredictable: some arbitrary set of operations from other users may
happen between your request and its actual execution. Some virtualized drivers may however offer some
specific guarantees, e.g. the AMSenderC instances handle their users in a round-robin fashion.

Shared drivers offer a workaround to the unpredictable latency of virtualized drivers. Shared drivers
use the Resource interface (Chapter 11.2) to control access by multiple users, and once a user has been
granted access to the driver, that user’s operations are executed immediately. Each user is identified by
a unique id, obtained using nesC’s unique() function (Chapter 9.1). This id is then used to parameterize
both the Resource and functional interfaces, to easily distinguish each user’s commands and events, as in
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Stm25pSectorC, the HAL driver for the ST M25P flash chip:

configuration Stm25pSectorC {

provides interface Resource as ClientResource[uint8_t id];

provides interface Stm25pSector as Sector[uint8_t id];

provides interface Stm25pVolume as Volume[uint8_t id];

}

Users of Stm25pSectorC must request access via the ClientResource interface before making any requests
to read, write or erase the flash via Stm25pSector:

char mybuf[16];

void readMybuf() {

/* Request access before starting the read */

call FlashResource.request();

}

event void FlashResource.granted() {

/* We have access, we can now do our read */

call Stm25pSector.read(0, mybuf, sizeof mybuf);

}

event void Stm25pSector.readDone(...) {

/* Release the resource now that we’re done */

call FlashResource.release();

... use mybuf ...

}

More complex code might perform multiple operations using Stm25pSector before releasing access to the
flash. Note however that performing many long operations will increase the latency before which other flash
users can perform any operations at all. As compared to virtualized drivers, shared drivers have predictable
latency for operations performed when access has been granted. The cost is extra code complexity to manage
the explicit driver request and release operations, and a possibly longer latency until the first operation can
be executed.

Wiring to a shared driver such as Stm25pSectorC is generally straightforward. A client id is picked
using unique(), and the functional and Resource interfaces are then wired to user code:

components MyAppC, Stm25pSectorC;

enum { MYID = unique(UQ_STM25P_VOLUME) );

MyAppC.FlashResource -> Stm25pSectorC.ClientResource[MYID];

MyAppC.Stm25pSectorC -> Stm25pSectorC.Stm25pSector[MYID];

Some shared drivers (e.g. Msp430I2CC, the TI MSP430’s HAL for the I2C bus) wrap this wiring logic into
a generic component:

generic configuration Msp430I2CC() {

provides interface Resource;

provides interface I2CPacket<TI2CBasicAddr> as I2CBasicAddr;

uses interface Msp430I2CConfigure;

}

Implementing access control for shared drivers is simplified by using TinyOS’s power-lock library
(Chapter 11.2.7). An arbiter provides an implementation of a parameterized Resource interface with a
specific queuing policy, and a hook for power management (see below). The generic arbiter components
take the string used to pick unique client ids as a parameter. For instance, the following line creates
Stm25pSectorC’s arbiter:
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components new FcfsArbiterC(UQ_STM25P_VOLUME) as ArbiterC;

The implementation of Stm25pSectorC needs to perform a little work every time access is granted by
the arbiter and released by the user, so interposes a module (Stm25pSectorP) between the ClientResource
interface and its first-come, first-served arbiter (FcfsArbiterC):

configuration Stm25pSectorC {

provides interface Resource as ClientResource[uint8_t id];

...

} implementation {

components Stm25pSectorP as SectorP;

components new FcfsArbiterC(UQ_STM25P_VOLUME) as ArbiterC;

ClientResource = SectorP.ClientResource;

SectorP.Stm25pResource -> ArbiterC.Resource;

...

}

Listing 12.2: Arbitration in Stm25pSectorC

12.2.3 Power management

Motes are usually powered by low-capacity batteries, so effective power management is essential for obtaining
reasonable sensor network lifetime. For instance, to last a year, a mote powered by two 2700mAh batteries
(e.g. traditional AA batteries) must have an average power consumption of 0.9mW. A typical microcontroller
uses at least several mW when active, and a typical radio ten’s of mW when listening for messages. Luckily,
radios can be switched off, and microcontrollers have various sleep modes where power consumption drops
to levels as lows as a µw. Thus, to achieve an average of 0.9mW, the mote must spend most of its time with
the radio off and the microcontroller in some appropriate sleep state; the same reasoning applies to any other
peripheral (sensor, flash chip, etc) with non-trivial power consumption.

The basic decision as to when various components must be on rests in the application’s hands: only it
knows when sensors must be sampled, messages transmitted, etc. The goal of TinyOS’s power management
is “simply” to put every subsystem into the lowest power state consistent with these application demands.
Power states vary from device to device, however, for current mote hardware, power states are usually:

• On and off for most peripherals, be they on-microcontroller like A/D converters, I2C buses or off-microcontroller
like sensors, flash chips.

• Radio-specific states, as in low-power-listening which listens for radio messages at some frequency,
or schedule-based where motes transmit and receive at specific times. These states effectively tradeoff
increased latency and reduced bandwidth for lower power usage.

• A hierarchy of power states for microcontrollers. For instance, an Atmel ATmega128 can be in active,
idle, ADC-noise-reduction, extended standby, power save, standby and power down states. Each
successive state turns off more on-chip functionality and increases wakeup latency.

In TinyOS, only the selection of the radio state is left to the application programmer. Peripherals are
powered on and off in most device drivers (except dedicated drivers) based on the pending user requests,
while the microcontroller power state is derived from the whole system state.

Thus, the extent of user-level power management code in a program like the anti-theft application of
Chapter 6 is the call to set the duty cycle after the radio has been started (and the associated wiring):



12.2. Device drivers 188

uses interface LowPowerListening;

...

event void CommControl.startDone() {

// Switch radio to low-power-listening with a 2% duty cycle

call LowPowerListening.setLocalDutyCycle(200);

call TheftTimer.startPeriodic(ACCEL_INTERVAL);

}

Implementation of power management in device drivers depends heavily on the driver’s class (dedicated,
shared, virtualized). Dedicated drivers typically do not manage power directly, but offer commands to turn
the device on and off for use by the dedicated driver’s single user. With the exception of the radio stack
(ActiveMessageC), dedicated drivers are normally managed by other device drivers, so this level of explicit
power management is invisible to applications.

Most, but not all, dedicated drivers use one of the StdControl, SplitControl or AsyncStdControl interfaces
to control power. One exception is the HPL for the ATmega128 A/D converter, which offers the following
two commands to switch the A/D on and off:

async command void HplAtm128Adc.enableAdc() {

SET_BIT(ADCSRA, ADEN);

}

async command void HplAtm128Adc.disableAdc() {

CLR_BIT(ADCSRA, ADEN);

}

Power management is typically performed automatically by shared drivers. If the shared driver is
implemented using a power lock, then the driver can instantiate a power manager (Chapter 11.2) to automatically
switch itself on and off depending on its clients requests. The device must choose between the immediate
and deferred power managers — in the deferred case, the system waits for a small time after the last user is
done before switching the device off. A deferred power off avoids the cost of switching the device off and
immediately back on if a new request comes in shortly (but not immediately) after the last one completed.
Deferred is a good policy when switching a device on and off is a complex operation, when the device
requires a “warm up” period before first use, etc. For instance, TinyOS’s Stm25pSectorC implementation
uses a deferred power manager (instantiated as PowerManagerC below) with a 1s delay because powering
the flash chip on or off requires sending a command to the flash via an SPI bus:

configuration Stm25pSectorC {

provides interface Resource as ClientResource[uint8_t id];

...

} implementation {

components Stm25pSectorP as SectorP;

components new FcfsArbiterC(UQ_STM25P_VOLUME) as ArbiterC;

ClientResource = SectorP.ClientResource;

SectorP.Stm25pResource -> ArbiterC.Resource;

// 1024 binary milliseconds = 1 second power off delay:

components new SplitControlDeferredPowerManagerC(1024) as PowerManagerC;

PowerManagerC.SplitControl -> SectorP;

PowerManagerC.ResourceDefaultOwner -> ArbiterC;

PowerManagerC.ArbiterInfo -> ArbiterC;

...

}

Virtualized devices are most often built over shared devices that already perform power management,
so the virtualized device contains no explicit power management code. However, if a virtualized device
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does need to manage power, the situation is similar to the arbiter case: the virtualized device knows all the
outstanding requests for the underlying hardware, so can can decide when to power the device on and off.

12.2.4 Microcontroller power management

As we discussed above, microcontrollers can typically enter one of several different sleep modes when no
code needs to run. Execution resumes on the next hardware interrupt. The details of the sleep modes and
how to enter them are very device-specific, but the decision of when to sleep is very simple in TinyOS: when
the task queue is empty, the mote can sleep.

The sleep logic is encapsulated in a microcontroller-specific McuSleepC component:

module McuSleepC {

provides interface McuSleep;

provides interface McuPowerState;

uses interface McuPowerOverride;

}

implementation { ... }

Listing 12.3: McuSleepC: platform–specific sleep code

The McuSleep interface has a single command, sleep, that tells McuSleepC to put the microcontroller in
the lowest-power-consumption sleep mode consistent with the mote’s current configuration. For instance,
on an ATmega128, the microcontroller must stay in the highest power-consumption mode (“idle”) if the
serial ports, SPI or I2C bus are in use. Conversely, if the mote is only waiting for a timer to expire, then the
ATmega128 can be put in the “power-save” mode, dropping microcontroller power consumption from tens
of mW to tens of µW. There is however a cost to entering power-save mode: when using, e.g., an external
crystal oscillator, the microcontroller takes 16000 cycles to wake up from power-save mode. At 8MHz,
16000 cycles is 2ms, so power-save should not be entered if the timer will expire in the next few ms.

The McuSleep.sleep command for the ATmega128 implements the logic outlined above (and more) by
inspecting the microcontroller’s hardware registers to find out which on-board peripherals (buses, timers,
etc) are enabled and pick the appropriate sleep mode. However, the selection of sleep mode is often
dependent on some platform-specific features and even in some cases on application requirements (e.g. the
delay in responding to a timer when in power-save mode may be problematic in an application that has high
timing precision requirements). To allow for such variations, McuSleepC calls the McuPowerOverride.lowestState
command to allow the rest of the system to force the choice of an appropriate power state. For instance, on
the ATmega128:

async command void McuSleep.sleep() {

uint8_t powerState;

powerState = mcombine(getPowerState(), call McuPowerOverride.lowestState());

... set sleep mode to powerState and go to sleep ...

}

default async command mcu_power_t McuPowerOverride.lowestState() {

return ATM128_POWER_DOWN;

}

The logic in McuSleepC assumes that sleep modes are ordered by the mcombine function: for any two
sleep modes s1 and s2, mcombine(s1, s2) is the best sleep mode which supports the functionality of both
s1 and s2. On a microcontroller like the ATmega128 the powered modes are ordered from most-power/most-functionality
(“idle”) to least-power/least-functionality (“power-down”), so mcombine(s1, s2) is simply max(s1, s2).
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To allow several components to override the sleep mode, McuPowerOverride supports fan-out wiring by
defining mcombine as the combine function (Chapter 4.4.3) for McuPowerOverride.lowestState’s result:

typedef uint8_t mcu_power_t @combine("mcombine");

Computing the best sleep mode has the potential to significantly affect a mote’s lifetime: while the
sleep mode computation is normally simple and therefore reasonably cheap, it is executed after nearly every
interrupt. However, on many platforms, the result of this computation only changes as the result of powering
some device on or off. As a result, to compute the sleep mode only when necessary, McuSleepC provides the
McuPowerState.update command. Components (normally found in the HPL) that change the mote’s state
in a way that affects the sleep mode must call McuPowerState.update so that McuSleepC knows it needs to
recompute the sleep mode. For instance, on the TI MSP430, the code is as follows:

bool dirty = TRUE;

async command void McuSleep.sleep() {

if (dirty) {

computePowerState();

dirty = 0;

}

... set sleep mode and sleep ...

}

async command void McuPowerState.update() {

atomic dirty = 1;

}

12.3 Fitting in to the HAA

The Hardware Abstraction Architecture provides a general framework for building and using TinyOS services.
The HIL defines functionality that all implementations provide, filling the role that standard APIs do in most
systems. As some applications need to take advantage of hardware features, the HAL provides access to
richer functionality in a way that makes it clear it is hardware-specific.

The HAA emerged from earlier versions of TinyOS due to observed incompatibilities between platforms.
For example, platforms sometimes provided different signatures for a component with the same name,
preventing cross-compilation. Writing cross-platform code therefore required looking through all of the
platforms and figuring out the maximal subset that all implementations shared, with the understanding that
a new platform might change it.

While we’ve presented the HAA as a clear three-layer hierarchy, in practice it tends to be a bit more
complex, and at times even a point of disagreement within the TinyOS community! For example, platforms
define the component ActiveMessageC to specify the default link-layer communication stack. ActiveMessageC
is part of the HIL. However, radio chips also provide chip-specific abstractions, such as CC2420ActiveMessageC,
and CC1000ActiveMessageC. These components provide all of the functionality of ActiveMessageC, as
well as chip-specific operations. For example, CC2420ActiveMessageC has interfaces for accessing CC2420-specific
values and fields. These chip-specific communication components have the same datapath interfaces as the
HIL, and a few extra control interfaces. Whether these components lie in the HAL, the HIL, or a hazy place
in-between is a source of much debate.

Rather than a set of hard rules, the HAA is a way to organize and name components that (hopefully)
simplifies application development. It makes it clear when a component wires to a hardware-specific service,
and also provides guidelines on what a component must provide to be cross-platform.



Advanced application: SoundLocalizer

In this chapter, we look at the design and implementation of SoundLocalizer, a somewhat more complex
sensor network application. SoundLocalizer implements a coordinated event detection system where a group
of motes detect a particular event — a loud sound — and then communicate amongst themselves to figure out
which mote detected the event first and is therefore presumed closest to where the event occurs. To ensure
timely event detection, and accurately compare event detection times, this application needs to use some
low-level interfaces from the platform’s hardware abstraction and hardware presentation layers (HAL, HPL,
as described in the previous chapter). As a result, this application is not directly portable — we implement it
here for micaz motes with an mts300 sensor board. In the design and implementation descriptions below, we
discuss how the application and code are designed to simplify portability and briefly describe what would
be involved in porting this application to another platform.

The HAL and HPL components used by SoundLocalizer offer lower-level interfaces (interrupt-driven,
controlled by a Resource interface, etc) that the high-level HIL components we used to build the AntiTheft
application of Chapter 6. As a result, SoundLocalizer’s implementation must use atomic statements and
arbitration to prevent concurrency-induced problems, as we saw in Chapter 11.

The complete code for SoundLocalizer is available from TinyOS’s contributed code directory (under
“TinyOS Programming”).

13.1 SoundLocalizer Design

Figure 13.1 shows a typical setup for the SoundLocalizer application. A number of detector motes are placed
on a surface a couple of feet apart. When the single coordinator mote is switched on, it sends a series of
radio packets that let the detector motes synchronize their clocks. At a time specified by the coordinator
mote, all detectors turn on their green LED and start listening for a loud sound such as a hand clap. Once
such a sound is heard, the motes turn on their yellow LED. Finally, the motes enter a “voting” phase where
only the mote with the earliest detection time leaves its yellow LED on. The earliest detection time should
correspond to the mote closest to the sound, but various factors can invalidate this hypothesis, as we will
discuss after explaining the application’s design in more detail.

We deliberately kept SoundLocalizer’s design and implementation simple. All design choices were
driven by a desire for clarity of exposition. A “real” implementation of a coordinated event detection
system would require more engineering than shown here, to improve precision and reliability. However,
SoundLocalizer’s structure, and the way it accesses low-level platform-specific features is representative of
what real applications do.

13.1.1 Time Synchronization

SoundLocalizer requires motes to have a consistent view of time so that they can accurately compare their
detection times. For instance, if two motes disagree by 10ms on the current time, then one mote could
be 3 meters further from a sound and still think it detected the sound first, as sound travels 3.4 meters in
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Figure 13.1: SoundLocalizer application setup

10ms. Today, TinyOS does not offer any time synchronization facility (though this is an area of active
development), so SoundLocalizer includes its own simple time synchronizer. To simplify implementation,
we use a dedicated coordinator mote that broadcasts a time signal, and assume that all detector motes are
within radio range of the coordinator.

If all mote’s clocks ran at precisely the same frequency, then time synchronization could be accomplished
by having all detector motes d note the precise local arrival time td of a “synchronize” radio message sent by
the coordinator mote: for practical purposes, the difference in radio propagation time from the coordinator
mote to the various receivers are negligible. Given this time td, local time t could then be converted to a
globally agreed time t− td — the reception time of the “synchronize” message is global time 0.

However, in practice each mote has a slightly different clock rate and may record slightly delayed
arrival times because of other activities on the mote. To account for these differences, the coordinator
sends synchronization messages containing the numbers 0, . . . , N − 1 at fixed intervals. A mote d records
the local arrival times td,i of the message containing sequence number i, and uses least-squares linear
regression to compute the best relation between local time and the “global time” created by the coordinator’s
synchronization messages (Figure 13.2).

The resulting time synchronization is sufficiently precise for micaz motes placed within a foot of each
other to distinguish the arrival time of a loud sound. The motes can use either the micaz’s external crystal
oscillator or its internal RC oscillator (though in the case the internal oscillator it is necessary to wait a few
minutes after switching a mote on for the oscillator to stabilize).

More elaborate time synchronization algorithms [1, 22] can achieve significantly greater precision, avoid
the need for a dedicated coordinator mote and handle multihop networks. However, these algorithms are
more complex to implement.

13.1.2 Implementing SoundLocalizer in TinyOS

SoundLocalizer has separate programs for the detector and coordinator motes. The coordinator code is very
simple: when the coordinator mote boots it starts a periodic timer:

call Timer.startPeriodic(BEACON_INTERVAL);
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Figure 13.2: Linear Regression for Time Synchronization. The line represents the best estimate of the
relation between local and global time.

At each timer event, the coordinator mote sends a synchronization message with the next sequence number
and a global time at which event detection is to occur (error checking is elided below):

typedef nx_struct coordination_msg {

nx_uint16_t count, sample_at, interval;

} coordination_msg_t;

event void Timer.fired() {

coordination_msg_t *payload = call AMSend.getPayload(&msg, sizeof *payload);

/* Send the current sequence number */

payload->count = count;

payload->sample_at = SAMPLE_TIME;

payload->interval = BEACON_INTERVAL;

call AMSend.send(AM_BROADCAST_ADDR, &msg, sizeof *payload);

/* Stop sending once the event detection time approaches */

if (++count == SAMPLE_TIME)

call Timer.stop();

}

The detector code is significantly more complex. It is contained in five components (Figure 13.3):

• The SynchronizerC module contains the time synchronization algorithm, voting code and the overall
detector control logic.

• The DetectorC module encapsulates all sensor-specific code, including switching the sensor on and
off, and detecting loud sounds.

• The MicrophoneC module contains the low-level code for switching the mts300 microphone on and
off.

• StatsC is a simple statistics module that provides a least-squares linear regression implementation (the
code is a standard least-squares implementation and not shown in this book).

• The DetectorAppC configuration wires all the modules to each other and to the various system
services.

The rest of this chapter describes the SynchronizerC, DetectorC and MicrophoneC implementations in
detail. These components are not portable, but the whole application is designed so that it can reasonably
easily be ported to another mote or to another sensor (with different event detection logic).
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Figure 13.3: Detector mote components and hardware. Dashes lines show the hardware resources used by
each component.

Several factors can cause SoundLocalizer to make an incorrect report of the mote closest to the sound.
First, as we noted above, if the difference in travel times to two motes is less than the error in time
synchronization, then those two motes will not reliably know which one is closer to the sound. Second,
if the motes are sampling the microphone every 100µs, then there will be an average delay of 50µs in
detecting a loud sound. Under the assumption that sampling doesn’t start and stay in perfect synchrony on
all motes, this delay increases SoundLocalizer’s imprecision. Finally, if sound cannot travel in a straight line
to the closest mote (e.g. there is an obstacle in the way), then the mote that hears the sound first may not be
the closest mote.

Porting SoundLocalizer to a new mote that uses the same mts300 sensor board should only require
significant changes in DetectorC: SynchronizerC and MicrophoneC use only hardware independent interfaces
that should just need rewiring for the new mote’s implementation of the necessary hardware resources
(timers, I/O pins, etc, as described below). SoundLocalizer can also be modified to use a different sensor,
detecting a different event. For instance, the closest mote to an impact might be detectable using an
accelerometer that measures vibrations. Modifying SoundLocalizer in this way will require a replacement
for MicrophoneC to switch the new sensor on and off, and a replacement for DetectorC to implement the
new event detection logic.

13.2 SynchronizerC

A detector mote goes through several execution stages: booting, time synchronization, preparing for event
detection, detecting the event itself, cleaning up after detection, and voting. Execution then returns to the
time synchronizing stage the next time the coordinator is switched on. The logic that controls the progression
of a mote through these stages is in the SynchronizerC component and is portable to any platform that
provides a microsecond-precision counter (used for time synchronization).

At boot time, a detector mote simply starts the radio and awaits messages from the coordinator (see
above for the coordinator code and message layout). The handler for these coordination messages contains
the heart of SoundLocalizer’s time synchronization algorithm:
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module SynchronizerC {

uses interface Receive as RCoordination;

uses interface Counter<TMicro, uint32_t>;

uses interface Stats;

...

}

implementation {

uint32_t t0;

uint32_t now() {

return call Counter.get() >> TIME_SHIFT;

}

event message_t *RCoordination.receive(message_t *m, void *payload, uint8_t len) {

uint32_t arrivalTime = now(); // Note arrival time.

if (len == sizeof(coordination_msg_t)) // Validate received message

{

coordination_msg_t *cmsg = payload;

if (... first message from coordinator ...)

{

t0 = arrivalTime;

call VotingTimer.stop();

call Stats.reset();

}

call Stats.data(cmsg->count, arrivalTime - t0);

// Prepare for event detection when its time is close

if (cmsg->count >=

cmsg->sample_at - (MICROPHONE_WARMUP / cmsg->interval) - 3)

scheduleSampling(cmsg->sample_at);

}

return m;

}

...

}

Listing 13.1: SynchronizerC: time synchronization for SoundLocalizer

This code’s first step is to note the message’s arrival time by calling the get command of the Counter<TMicro,
uint32 t> interface. Counter is a hardware independent interface for counting time. Like other other time
interfaces, Counter takes type arguments which indicate the precision (millisecond (TMilli), microsecond
(TMicro), etc) and width (16-bit (uint16 t), 32-bit (uint32 t), etc) of its time measurements:

interface Counter<precision_tag, size_type> {

async command size_type get();

async command bool isOverflowPending();

async command void clearOverflow();

async event void overflow();

}

Listing 13.2: The Counter interface

The get command returns the current time, while the remaining commands and events allow a Counter user
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to gracefully handle counter overflow — a 32-bit microsecond counter overflows every 71 minutes, a 16-bit
microsecond counter overflows 15 times a second, so handling overflow is a practical requirement for many
applications. However, in the case of SoundLocalizer we can ignore the overflow issue. SynchronizerC
divides the returned microsecond time by 16 (TIME SHIFT is 4) to reduce the range of values that the
statistics package needs to handle.

TinyOS does not have a HIL component that provides a Counter<TMicro, uint32 t> interface.
However, TinyOS does provide guidelines on the names of HAL components that offer these low-level time
interfaces (see TEP102 [25]), so the following wiring for SynchronizerC should work on all platforms with
a 32-bit microsecond counter:

components SynchronizerC, CounterMicro32C;

SynchronizerC.Counter -> CounterMicro32C;

The body of the coordination message handler uses the Stats interface (provided by SoundLocalizer’s
StatsC component) to collect statistics on the message receive times:

interface Stats {

command void reset();

command void data(uint32_t x, uint32_t y);

command uint32_t count();

command float estimateY(uint32_t x);

command float estimateX(uint32_t y);

}

The reset command is called when the first message from the coordinator is received, and the data command
is used to record the global time, local time sample pairs.

Finally, if the current global time (cmsg->count) is close to the global sampling time (cmsg->sample at),
then it’s time to prepare for event detection by calling scheduleSampling. We need to leave enough time to
warm up the sensor, and we add a cushion of two global time units in case some coordination messages get
lost.

The scheduleSampling function converts the requested event detection time (sampleTime) into a local
time by using the least-squares linear regression implemented by the estimateY command from the Stats
interface:

void scheduleSampling(uint32_t sampleTime) {

call Leds.led2Off();

// We only agree to sample if we got enough coordination messages

// to synchronize time properly

if (call Stats.count() >= MIN_SAMPLES)

{

localSampleTime = call Stats.estimateY(sampleTime);

// Stop the radio to avoid radio activity from interfering with

// the precision of the event detection process

call RadioControl.stop();

}

}

event void RadioControl.stopDone(error_t error) {

// Once the radio is stopped, schedule event detection

call Detector.start(t0 << TIME_SHIFT, localSampleTime << TIME_SHIFT);

}

SoundLocalizer switches the radio off in scheduleSampling, as radio activity could cause significant jitter in
event detection. For instance, if an unrelated application uses the same radio channel as SoundLocalizer, then
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SoundLocalizer will receive and process (and hopefully ignore) this other application’s messages. However,
all this work will impact event detection, possibly causing some motes to detect a loud sound late, or even
to miss a loud sound completely.

Actual event detection is implemented in the DetectorC component described below. SynchronizerC
and DetectorC coordinate via the Detector interface:

interface Detector {

command void start(uint32_t t0, uint32_t dt);

async event void detected();

event void done(error_t ok);

}

The start command requests event detection for time t0+dt — this way of specifying a time is consistent
with the deadline-based approach used by TinyOS’s timing interfaces (see Chapter 6.1.1). When DetectorC
detects a loud sound, it immediately signals the detected event. To maximize responsiveness and minimize
jitter, DetectorC’s event detection happens in an interrupt handler, so the detected event is asynchronous.
DetectorC signals the done event (in task context, with SUCCESS as argument) after it has finished cleaning
up after event detection. Also, if an error occurs, DetectorC will signal done directly (with a FAIL argument).

SynchronizerC implements handlers for the detected and done events:

norace uint32_t localDetectTime;

uint32_t detectTime;

async event void Detector.detected() {

localDetectTime = now();

}

event void Detector.done(error_t ok) {

// If event detection was successful, convert local detection time to

// a global time, and start broadcasting our detection reports

if (ok == SUCCESS)

{

detectTime = 100000 * call Stats.estimateX(localDetectTime - t0);

call VotingTimer.startPeriodic(VOTING_INTERVAL);

call Leds.led2On(); // Assume we’re closest

}

call RadioControl.start();

}

The only task of the asynchronous detected event is to store the precise local event detection time in the
localDetectTime variable. Because detected runs in interrupt context, there might be a race on the write to the
shared localDetectTime variable. However, the structure of SynchronizerC and DetectorC guarantees that
the detected event is signalled before the done event which contains the only other access to localDetectTime.
Thus, no data-race is possible on localDetectTime. To avoid warnings from the nesC compiler about possible
races on localDetectTime we add a norace qualifier to localDetectTime’s declaration.1

Once event detection is complete and the done event is signalled, SynchronizerC converts the local event
detection time (localDetectTime) into a global event detection time (detectTime) using the Stats interface.
Detection times are scaled by a factor of 100’000 to allow for precise comparisons of the detection time
(detectTime is an unsigned integer). SynchronizerC also turns on the yellow LED to let the user know that
a loud sound was detected, and starts the voting timer which will broadcast a mote’s detection time. These
broadcasts contain the mote’s identity and global detection time:

typedef nx_struct detection_msg {

1norace should be used with care, only when you are very sure that there is indeed no possible race.
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nx_uint16_t id;

nx_uint32_t time;

} detection_msg_t;

The broadcast and “voting” code is very straightforward (error-checking elided below for simplicity):

message_t msg;

event void VotingTimer.fired() {

// Simply build and broadcast a detection message

detection_msg_t *dmsg = call SDetection.getPayload(&msg, sizeof *dmsg);

dmsg->id = TOS_NODE_ID;

dmsg->time = detectTime;

call SDetection.send(AM_BROADCAST_ADDR, &msg, sizeof *dmsg);

}

event message_t* RDetection.receive(message_t *m, void* payload, uint8_t len) {

detection_msg_t *dmsg = payload;

// Voting logic: if received message indicates global detection time

// earlier than ours, switch off our LED and stop broadcasting

if (dmsg->time < detectTime)

{

call Leds.led2Off();

call VotingTimer.stop();

}

return m;

}

13.3 DetectorC

DetectorC provides a Detector interface that detects loud sounds. Its internal logic is very simple. First,
it powers up the microphone. Next, from the time specified in the Detector.start command it repeatedly
samples the microphone’s A/D channel until sound is above a threshold. Finally it powers off the microphone.
The microphone is powered on and off by a SplitControl interface provided by the MicrophoneC component
described below.

As we discuss below, DetectorC uses the micaz’s HAL interface to the A/D converter. The A/D converter
is a shared driver, with access controlled by a Resource interface (Chapter 11.2). Thus, when DetectorC’s
start(t0, dt) command is called, it must power up the microphone, request access to the A/D converter
and schedule event detection for local time t0+dt:

module DetectorC {

provides interface Detector;

uses interface Alarm<TMicro, uint32_t>;

uses interface Resource as AdcResource;

uses interface SplitControl as Microphone;

...

}

implementation {

bool granted, started; // Status of start request

command void Detector.start(uint32_t t0, uint32_t dt) {

atomic granted = started = FALSE;
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call Alarm.startAt(t0, dt);

call Microphone.start();

call AdcResource.request();

}

event void AdcResource.granted() {

atomic granted = TRUE; // Note when ADC granted

}

event void Microphone.startDone(error_t error) {

atomic started = error == SUCCESS; // Note if microphone started

}

async event void Alarm.fired() {

// It’s time to detect a loud sound. If we didn’t get the ADC or

// turn on the microphone in time, report a failed event detection.

atomic

if (granted && started)

{

call Leds.led1On();

... start detection ...

}

else

post detectFailed();

}

task void detectFailed() {

call Leds.led0Toggle();

signal Detector.done(FAIL);

}

}

Listing 13.3: DetectorC: loud sound detection for SoundLocalizer

DetectorC uses an Alarm<TMicro, uint32 t> interface to schedule the event detection with microsecond
precision. The Alarm interface is a low-level counterpart to Timer:

interface Alarm<precision_tag, size_type> {

// basic interface

async command void start(size_type dt);

async command void stop();

async event void fired();

// extended interface

async command bool isRunning();

async command void startAt(size_type t0, size_type dt);

async command size_type getNow();

async command size_type getAlarm();

}

Listing 13.4: The Alarm interface

Like Counter, Alarm takes type arguments which indicate the precision (millisecond (TMilli), microsecond
(TMicro), etc) and width (16-bit (uint16 t), 32-bit (uint32 t), etc) of its time units. Alarm is similar to the
higher-level Timer interface (Chapter 6.1.1), except that it only offers one-shot timers (start, startAt), its
commands can all be called from interrupt handlers, and its fired event runs in interrupt context (all the
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interface functions are async).
As with Counter, TinyOS does not have a HIL component that provides a Alarm<TMicro, uint32 t>

interface, but TEP102 [25] also provides guidelines on the names of HAL components offering Alarm
interfaces. Thus the following wiring for DetectorC should work on all platforms with a 32-bit microsecond
alarm:

components new AlarmMicro32C() as DAlarm;

DetectorC.Alarm -> DAlarm;

Note that platforms may provide only a limited number of alarms, e.g. the micaz only supports three 32-bit
microsecond alarms — each micaz Alarm needs its own hardware timer compare register, and the micaz’s
ATmega128 microcontroller only has three compare registers per hardware timer.

By simultaneously scheduling the alarm, microphone power on and A/D converter request, DetectorC.start
allows the execution of these three operations to overlap (assuming that they don’t have overlapping resource
requirements). The completion of the microphone power up and A/D converter request is tracked by the
started and granted boolean variables respectively. Then Alarm.fired checks that these two booleans are true
before initiating event detection. If they are not, DetectorC reports a failed detection back to SynchronizerC.
The fired event runs in an interrupt context, thus there is a potential data race between the accesses to the
started and granted variables in Alarm.fired, AdcResource.granted and Microphone.startDone. This race
risk is real (unlike that for localDetectTime in SynchronizerC), so DetectorC uses nesC’s atomic statements
to protect the reads and writes of granted and started.

To precisely detect when the loud sound occurs, DetectorC should sample the microphone at the highest
possible rate. Furthermore, there should be the minimal amount of jitter between the time the microcontroller
acquires the A/D sample and when DetectorC checks that this A/D value is above the “loud sound” threshold:
adding, e.g., a random delay of 50-100µs between sample acquisition and the threshold test adds an extra
1.7cm (50µs · 340m/s) of imprecision to SoundLocalizer. Both of these factors argue against using the
high-level Read interface to sensors (Chapter 6.2.1): MicC (the mts300 sensorboard’s microphone component)
provides a Read that has a fairly high overhead, and which does a fair bit of processing after a sample has
been acquired.

It would probably be possible to implement DetectorC using the ReadStream interface (Chapter 6.2.4)
provided by the MicStreamC component. This interface offers high-rate low-jitter sampling, but is relatively
complex to use and does not offer a direct indication of the exact time at which each sample was acquired.
Instead, DetectorC uses Atm128AdcC, TinyOS’s HAL A/D converter component for the ATmega128.
Atm128AdcC is a shared driver (access is controlled by a Resource interface) and offers the following
interface for low-level A/D access:

interface Atm128AdcSingle {

async command bool getData(uint8_t channel, uint8_t refVoltage,

bool leftJustify, uint8_t prescaler);

async event void dataReady(uint16_t data, bool precise);

async command bool cancel();

}

Listing 13.5: Atm128AdcSingle: low–level single–sample ATmega128 A/D converter interface

This interface allows A/D conversion requests to be made from interrupt handlers (getData is async), and
signals sample acquisition (dataReady) directly from the ATmega128’s A/D conversion interrupt handler.
These two facts allow DetectorC to sample at a very high rate and with very low event detection jitter.
Furthermore, the getData command exposes a prescaler parameter (not available via the Read or ReadStream
interfaces) that adjusts the time it takes to perform an A/D conversion. Reducing the A/D conversion time
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reduces the precision of the A/D conversion, so most high-level users (including MicC and MicStreamC)
leave the prescaler at the setting that guarantees full A/D conversion precision — at this setting a conversion
takes 113µs on a micaz mote. However, detecting when a value goes above a threshold does not require the
full A/D precision (only the high-order bits are really relevant), so DetectorC sets the prescaler to a value
(ATM128 ADC PRESCALE 16) that reduces A/D conversion time to 28µs. This potentially improves
SoundLocalizer’s precision by 2.9cm (85µs · 340m/s).

The resulting “loud sound” detection code is simple, though very specific to the micaz platform and the
mts300 microphone:

module DetectorC {

uses interface Atm128AdcSingle;

...

}

implementation {

// The threshold for a loud sound (determined experimentally)

enum { THRESHOLD = 768 };

void detect() {

call Atm128AdcSingle.getData(... microphone A/D channel ...,

ATM128_ADC_VREF_OFF, FALSE,

ATM128_ADC_PRESCALE_16);

}

async event void Atm128AdcSingle.dataReady(uint16_t data, bool precise) {

/* If we’re the current ADC owner: check ADC completion events to

see if the microphone is above the threshold */

atomic

if (granted)

if (precise && data > THRESHOLD)

{

signal Detector.detected();

... post a task to release A/D converter, power off microphone

and signal done ...

}

else

detect();

}

...

}

The dataReady event handler checks that DetectorC currently owns the A/D converter. If so, A/D results
above the threshold indicate that a loud sound was detected. If not, another A/D sample is requested.

13.4 MicrophoneC

MicrophoneC is a fairly typical example of low-level code to control a sensor. The mts300 microphone
hardware is shown schematically in Figure 13.4. The microphone is powered on and off via a digital I/O
pin (MicPower) from the microcontroller. The raw microphone output goes through an amplifier, whose
gain can be adjusted via an I2C bus. Finally, a second digital I/O pin (MicMuxSel) selects between raw
microphone output and a 4kHz tone detector.2

Powering on the microphone for use as a “loud sound” detector thus requires physically powering on

2The mts300 sensor board was originally designed in part for use in acoustic-based localization, and includes a 4kHz tone
generator.
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Figure 13.4: MTS300 microphone hardware

the microphone, selecting raw microphone output and picking an appropriate amplifier gain. Finally, once
these steps are complete, the microphone should be left to warm up for 1.2s (MICROPHONE WARMUP).
These four steps are performed by the following code from MicrophoneC (error checking elided):

module MicrophoneC {

provides interface SplitControl;

uses interface GeneralIO as MicPower;

uses interface GeneralIO as MicMuxSel;

uses interface I2CPacket<TI2CBasicAddr>;

uses interface Resource as I2CResource;

}

implementation {

enum {

MIC_POT_ADDR = 0x5A, // Amplifier I2C address

MIC_POT_SUBADDR = 0,

MIC_GAIN = 64 // Desired gain

};

command error_t SplitControl.start() {

// Power up the microphone

call MicPower.makeOutput();

call MicPower.set();

// Select raw microphone output

call MicMuxSel.makeOutput();

call MicMuxSel.set();

// Request the I2C bus to adjust gain

call I2CResource.request();

return SUCCESS;

}

event void I2CResource.granted() {

static uint8_t gainPacket[2] = { MIC_POT_SUBADDR, MIC_GAIN };

// Send gain-control packet over I2C bus
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call I2CPacket.write(I2C_START | I2C_STOP, MIC_POT_ADDR,

sizeof gainPacket, gainPacket);

}

async event void I2CPacket.writeDone(error_t error, uint16_t addr,

uint8_t length, uint8_t* data) {

// Release I2C bus and wait for microphone to warm up (report failure

// in case of error)

call I2CResource.release();

post gainOk(); // We’re in async code, post a task for the warm up timer

}

task void gainOk() {

call Timer.startOneShot(MICROPHONE_WARMUP);

}

event void Timer.fired() {

// Microphone warmed up. Signal completion of startup.

signal SplitControl.startDone(SUCCESS);

}

}

This microphone power up code is of course specific to the mts300 sensor. However, it is actually quite
portable to other platforms using the same sensor as it accesses the required low-level hardware features
(digital I/O pins and the I2C bus) via the hardware-independent GeneralIO and I2CPacket interfaces. The
GeneralIO interface offers commands to configure, read and write a typical microcontroller digital I/O pin:

interface GeneralIO {

async command void set();

async command void clr();

async command void toggle();

async command bool get();

async command void makeInput();

async command bool isInput();

async command void makeOutput();

async command bool isOutput();

}

Listing 13.6: The GeneralIO digital I/O pin interface

In TinyOS, an I2C bus is normally accessed via a shared driver, so I2C bus users first request access via a
Resource interface (named I2CResource in MicrophoneC). The I2CPacket interface provides commands for
I2C bus masters to send read and write packets (I2CPacket takes an addr size type argument to distinguish
I2C implementations with 7 vs 15-bit bus addresses):

interface I2CPacket<addr_size> {

async command error_t read(i2c_flags_t flags, uint16_t addr, uint8_t length, uint8_t* data);

async event void readDone(error_t error, uint16_t addr, uint8_t length, uint8_t* data);

async command error_t write(i2c_flags_t flags, uint16_t addr, uint8_t length, uint8_t* data);

async event void writeDone(error_t error, uint16_t addr, uint8_t length, uint8_t* data);

}

Listing 13.7: The I2CPacket interface for bus masters
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While MicrophoneC is quite portable, the wiring that connects it to the specific hardware resources used
to access the microphone is necessarily platform-specific:

components MicaBusC, new Atm128I2CMasterC() as I2CPot;

MicrophoneC.MicPower -> MicaBusC.PW3;

MicrophoneC.MicMuxSel -> MicaBusC.PW6;

MicrophoneC.I2CResource -> I2CPot;

MicrophoneC.I2CPacket -> I2CPot;

Atm128I2CMasterC is the component that provides access to the ATmega128’s I2C bus. MicaBusC abstracts
the differences between the various mica-family motes that share the same 51-pin sensor board connector,
making it easier to write sensor board implementations portable to all mica-family motes.

Powering off the microphone is much simpler. The MicPower I/O pin just needs to be cleared and made
into an input:

command error_t SplitControl.stop() {

// Power off microphone

call MicPower.clr();

call MicPower.makeInput();

// And let our caller know we’re done - post a task as one should not

// signal events directly from commands

post stopDone();

return SUCCESS;

}

task void stopDone() {

signal SplitControl.stopDone(SUCCESS);

}

13.5 Wrap-up

That’s it! You’ve seen how to build applications, from the very simplest version of anti-theft (Chapter 6.1) to
moderately complex systems like SoundLocalizer. You’ve also seen how nesC’s component and execution
model, and TinyOS’s component libraries help you structure applications and build reusable abstractions
(libraries, services, device drivers). Remember to check http://www.tinyos.net for the latest developments
and documentation on TinyOS and nesC.

Now it’s up to you to go and write some useful and interesting sensor network applications. . .
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TinyOS APIs

This chapter gives summaries of major TinyOS interfaces and the components that provide them. It only
covers hardware-independent HIL interfaces and abstractions that are common across multiple hardware
platforms. In almost all cases, TinyOS Enhancement Proposals (TEPs) describe the abstractions in greater
depth, and we reference them as appropriate. Application-level abstractions with split-phase interfaces are
typically generics, which a user must instantiate. For sake of brevity, this list shows the signatures of relevant
components: you can read the interfaces in your TinyOS distribution.

A.1 Booting

The process of booting a mote is encapsulated in the MainC component, that signals the Boot.booted
event once all system services are initialized. Components that require boot-time initialization should
wire themselves to MainC’s SoftwareInit: MainC’s SoftwareInit.init command is called after hardware
initialization but before booted is signaled.

configuration MainC {

provides interface Boot;

uses interface Init as SoftwareInit;

}

We covered booting in Chapter 6.1. The TinyOS boot process is described in TEP 107: TinyOS 2.x
Boot Sequence [14].

A.2 Communication

TinyOS provides four basic communication abstractions: active messages (AM, single-hop, unreliable
communication), collection (multihop, unreliable delivery to a data sink) and dissemination (multihop,
reliable delivery to every node in the network), and serial communication (unreliable delivery over a serial
line). We covered communication in Chapters 6.3, 6.4 and 7.1.1.

The message t type is used to declare packet buffers for TinyOS networking protocols, as explained in
TEP 111: message t [15].

A.2.1 Single-hop

TinyOS has four standard single-hop communication components, all of which take an AM type as a
parameter, an 8-bit number that identifies different packet types. Active message addresses are 16 bits.
TinyOS defines the macro TOS BCAST ADDR for the AM broadcast address, and a node can find its local
address through the AMPacket interface.

AMSenderC sends packets. AMReceiverC signals reception for packets addressed to the node, including
the broadcast address; AMSnooperC signals reception for packets not addressed for the node; AMSnoopingReceiverC

207
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signals reception for all packets, regardless of addressing. The AM interfaces automatically discard packets
which do not pass a link-layer CRC check. The PacketAcknowledgements interface allows transmitters to
request for a link layer acknowledgement and check if one was received after transmission: PacketAcknowledgements.wasAcked
can be called in Send.sendDone.

generic configuration AMSenderC(am_id_t AMId) {

provides {

interface AMSend;

interface Packet;

interface AMPacket;

interface PacketAcknowledgements as Acks;

}

}

generic configuration AMReceiverC(am_id_t amId) {

provides {

interface Receive;

interface Packet;

interface AMPacket;

}

}

generic configuration AMSnooperC(am_id_t AMId) {

provides {

interface Receive;

interface Packet;

interface AMPacket;

}

}

generic configuration AMSnoopingReceiverC(am_id_t AMId) {

provides {

interface Receive;

interface Packet;

interface AMPacket;

}

}

By default, the radio stack is powered off. You must turn it on in order to be able to send and receive
packets. The simplest way to do so is to put it in full-power (always-on) mode via the SplitControl interface.
The low power section below (page 215) shows how you can turn it on into a low-power state, where
nodes periodically wake up to listen for packets. For full-power control, wire and call SplitControl.start on
ActiveMessageC.

configuration ActiveMessageC {

provides {

interface SplitControl;

// interfaces elided here

}

}

For more details on these components and their interfaces, refer to TEP 116: Packet Protocols [16]. The
AM components are typically found in tos/system.

The above components are all for radio communication: there are also versions of these components for
motes that are connected via a serial port: SerialActiveMessageC, SerialAMSenderC and SerialAMReceiverC.
These components are described in TEP 113: Serial Communication [7]. Note that the serial stack does not
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perform address filtering, so there is no snooping.

A.2.2 Multihop collection

Collection protocols build routing trees to nodes that advertise themselves as data sinks. Typically, sink
nodes are connected to a PC via a serial cable or other medium, although sometimes they log all data they
receive to non-volatile storage. While in good conditions collection protocols can have 99.9% or better
reliability, they do not promise reliability: a sender does not receive feedback on whether its packets have
arrived.

Collection implementations can be found in tos/lib/net. For example, the collection tree protocol
(CTP) implementation can be found in tos/lib/net/ctp while the MultihopLQI implementation can be
found in tos/lib/net/lqi.

To send packets, a program instantiates a CollectionSenderC. To configure a node as a base station, it
should wire to CollectionControlC to call RootControl.setRoot as well as instantiate relevant CollectionReceiverC
services. Collection clients take a collection identifier, similar to an AM type.

generic configuration CollectionSenderC(collection_id_t collectid) {

provides {

interface Send;

interface Packet;

}

}

generic configuration CollectionReceiverC(collection_id_t collectid) {

provides {

interface Receive;

}

}

configuration CollectionControlC {

provides {

interface StdControl;

interface Packet;

interface CollectionPacket;

interface RootControl;

}

}

Note that you must start collection by calling CollectionControlC.StdControl. Further details on these
components and collection can be found in TEP 119: Collection [2].

A.2.3 Multihop dissemination

Collection pulls data out of a network: dissemination pushes it into a network. Dissemination protocols are
reliable and deliver data to every node in a network: new nodes that join the network will receive updates.
Achieving this reliability requires that a node statically allocate RAM for the data, so it can forward it at any
time. Dissemination is typically used for controlling and configuring a network: a dissemination value can
be a configuration constant, or a concise command. Dissemination only works for small values that can fit
in a single packet (e.g., 20 bytes). Each dissemination value has a unique key, which a user must specify.

Dissemination implementations can be found in tos/lib/net. Drip [27] in tos/lib/net/drip is
the simpler of the two: it requires less RAM and code space but is less efficient. DIP, in tos/lib/net/dip
is more efficient but more complex. The DisseminationValue interface notifies a node of updates, while the
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DisseminationUpdate interface lets a node create an update. Configuring a network from a PC typically
involves sending a packet to a base station over a serial port that tells the node to update a value.

Both DIP and Drip use the Trickle algorithm [17]. Trickle values efficiency over speed: it can take a
few seconds for a value to propagate one hop, and it might take up to a minute to disseminate to every node
in a very large, many-hop network. It works slowly to avoid flooding the network with lots of packets and
causing many collisions.

generic configuration DisseminatorC(typedef t, uint16_t key) {

provides interface DisseminationValue<t>;

provides interface DisseminationUpdate<t>;

}

configuration DisseminationC {

provides interface StdControl;

}

Note that you must start dissemination by calling DisseminationC.StdControl. Further details on dissemination
can be found in TEP 118: Dissemination [18].

A.2.4 Binary Reprogramming

The fourth common communication abstraction is binary reprogramming. This is not really a abstraction,
in that an application doesn’t actively send packets using it. Instead, it is a service that automatically runs.
It enables an administrator to install new binary images in a TinyOS network. These binaries are stored on
flash, and can be installed. Note that if a new image doesn’t have binary reprogramming installed, then you
can’t uninstall it!

Deluge, found in tos/lib/net/Deluge, is the standard binary dissemination implementation [9]. It
builds on top of basic dissemination to install large (many kB) data items. Rather than have TinyOS APIs
for controlling its behavior, Deluge comes with command line tools that inject the necessary packets into a
network. Please refer to the Deluge manual in the TinyOS documentation for more details.

A.3 Time

TinyOS has two timer interfaces: Timer, which is synchronous and operates in task context, and Alarm,
which is asynchronous and involves directly handling a hardware interrupt. For the most part, applications
use Timer. Some low-level systems (such as MAC protocols) or applications that require precise timing use
Alarm. Additionally, nodes can access their local time with the LocalTime interface. A node’s local time
starts when it boots, so different nodes typically do not have the same time.

The basic Timer abstraction is TimerMilliC:

generic configuration TimerMilliC() {

provides interface Timer<TMilli>;

}

Local time can be obtained from LocalTimeMilliC:

configuration LocalTimeMilliC {

provides interface LocalTime<TMilli>;

}

Because Alarm is typically a HAL, rather than HIL, abstraction (Chapter 12), there is no standard
component that provides Alarm. We covered timing in Chapters 6.1 and 13. Further details on timers
and time can be found in TEP 102: Timers [25].
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A.4 Sensing

Sensors in TinyOS follow a naming convention described in TEP 109: Sensors and Sensor Boards [5].
Typically, they are named after the actual sensor chip. Therefore, there are almost no “standard” sensor
component names, as the set of a sensors a node might have depends on its hardware. However, TEP 109
also describes what interfaces sensors should provide, so that it’s typically easy to write code independently
of the exact sensor.

Sensors normally provide one or more of the common sensing interfaces described in TEP 114: SIDs:
Source and Sink Independent Drivers [28].

TinyOS provides two “fake” sensors, which are completely software. The first, ConstantSensorC, takes
a constant as a parameter and always returns that value. The second, SineSensorC, returns a value from a
sine function whose input increments on each sample. Platforms also have a DemoSensorC, which either
instantiates one of these software sensors or is a wrapper around a hardware-specific sensor.

generic module ConstantSensorC(typedef width_t @integer(), uint32_t val) {

provides interface Read<width_t>;

}

generic module SineSensorC() {

provides interface Read<uint16_t>;

}

generic configuration DemoSensorC() {

provides interface Read<uint16_t>;

}

We covered sensors in Chapters 6.2 and 13.

A.5 Storage

TinyOS provides three basic storage abstractions. Config storage is for small, random-access variables, such
as configuration constants. Log storage is for append-only writing and random-access, sequential reading.
Block storage is for large, random-access data items. Chapter 6.5 has more details on their use and tradeoffs.

TinyOS has scripts that generate a layout of named storage volumes from an XML specification. A
layout is essentially the offset where each volume starts and its length. Storage clients take a volume ID
as a parameter, which allows it to access these generated constants. For more details, refer to TEP 103:
Permanent Data Storage (Flash) [4].

generic configuration BlockStorageC( volume_id_t volume_id ) {

provides interface BlockRead;

provides interface BlockWrite;

provides interface StorageMap;

}

generic configuration LogStorageC( volume_id_t volume_id, bool circular ) {

provides interface LogRead;

provides interface LogWrite;

}

generic configuration ConfigStorageC( volume_id_t volume_id ) {

provides interface Mount;

provides interface ConfigStorage;

}



A.6. Data structures 212

Because flash storage implementations are chip-specific, you usually find them in a tos/chips directory.
For example, the mica family of nodes has an AT45DB-family flash chip: when you use one of the above
abstractions on a mica, you use the components in tos/chips/at45db.

A.6 Data structures

TinyOS has component implementations of a few commonly used data structures. All of these can be found
in tos/system.

A.6.1 BitVectorC

BitVectorC provides the abstraction of a bit vector. It takes a single parameter, the width of the vector. The
BitVector interface has commands for getting, setting, clearing, and toggling individual bits or all of the bits
at once. Because of nesC’s heavy inlining, using BitVectorC is preferable to writing your own bit vector
macros within a component. BitVectorC allocates ⌈N8 ⌉ bytes for an N -bit wide vector.

generic module BitVectorC(uint16_t max_bits) {

provides interface BitVector;

}

A.6.2 QueueC

QueueC provides the abstraction of a queue of items with a fixed maximum size. It takes two parameters:
the type of the items it stores and the maximum size of the queue. The Queue interface has commands for
enqueuing items on the end of the queue, dequeueing the head of the queue, and commands for checking
the queue size. It also allows random-access lookup: you can scan the queue.

generic module QueueC(typedef queue_t, uint8_t QUEUE_SIZE) {

provides interface Queue<queue_t>;

}

QueueC is used heavily in networking protocols. A routing protocol, for example, often creates a
QueueC of pointers to message buffers (message t*) for its forwarding queue, as well as a PoolC (see
below) to allocate a number of buffers so it can receive packets to forward.

A.6.3 BigQueueC

The uint8 t parameter to QueueC limits its maximum size to 255. For most uses, this is sufficient and
so wasting extra bytes on its internal fields to support a larger size is not worth it. However, sometimes
components need a larger queue. The printf library, for example (page 214), has a queue of bytes to send,
which is usually longer than 255. TinyOS therefore also has BigQueueC, which is essentially identical to
QueueC except that it has a 16-bit size parameter and provides the interface BigQueue:

generic module BigQueueC(typedef queue_t, uint16_t QUEUE_SIZE) {

provides interface BigQueue<queue_t> as Queue;

}

A.6.4 PoolC

PoolC is the closest thing TinyOS has to a dynamic memory allocator. It takes two parameters: the type of
object to allocate, and how many. Components can then dynamically allocate and free these objects to the
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pool. But as the maximum pool size is set at compile time, a memory leak will cause the pool to empty,
rather than cause the heap and stack to collide.

Because it does the allocation, you specify a type to PoolC, but its commands use pointers to that type.
For example, if you allocate a pool of message t buffers, then calls to Pool pass message t*.

generic configuration PoolC(typedef pool_t, uint8_t POOL_SIZE) {

provides interface Pool<pool_t>;

}

You can swap data items between pools. For example, if you have two separate message t pools P1

and P2, it is OK to allocate M1 from P1 and M2 from P2, yet free M1 into P2 and M2 into P1. This behavior
is critically important due to the buffer-swapping semantics of Receive. If a component receives a packet it
wants to forward, it allocates a buffer from its pool and returns this new buffer to the link layer. The next
packet – whose buffer came from the pool – might go to another component, which has its own pool. So the
pseudocode for forwarding a packet looks something like this:

receive(m):

if (!forward(m)):

return m

setHeaders(m)

queue.put(m)

m2 = pool.get()

return m2

A.6.5 StateC

StateC provides an abstraction of a state machine. This is useful when multiple components need to share a
global state (such as whether the subsystem is on or off).

generic configuration StateC() {

provides interface State;

}

A.7 Utilities

TinyOS provides components for several commonly-used functions and abstractions.

A.7.1 Random numbers

RandomC provide the interface Random, which components can use to generate random numbers. RandomC
also provides the interfaces Init and ParameterInit, to enable a component re-initialize RandomC’s random
seed. By default, RandomC’s seed is initialized to the node ID+1.

TinyOS includes two random number generators: RandomMlcgC (a multiplicative linear congruential
generator) and RandomLfsrC (a linear feed shift register generator). RandomLfsrC is faster, but RandomMlcgC
produces better random numbers. By default, RandomC refers to RandomMlcgC.

configuration RandomC {

provides interface Init;

provides interface ParameterInit<uint16_t> as SeedInit;

provides interface Random as Random;

}
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configuration RandomMlcgC {

provides interface Init;

provides interface ParameterInit<uint16_t> as SeedInit;

provides interface Random as Random;

}

configuration RandomLfsrC {

provides interface Init;

provides interface ParameterInit<uint16_t> as SeedInit;

provides interface Random as Random;

}

A.7.2 Leds

LedsC provides an abstraction of 3 LEDs. While some platforms have more or fewer than 3, the Leds
interface has 3 for historical reasons. Also, breaking up the LEDs into 3 instances of the same interface
would be a lot of extra wiring. In addition to LedsC, there is also a NoLedsC, which can be dropped in as a
null replacement: calls to NoLedsC do nothing.

configuration LedsC {

provides interface Leds;

}

configuration NoLedsC {

provides interface Leds;

}

A.7.3 Cyclic redundancy checks

Cyclic redundancy checks (CRCs) are a simple way to check whether a piece of data has been corrupted.
After the data, you append a CRC. Someone reading the data can recompute the CRC over the data and
check that it matches the appended CRC. If the two do not match, there is a bit error either in the data or
the CRC itself. Since the CRC is usually much shorter than the data, the assumption is the data has been
corrupted. CRCs are heavily used in networking, to check the validity of a packet. Of course, since CRCs
are shorter than the data itself, it’s possible, but unlikely, for a corrupted packet to pass a CRC check.

CRC values are distinct from cryptographic hashes. CRCs are intended to detect bursts of bit errors.
Typically, an n-bit CRC can always detect a single error burst that is shorter than n bits. In contrast,
cryptographically strong hashes have entropy properties that make detecting (or failing to detect) any kind
of error uniformly likely.

module CrcC {

provides interface Crc;

}

The module CrcC can be found in tos/system.

A.7.4 Printf

Sometimes, when debugging, it can very useful to have a mote send simple text messages. TinyOS has a
printf – like the C standard library function – library for this purpose. You can use printf in your components,
and the printf library will send appropriate packets over the serial port. You must start the printf library via
PrintfC’s SplitControl.start.
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configuration PrintfC {

provides {

interface SplitControl as PrintfControl;

interface PrintfFlush;

}

}

For more details on using the printf library, refer to the tutorial on the TinyOS website.

A.8 Low Power

For the most part, TinyOS will automatically put systems and hardware into the lowest power state possible.
For peripherals, this typically works through power locks (Chapter 11). For example, when an application
writes or reads from a flash chip, TinyOS will automatically power it on, perform the operation, then power
it down when done.

Communication is the major exception to this behavior. Because communication subsystems, such as
the radio and serial port, need to be able to receive as well as transmit, TinyOS needs an application to
explicitly tell it when it can safely turn them on and off via SplitControl interfaces.

In the case of the radio, however, there are many techniques one can use to save power. For example,
rather than always keep the radio on, TinyOS can keep it off most of the time, periodically turning it on just
long enough to hear if there’s a packet. A transmitter sends a packet multiple times, until the receiver wakes
up, hears it, and acknowledges it, or a timeout occurs.

A complete discussion of how to set these intervals is beyond the scope of the book. The important
interface is LowPowerListening, which some (but not all) radios provide. LowPowerListening allows an
application to set a radio’s check interval and also the check interval it expects of a receiver. TinyOS has
a tutorial for how to use this interface when writing a low-power application, and Chapter 12 has a brief
example of its use.
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<- wiring operator, 28, 45
-> wiring operator, 28, 45
= wiring operator, 28, 45
@ (declaring, using attributes), 124
@C attribute, 125
@atleastonce attribute, 125
@atmostonce attribute, 125, 184
@atomic hwevent attribute, 125
@combine attribute, 57, 125
@exactlyonce attribute, 125
@hwevent attribute, 125
@integer attribute, 115, 125
@number attribute, 116, 125
@spontaneous attribute, 125
#define, 36, 39

pitfalls, 40
#include, usage of, 39

attribute (deprecated), 125
802.15.4, 5

abstract data type, 116
implemented using generic modules, 116
implemented using reference parameters, 117
predefined in TinyOS, 212

active message type, 79, 83, 84, 87, 99, 207
Active messages (AM)

address and TOS NODE ID, difference, 81
active messages (AM), 79, 99, 207
ActiveMessageC component, 120
Alarm interface, 199
AM, see active messages (AM)
AM type, see active message type
AMSend interface, 80
AntiTheft (application), 71
application source code, 8
arbiter, see power lock
as

naming components, 46
naming interfaces, 20

asynchronous (async)

code, 63, 167
commands and events, 63, 167
consistency issues, 117
use to minimize jitter, 197

Atm128AdcSingle interface, 200
atomic statement, 169

execution time, 170
implemented by disabling interrupts, 169
limitations, 173
use in SoundLocalizer, 200

attribute, 124
auto-wiring (for initialization), 52, 121

backing array (for packets), 101, 102, 108, 110
base station, 84, 87
bidirectional interface, 25
big-endian, 38
binary reprogramming, 210
BlockRead interface, 95
BlockWrite interface, 94
Boot interface, 72

C libraries, using, 41
C++ templates vs generic components, 113, 115
callback, 10, 13, 145
CC1000 (radio chip), 43
CC2420 (radio chip), 5
collection (network protocol), 84, 85, 87, 207
combine function, 57

associative and commutative, 58
warning (when missing), 58

command, 10, 22
compile-time function

unique, see unique (compile-time function)
uniqueCount, see uniqueCount (compile-time

function)
component, 6, 10, 12, 19

generic, see generic component
implementation, 19, 26
initialization, 51
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layering, 52
libraries, 142
naming using as, 46
signature, 19
singleton, 29, 60
switching between similar, 83

concurrency model, 63, 167
ConfigStorage interface, 91
configuration, 10, 27, 44

enum and typedef in body, 131
exporting interfaces, 46
generic, 58, 114, 131
use in Facade pattern, 159
use in Placeholder pattern, 157

configurator, see power lock
constants, 36
Counter interface, 195
CRC (cyclic redundancy check), 214

data race, 168
automatic detection, 170, 197, 200
avoiding, 170

deadline-based timing, 73
Deluge (binary reprogramming), 210
design patterns, 145

Adapter, 164
behavioral, 145, 162, 164
Decorator, 162
Dispatcher, 145
Facade, 159
Keymap, 154
Keyspace, 151
namespace, 151, 154
Placeholder, 156
Service Instance, 149
structural, 149, 156, 159

device driver, 183
access control, 183
and the Resource interface, 185
dedicated, 183
latency, 185
power management, 187
shared, 184
virtualized, 183

dissemination (network protocol), 84, 86, 87, 207
DisseminationUpdate interface, 88
DisseminationValue interface, 86
dynamic memory allocation, 32, 212

energy management, see power management
enum

in configuration, 131
use and abuse, 36
use in Global Keyspace pattern, 151

event, 10, 22
execution model, 63
exporting (an interface), 46

fan-in, 55
fan-out, 55
FlashSampler (application), 93

GeneralIO interface, 203
generic component, 29, 58, 113, 131

implemented by code copying, 113
type arguments, 115
use in Adapter pattern, 164
use in Decorator pattern, 162
use in Dispatcher pattern, 147
use in Service Instance pattern, 149
vs C++ template, 113, 115

generic interface, 24
global declarations, 39

HAA, see hardware abstraction architecture
HAL, see hardware adaptation layer (HAL)
hardware abstraction architecture (HAA), 179, 191

storage, 180
timers, 181

hardware adaptation layer (HAL), 179
hardware interface layer (HIL), 179, 207
hardware presentation layer (HIL), 179
header files, 39
HIL, see hardware interface layer (HIL)
HPL, see hardware presentation layer (HPL)

I2C, 203
I2CPacket interface, 203
IEEE 802.15.4, 5
interface, 10, 12, 22, 136

bidirectional, 25
default command, event handlers, 123
generic, 24
naming using as, 20
parameterized, see parameterized interface
provider, 10, 19
split-phase, 31, 75
type, 48
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type parameter, 24, 26
user, 10, 19

interrupt, 63, 167
interrupt handler, 63, 167

and stack usage, 33

keyspace, 133, 137, 140, 151

Leds interface, 72
little-endian, 38
low power listening (radio), 187, 215
LowPowerListening interface, 187, 215

malloc, problems with, 32
Matchbox filing system, 159
McuPowerOverride interface, 189
McuPowerState interface, 190
McuSleep interface, 189
memory

allocation, 32, 212
buffer swap in Receive, 34
conserving with enum, 36
ownership, 34, 81, 83
sharing across components, 34, 35

Message (Java class), 102
message t, 79
micaz mote, 5
mig (PC tool), 100

and AM types, 104
generated methods, 102
receiving packets, 103
sending packets, 102

module, 9, 26
generic, 29, 115, 131, 144
variable initializers, 29

mote, 4
micaz, 5
power budget, 6
Telos, 5

MoteIF (Java class), 102, 107
and AM types, 104
receiving packets, 103
sending packets, 102

Mount interface, 91
multi-hop networking, 84

collection, see collection (network protocol)
dissemination, see dissemination (network protocol)

multiple wiring, 54
order of calls, 55

naming convention
for components, 50

ncg (PC tool), 104, 153
and #define, 105

nesC
comparison with C and C++, 14
compilation model, 11

nesC reference manual, 6
nesdoc, 10, 52
net.tinyos.message

Message class, see Message (Java class)
MoteIF class, see MoteIF (Java class)

networking
multi-hop, 84
serial-port, see serial-port networking
single-hop, 79

norace, 197
nx , nxle type prefixes, 38

ownership (of memory), see memory

packet
reception, 82
sending, 80
size, 79
specified with platform-independent types, 80,

99
structure, 79
structure (serial), 99
unreliable delivery (radio), 79
unreliable delivery (serial), 99

packet source (PC), 102, 105
parameterized interface, 120, 127, 134, 136

and default handlers, 123
and dynamic dispatch, 122
and unique, 128
implementation in nesC, 121
in modules, 122
use in Dispatcher pattern, 146
use in Keymap pattern, 154
use in Keyspace pattern, 152
use in power lock implementation, 175
use in Service Instance pattern, 149

PC tools, 99
Java, 99
mig, 100
MoteIF, see MoteIF (Java class)
ncg, 104, 153
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other languages, 99
packet source, see packet source (PC)
platform-independent types, 99
serial forwarder, 106

permanent storage, 90
block data, 93
configuration data, 91
log data, 95
reliability, 90, 92, 97
sampling to, 94
volume configuration file, 90
volumes, 90, 153

platform independent types, 38
platform-independent types

accessed using mig, 100
PC tools, 99
use in networking, 80, 86, 99

portability, 179, 182, 191, 193
posting a task, 63
power lock, 173

arbiter, 175
configurator, 175, 177
library, 178
power manager, 175
split-phase access, 174
use in SoundLocalizer, 200

power management, 215
for the microcontroller, 189
in dedicated drivers, 188
in device drivers, 187
in shared drivers, 188
in the radio, 187, 215
in virtualized drivers, 188
scheduler interaction, 189
using power locks, 175

power manager, see power lock
printf, 214

race condition, 168, see data race
random number generation, 213
Read interface, 75
ReadStream interface, 77
Receive interface, 82
recursion

avoiding, 33
due to events signaled in commands, 67
use tasks to avoid, 68

reliable transmission (serial), 106

Resource interface, 174
ResourceConfigure interface, 177
ResourceDefaultOwnewr interface, 176
RootControl interface, 88

sampling sensors, 75
sampling to permanent storage, 94
Send interface, 85
sending packets, 80
sensor, 75

components, 76
stream sampling, 77
values, calibration, 77

sensor networks, 3
structure (typical), 84

sensor node, 4
serial forwarder (PC tool), 106
serial-port networking, 99, 207
service

starting and stopping, 82, 86
signature (of component), 19
single stack, 31, 32
single-hop networking, 79
singleton (component), 29, 60
SoundLocalizer (application), 191
source code, for example applications, 8
split-phase, 6, 30, 75
SplitControl interface, 82
stack usage, 33
StdControl interface, 86
synchronous (sync) code, 63, 167

task, 6, 63, 63, 167
for avoiding recursion, 68
posting from interrupt handlers, 173
posting overhead, 65
split-phase operations, 66
timing, effects on latency and throughput, 65

Telos mote, 5
TEP, see TinyOS enhancement proposal (TEP)
time synchronization, 191, 194
Timer interface, 73
TinyOS

1.x, xvii, 117, 125, 183
API, 6, 207
compiling, 7
enhancement proposal (TEP), xvii, 207
installing, 7
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overview, 5
stack, 31, 32
task scheduler, 64

TinyOS component
ActiveMessageC, 83, 208
AMReceiverC, 83, 207
AMSenderC, 83, 207
AMSnooperC, 207
AMSnoopingReceiverC, 207
BigQueueC, 212
BitVectorC, 212
BlockStorageC, 93, 211
CollectionC, 89
CollectionControlC, 209
CollectionReceiverC, 209
CollectionSenderC, 87, 209
ConfigStorageC, 90, 211
ConstantSensorC, 211
CrcC, 214
DemoSensorC, 211
DisseminationC, 89, 210
DisseminatorC, 87, 89, 210
FcfsArbiterC, 178
LedsC, 74, 214
LocalTimeMilliC, 210
LogStorageC, 96, 211
MainC, 74, 207
McuSleepC, 189
NoLedsC, 214
PoolC, 59, 213
PrintfC, 214
QueueC, 212
RandomC, 213
RandomLfsrC, 214
RandomMlcgC, 213
RoundArbiterC, 178
sensors, 76, 211
SerialActiveMessageC, 83, 208
SerialAMReceiverC, 83, 208
SerialAMSenderC, 83, 208
SineSensorC, 211
StateC, 213
TimerMilliC, 74, 210

TinyOS interface
Alarm, 199
AMSend, 80
BlockRead, 95
BlockWrite, 94

Boot, 72
ConfigStorage, 91
Counter, 195
DisseminationUpdate, 88
DisseminationValue, 86
GeneralIO, 203
I2CPacket, 203
Leds, 72
LowPowerListening, 187, 215
McuPowerOverride, 189
McuPowerState, 190
McuSleep, 189
Mount, 91
Read, 75
ReadStream, 77
Receive, 82
Resource, 174
ResourceConfigure, 177
ResourceDefaultOwnewr, 176
RootControl, 88
Send, 85
SplitControl, 82
StdControl, 86
Timer, 73

TOS NODE ID, 51, 81
TOSH DATA LENGTH, 79
tree collection, see collection
type

big-endian, 38
little-endian, 38
of interfaces, 48

typedef
in configuration, 131

unique (compile-time function), 128, 132, 140
use in Local Keyspace pattern, 151
use in power lock implementation, 175
use in Service Instance pattern, 149

unique (compile-time) function
use in shared device drivers, 185

uniqueCount (compile-time function), 128
use in Local Keyspace pattern, 153
use in power lock implementation, 175
use in Service Instance pattern, 149

virtualized
device, 183
service, 129, 136



INDEX 224

volume configuration file (for storage), 90

wiring, 10, 12, 27
code generated for, 45
fan-in, 55
fan-out, 55
multiple, 54
omitting interfaces in, 48
only a metaphor, 56
use in Facade pattern, 159
use in Keymap pattern, 154
use in Placeholder pattern, 157
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