The Collateral Damage of Internet Censorship by DNS Injection

Anonymous <zion.vlab@gmail.com>

presented by Philip Levis
Basic Summary

• Great Firewall of China injects DNS responses to restrict access to domain names
• This affects traffic originating outside China
 ‣ 26.4% of open resolvers affected
 ‣ .de is the most affected TLD (70% of open resolvers in kr)
• Explain how, where, and why this happens
• Present several possible solutions
This talk assumes that the Great Firewall of China is not designed to restrict Internet access to computers outside of China.

“Collateral damage” means restricting access to computers outside China.
DNS Overview

root .

top level domain (TLD)
.com, .edu, .cn, .de

domain (authoritative)
stanford.edu, baidu.cn

Internet

resolver

client

www.stanford.edu?

171.53.10.4
DNS Injection

DNS server

Censoring AS

www.youtube.com?

resolver

client
DNS Injection

DNS server

Censoring AS

DNS injector

www.youtube.com?

resolver

client
DNS Injection

Typically affects both inbound and outbound queries

Censoring AS

DNS server

DNS injector

lemon IP

client

resolver
DNS Injection

DNS server

DNS injector

Censoring AS

Typically affects both inbound and outbound queries.

lemon IP

 resolver

client

Typically does not suppress “correct” response, just wins race to respond.
Methodology

- *HoneyQueries* to detect autonomous systems paths to whom see DNS injection
- *TraceQueries* to identify location of injectors on affected paths
- *StepNXQueries* to measure collateral damage of DNS injection
HoneyQuery

- **HoneyQuery**: DNS query to sensitive domains, sent to unresponsive IP
 - Assumption: all observed DNS responses are from DNS injectors
- **Send from a single vantage point (AS 40676)**
 - 14 million IPs that cover all /24 subnets
 - Paths spread to discover all injecting autonomous systems
- **Record IPs in responses**: lemon IPs
Probed Domain Names

<table>
<thead>
<tr>
<th>Domain</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.google.com</td>
<td>Search Engine</td>
</tr>
<tr>
<td>www.facebook.com</td>
<td>Social Network</td>
</tr>
<tr>
<td>www.twitter.com</td>
<td>Social Network</td>
</tr>
<tr>
<td>www.youtube.com</td>
<td>Streaming Media</td>
</tr>
<tr>
<td>www.yahoo.com</td>
<td>Portal</td>
</tr>
<tr>
<td>www.appspot.com</td>
<td>Web Hosting</td>
</tr>
<tr>
<td>www.xxx.com</td>
<td>Pornography</td>
</tr>
<tr>
<td>www.urltrends.com</td>
<td>Site Ranking</td>
</tr>
<tr>
<td>www.live.com</td>
<td>Portal</td>
</tr>
<tr>
<td>www.wikipedia.com</td>
<td>Reference</td>
</tr>
</tbody>
</table>
Blacklisted Domains

<table>
<thead>
<tr>
<th>Domain</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.google.com</td>
<td>Search Engine</td>
</tr>
<tr>
<td>www.facebook.com</td>
<td>Social Network</td>
</tr>
<tr>
<td>www.twitter.com</td>
<td>Social Network</td>
</tr>
<tr>
<td>www.youtube.com</td>
<td>Streaming Media</td>
</tr>
<tr>
<td>www.yahoo.com</td>
<td>Portal</td>
</tr>
<tr>
<td>www.appspot.com</td>
<td>Web Hosting</td>
</tr>
<tr>
<td>www.xxx.com</td>
<td>Pornography</td>
</tr>
<tr>
<td>www.urltrends.com</td>
<td>Site Ranking</td>
</tr>
<tr>
<td>www.live.com</td>
<td>Portal</td>
</tr>
<tr>
<td>www.wikipedia.com</td>
<td>Reference</td>
</tr>
</tbody>
</table>
HoneyQuery Results

• 28 lemon IPs found
 ‣ Use later to detect injected responses

• 388,988 (2.7%) of HoneyQueries responded
 ‣ Use to generate poisoned path list

<table>
<thead>
<tr>
<th>Destination</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>388,206</td>
<td>99.80%</td>
</tr>
<tr>
<td>CA</td>
<td>363</td>
<td>0.09%</td>
</tr>
<tr>
<td>US</td>
<td>127</td>
<td>0.03%</td>
</tr>
<tr>
<td>HK</td>
<td>111</td>
<td>0.03%</td>
</tr>
<tr>
<td>IN</td>
<td>94</td>
<td>0.02%</td>
</tr>
</tbody>
</table>

Top 5 of 16 regions

• Why are paths to IP addresses outside of China experiencing DNS injection?
TraceQuery

• For each IP address in the poisoned path list, send a DNS query to a blacklisted domain with increasing TTL
 ‣ Queries which reach an injector will trigger a response

• Mark IP address and autonomous system of router for TTL that triggers response
 ‣ Sometimes queries trigger multiple responses, from multiple injectors
www.facebook.com?
Example

www.facebook.com?
Example
Example

l lemon IP

AS1 → AS2 → AS3 → AS4
Example

lemon IP, lemon IP

AS1

AS2

AS3

AS4

SIGCOMM 2012
Example

l

lemon IP, lemon IP, good IP

AS1

AS2

AS3

AS4
TraceQuery Results

- Found 3,120 router IP addresses associated with DNS injection
- All 3,120 IP addresses belong to 39 Chinese autonomous systems

<table>
<thead>
<tr>
<th>AS Name</th>
<th>AS Number</th>
<th>IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinanet</td>
<td>4134</td>
<td>1952</td>
</tr>
<tr>
<td>CNCGroup China169 Backbone</td>
<td>4837</td>
<td>489</td>
</tr>
<tr>
<td>China Telecom (Group)</td>
<td>4812</td>
<td>289</td>
</tr>
<tr>
<td>CHINA RAILWAY Internet (CRNEt)</td>
<td>9394</td>
<td>78</td>
</tr>
<tr>
<td>China Netcom Corp.</td>
<td>9929</td>
<td>67</td>
</tr>
</tbody>
</table>

Top 5 ASes by router IP count

- How much does this affect the Internet?
Methodology

• Tested 43,842 open DNS resolvers in 173 countries outside of China
 ‣ List from probing DNS servers of Alexa 1M top websites
 ‣ Supplemented by lists from researchers

• Query for blacklisted domain from vantage point, check if response is lemon IP
 ‣ Test blacklisted name for all 312 TLDs
 ‣ Also, check against TCP-based DNS queries (injectors do not target DNS queries over TCP)
StepNX Query

• To identify where injection occurs, inject random strings into domain name
 ‣ Injectors use very liberal pattern matching
 ‣ Generate invalid names, expect NXDOMAIN response
 ‣ www.facebook.com.{INVALID}: path to root server
 ‣ www.facebook.com.{INVALID}.com: path to TLD server
 ‣ Repeat 200 times to try different servers/paths

<table>
<thead>
<tr>
<th>DNS Level</th>
<th>Affected Resolvers</th>
<th>Affected Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>1</td>
<td>0.002%</td>
</tr>
<tr>
<td>TLD</td>
<td>11573</td>
<td>26.4%</td>
</tr>
<tr>
<td>Authoritative</td>
<td>99</td>
<td>0.23%</td>
</tr>
</tbody>
</table>

Which resolution step sees injection
StepNX Query

- To identify where injection occurs, inject random strings into domain name
 - Injectors use very liberal pattern matching
 - Generate invalid names, expect NXDOMAIN response
 - `www.facebook.com.{INVALID}`: path to root server
 - `www.facebook.com.{INVALID}.com`: path to TLD server
 - Repeat 200 times to try different servers/paths

<table>
<thead>
<tr>
<th>DNS Level</th>
<th>Affected Resolvers</th>
<th>Affected Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>1</td>
<td>0.002%</td>
</tr>
<tr>
<td>TLD</td>
<td>11573</td>
<td>26.4%</td>
</tr>
<tr>
<td>Authoritative</td>
<td>99</td>
<td>0.23%</td>
</tr>
</tbody>
</table>

Which resolution step sees injection
Who’s Affected?

• 3 TLDs affected almost completely (99.53%)
 ‣ cn, xn--fiqs8s, xn--fiqz9s
 ‣ Expected: domains from within Great Firewall of China

• 11,573 (26.4%) of resolvers affected for one or more of 16 unexpected TLDs

<table>
<thead>
<tr>
<th>TLD</th>
<th>Affected Resolvers</th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td>8192</td>
</tr>
<tr>
<td>xn--3e0b707e</td>
<td>5641</td>
</tr>
<tr>
<td>kr</td>
<td>4842</td>
</tr>
<tr>
<td>kp</td>
<td>384</td>
</tr>
<tr>
<td>co</td>
<td>90</td>
</tr>
<tr>
<td>travel</td>
<td>90</td>
</tr>
<tr>
<td>pl</td>
<td>90</td>
</tr>
<tr>
<td>no</td>
<td>90</td>
</tr>
<tr>
<td>iq</td>
<td>90</td>
</tr>
<tr>
<td>hk</td>
<td>90</td>
</tr>
<tr>
<td>fi</td>
<td>90</td>
</tr>
<tr>
<td>uk</td>
<td>90</td>
</tr>
<tr>
<td>xn--j6w193g</td>
<td>90</td>
</tr>
<tr>
<td>jp</td>
<td>90</td>
</tr>
<tr>
<td>nz</td>
<td>90</td>
</tr>
<tr>
<td>ca</td>
<td>90</td>
</tr>
</tbody>
</table>

16 unexpected TLDs affected by DNS injection on path from an open resolver
Whose Resolvers?

Open resolvers in 109 regions affected

<table>
<thead>
<tr>
<th>Region</th>
<th>Affected Resolvers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iran</td>
<td>157</td>
<td>88%</td>
</tr>
<tr>
<td>Myanmar</td>
<td>163</td>
<td>85%</td>
</tr>
<tr>
<td>Korea</td>
<td>198</td>
<td>79%</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>403</td>
<td>75%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>1146</td>
<td>66%</td>
</tr>
<tr>
<td>India</td>
<td>250</td>
<td>60%</td>
</tr>
</tbody>
</table>

Top 6 regions by affected open resolver percentage
Details: .de

<table>
<thead>
<tr>
<th>Region</th>
<th>Resolvers Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>kr</td>
<td>76%</td>
</tr>
<tr>
<td>my</td>
<td>66%</td>
</tr>
<tr>
<td>hk</td>
<td>54%</td>
</tr>
<tr>
<td>ar</td>
<td>44%</td>
</tr>
<tr>
<td>il</td>
<td>42%</td>
</tr>
<tr>
<td>ir</td>
<td>36%</td>
</tr>
<tr>
<td>tw</td>
<td>36%</td>
</tr>
<tr>
<td>bg</td>
<td>31%</td>
</tr>
<tr>
<td>jp</td>
<td>28%</td>
</tr>
<tr>
<td>ro</td>
<td>25%</td>
</tr>
</tbody>
</table>

10 regions whose open resolvers are most greatly affected for .de queries
Example .de Injection

- **AS9700 KRNIC-AS-KR**
- **AS4641 ASN-CUHKNET HK**
- **AS8763 DENIC-AS DENIC eG DE**
- **AS 6939 Hurricane Electric (US)**
- **AS 10026 Pacnet Global (HK)**
- **AS 37497 CSTNET-AS-AP(CN)**
- **AS 39737 Netcom Vision Telcom SRL (RO)**
- **AS 24151 CNNIC CRITICAL-AP (CN)**
- **AS 24136 CNNIC-AP**
- **AS 23596 EDNSKR1 NIDA KR**
- **AS 31529 DENIC eG (DE)**

Diagram notes:
- **AS3549 (GBLX Global Crossing, US)**
- **AS3356 (LEVEL3, US)**
- **AS 1280 (ISC, US)**
- **AS 4847 CNIX-AP**
- **ASes in China...**
- **AS 4635 HKIX-RS1 HK**
- **AS 7497 CSTNET-AS-AP(CN)**
- **AS 39737 Netcom Vision Telcom SRL (RO)**
- **AS 31529 DENIC eG (DE)**
Example .de Injection

The diagram illustrates the AS paths and relationships for the .de TLD, with nodes representing ASes and arrows showing the path. Key ASes include:

- AS4641 ASN-CUHKNET HK
- AS8763 DENIC-AS DENIC eG DE
- AS 6939 Hurricane Electric (US)
- AS 39737 Net Vision Telcom SRL (RO)
- AS 2415 CNNIC CRITICAL-AP (CN)
- AS 10026 Pacnet Global (HK)
- AS 4847 CNIX-AP
- AS 4635 HKIX-RS1 HK
- AS 3356 LEVEL3,US
- AS 1280 ISC, US
- AS 6939 Hurricane Electric (US)

The diagram shows the complex AS path from .de towards AS 2415 CNNIC CRITICAL-AP, indicating the routes and interconnection points involved. The paths involve various ASes from different countries, highlighting the interconnected nature of the Internet's AS-level routing.
Example .de Injection

AS9700 KRNIC-AS-KR
AS3549 (GBLX Global Crossing, US)
AS3356 (LEVEL3, US)
AS 1280 (ISC, US)
AS4847 CNIX-AP
ASes in China...

AS 24155 CNNIC CRITICAL-AP (CN)
AS 24136 CNNIC-AP
AS 24156 CNNIC CRITICAL-AP (CN)
AS 23596 EDNSKR1 NIDA KR

AS4641 ASN-CUHKNET HK
AS4635 HKIX-RS1 HK

AS8763 DENIC-AS DENIC eG DE
AS 10025 Puchet Global (HK)
AS7497 GTNET-AS-AP(CN)

AS 39737 Net Vision Telcom SRL (RO)
AS 6939 Hurricane Electric (US)
AS 31529 DENIC eG (DE)
Solutions

- DNS injectors could filter out transit queries
- Autonomous systems could avoid transit through injecting neighbors
 - Particularly, TLD operators could monitor peering paths
- Security extensions for DNS (DNSSEC) prevent injection
 - DNSSEC has signed responses
 - Resolvers would reject injected responses, accept slower ones from authoritative servers
 - .de and .kr both support DNSSEC
Conclusion

• Great Firewall of China’s DNS injection is affecting lookups originating outside China
 ‣ Caused by queries traversing Chinese ASes
 ‣ Effect is greatest at routes between resolvers and TLDs

• Suggestions on preventing collateral damage

• Some recent changes...
Questions

please contact
Anonymous <zion.vlab@gmail.com>