Towards a Wireless Lexicon

Philip Levis
Computer Systems Lab
Stanford University
20.viii.2007
Low Power Wireless

- Low cost, numerous devices
 - Wireless sensor networks
 - Personal area networks (PANs)
- Ad-hoc networks
 - No infrastructure
 - Self-healing, self-assembling, self-...
- Energy issues -> low bit rate and simple coding
 - 802.15.4: 250kbps, OQPSK, DSSS (32->4)
 - 20mA RX, 8-18mA TX, -31 - 0 dBm
 - <2% of energy goes to RF!
Wireless Protocol Design

- Huge gulf between theory and practice
- Algorithm research uses simple models
 - Tractable analysis
 - Clear reasoning and evaluation
 - Difficult to apply results to real networks
- Systems research uses testbeds
 - Not reproducible
 - Each testbed is different
 - Difficult to understand why it worked (and when it won’t!)
Describing a Network

- Algorithmic approach:
 - “We simulated a network with 2000 nodes distributed on a perturbed grid. The communication graph used is the unit disk graph on the nodes.”

- Systems approach:
 - “We evaluated our implementation on a 40-node indoor testbed. The motes collectively form a connected topology with a diameter of eight hops.”
The Problem

- We do not have a lexicon to describe the complexities of real-world wireless networks.
- We don’t even know what’s really important!
- Hypothesis: Once we have such a lexicon and can quantify it, then we can define formalisms that better model the real world.
Outline

• Describing networks
• Real-world dynamics
• A first step at modeling
• A metric proposal: bimodality percentiles
Real World Dynamics

- Wireless networks are not graphs
- Collision timing affects reception
- Intermediate links can be unstable
- Time scales affect link distributions
- Packet losses are not independent
- Asymmetric links exist and change over time
Not a Graph

- A graph assumes link independence
- Transmissions can affect distant nodes
- This is not a binary relationship
Not a Graph

- A graph assumes link independence
- Transmissions can affect distant nodes
- This is not a binary relationship

A transmits to B
Not a Graph

- A graph assumes link independence
- Transmissions can affect distant nodes
- This is not a binary relationship

C transmits to D
Collision Timing Affects Reception

- Signal-to-noise ratio determines bit error rate
- If $L_{BF} \gg L_{AF}$, then F can receive B’s signal well
- But *when* transmissions occur matters
 - No B receptions if A is 720us earlier
Intermediate Links Are Unstable

- So why not a weighted graph of link qualities?
- What does an intermediate link look like?
- A perfect MAC layer will not solve the problem

PRR $\approx 50\%$

PRR $\leq 5\%$

PRR $\geq 95\%$
Time Scales Affect Link Distributions

14 seconds

Channel 26
Losses Are Not Independent
Asymmetry Over Time

Hour 1

Hour 2
Real World Dynamics

- Wireless networks are not graphs
- Collision timing affects reception
- Intermediate links can be unstable
- Time scales affect link distributions
- Packet losses are not independent
- Asymmetric links exist and change over time
Outline

• Describing networks
• Real-world dynamics
• A first step at modeling
• A metric proposal: bimodality percentiles
A First Step at Modeling

- Start by modeling underlying physical phenomena
- Simplify to distill simpler models
- Scientific approach
 - Measure real networks
 - Try to recreate representative environments in simulation
 - Enables model validation
- Example: temporal correlation in 802.15.4
Temporal Correlation

- Loss rate is not L^k
- Over 100 packets in 1s, <10% of links are intermediate
- Connectivity changes quickly
- Two causes: signal and noise
 - Signal: long term trends
 - Noise: short term bursts
Short Term Bursts ()

![Graph showing RSSI (dBm) over time with vertical bars representing average PRR.](image)
First Step: CPM

- If we can simulate it, we can model it
 - Refine and simplify simulation
- CPM: Closest Pattern Matching
 - Generate conditional probability distributions from a trace
 - “Given prior noise readings $n_{t-1}, n_{t-2}, n_{t-3}, \ldots$ what is n_t?”

Real Noise

EmStar

ns2

CPM
Protocol Effects

- Link estimator in TinyOS 2.0 collection tree protocol uses acknowledgments to measure ETX
- Burst of losses can cause rapid link value changes
- Measure how many times protocol switches parents
- Using CPM doubles changes over other methods

![Diagram showing source and sinks with 50% and 10% values]
Protocol Effects

• Source sends 100,000 packets as quickly as possible
• Run 100 trials, compare with independent packet loss
• Average parent change count doubles
Outline

- Describing networks
- Real-world dynamics
- A first step at modeling
- A metric proposal: bimodality percentiles
Link Bimodality

![Graph showing packet reception rate vs node pair with two delay lines: 1s Delay and 10ms Delay. The graph highlights a bimodal distribution with a peak around node pair 400-500.]
Independent or Bimodal?

Independent

Bimodal

(note the X-axis is inverted from prior plots)
Bimodality Measure

- Bimodality measure $\beta = \frac{L}{I}$
 - L is KW distance of CPDF from bimodal link
 - I is KW distance of intermediate PRR link from bimodal
- β is typically in range of $[0, 1]$

$IPI = 10\text{ms}$
Bimodality Percentiles

- Hypothesis: β percentiles represent an important property of a network
 - E.g., 10th percentile of 0.01, 90th percentile of 0.4
- Test: compute β distributions for other link layers
 - Verifies this experimental methodology with prior results
- Test: control β in simulation and observe protocol effects
 - Link estimators: ETX vs. other approaches
Outline

- Describing networks
- Real-world dynamics
- A first step at modeling
- A metric proposal: bimodality percentiles
Towards a Lexicon

- Measure networks to find important properties
- Protocol-driven evaluation
 - Network properties are important to quantify and describe if they affect protocol behavior
 - CPM leads to more next hop changes in routing protocols
- Quantify the properties:
 - “We used a 40-node indoor testbed that has an α of 0.8, a β of 0.01/0.4, a γ 3.3 and a δ of 500ms.”
 - “We simulated a 40-node network that has an α of 0.8, a β of 0.01/0.4, a γ 3.3 and a δ of 500ms.”