
Software Design Patterns for TinyOS
UCB//CSD-04-1350

David Gay
Intel Research Berkeley
2150 Shattuck Avenue
Berkeley, CA 94704

Email: dgay@intel-research.net

Philip Levis
EECS Department

University of California, Berkeley
Berkeley, CA 94720

Email: pal@cs.berkeley.edu

David Culler
EECS Department

University of California, Berkeley
Berkeley, CA 94720

Email: culler@cs.berkeley.edu

Abstract— We present design patterns used by
software components in the TinyOS operating sys-
tem. They differ significantly from traditional soft-
ware design patterns due to TinyOS’s focus on
static allocation and whole-program composition.
We describe how nesC has evolved to support
design patterns by including a few simple language
primitives.

I. I NTRODUCTION

Code re-use is a basic technique of software
development. As a program grows in terms of lines
of code, its complexity grows non-linearly. Cur-
rently, mote-class sensor network programs are still
small: TinyDB, one of the largest TinyOS applica-
tions, has approximately 4400 nesC statements. A
small group of developers can effectively manage
programs of this size, writing everything from
scratch. As sensor network applications become
more intricate and grow in complexity, however,
this approach will not be feasible.

Writing solid, reusable software is hard. Doing
so for sensor networks is even harder. Limited
resources and strict energy budgets lead developers
to write application-specific versions of many ser-
vices. While specialised software solutions enable
developers to build efficient systems, they are
inherently at odds with reusable software. TinyOS
itself is a library of components; to be useful it
must be usable in as many applications as possible.

Software design patterns are a well-accepted
technique to promote code re-use [1, p.1]:

These patterns solve specific design problems
and make object-oriented designs more flex-
ible, elegant, and ultimately reusable.

Design patterns identify sets of common and
recurring requirements, and define a pattern of
object interactions that meet these requirements.

Unfortunately, most design patterns focus on the
problems faced by large, object-oriented programs:
the challenges sensor network programs face are
quite different.

In the case of the TinyOS operating system,
its programming model can further complicate
writing reusable code. In order to support highly
concurrent operation with very limited resources,
TinyOS depends on split-phase operations, which
are a significant departure from C programming
with synchronous calls. Although TinyOS compo-
nents have similarities to objects – they encapsulate
state and interact through well-defined interfaces –
the differences generally preclude applying object-
oriented techniques. To improve program analysis,
optimisation, and reliability, TinyOS wiring defines
component interactions at compile time [2], rather
than at run-time, as object-oriented references and
instantiation do. Programmers cannot easily apply
idioms or patterns they are comfortable with, and
when they do, the results are rarely effective.

In this paper, we present a preliminary set
of six design patterns appropriate to TinyOS’s
component-based model. These patterns are based
on our experiences designing and writing TinyOS
components and applications, and on our exam-
ination of code written by others. These patterns
have driven, and continue to drive, the development
of nesC, TinyOS’s programming language. For in-
stance, theuniqueCount function was introduced
in nesC version 1.1 to support the ServiceInstance
pattern; nesC version 1.2 will include generic com-
ponents, which simplify expression of some of the
patterns presented here (see Section IV).

This paper contributes to sensor network re-
search in three ways. First, by presenting a set of
TinyOS design patterns, it helps researchers work-

ing with TinyOS write effective programs. Second,
these design patterns provide insight on how pro-
gramming sensor networks is structurally different
than traditional software, and how different fac-
tors motivate software design. Finally, it explores
how a few simple language features, particularly
parameterised interfaces and unique identifiers, en-
able scalable, flexible, and efficient software that
promotes re-use. The youth of TinyOS precludes
us from having a corpus of tens of millions of lines
of code and decades of experience, as traditional
design pattern researchers do: these patterns are
an initial attempt to analyse and distill TinyOS
programming.

Although prior work has explored object ori-
ented design patterns for embedded and real-time
devices [3]–[7], they deal with platforms that
have orders of magnitude more resources (e.g.,
a few MB of RAM), and correspondingly more
traditional programming models, including threads,
instantiation, and dynamic allocation.

Section II provides background on the nesC lan-
guage. Section III presents six TinyOS design pat-
terns, describing their motivation, consequences,
and representation in nesC, as well as listing sev-
eral TinyOS components that use them. Section IV
discusses the patterns in the light of nesC and
TinyOS development, and Section V concludes.

II. BACKGROUND

Using a running example of an application com-
ponent that samples two sensors, we describe the
aspects of nesC relevant to the patterns we present
in Section III.

nesC [2] is a C-based language with two dis-
tinguishing features: a programming model where
components interact via interfaces, and a con-
currency model based on run-to-completion tasks
and interrupt handlers. The concurrency model
precludes interfaces from having blocking calls.
All system services, such as sampling a sensor
or sending a packet, are split-phase operations,
where a command to start the operation returns
immediately and a callback event indicates when
the operation completes. To promote reliability
and analysability, nesC does not support dynamic
memory allocation or function pointers and re-
quires that all component interactions be specified
at compile-time.

AppC

Interface type Initialisation Interface type Sensor

SensorsC

Main

LightC

Sensor Init

Init

App

Sensor1
Init

Sensor2

TempC

Sensor InitTemp

Light

Fig. 1. Sample Component Assembly. Solid rectangles
are modules, open rectangles are configurations. Triangles
pointing into a rectangle are provided interfaces, triangles
pointing out are used interfaces. Dotted lines are “wires”
added by configurationAppC, full lines are “wires” added by
configurationSensorsC . Component names are in bold.

A. Components and Interfaces

nesC programs are assemblies of components,
connected (“wired”) via named interfaces that they
provide or use. Figure 1 graphically depicts the
assembly of six components connected via inter-
faces of typeSense and Initialise . Modules
are components implemented with C code, while
configurations are components implemented by
wiring other components together. In the example
figure, Main , Light , Temp, andApp are modules
while AppC andSensorsC are configurations. The
example shows that configurationAppC “wires”
(i.e., connects)App’s Sensor1 interface toSen-

sorsC ’s Light interface, etc.
Modules and configurations have a name, spe-

cification and implementation:
module App {

provides interface Initialise as Init;
uses interface Sense as Sensor1;
uses interface Sense as Sensor2;

}
implementation { ... }

declares thatApp (from Figure 1) is a module
which provides an interface namedInit and uses
two interfaces, namedSensor1 and Sensor2 .
Each interface has a type, in this case eitherIni-

tialise or Sense . A component name denotes a

Fig. 2. Typical split-phase operation.

unique, singleton component1: references toMain

in different configurations (see below) all refer to
the same component.

An interface type specifies the interaction be-
tween a provider component and a user component
as a set of named functions:

interface Initialise {
command void init();

}

interface Sense { // split-phase sensor read
command void sense();
event void senseDone(int value);

}

This interaction is bi-directional:commandsare
invocations from the user to the provider, while
eventsare from the provider to the user. Figure 2
shows this relationship forApp and Temp. To
make the two directions syntactically explicit, nesC
events aresignalledwhile commands arecalled. In
both cases, the actual interaction is a function call.

Interface typeInitialise represents compo-
nent initialisation: providers must implement an
init function. Interface typeSense represents a
typical split-phase operation: providers must im-
plement thesense command, which represents a
request to read a sensor; users must implement the
senseDone event which the provider signals when
the sensor read completes.

Following these rules,App must implement
the init command of interfaceInit and the
sensorRead events of interfacesSensor1 and
Sensor2 . App is a module, so these functions are
implemented as slightly-extended C code:

module App { ... }
implementation {

int sum = 0;
command void Init.init() {

call Sensor1.readSensor();
}
event void Sensor1.sensorRead(int val) {

sum += val;
call Sensor2.readSensor();

}
event void Sensor2.sensorRead(int val) {

sum += val;
}

}

1We discuss in Section IV how the next version of nesC
changes this, and its effect on design patterns.

As this example shows, a command or eventf
of an interfaceI is namedI.f and is similar to a
C function except for the extra syntactic elements
such ascommand, event and call . Modules
encapsulate their state: all of their variables are
private. In App,sum variable is used to sum up the
values of two sensors connected to theSensor1

andSensor2 interfaces.

B. Configurations

A configuration implements its specification by
wiring other components together, andequating
its own interfaces with interfaces of those compo-
nents. Two components can interact only if some
configuration has wired them together:

configuration SensorsC {
provides interface Sense as Light;
provides interface Sense as Temp;

}
implementation {

components Main, LightC, TempC;

Main.Init -> LightC.Init;
Main.Init -> TempC.Init;

Light = LightC.Sensor;
Temp = TempC.Sensor;

}

SensorsC “assembles” componentsLightC and
TempC into a single component providing an in-
terface for each sensor. InterfaceTemp provided
by SensorsC is equatedto TempC’s Sensor in-
terface,Light with LightC ’s Sensor interface.
Additionally, SensorsC wires the system’s initial-
isation interface (Main.Init) to the initialisation
interfaces ofLightC andTempC.

Finally, AppC, the configuration for the whole
application, wires moduleApp (which uses two
sensors) toSensorsC (which provides two sen-
sors), and ensures thatApp is initialised by wiring
it to Main.Init :

configuration AppC { }
implementation {

components Main, App, SensorsC;

Main.Init -> App.Init;
App.Sensor1 -> SensorsC.Temp;
App.Sensor2 -> SensorsC.Light;

}

In this application, interfaceMain.Init is
multiply wired. AppC connects it toApp.Init ,
while SensorsC connects it toLight.Init and
Temp.Init . The call Init.init() in mod-
ule Main compiles to an invocation of all three

init() commands.2

C. Parameterised Interfaces

A parameterised interface is an interface array,
where the array indices are wiring parameters. For
example, this module has a separate instance of
interfaceA for each value ofid :

module Example {
provides interface Initialise as Inits[int id];
uses interface Sense as Sensors[int id];

} ...

In a module, interface parameters appear as extra
arguments:

command void Inits.init[int id1]() {
call Sensors.sense[id1]();

}
event void Sensors.senseDone[int i](int v) {

...
}

A configuration can select and wire a single
interface by providing arguments to the parame-
terised interface:

configuration ExampleC {
}
implementation {

components Main, Example;
components Temp, Light;

Main.Init -> Example.Inits[42];
Example.Sensors[42] -> Temp.Sensor;
Example.Sensors[43] -> Light.Sensor;

}

The system’s initialisation interface is connected
to Example ’s Inits[42] interface. As a result, at
boot time,Example ’s Inits.init command will
be called withid = 42 . This will causeExample

to call Sensor[42] , which connects to theTemp

component.
A configuration can wire or equate a parame-

terised interface to another parameterised interface
if they have the same parameter types:

provides interface Sense as ADC[int id];
...
Example.Sensors = ADC;

This equatesExample.Sensors[i] to ADC[i]

for all values ofi.

D. unique

In many cases, a programmer wants to use a
single element of parameterised interface, and does
not care which one as long as no one else uses it.
This functionality is supported by nesC’sunique

construction:

2If a multiply wired function has non-void result, nesC
combines the results via a programmer-specified function. [2]

App.Timer1 -> TimerC.Timer[unique("Timer")];
App.Timer2 -> TimerC.Timer[unique("Timer")];

All uses of unique with the same argument
string (which must be a constant) return different
values, from a contiguous sequence starting at
0. It is also often useful to know the number
of different values returned byunique (e.g., a
service may wish to know how many clients it has).
This number is returned by theuniqueCount

construction:
timer_t timers[uniqueCount("Timer")];

III. D ESIGN PATTERNS

We present six TinyOS design patterns: Dis-
patcher, Service Instance, Keysets, Placeholder,
Facade, and Decorator. We follow the basic format
used in Design Patterns[1], abbreviated to fit
in a research paper. Each pattern has anIntent,
which briefly describes its purpose. A more in-
depth Motivation follows, providing an example
drawn from TinyOS.Applicable Whenprovides a
succinct list of conditions for use and a component
diagram shows theStructureof how components
in the pattern interact. This diagram follows the
same format as Figure 1, with the addition of a
folded sub-box for showing source code (a float-
ing folded box represents source code in some
other, unnamed, component).Sample Codeshows
an example nesC implementation;Consequences
describes how the pattern achieves its goals, and
notes issues to consider when using it. A more in-
depth presentation of these and other patterns can
be found on our website [8].

Many of the differences between the design
patterns we present below and traditional object-
oriented patterns stem from the design principles
behind TinyOS [9]. For example, TinyOS gen-
erally depends on static composition techniques
to provide robust, unattended operation: function
pointers or virtual functions can complicate pro-
gram analysis, while dynamic allocation can fail
at run-time if one allocator misbehaves. As a
result, where many OO patterns increase object
flexibility and reusability by allowing behaviour
changes at runtime, our patterns require that most
such decisions be taken by compile-time (e.g., the
Dispatcher pattern requires that all possible targets
be specified by wirings).

A. Dispatcher

Intent: Dynamically select between a set of be-
haviours based on an identifier. Provides a way to
implement and include behaviours independently
of the component that uses them.

Motivation: Sometimes our application needs to
perform one of a set of operations in response
to input. The details of the operation are not
important to the invoking component. Additionally,
we need to be able to easily extend the set of
supported operations. For example, a node can
receive many kinds of Active Messages (packets),
some of which it must respond to.AMStandard ,
the networking stack component that signals the
arrival of a packets should not need to know
what processing, if any, an application performs.
Other examples include abstractions such as multi-
channel ADCs or simple command interpreters.

One way to meet this requirement is with a
series of conditionals or a switch statement: ”if the
data is of typeT1, do this; else if it is of typeT2,
do that.” However, this places the implementation
of the operations inAMStandard .

An interface can decouple implementations from
operation choice. Instead of embedding the imple-
mentation in its conditional statement,AMStan-

dard could invoke one of a set of interfaces: ”if
the data is of typeT1, invoke interfaceI1; else
if it is of type T2, invoke interfaceI2. However,
this couples the set of supported operations to the
implementation of the network stack: adding a new
operation requires modifyingAMStandard .

A more flexible approach is forAMStandard

to be a Dispatcher and invoke operations using
a parameterised interface, based on the received
message’s type. This makes the set of supported
operations independent ofAMStandard ’s imple-
mentation. AMStandard doesn’t need to know
what message types the application processes, or
what processing it performs (often, none).

Applicable When:

• A component needs to support an externally
customisable set of operations.

• A primitive integer type can identify which
operation to perform.

• The operations can all be implemented in
terms of a single interface.

Structure

Dispatcher

Operations[id]

interface Operation

Op1
Op

components Dispatcher, Op2;
Dispatcher.Operations[KEY2] -> Op2.Op;

Op2
Op

Sample Code:In this example, the AddXY con-
figuration adds OperationX and OperationY to the
set of operations a Dispatcher supports:

configuration Dispatcher {
uses interface Operation as Op[uint8_t id];

}
configuration AddXY {}
implementation {

components Dispatcher, OperationX, OperationY;
Dispatcher.Op[OP_X] -> OperationX.Op;
Dispatcher.Op[OP_Y] -> OperationY.Op;

}

Consequences:By leaving operation selection to
nesC wirings, the dispatcher component’s imple-
mentation remains independent of what an appli-
cation supports. However, finding the full set of
supported operations can require looking at many
files. Sloppy operation identifier management can
lead to inadvertent fanout on operation calls.

The key aspects of the dispatcher pattern are:

• It allows you to easily extend or modify the
functionality an application supports: adding
an operation requires a single wiring.

• It allows the elements of functionality to be
independently implemented and to be re-used.
Because each operation is implemented in a
component, it can be easily re-used across
many applications.

• It requires the individual operations to follow
a uniform interface. The dispatcher is usually
not well suited to operations that have a wide
range of semantics.

The compile-time binding of the operation sim-
plifies program analysis and puts dispatch tables in
the compiled code, saving RAM. Dispatching on
data types or identifiers provides a simple way to
develop programs that execute in reaction to their
environment.

B. Service Instance

Intent: Allows multiple users to have separate
instances of a particular service, managing state
and enabling instances to collaborate efficiently.
Motivation: Sometimes we need several indepen-
dent instances of a system service, and don’t know
precisely how many until we build a complete
application. Each instance requires maintaining
some state, but the service implementation needs
to access the state of every instance. We want to
reserve state for all instances at compile time.

For example, TinyOS programs need a wide
range of timers, for everything from network time-
outs to sensor sampling. Each timer appears inde-
pendent, but they all operate on top of a single
hardware clock. An energy-efficient implementa-
tion will minimise the interrupt handling rate. This
requires knowing when the next timer is due to fire.

Implementing each timer as a separate compo-
nent requires redundant code and a lot of com-
ponent communication to schedule the underlying
hardware clock. Allocating a constant number of
timers in a single component is neither efficient
nor robust. If the system needs fewer, it wastes
RAM. If the system needs more, detection of
the mismatch only happens at run-time, when the
implementation refuses a request.

The Service Instance pattern provides a solution
to this problem. Using this pattern, each user of
a service can have its own (virtual) instance, but
instances share code and can access each other’s
state. A component following the Service Instance
pattern provides its service in a parameterised
interface; each user wires to a unique instance
of the interface usingunique . The underlying
component receives the unique identity of each
client in each command, and can use it to index
into a state array. The component can determine
how many instances exist using theuniqueCount

function and dimension the state array accordingly.
Applicable When:

• A component needs to provide multiple in-
stances of a service, but does not know how
many.

• Each service instance appears to its user to be
independent of the others.

• The service provider needs to be able to easily
access the state of every instance.

Structure

NUSERS = uniqueCount(“Service”);
StateType state[NUSERS];

ServiceProvider

Svc[id]

ResourceC
AResourceUsedResource

User2
Svc

interface Service

interface Resource

User1
Svc

components User2, ServiceProvider;
User2.Svc -> ServiceProvider.Svc[unique(“Service”)];

Sample Code:TimerC wires TimerM, the Servi-
ceProvider, to an underlying clock and exports its
Timer interfaces. TimerM usesuniqueCount to
determine how many timers to allocate and maps
to them using unique IDs:

module TimerM {
provides interface Timer[uint8_t id];
uses interface Clock;

}
implementation {

enum {
NUM_TIMERS = uniqueCount("Timer")

}
timer_t timers[NUM_TIMERS];

command result_t Timer.start[uint8_t id](...){}
}

Clients wanting a timer wire using unique:
C.Timer -> TimerC.Timer[unique("Timer")];

Consequences:By using unique and unique-

Count , a ServiceProvider can allocate state ac-
cording to the number of users, and easily access
the state of each user. However, the running time
of some operations may depend on the number of
users, so execution costs can’t be known until an
application is compiled.

If many users require an instance, but use them
rarely, then allocating state for each one can
be wasteful. Another option is to allocate fewer
instances and dynamically give them to users.
This can conserve total RAM, but requires more
RAM per instance (for user IDs), imposes a CPU
overhead (for allocation and deallocation), can fail
at run-time (if there are too many simultaneous
users), and assumes a reclamation strategy (misuse
of which would lead to leaks). This long list of
challenges makes the Service Instance an attractive
– and more and more commonly used – way to
efficiently support application requirements.

C. Keysets

Intent: Provide namespaces for referring to pro-
tocols, structures, or other entities in a program.
Allow efficient mapping between different names-
paces.

Motivation: A typical sensor network program
needs namespaces for the various entities it man-
ages, such as protocols, data types, or structure in-
stances. Limited resources mean names are usually
stored as small integer keys.

For data types representing internal program
structures, each instance must have a unique name,
but as they are only relevant to a single mote,
the names can be chosen freely. Theselocal
namespaces are usually dense, for efficiency. The
Service Instance pattern (Section III-B) is an ex-
ample of a local namespace. In contrast, com-
munication requires a shared,global namespace:
two motes/applications must agree on an element’s
name. As a mote may only use a few elements,
global namespaces are typically sparse. The Dis-
patcher pattern (Section III-A) is an example of
a global namespace. Finally, mapping between
namespaces is often useful: this allows motes to
communicate, but also control how keys are inter-
nally represented.

The Keyset patterns provide solutions to these
problems. Using these patterns, programs can re-
fer to elements using identifiers optimised for
their particular use. Components using the Keyset
patterns often take advantage of a parameterised
interface, in which the parameter is an element in
a Keyset. Local Keysets are designed for referring
to local structures and are generated withunique ;
Global Keysets are designed for communication
and use global constants; Keymaps can map be-
tween different keysets.

The Drip management protocol uses the Keyset
patterns to allow a user to configure parameters
at run-time. A component registers a parameter
with the DripC component with a Global Keyset,
so it can be named in an application-independent
manner. The user modifies a parameter by sending
a key-value pair using an epidemic protocol, which
distributes the change to every mote.DripC main-
tains state for each configurable parameter with the
Service Instance pattern, using a Local Keyset. A
Keymap maps the global key to the local key.

Applicable When:
• A program must keep track of a set of ele-

ments or data types.
• The set is known and fixed at compile-time.

Structure

GlobalSvc

State[gid]

interface Service

components GlobalSvc, Manager, User2;
User2.Svc -> GlobalSvc.GMap[GKEY];
GlobalSvc.State[GKEY] -> Manager.State[unique(“Keymap”)];

User2
Svc

User1
Svc GMap[gid]

Manager

State[lid]

interface State

Sample Code:
TheDripC component provides a parameterised

interface for components to register configurable
values with a Global Keyset:

enum { DRIP_GLOBAL = 0x20};
App.Drip -> DripC.Drip[DRIP_GLOBAL];

DripC uses another component to manage its
internal state,DripStateM . DripStateM uses a
Local Keyset for the configurable values (an exam-
ple of the Service Instance pattern, in Section III-
B), and a Keymap maps between the two:

enum { DRIP_LOCAL = unique("DripState")};
DripC.DripState[DRIP_GLOBAL] ->

DripStateM.DripState[DRIP_LOCAL];

In this example, a user can generate a new value
for Apps’s parameter, and distribute it based on
the DRIP GLOBALkey. DripC uses the global key
to refer to the value, butDripStateM can use
a local key to refer to the state it maintains for
that value. The wiring compiles down to a simple
switch statement that callsDripStateM with the
proper local key.

Consequences:
Keysets allow a component to refer to data items

or types through a parameterised interface. In a Lo-
cal Keyset,unique ensures that every element has
a unique identifier. Global Keysets can also have
unique identifiers, but require external namespace
management. A Keymap uses nesC wiring to allow
components to transparently map between different
keysets.

As Local Keysets are generated withunique ,
mapping names to keys (e.g., for debugging pur-
poses) can be difficult. The nesC constant genera-
tor, ncg , can be useful in this regard.

D. Placeholder

Intent: Easily change which implementation of a
service an entire application uses. Prevent inadver-
tent inclusion of multiple, incompatible implemen-
tations.

Motivation: Often, a service has several variant
implementations. For example, there are many ad-
hoc collection routing algorithms implemented in
TinyOS, but they all expose the same interface.
This allows applications to work on top of different
routers without internal changes. Another example
is a debugging component: during development,
you want to log state, but in deployment you want
to disable logging to conserve resources.

We need the decision of which implementation
to use to be system-wide. Otherwise, components
in the application might specify different ones,
which can conflict or waste resources. However,
every configuration that wires to a service names it;
changing the implementation in a large application
could require changing many files.

The Placeholder pattern offers a solution. A
placeholder configuration represents the desired
service through a level of indirection. All com-
ponents that need to use the service wire to the
placeholder. The placeholder itself is just “a pass
through” of the service’s interfaces. A second con-
figuration (typically provided by the application)
wires the placeholder to the selected implementa-
tion. This selection can then be changed by editing
a single file. As the level of indirection is solely
in terms of names – there is no additional code –
it imposes no CPU overhead.

Applicable When:
• A component or service has multiple, mutu-

ally exclusive implementations.
• Many subsystems and parts of your applica-

tion need to use this component/service.
• You need to easily switch implementations.

Structure

Placeholder

ActualSvc

Svc = Actual;

User1
Svc

User2
Svc

components User2, Placeholder;
User2.Svc -> Placeholder.Svc;

interface Service

Alternate
Svc

Impl
Svc

Sample Code:Several parts of an application use
ad-hoc collection routing to collect and aggregate
sensor readings. However, the application design
is independent of a particular routing implementa-
tion, so that improvements or new algorithms can
be easily incorporated.

The routing subsystem is represented by a Place-
holder, which provides a unified name for the
underlying implementation and just exports its
interfaces:

configuration CollectionRouter {
provides {

interface StdControl as SC;
interface SendMsg as Send;

}
uses {

interface StdControl as ActualSC;
interface SendMsg as ActualSend;

}
}
implementation {

SC = ActualSC;
Send = ActualSend;

}

Every component that uses collection routing
wires to CollectionRouter:

configuration Sensing { ... }
implementation {

components SensingM, CollectionRouter;

SensingM.Send = CollectionRouter.Send;
...

}

and the application must globally select its routing
component:

configuration AppMain { }
implementation {

components CollectionRouter, EWMARouter;

CollectionRouter.ActualSC -> EWMARouter.SC;
CollectionRouter.ActualSend -> EWMARouter.Send;
...

}

Consequences:By adding a level of naming in-
direction, a Placeholder provides a single point at
which you can choose an implementation. As using
the Placeholder pattern generally requires every
component to wire to the Placeholder instead of a
concrete instance, incorporating a Placeholder into
an existing application can require modifying many
components. However, the nesC compiler opti-
mises away the added level of wiring indirection,
so a Placeholder imposes no run-time overhead.
The Placeholder supports flexible composition and
simplifies use of alternative service implementa-
tions.

E. Facade

Intent: Provides a unified interface to a set of inter-
related services. Simplifies use and inclusion of the
subservices.

Motivation: Complex system components, such as
a filesystem or networking abstraction, are often
implemented across many components. Higher-
level operations may be based on lower-level ones,
and a user needs access to both. Complex function-
ality may be spread across several components;
although implemented separately, these pieces of
functionality are part of a cohesive whole that we
want to present as a logical unit.

For example, the Matchbox filing system pro-
vides interfaces for reading and writing files, as
well as for metadata operations such as deleting
and renaming. Separate modules implement each
of the interfaces, and depend on common underly-
ing services such as reading blocks.

Exporting each interface with a separate compo-
nent (e.g., MatchboxRead, MatchboxWrite, Match-
boxRename, etc.) makes the abstraction more dif-
ficult to use. Instead of wiring a single component,
an application needs to include several, and wire to
each of them. Additionally, each interface would
need a separate configuration to wire it to the
subsystems it depends on, increasing clutter in the
component namespace. The implementer needs to
be careful with these configurations, to prevent
inadvertent double-wirings.

The Facade pattern provides a uniform access
point to interfaces provided by many components.
A Facade is a nesC configuration that defines a co-
herent abstraction boundary by exporting interfaces
of several underlying components. Additionally,
the Facade can wire its underlying components,
simplifying dependency resolution.

Applicable When:
• An abstraction is implemented across several

separate components.
• It is preferable to present the abstraction in

whole rather than in parts.

Structure

Facade
User

SvcImpl1
Svc

interface Service1

interface Service2

SvcImpl2
Svc

Svc2

Svc1

Svc2

Svc1

components Svc1Impl, Svc2Impl;
Svc1 = Svc1Impl.Svc;
Svc2 = Svc2Impl.Svc;

components User, Facade;
User.Svc1 = Facade.Svc1;
User.Svc2 = Facade.Svc2;

Sample Code:The Matchbox filing system uses a
Facade to present a uniform filesystem abstraction.
File operations are all implemented in different
components, but the top-level Matchbox config-
uration provides them in a single place. Each of
these components depends on a wide range of
underlying abstractions, such as a block interface
to non-volatile storage;Matchbox.nc wires them
appropriately, resolving all of the dependencies.

configuration Matchbox {
provides {

interface FileDelete;
interface FileDir;
interface FileRead[uint8_t fd];
interface FileRename;
interface FileWrite[uint8_t fd];

}
}
implementation {

components Read, Write, Dir, Rename, Delete;
FileDelete = Delete.FileDelete;
FileDir = Dir.FileDir;
FileRead = Read.FileRead;
FileRename = Rename.FileRename;
FileWrite = Write.FileWrite;

}

Consequences:The Facade provides an abstrac-
tion boundary as a set of interfaces. A user can
easily see the set of operations the abstraction sup-
port, and only needs to include a single component
to use the whole service.

Because the Facade names all of its sub-parts,
they will all be included in the nesC component
graph. The nesC compiler removes unreachable
code, but if any component handles interrupts, then
code in the interrupt paths will be included, as will
any tasks that those interrupts post. If you expect
applications to only use a very narrow part of an
abstraction, then a Facade can be wasteful.

Several stable, commonly used abstract bound-
aries have emerged in TinyOS [10]. The presenta-
tion of these APIs is almost always a Facade.

F. Decorator

Intent: Modify existing, or add additional respon-
sibilities to a component without modifying its
original implementation.
Motivation: We often need to add extra function-
ality to an existing component, or to modify the
way it works without changing its interfaces. A
traditional object-oriented approach to this prob-
lem is to use inheritance, making the new version a
subclass. Component composition is the technique
nesC supports to achieve this result.

For instance, the standardByteEEPROMcompo-
nent provides aLogData interface to log data to
a region of flash memory. In some circumstances,
we would like to introduce a write buffer on top of
the interface, to reduce the number of actual writes
to the EEPROM.

Adding a buffer to theByteEEPROM compo-
nent forces all logging applications to allocate
the buffer; as some application may not able to
spare the RAM, this is undesirable. Providing two
versions, buffered and unbuffered, replicates code,
reducing reuse. Additionally, it is possible that sev-
eral implementers of the interface may benefit from
the added functionality: having multiple copies,
spread across several services, also replicates code.

The Decorator pattern provides a better solution.
A Decorator component is typically a module that
provides and uses the same interface type, such
asLogData . Its provided interface adds function-
ality on top of the used interface. For example,
the BufferedLog component sits on top of a
LogData provider, and provides the buffering. Ad-
ditionally, it provides a non-split-phaseFastLog

interface for faster operation.
Using a Decorator has additional benefits. Sepa-

rating the added functionality from a particular im-
plementation allows it to apply to any implementa-
tion. For example, a packet send queue Decorator
can be interposed on top of any ad-hoc routing
implementation.
Applicable When:

• You wish to extend the functionality of an
existing component without changing its im-
plementation, or

• You wish to provide several variants of a
component without having to implement each
possible combination separately.

Structure

Decorator Original
SvcOrigSvc

Ext

// implement Svc, Ext
// using Orig

interface Service

interface Extension

OldUser
Svc

NewUser
Ext

components NewUser, Decorator;
NewUser.Ext -> Decorator.Ext;

components OldUser, Decorator;
OldUser.Svc -> Decorator.Svc;

Sample Code: The standardLogData interface
includes split-phaseerase , append and sync

operations.BufferedLog adds buffering to the
LogData operations, and, additionally, supports
a FastLogData interface with a non-split-phase
append operation (for small writes only):

module BufferedLog {
provides interface LogData as Log;
provides interface FastLogData as FastLog;
uses interface LogData as UnbufferedLog;

}
implementation {

char buffer1[BUFSIZE], buffer2[BUFSIZE];
char *buffer;
command result_t FastLog.append(data, n) {

if (buffer_full) {
call UnbufferedLog.append(buffer, offset);
// ... switch to other buffer ...

}
// ... append to buffer ...

}

Consequences:Applying a Decorator allows you
to extend or modify a component’s behaviour
though a separate component: the original imple-
mentation can remain unchanged. Additionally, the
Decorator can be applied to any component that
provides the interface.

In most cases, a decorated component should
not be used directly, as the Decorator is already
handling its events. The Placeholder pattern (Sec-
tion III-D) can ensure this.

Additional interfaces are likely to use the un-
derlying component, so there will likely be depen-
dencies between the original and extra interfaces
of a Decorator. For instance, inBufferedLog ,
FastLog uses UnbufferedLog , so concurrent
requests toFastLog andLog are likely to conflict:
only one can access theUnbufferedLog at once.

Decorators are a lightweight but flexible way
to extend component functionality. Interpositioning
is a common technique in building networking
stacks [11], and Decorators enable this style of
composition.

IV. D ISCUSSION

The six design patterns described in Section III
can be separated into classes: Dispatcher, Keyset
and Service Instance are specific to nesC, while
Decorator, Facade and Placeholder have analogues
in existing pattern [1].

The nesC-specific patterns represent ways to
make nesC’s static programming model – with no
dynamic memory allocation, objects or function
pointers – more practical by increasing component
flexibility. Service Instance allow services (e.g.,
timers, file systems) to have a variable number
of clients; it is the standard pattern for a stateful
TinyOS service. Dispatcher supports application-
configured dispatching (e.g., message reception,
user commands). Keysets are a direct result of pa-
rameterised interfaces (and are used in support of
Dispatcher and Service Instance), while Keymaps
enable components with different namespaces to
interoperate, so a component can be reused in
many circumstances.

The TinyOS Facade and Decorator patterns have
similar goals and structures to their identically-
named object-oriented analogues [1, p.175,p.185].
The Facade assembles a set of existing compo-
nents and presents them as a single component to
simplify use. while the Decorator adds extra func-
tionality to an existing component. The differences
lie in nesC’s model of static composition. In the
case of the Facade, this means that all of the rela-
tionships are bound at compile-time; additionally,
the singleton nature of components means that the
internals of a Facade cannot be truly private. In
the case of the Decorator, its compile-time binding
is a way to define inheritance hierarchies, but
the singleton nature of components limits the use
of any given Decorator. Finally, Placeholder has
similarities to the Bridge [1, p.151]: it simplifies
implementation switching, but requires that the
implementation selection be performed at compile-
time. Section IV-B discusses how future nesC 1.2
features extend these patterns and address some of
their limitations.

A. Patterns support TinyOS’s goals

The patterns we have presented directly support
TinyOS’s design goals [10, Section 2.1]: robust-
ness, low resource usage, supporting hardware

evolution, enabling diverse service implementa-
tions, and adaptability to application requirements.
Specifically,

• A Placeholder supports diverse implementa-
tions by simplifying implementation selec-
tion and hardware evolution by defining a
platform-independent abstraction layer.

• A Decorator supports diverse implementa-
tions by enabling lightweight component ex-
tension.

• Service Instance, Keysets and Keymap in-
crease robustness and lower resource usage
by binding interactions at compile-time.

• A Dispatcher improves application adaptabil-
ity by providing a way to easily configure
what operations an application supports.

B. nesC, Yesterday and Tomorrow

As experience in using has TinyOS grown, we
have introduced features in nesC to make build-
ing applications easier. Design patterns have been
the motivation for several of these features. For
example, the first version of nesC (before TinyOS
1.0) had neitherunique nor uniqueCount . Initial
versions of the Timer component coalesced into
Service Instance pattern, which led to the inclusion
of unique and uniqueCount . The next version
of nesC, 1.2, will introduce the feature ofgeneric
componentsto simplify using design patterns.

TinyOS design patterns tend to depend on users
wiring components in a particular way. For exam-
ple, when wiring to a Service Instance, a program-
mer must know the key to use as the argument
to unique . Similarly, in the Keymap pattern, a
user must wire to the global keyset as well as
introduce a wiring for the global to local mapping.
These examples involve replicated code: changing
the Service Instance key requires changing every
user of the service, and a typo in one instance of
the key can lead to buggy behaviour (the keys may
no longer be unique). Additionally, the singleton
model of TinyOS is inherently opposed to the goal
of code re-use. If a program needs two copies of
a module, such as a data filter Decorator, then two
separate modules must exist, and their code must
be maintained separately.

nesC 1.2 introduces generic components, which
can be instantiated with numerical and type param-
eters. The basic model of module instantiation is

to create a copy of the code. Configurations can
instantiate generic components:

components new LogBufferer(), ByteEEPROM;
LogBufferer.UnbufferedLog -> ByteEEPROM;

Generic modules allow a programmer to use
copies of a component in many places while main-
taining a single implementation: they are similar
to compile-time object instantiation. Generic con-
figurations allow a programmer to capture wiring
patterns and represent them once. For example,
the key a Service Instance component uses can
be written in one place: instead of wiring with
unique , a user of the service wires to an instance
of a generic configuration:

generic configuration TimerSvc() {
provides interface Timer;

}
implementation {

components TimerC;
Timer = TimerC.Timer[unique("TimerKey")];

}
....

components User1, new TimerSvc();
User1.Timer -> TimerSvc;

Generic modules allow patterns such as Facade
to have private components, whose interfaces are
only accessible through what a configuration ex-
poses. By providing a globally accessible name,
a Placeholder provides a way to make a generic
component behave like a nesC 1.1 singleton.

V. CONCLUSION

Like their object-oriented brethren, TinyOS de-
sign patterns are templates of how functional el-
ements of a software system interact. Flexibility
is a common goal, but in TinyOS we must also
preserve the efficiency and reliability of nesC’s
static programming model. Thus, the TinyOS pat-
terns allow most of this flexibility to be resolved at
compile-time, through the use of wiring,unique

anduniqueCount .
Our set of TinyOS design patterns is a work in

progress. In particular, it is clear that analogues of
many of the structural patterns from the original
Design Patterns book [1] can be expressed in nesC,
with a “component = class”, or “component =
object” mapping. The relative lack of behavioural
patterns (just Dispatcher) in our list may reflect
the fact that, so far, TinyOS applications have been
fairly simple.

Finally, our design patterns are reusable pat-
terns of component composition. TinyOS has many

other forms of patterns, such as interface patterns
(e.g., split-phase operations, error handling)3, and
data-handling patterns (e.g., data pumps in the net-
work stack). These other sorts of patterns deserve
further investigation.

ACKNOWLEDGEMENTS

This work was supported, in part, by the De-
fense Department Advanced Research Projects
Agency (grants F33615-01-C-1895 and N6601-99-
2-8913), the National Science Foundation (grants
No. 0122599 and NSF IIS-033017), California
MICRO program, and Intel Corporation. Research
infrastructure was provided by the National Sci-
ence Foundation (grant EIA-9802069).

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patters: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler, “The nesC language: A holistic approach
to networked embedded systems,” inSIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation (PLDI’03), June 2003.

[3] OOPSLA Workshop Towards Patterns and Pattern Lan-
guages for OO Distributed Real-time and Embedded
Systems, 2001.

[4] OOPSLA Workshop on Patterns in Distributed Real-time
and Embedded Systems, 2002.

[5] PLOP Workshop on Patterns and Pattern Languages in
Distributed Real-time and Embedded Systems, 2002.

[6] B. P. Douglass,Real-Time Design Patterns: Robust Scal-
able Architecture for Real-Time Systems. Addison-
Wesley, 2002.

[7] L. Girod, J. Elson, and A. Cerpa, “Em*: a Software Envi-
ronment for Developing and Deploying Wireless Sensor
Networks,” inProceedings of the USENIX General Track
2004.

[8] P. Levis and D. Gay, “Tinyos design patterns,”
http://www.cs.berkeley.edu/˜pal/tinyos-patterns, 2004.

[9] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. White-
house, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and
D. Culler, “TinyOS: An operating system for wireless
sensor networks,” inAmbient Intelligence. New York,
NY: Springer-Verlag, To Appear.

[10] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler, “The emergence
of networking abstractions and techniques in tinyos,”
in First USENIX/ACM Symposium on Network Systems
Design and Implementation (NSDI), 2004.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The Click modular router,”ACM Transac-
tions on Computer Systems, vol. 18, no. 3, pp. 263–297,
August 2000.

3The device patterns in EM? [7] may provide inspiration
here.

	Introduction
	Background
	Components and Interfaces
	Configurations
	Parameterised Interfaces
	unique

	Design Patterns
	Dispatcher
	Service Instance
	Keysets
	Placeholder
	Facade
	Decorator

	Discussion
	Patterns support TinyOS's goals
	nesC, Yesterday and Tomorrow

	Conclusion
	References

