Some Implications of Low Power Wireless to IP Networking

Kannan Srinivasan†, Prabal Dutta‡, Arsalan Tavakoli‡, and Philip Levis†
†Department of Electrical Engineering, Stanford University
‡Computer Science Division, UC Berkeley

Abstract
We examine and outline challenges in IPv6 routing over low-power wireless personal area networks (PANs). We present empirical measurements and analysis of an increasingly popular PAN link layer, 802.15.4. We show that over short periods 802.15.4 exhibits bimodal connectivity, but over longer periods has many intermediate links. We quantify how synchronous acknowledgments affect common low-power routing metrics, such as ETX. We identify metrics for detecting modal changes in link quality. We explore how these behaviors affect IP routing and IPv6 requirements, such as route selection and maintenance, sub-IP fragmentation and assembly, and packet scheduling.

1 Introduction
Low-power wireless is increasingly important to computer networking. Until recently, network edge devices were for the most part wired servers and desktops. As Moore’s Law has pushed the price and form factor of computers down, however, networks have expanded to include large numbers of wireless desktops, laptops, palmtops and cellphones. This trend towards smaller, lower power, and more numerous devices has led to new wireless physical and data-link standards to support them, such as Bluetooth [4], 802.15.4 and 802.15.4b [17], which are designed for short range personal area networks (PANs). Economies of scale may make PAN devices more numerous than any other class of wireless node. In order to maximize lifetime, PAN devices aggressively conserve energy.

Wireless sensor networks (sensornets) are one heavily studied subclass of PANs [3]. Composed of collections of tiny, battery-limited devices with a few kB of RAM, a few MHz of CPU, and sub-1% duty cycles, sensornets impose novel and unique network requirements. Research protocol architectures [10,7] as well as industrial standards [1] have discarded IP, arguing that it is not suitable due to addressing, network dynamics, discovery, and power. Instead, research protocols have focused on data-centric approaches, while standards such as Zigbee have defined monolithic stacks that stretch from the data-link to the application layer. Not everyone agrees that IP is inappropriate. The IETF has recently formed a working group – 6lowpan – to standardize how to run IPv6 on low-power PAN protocols [15]. The group believes that the expected number of devices calls for a very large address space, making IPv6 better suited than IPv4. There are many reasons why IP is an attractive solution, including interoperability, a huge library of tools and utilities, and decades of research towards understanding its behavior. History has shown IP to be flexible enough to optimize for many different kinds of networks and usage patterns, working well, or at least well enough, in many domains for which it was never initially intended.

This debate raises two closely related questions. First, how do low-power wireless networks behave? Second, what implications do these behaviors have for IP? The first question has been an important part of sensornet research. Several studies have experimentally quantified low-power wireless radio performance and behavior by exploring the effects of environments, encoding, frequencies, and disambiguating causes of loss [9,5,3]. At this point it is clear that low-power wireless protocols have differences from the many media traditionally considered when discussing IP networking, such as bandwidth utilization, energy minimization, and packet sizes. As much of academia and research has dismissed IP, however, there has been very little thought or investigation into the second question, of how these results would affect IP-based networking. Quantifying how low-power wireless is different and the implications of those differences is an important first step towards understanding the challenges in bringing IP to these devices.

This paper presents measurements of the long- and short-term behavior of the dominant PAN layer 2 protocol, 802.15.4. It shows ways in which it differs significantly from higher-power protocols in the same spectrum (e.g., 802.11b) as well as the low-power radios measured in early PAN/sensornet studies. It presents some implications of these behaviors to IPv6 networking. Table 1 summarizes the contributions of this paper as its experimental observations and their implications.

2 Background
The IEEE 802.15 working group focuses on wireless PAN protocols. More recently, the 802.15.4 task group was chartered “to investigate a low data rate solution with multi-month to multi-year battery life and very low complexity,” 802.15.4 uses a beacon-based scheme, which conserves power by scheduling communication without requiring an association protocol. 802.15.4 uses CSMA for media access. In terms of raw bandwidth per joule, 802.11b is cheaper; what makes 802.15.4 more attractive to PANs is its simpler electronics, which leads to lower cost, faster wakeup, and lower sleep currents.

Two aspects of the 802.15.4 MAC layer are particularly important to IPv6 networking. The first is synchronous layer 2 acknowledgments. When a node sends a unicast packet, it can request an acknowledgment from the receiver, which the receiver sends approximately 180µs later. An acknowledgment packet is 5 bytes long, containing only the format header (2 bytes), a CRC (2 bytes), and the sequence number (1 byte) of the received packet: it contains neither a source nor a destination address. The second is that the maximum 802.15.4 packet size is 127 bytes. The 128th byte is is used by the physical layer to denote the size of the packet. This is important because IPv6 requires that data-link layers whose MTU is smaller than 1280 octets provide a sub-IP fragmentation and assembly layer. On one hand, the expectation is that few PAN packets will be large, but this functionality is a requirement for IPv6 interoperability, and the 6lowpan working group has proposed a new approach which incorporates header compression and the ability to use short 16-bit node addresses [13]. As PAN devices are energy-constrained, using techniques to increase single-hop delivery rates are valuable, as they can significantly improve end-to-end reliability and therefore reduce the number of network-level retransmissions.

The commonly used 802.15.4 physical layer occupies the same 2.4GHz spectrum as 802.11b. Because of their different data rates, their channels occupy different spectrum widths. Figure 1 shows...
802.11b and 802.15.4 spectrum utilization. Figure 1.

802.11 hidden terminals are uncommon occurrences to 15.4 nodes because of power disparities. For an 802.11 to be a hidden terminal, the 15.4 transmitter must have a signal weak enough for clear channel assessment, the 15.4 receiver must be within interference range, and the receiver be at the edge of the transmitters range.

table 1. Summary of observations and their implications to IPv6 routing.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Section</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over short packet bursts, links qualities are largely bimodal.</td>
<td>Sec. 3</td>
<td>Fragments may be sent in small bursts when a link is good (greedy link select). Need sub-IP acknowledgment scheme to handle fragment flushes.</td>
</tr>
<tr>
<td>Low rate traffic encounters intermediate links, which are due to SNR variations or proximity to the reception threshold.</td>
<td>Sec. 4</td>
<td>Routing low utilization traffic requires continuous link estimation or route probing/discovery. The network layer may benefit from physical-layer information such as signal strength and noise measurements.</td>
</tr>
<tr>
<td>ETX asymmetries exist and are more common in low rate than burst traffic.</td>
<td>Sec. 5</td>
<td>Route discovery cannot assume bidirectional communication. Routes require periodic refreshing or probing.</td>
</tr>
<tr>
<td>Packet ACK failures are correlated.</td>
<td>Sec. 5</td>
<td>Naive retransmissions waste energy. Need feedback between retransmissions and route selection. Need retransmission and duplicate suppression techniques.</td>
</tr>
</tbody>
</table>

Figures 2 and 3. PRR distributions for a 28 node indoor testbed where nodes are on the ceiling. Reception rates are generally bimodal, and the commonality of intermediate links increases with inter-packet delays.

to reception sensitivity differences, which Cerpa et al. [5] supported after swapping asymmetric node pairs and finding that the asymmetries were a product of the nodes and not the environment. While the affects of link asymmetry have been studied in TCP traffic [3] and are applicable to PANs, small packet sizes of low-power wireless and temporal variations raise separate issues to IP networking, which to the best of our knowledge have not yet been addressed.

Cerpal et al. showed that PRR rates can change significantly over time, so that long-term PRR calculation can lead to very inaccurate results [6]. They suggested instead that an instantaneous measure of RNP – "required number of packets" – was preferable to a long-term PRR. This work also introduced using conditional probabilities in link estimation, an idea which we extend when considering the correlation between packet failures in Section 5.

Aguayo et al. [2] observed similar packet delivery behaviors in a 38-node 802.11 long haul urban mesh network, but concluded that they were most likely due to multipath effects as there was little correlation between PRR and signal to interference plus noise ratio (SINR). Their experimental methodology differs from those of the sensor network studies. For example, they consider average SINR ratios over second-long periods rather than on a per-packet basis. Nevertheless, the differences in conclusions between the efforts are interesting. Since 802.11b operates in the same ISM band as 802.15.4 and uses a similar modulation scheme (QPSK), its transmitters could be significant sources of interference [13].

3 Distribution of Packet Reception Rates

We start our study by examining the distribution of packet reception rates (PRRs) of 802.15.4 nodes on an indoor testbed. Figures 3(a) and 3(b) show these distributions. Each point corresponds to a single, unidirectional link over which at least one packet was delivered. There were a total of 28 nodes, giving 756 potential links. The figures specify the number of packets over which the reception rate is computed. Reception rates are sorted in descending order and the data for each line comes from a different experiment: each y-value for a given x-value is not expected to be from the same node.
pair. In the testbed nodes were pinned to the ceiling, people moved freely through the space and there were 802.11 access points. We measured PRR by having each node transmit 200 broadcasts under two different traffic patterns. In the first, round-robin, each node took turns transmitting a single packet, and transmissions were 500 ms apart. With 28 nodes, the inter-packet time for each node was 14 seconds, and for 200 packets the entire experiment took 47 minutes. In the second, burst, each node transmitted its 200 packets without interruption. With inter-packet times of 10 and 100 ms, the experiments took 56 seconds and 9 minutes.

Figure 3(a) shows that Channel 11 has 40% fewer high quality (> 90% PRR) links than Channel 26. There are at least three possible explanations for this data. First, 802.15.4 channel 11 shares spectrum with 802.11b while 802.15.4 channel 26 does not. Therefore, 802.11 traffic may interfere with 802.15.4 traffic on channel 11. This explanation, however, is not entirely satisfying. It seems that channel 11 should have a longer right tail since at least a few packets might have been received during the 47 minutes experiment on the 200 or more links seen on channel 26 but absent on channel 11. Second, since our experiments were carried out at different times, it is possible that the RF environment changed appreciably between the two trials. However, this explanation appears unlikely since repeating experiment at different times results in essentially the same distribution of reception rates versus node pairs. Third, the RF circuitry combined with the antenna on the mote may greatly attenuate signals on channel 11 than channel 26. This, if true, can increase the communication range of a node and thus increase the number of neighbors for a node in channel 26.

Despite the absolute differences in the distributions shown in Figure 3(a), both curves exhibit similar numbers of intermediate links with reception rates between 10% and 90%. Both channel 11 and channel 26 have approximately 150 intermediate links indicating that over timeframes of about an hour, approximately 20% to 40% of the links had intermediate reception rates. In contrast, Figure 3(b) shows that over the much shorter timeframe of one minute (10 ms delay), packet reception is sharply bimodal. Approximately 85% of links exhibit a 100% reception rate, 10% of links have between 90% and 99% reception, while fewer than 5% of the links have less than 90% reception rate. As the timescale of the experiment is increased by a factor of ten to just over nine minutes (1 s delay), fewer than 20% of the links exhibit a 100% reception rate, 60% of the links exhibit between 90% and 99% reception rate, and 20% of the links exhibit a reception rate below 90%.

Overall, the data indicate that distribution of PRRs in our indoor testbed are largely bimodal. The vast majority of links exhibit either greater than 90% or zero reception rate over short periods of time. The fraction of intermediate links over these timeframes is also small, as indicated by the pronounced knee and sharp fall-off in reception rate shown in Figures 3(a) and 3(b). These observations contrast with the work of Aguayo et al. [12] which showed that in Roofnet—a outdoor 802.11b mesh network—between 50% to 70% of links have intermediate PRRs over a 90 second interval.

Our experiments did not include concurrent transmitters. In the presence of hidden terminals, concurrent transmissions can lower packet reception rate due to collisions at the receiver. However, Aguayo et al. concluded that in their experiments, it seemed unlikely that interfering traffic caused the observed losses [2], so we can factor out foreign traffic as a source of significant differences in both cases. Even with 802.11b-induced interference, the distributions from the two experiments are considerably different.

These results show that over very short time scales, links are for the most part bimodal, having either a PRR of 0% or greater than 95%. As the time scale increases, the changes of link qualities changing increases, leading to larger proportion of intermediate links. Once a node detects a good link, that link is likely to be good for a burst of packets, such as a large IPv6 datagram. If a node has only a single burst to send, as soon as it finds a good link, greedily choosing that link may be a good strategy. In 802.15.4, a “good” link can still have a 5% packet loss rate. Successfully transmitting a large IPv6 packet (10 fragments) therefore requires a sub-IP acknowledgment layer. Link-layer acknowledgments can provide one part of this mechanism, if a system follows the 6lowpan requirement that an overlapping fragment flush all other fragments, then imperfect duplicate suppression may cause a receiver to flush fragments that were acknowledged at the data link layer.

4 Intermediate Links

The previous section outlined the bimodal nature of 802.15.4 connectivity. Over longer time periods the proportion of intermediate links increases. This section explores the reasons behind those observations and their implications to IPv6.

One of the theories laid out in prior studies of 802.15.4 [16] is that the Signal-to-Noise Ratio (SNR) is the main factor determining packet reception success. We ran long term round-robin (8+ hours) experimental traces across different platforms, in varying environments. The results from all of these experiments were similar to those shown in Figure 2. When the RSSI is greater than some lower bound (-87dBm in this particular experiment), the PRR is high (greater than 80%) with a high likelihood. Otherwise the link falls into a grey area in which the PRR is difficult to predict.

Table 2 shows the varied range of noise floors calculated as the mode of samples of the signal strength indicator (SSI). Note that SSI is not same as RSSI. RSSI is the signal strength of successfully received packets while SSI is the signal strength sampled periodically. SSI is a good measure of the background noise at a node. For the same RSSI, different nodes will see different SNRs due to differences in their noise floors and thus will observe different PRRs.

After further investigation, we observed that not only do the unstable links have average SNRs that are on the edge of the “good link” threshold, but that the RSSI value of packets received from the same node can fluctuate by a few dBm over time.

Figure 5 shows packet reception, noise, and RSSI data for a single node over a round-robin trace. The left graph shows packet reception over time for a single node (node 4) from all the other nodes in the experiment. During periods with a high PRR, the RSSI of the packets received from node 30 are generally -90dBm. The RSSI
During the poor link periods, from the packets that were received, are -91dBm or -92dBm, indicating that this slight drop in the received signal strength caused a drop in the PRR. This shows how nodes whose SNR is in the edge of receive sensitivity experience received signal strength. The last plot shows the RSSI distribution of packets received over time. The long-term PRR is correlated with RSSI variations.

Figure 5. Observed behavior at a single node during a round-robin packet trace. The first plot on the left shows packet loss over time. The second plot shows the measured signal strength of the channel, which shows very short-lived spikes. The third plot shows the noise value averaged over 400 samples (40s), which shows that there are not significant long-term variations. The last plot, on the right, shows the RSSI distribution of packets received over time. The long-term PRR is correlated with RSSI variations.

5 Acknowledgements

In this section, we examine the performance of 802.15.4 link-layer acknowledgments and how they affect link quality estimates used for routing. PAN devices often have very limited RAM in order to minimize cost and energy consumption. This constraint makes 802.15.4's synchronous acknowledgments very valuable, as they have a bounded latency and so define how long a retransmission layer must hold onto a packet. However, losing link layer acks (false negatives) leads to unnecessary retransmissions and duplication of a packet within the network. Packet duplication, in turn, requires duplicate suppression techniques, which can increase the complexity of higher layers. In the 6lowpan sub-IP assembly layer, for example, duplicates can lead to flushing received fragments.

Acknowledgements also affect route selection metrics. Existing energy-based metrics such as ETX (the expected transmission count including retransmissions[19]) and its derivatives, such as mETX and ENT[11] use the product of the packet reception rate of the forward and reverse links between a pair of nodes. This approach assumes that the acknowledgment loss rate is the same as the packet loss rate in the reverse direction, and gives each direction of a link an identical ETX. There are two reasons why this assumption may not hold. First, 802.15.4 acknowledgment packets are very small, so for any given bit error rate they are less likely to be lost than a data packet. Second, CSMA causes a data packet transmission to suppress other nodes around it. As acknowledgments are very soon (tens of microseconds) after the data packet, the channel conditions around a transmitter are different than those at an arbitrary receiver.

If the acknowledgment reception rate (ARR) can be significantly different from the reverse PRR, then it is possible that the two directions of a link have different ETX values. In practice, the ETX from A to B (ETX_{AB}) is \frac{1}{PRR_{BA} \cdot ARR_B}. In cases of asymmetry, even if two neighbors can communicate reasonably well, optimizing routes for energy might cause directions to differ.

For the purpose of this study, a link has an ETX asymmetry if the ETX for the two directions differs by 0.1 and at least one direction has an ETX below 3. The second condition is based on the observation that protocols typically seek to minimize ETX, and so choosing very expensive routes is unlikely. Figure 6 plots ETX asymmetries for burst and round-robin traffic on channels 11 and 26. Burst traffic on channel 11 observed 7 links with an ETX asymmetry, some of which were very asymmetric (N22-N28, N22-N29) while on channel 26 there were 9 asymmetric links, only one of which was very asymmetric (N2-N13). Round-robin traffic observed many more asymmetries. On channel 11, many of these asymmetries were severe, while on channel 26 they were for the most part slight.

There are several possible causes to the larger number of severe asymmetries in channel 11. One possibility is that the signal strength characteristics of channels 11 and 26 are different. This could be due to multipath effects or RF impedance. However, if
this were the case then channel 11 would have many more asymmetric links during bursty traffic, or at least a greater distribution. Another possibility is the fact that channel 11 overlaps with 802.11, while 26 does not. As the data points for ETX measurements occur at different times, it is possible that when one node transmitted there was conflicting 802.11 traffic at the receiver but not vice-versa. This could explain both the larger number of severe asymmetries and the high asymmetry rate observed in round-robin traffic. Regardless of the cause, however, Figure 6 shows that significant ETX asymmetries can exist, they are more pronounced over low-rate than bursty traffic, and channel choice affects the severity.

As ETX asymmetries exist, ARR must differ from PRR. Figure 7 shows the relationship between PRR and ARR. As burst traffic observes predominantly bimodal links, its values are clustered at high reception rates. In contrast, round-robin traffic has more intermediate links. In both cases, however, the ARR is almost always greater than the PRR. Using PRR instead of ARR (as is commonly done in current protocols) overestimates ETX.

While greater than the PRR, ARR is usually less than 100%. A protocol that uses link-layer retransmissions may deliver a packet more than once. As routing protocols adjust next hop selections in response to changes in link quality, these duplicates might also be accompanied by route changes, which can lead to multiple copies of an IP packet being in flight.

In Section 3, we showed that over long time periods links can have intermediate PRRs due to transitions between high and low short-term loss rates. An IP routing layer can easily interact with either common case. The difficult case is when a link transitions in the middle of a packet or stream of packets.

Figure 8 shows what transitions look like to a routing layer. It shows the conditional probabilities of a successful data transmission and acknowledgement based on prior packets. This plot was generated from 100,000 transmissions between a single node pair with an intermediate loss rate. If failures are independent, then loss probabilities will be constant. Figure 8 shows conditional deliveries for each direction of a single node pair. Figure 8(a) shows failures that follow this pattern. The two edges of 100% loss represent rare cases. For example, there were 0 cases of 10, 3 cases of 11, and one case of 12, leading to values of 100% and 33%. Figure 8(b) shows a very different pattern, where packet losses are not independent: there are two cases, of approximately 10% loss and 80% loss. If a B does not hear acknowledgments from A for several consecutive packets, then the probability of hearing future acknowledgments (whether due to data or ack failure) drops significantly.

The traces from the two experiments show a significant difference which explains these distributions. Approximately halfway through the burst from B to A, packet RSSI values increased for a long period, reaching an average of 5 dBm higher. This increase in RSSI similarly increased the packet delivery rate. The link underwent an RSSI shift, which transitioned it from the low quality to the high quality mode, producing an intermediate link. This is in contrast to the link from A to B, which during its burst happened to be on exactly the edge of receive sensitivity.

Link-level asymmetries preclude broadcast-based route selection techniques, such as those used in AODV [15]. Similarly, ETX asymmetries mean that the two directions of an IP route may differ. Just as with link quality variations, ETX asymmetries increase with time duration, and so routes require periodic probing or refreshing. As acknowledgments are imperfect and energy conservation generally calls for link-level retransmissions to improve reliability, nodes require duplicate suppression mechanisms. Packet loss correlation suggests that the sub-IP retransmission layer can provide useful feedback to IP route selection, telling it that a link has failed and choosing a different one will save energy.

Figure 8. Conditional probability of a packet not being acknowledged given \(n \) consecutive prior failures. The motes sent 100000 packets separated by 10 msecs to each other in a burst. Negative numbers indicate \(n \) consecutive delivery successes. Acknowledgment packet losses are not independent. Channel 26 shows similar behavior but is not shown for brevity.
6 Implications

Our experiments have four major observations.

1. Links are predominantly bimodal for short packet bursts.

2. Sporadic traffic observes intermediate links, which are due to SNR variations.

3. There are ETX asymmetries, which are larger over longer time intervals.

4. Acknowledgement failures are correlated.

The first and second observations indicate that once a node detects a good link, sending IPv6 fragments as quick bursts on that link is effective. The bimodal delivery behavior means that there will be few reassembly failures at the receiver. However, as a link may transition from a good to a bad link during a transmission, a sender needs to maintain all fragments until a single recipient acknowledges all of the fragments.

The second and third observations together indicate that routing small, sporadic IPv6 packets requires different approaches than bursts of traffic, as link qualities may have changed. Continuously probing links (e.g., DSDV) or establishing routes (e.g., AODV) can easily consume more energy than transmitting the data. For latency-sensitive PANS, such as a lighting control system, this cost may be unavoidable. For less stringent PANS, however, such as a lawn monitoring or heating system, nodes can amortize route discovery costs by buffering packets into bursts. Alternatively, with physical layer knowledge a router can choose links with strong signal strengths, which are less likely to have temporal variations. As a single packet is sufficient for detecting a change in signal strength, this is an inexpensive measurement.

The third observation indicates that the two directions of an IP route may need to differ. The first observation implies that if the route is needed for a longer period then periodic rediscoveries may be needed, introducing a tradeoff in the cost of discovery and a route’s energy efficiency. Continuously maintaining a routing table (e.g., DSDV) is also problematic, but the first observation implies that the rate at which the bidirectional quality of links need to be probed may consume a lot of energy. A novel routing protocol may combine parts of AODV and DSDV to overcome these challenges. A DSDV-like approach generates a set of candidate links, which are then probed with unicast messages to establish a route using an AODV-like approach, using separate route requests may be needed for forward and back routes.

The fourth observation indicates that except for a small number of links which happen to be just at the reception sensitivity threshold, acknowledgments are an effective feedback mechanism for higher-layer decisions. A naïve retransmission scheme will waste energy when there are several consecutive failures. A more sophisticated scheme that has an estimate of the cost-benefit tradeoff can choose to wait before retransmitting after a suitable number of failures. Alternatively, the link layer can give feedback to the routing layer that there is a latency-efficiency tradeoff, giving an opportunity to choose another link depending on the kind of traffic. Changing links introduces tradeoffs and issues in fragment caching, as a receiver may not be able to distinguish a sender that is waiting due to a period of high loss or has chosen a new destination. Given the energy cost of communication and RAM limitations, these are difficult tradeoffs, and may benefit from packet control bits that indicate what policy the transmitter will follow.

Acknowledgment losses introduce an additional wrinkle in packet assembly. As a node may receive multiple copies of the same fragment, it must have a mechanism for suppressing these duplicates. If the sub-IP fragmentation and assembly layer does not have a cumulative acknowledgment scheme, then failed suppressions can lead to unnecessary packet delivery failures.

7 Conclusion

In this paper we have presented several key observations of low power 802.15.4 nodes. We have shown their implications to IPv6 routing over low power wireless networks. While we have not clearly illustrated what these algorithms and policies have to be, we have shown which of the policies currently used for other IP over wireless networks need modifications. The exact definition of these policies remains an open research topic. However, pointing out the implications of low-power wireless to IPv6 routing is a first step to bringing IPv6 to personal area network nodes, which in the near future will be the most numerous class of networking device.

References