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ABSTRACT 
This paper summarizes and includes some text from the prior 
work The Stream Virtual Machine, by François Labonté, Ian 
Buck, Peter Mattson, Christos Kozyrakis, and Mark Horowitz, 
presented at PACT 2004. 

The stream computing paradigm separates the application's 
computational kernels from communication streams, matching the 
structure and performance constraints of modern multiprocessors 
and data intensive applications with regular communication 
patterns.  The multitude of stream architectures and languages 
create interoperability problems and cause duplication of compiler 
and tool development efforts.  To address this, the Morphware 
Forum [8] is developing a two-level complication process, 
whereby a language-specific high-level compiler interfaces with 
an architecture-specific low-level compiler using an architecture 
model and Streaming Virtual Machine [7] code.  We describe this 
interface and highlight the challenges of this approach.   

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – frameworks. D.3.4 [Programming Languages]: 
Processors – compilers.  

General Terms 
Languages, Compilers, Standardization. 

Keywords 
Streaming Virtual Machine, SVM, HLC, LLC, streaming, 
streaming architectures, streaming languages, stream, kernel. 

1. INTRODUCTION 
This paper summarizes and includes some text from the prior 
work The Stream Virtual Machine, by François Labonté, Ian 
Buck, Peter Mattson, Christos Kozyrakis, and Mark Horowitz, 
presented at PACT 2004. 

The traditional model of sequential program execution is blind to 
parallelism and memory hierarchies.  The stream computing 

paradigm has emerged to account for these shortcomings, which 
are more and more noticeable when programming many modern 
processors.  A stream program separates out computational 
kernels that perform computations on individual data elements 
from communication streams that move data between kernels and 
from/to the main memory. 

The advantages of this decomposition are multi-fold.  First, 
separation of communication (the gathers and scatters of data to 
and from global memory) from the actual computation allows 
communication to be scheduled ahead of the corresponding 
computation, thereby hiding the cost of the large memory latency 
that is unavoidable in modern machines. Stream programs 
explicitly identify which variables are only names for values in a 
communication stream and don’t need to be written back to 
memory, and which variables hold persistent application state.  
This information reduces the global memory bandwidth, another 
critical resource in a modern machine. In addition, the stream 
formulation allows the compiler to expose data-level parallelism 
between stream elements in a kernel and thread-level parallelism 
across kernels. Finally, the streaming abstraction matches well the 
structure and performance constraints of modern 
(multi)processors. Thus, it is easier to communicate performance 
bottlenecks back to the programmer. For example, since 
communication is explicitly visible to the programmer, it is easy 
to point out where in the application the memory bandwidth 
becomes a bottleneck, such that the programmer gains insight into 
what is limiting the performance of the application. 

The stream abstraction suits data intensive applications with 
regular communication patterns. Not all applications fit this 
model but it is a natural fit for the DSP [4], multimedia [8], and 
scientific [3] computing domains. Many research groups have 
developed architectures for stream applications.  The stream 
architecture space spans from configurable or statically scheduled 
tiled processors (Raw [12], TRIPS [11]), to SIMD stream 
coprocessors with a large local memory for stream buffering 
(Imagine [10]), and to commodity graphics processors [2]. Similar 
diversity exists with streaming programming languages.  They 
vary from synchronous data-flow languages with infinite linear 
streams (StreamIt [14], Simulink [6]), to languages with support 
for multi-dimensional streams and stencils (Brook [1]), and to 
array languages (Matlab [5], ZPL [12]), with each language 
offering its own set of advantages and trade-offs to the application 
programmer.  The fragmentation in stream architectures and 
languages creates an interoperability problem that hinders the 
wide adoption of stream computing. To run any stream program 
on any stream architecture, one must develop a separate compiler 
for every language and architecture pair. 

 



Furthermore, decomposition of an application into kernels 
and streams hinders portability.  An application developed with a 
specific hardware configuration in mind may be based on a 
decomposition that is too coarse or too fine-grain for a different 
architecture or even for a different configuration of the same 
architecture.  For example, a kernel may prove to be too large to 
fit in a processing unit's local memory, or it may be too small, 
missing an opportunity to run several kernels on the same 
processing unit and incurring unnecessary communication 
overhead. 

2. TWO-LEVEL COMPILATION MODEL 
To address compiler implementation challenges, the Morphware 
Forum [8] is developing a two-level compilation approach, 
whereby the compilation is split between a high-level and a low-
level compiler.  The two compilers communicate via code 
conforming to the Streaming Virtual Machine (SVM) interface 
[7].  The high-level compiler is specific to the particular 
programming language and allows the application to be written in 
a way that is not specific to the particular hardware.  The low-
level compiler, on the other hand, performs architecture-specific 
optimizations and produces executable code.  This scheme is 
intended to factor out the compilation phases that are common 
across stream architectures, reducing the overall compiler 
development effort. 

To address portability challenges, we support writing 
applications in high-level languages and performing 
decomposition into streams and kernels automatically in the 
compiler, rather than encoding it in source programs.  The 
compiler then performs mapping of the streams and kernels onto 
the target architecture's processing units, memories, and 
communication channels.  One advantage of this approach is a 
potential for a significant reduction in application development 
time. 

One interesting question that arises in this scheme is: which 
of the two compilers performs such mapping.  On the one hand, 
mapping requires the knowledge of the target architecture.  On the 
other hand, it also requires analysis of the source program and 
typically some loop and data layout transformations.  
Furthermore, the same mapping approaches are likely to be useful 
for multiple target architectures. 

The answer we adopt is to implement mapping in the high-
level compiler.  To keep it architecture-independent, however, the 
implementation needs to be parameterized by certain 
characteristics of the target hardware.  These parameters are 
provided by an architecture model, which presents the hardware 
as an abstraction suitable for the compiler.  

3. ARCHITECTURE MODEL 
The architecture model represents the target hardware by 
abstracting it into the following components: 

� Processors, which represent general-purpose processors, 
stream processors, and direct-memory access (DMA) engines. 
DMA engines can only run special data transfer kernels. The 
other processors capable of running user-defined code are 
further characterized by such factors as their operating 
frequency, mix of functional units, number of registers and 

SIMD level.  Each stream processor and DMA engine has one 
or more master processors that control its operation. 

� Memories, which come in three different flavors: FIFOs, 
RAMs and caches. All types are characterized by their size in 
bytes. RAMs are also defined by their coherence with regards to 
other memories in the system and the bandwidth for different 
types of accesses, namely sequential and random access.  
Stream processors take advantage of high bandwidth local 
RAM memories or FIFOs that link stream processors together 
to reduce demands on global memory bandwidth through re-use 
and producer-consumer locality. 

� Network Links, which connect one or many senders 
(processors, memories or network links) to one or many 
receivers.  Each network link is characterized with a bandwidth 
and latency. 

4. SVM INTERFACE 
The SVM interface is used to describe the mapping of the input 
program onto the target hardware, produced by the high-level 
compiler and accepted by the low-level compiler.  It is a 
procedural interface based on the C language.  The SVM 
functions can be invoked from the program's main thread of 
control to assign kernels to processors and data to memories, to 
indicate data and control dependencies, and to start, pause, or 
resume the execution of kernels. 

SVM functions operate on (conceptual) objects of the 
following data types: 

� Block and stream objects assign data to specific hardware 
locations in the stream processors local memories and refer to 
locations in the global memory for DMA transfers.  A block is 
simply an array assigned to a location in a memory.  A stream is 
a FIFO queue implemented as a circular buffer assigned to a 
location in a memory.  Blocks implement random-access read 
and write methods; streams implement blocking peek, pop, and 
push methods. 

� Kernel objects map the application's kernels to stream 
processors, and can be initialized, started, paused/resumed, and 
waited upon.  In addition, SVM offers a function to add an 
explicit control dependence between a pair of kernels, thus 
allowing them to synchronize independently of the main control 
thread. 

� DMA kernel objects describe DMA transfers and are 
executed by DMA engines.  A DMA kernel can express move 
(equivalent to memcpy), strided scatter and gather (read n 
records, advance m records, repeat), and indexed scatter and 
gather (read records from within a block given a block or stream 
of indices).  Each kind has further variations to handle block to 
block, stream to stream, block to stream, and stream to block 
transfers. 

5. CHALLENGES 
The two-level complication approach presents the following 
challenges.  First, the framework for defining architecture models 
used by the high-level compiler needs to be general enough to 
cover a variety of stream architectures.  It needs to be accurate 
enough to make performance estimates based on the models 
adequate.  And yet it needs to be concise enough to be usable in 



the compiler (passing the entire chip schematic, as an extreme 
example, would clearly not work). 

Likewise, the SVM interface should be general enough to 
abstract the details of target architectures, but allow efficient 
implementation on each architecture.  Furthermore, the procedural 
nature of the interface requires precise definition of the behavior 
of each function, not just its type signature.  When a behavioral 
detail is unspecified, the two sides of the interface (the high-level 
and the low-level compilers) are likely to make inconsistent 
assumptions about it.  Finally, it is currently unclear how easily 
the low-level compiler will be able to derive performance-critical 
high-level information, such as connection topology, from a 
procedural specification. 

6. CONCLUSIONS 
We have presented a two-level approach to compiling 
applications for streaming architectures, which factors out the 
compilation phases that are common across architectures into 
high-level compilers and collects architecture-specific phases in 
low-level compilers.  The high-level compiler is presented with 
an abstract architecture model of the target architecture to allow it 
to perform mapping of the application onto the target hardware. 

Streaming Virtual Machine is a procedural interface between 
the high-level and the low-level compilers, providing data types 
and functions to assign kernels to processors and data to 
memories and to specify the operating logic of the program, 
including its data and control dependencies.  This approach 
presents several challenges, such as covering a variety of 
architectures and mappings without sacrificing run-time 
efficiency and conveying high-level program information within a 
procedural interface. 

The two-level compilation approach is currently under 
development by the members of the Morphware Forum, targeting 
C as the input language and Smart Memories, TRIPS, Raw, and 
Monarch as the target architectures. 
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