
Stream Virtual Machine and Two-Level Compilation Model
for Streaming Architectures and Languages

Peter Mattson Richard Lethin
Vassily Litvinov

Reservoir Labs, Inc.

mattson,lethin,vass@reservoir.com

François Labonté Ian Buck
 Christos Kozyrakis Mark Horowitz

Stanford University

flabonte,ianbuck@stanford.edu
christos,horowitz@ee.stanford.edu

ABSTRACT
This paper summarizes and includes some text from the prior
work The Stream Virtual Machine, by François Labonté, Ian
Buck, Peter Mattson, Christos Kozyrakis, and Mark Horowitz,
presented at PACT 2004.

The stream computing paradigm separates the application's
computational kernels from communication streams, matching the
structure and performance constraints of modern multiprocessors
and data intensive applications with regular communication
patterns. The multitude of stream architectures and languages
create interoperability problems and cause duplication of compiler
and tool development efforts. To address this, the Morphware
Forum [8] is developing a two-level complication process,
whereby a language-specific high-level compiler interfaces with
an architecture-specific low-level compiler using an architecture
model and Streaming Virtual Machine [7] code. We describe this
interface and highlight the challenges of this approach.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – frameworks. D.3.4 [Programming Languages]:
Processors – compilers.

General Terms
Languages, Compilers, Standardization.

Keywords
Streaming Virtual Machine, SVM, HLC, LLC, streaming,
streaming architectures, streaming languages, stream, kernel.

1. INTRODUCTION
This paper summarizes and includes some text from the prior
work The Stream Virtual Machine, by François Labonté, Ian
Buck, Peter Mattson, Christos Kozyrakis, and Mark Horowitz,
presented at PACT 2004.

The traditional model of sequential program execution is blind to
parallelism and memory hierarchies. The stream computing

paradigm has emerged to account for these shortcomings, which
are more and more noticeable when programming many modern
processors. A stream program separates out computational
kernels that perform computations on individual data elements
from communication streams that move data between kernels and
from/to the main memory.

The advantages of this decomposition are multi-fold. First,
separation of communication (the gathers and scatters of data to
and from global memory) from the actual computation allows
communication to be scheduled ahead of the corresponding
computation, thereby hiding the cost of the large memory latency
that is unavoidable in modern machines. Stream programs
explicitly identify which variables are only names for values in a
communication stream and don’t need to be written back to
memory, and which variables hold persistent application state.
This information reduces the global memory bandwidth, another
critical resource in a modern machine. In addition, the stream
formulation allows the compiler to expose data-level parallelism
between stream elements in a kernel and thread-level parallelism
across kernels. Finally, the streaming abstraction matches well the
structure and performance constraints of modern
(multi)processors. Thus, it is easier to communicate performance
bottlenecks back to the programmer. For example, since
communication is explicitly visible to the programmer, it is easy
to point out where in the application the memory bandwidth
becomes a bottleneck, such that the programmer gains insight into
what is limiting the performance of the application.

The stream abstraction suits data intensive applications with
regular communication patterns. Not all applications fit this
model but it is a natural fit for the DSP [4], multimedia [8], and
scientific [3] computing domains. Many research groups have
developed architectures for stream applications. The stream
architecture space spans from configurable or statically scheduled
tiled processors (Raw [12], TRIPS [11]), to SIMD stream
coprocessors with a large local memory for stream buffering
(Imagine [10]), and to commodity graphics processors [2]. Similar
diversity exists with streaming programming languages. They
vary from synchronous data-flow languages with infinite linear
streams (StreamIt [14], Simulink [6]), to languages with support
for multi-dimensional streams and stencils (Brook [1]), and to
array languages (Matlab [5], ZPL [12]), with each language
offering its own set of advantages and trade-offs to the application
programmer. The fragmentation in stream architectures and
languages creates an interoperability problem that hinders the
wide adoption of stream computing. To run any stream program
on any stream architecture, one must develop a separate compiler
for every language and architecture pair.

Furthermore, decomposition of an application into kernels
and streams hinders portability. An application developed with a
specific hardware configuration in mind may be based on a
decomposition that is too coarse or too fine-grain for a different
architecture or even for a different configuration of the same
architecture. For example, a kernel may prove to be too large to
fit in a processing unit's local memory, or it may be too small,
missing an opportunity to run several kernels on the same
processing unit and incurring unnecessary communication
overhead.

2. TWO-LEVEL COMPILATION MODEL
To address compiler implementation challenges, the Morphware
Forum [8] is developing a two-level compilation approach,
whereby the compilation is split between a high-level and a low-
level compiler. The two compilers communicate via code
conforming to the Streaming Virtual Machine (SVM) interface
[7]. The high-level compiler is specific to the particular
programming language and allows the application to be written in
a way that is not specific to the particular hardware. The low-
level compiler, on the other hand, performs architecture-specific
optimizations and produces executable code. This scheme is
intended to factor out the compilation phases that are common
across stream architectures, reducing the overall compiler
development effort.

To address portability challenges, we support writing
applications in high-level languages and performing
decomposition into streams and kernels automatically in the
compiler, rather than encoding it in source programs. The
compiler then performs mapping of the streams and kernels onto
the target architecture's processing units, memories, and
communication channels. One advantage of this approach is a
potential for a significant reduction in application development
time.

One interesting question that arises in this scheme is: which
of the two compilers performs such mapping. On the one hand,
mapping requires the knowledge of the target architecture. On the
other hand, it also requires analysis of the source program and
typically some loop and data layout transformations.
Furthermore, the same mapping approaches are likely to be useful
for multiple target architectures.

The answer we adopt is to implement mapping in the high-
level compiler. To keep it architecture-independent, however, the
implementation needs to be parameterized by certain
characteristics of the target hardware. These parameters are
provided by an architecture model, which presents the hardware
as an abstraction suitable for the compiler.

3. ARCHITECTURE MODEL
The architecture model represents the target hardware by
abstracting it into the following components:

� Processors, which represent general-purpose processors,
stream processors, and direct-memory access (DMA) engines.
DMA engines can only run special data transfer kernels. The
other processors capable of running user-defined code are
further characterized by such factors as their operating
frequency, mix of functional units, number of registers and

SIMD level. Each stream processor and DMA engine has one
or more master processors that control its operation.

� Memories, which come in three different flavors: FIFOs,
RAMs and caches. All types are characterized by their size in
bytes. RAMs are also defined by their coherence with regards to
other memories in the system and the bandwidth for different
types of accesses, namely sequential and random access.
Stream processors take advantage of high bandwidth local
RAM memories or FIFOs that link stream processors together
to reduce demands on global memory bandwidth through re-use
and producer-consumer locality.

� Network Links, which connect one or many senders
(processors, memories or network links) to one or many
receivers. Each network link is characterized with a bandwidth
and latency.

4. SVM INTERFACE
The SVM interface is used to describe the mapping of the input
program onto the target hardware, produced by the high-level
compiler and accepted by the low-level compiler. It is a
procedural interface based on the C language. The SVM
functions can be invoked from the program's main thread of
control to assign kernels to processors and data to memories, to
indicate data and control dependencies, and to start, pause, or
resume the execution of kernels.

SVM functions operate on (conceptual) objects of the
following data types:

� Block and stream objects assign data to specific hardware
locations in the stream processors local memories and refer to
locations in the global memory for DMA transfers. A block is
simply an array assigned to a location in a memory. A stream is
a FIFO queue implemented as a circular buffer assigned to a
location in a memory. Blocks implement random-access read
and write methods; streams implement blocking peek, pop, and
push methods.

� Kernel objects map the application's kernels to stream
processors, and can be initialized, started, paused/resumed, and
waited upon. In addition, SVM offers a function to add an
explicit control dependence between a pair of kernels, thus
allowing them to synchronize independently of the main control
thread.

� DMA kernel objects describe DMA transfers and are
executed by DMA engines. A DMA kernel can express move
(equivalent to memcpy), strided scatter and gather (read n
records, advance m records, repeat), and indexed scatter and
gather (read records from within a block given a block or stream
of indices). Each kind has further variations to handle block to
block, stream to stream, block to stream, and stream to block
transfers.

5. CHALLENGES
The two-level complication approach presents the following
challenges. First, the framework for defining architecture models
used by the high-level compiler needs to be general enough to
cover a variety of stream architectures. It needs to be accurate
enough to make performance estimates based on the models
adequate. And yet it needs to be concise enough to be usable in

the compiler (passing the entire chip schematic, as an extreme
example, would clearly not work).

Likewise, the SVM interface should be general enough to
abstract the details of target architectures, but allow efficient
implementation on each architecture. Furthermore, the procedural
nature of the interface requires precise definition of the behavior
of each function, not just its type signature. When a behavioral
detail is unspecified, the two sides of the interface (the high-level
and the low-level compilers) are likely to make inconsistent
assumptions about it. Finally, it is currently unclear how easily
the low-level compiler will be able to derive performance-critical
high-level information, such as connection topology, from a
procedural specification.

6. CONCLUSIONS
We have presented a two-level approach to compiling
applications for streaming architectures, which factors out the
compilation phases that are common across architectures into
high-level compilers and collects architecture-specific phases in
low-level compilers. The high-level compiler is presented with
an abstract architecture model of the target architecture to allow it
to perform mapping of the application onto the target hardware.

Streaming Virtual Machine is a procedural interface between
the high-level and the low-level compilers, providing data types
and functions to assign kernels to processors and data to
memories and to specify the operating logic of the program,
including its data and control dependencies. This approach
presents several challenges, such as covering a variety of
architectures and mappings without sacrificing run-time
efficiency and conveying high-level program information within a
procedural interface.

The two-level compilation approach is currently under
development by the members of the Morphware Forum, targeting
C as the input language and Smart Memories, TRIPS, Raw, and
Monarch as the target architectures.

7. ACKNOWLEDGMENTS
The primary authors of the full SVM Specification [7] are Peter
Mattson, William Thies, Lance Hammond, and Mike Vahey, with
additional contributions by University of California Information
Sciences Institute, University of Texas at Austin, and IBM Austin
Research Laboratory.

8. REFERENCES
[1] I. Buck. Brook specification v0.2. October 2003.
[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.

Houston, and P. Hanrahan. Brook for GPUs: Stream
computing on graphics hardware. In Proceedings of
SIGGRAPH, 2004.

[3] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte,
J.-H. Ahn, N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju,
and I. Buck. Merrimac: Supercomputing with streams. In
Proceedings 2003 SuperComputing, nov 2003.

[4] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C.
Leger, A. A. Lamb, J. Wong, H. Hoffman, D. Z. Maze, and
S. Amarasinghe. A stream compiler for communication-
exposed architectures. In International Conference on
Architectural Support for Programming Languages and
Operating Systems, San Jose, CA USA, Oct. 2002.

[5] The Mathworks, Inc. Using Matlab, 6 edition, 2002.
[6] The Mathworks, Inc. Simulink Reference, 5 edition, 2003.
[7] P. Mattson, W. Thies, L. Hammond, and M. Vahey.

Streaming virtual machine specification 1.0. Technical
report, 2004. http://www.morphware.org.

[8] Morphware Forum. http://www.morphware.org
[9] J. D. Owens, U. J. Kapasi, P. Mattson, B. Towles, B.

Serebrin, S. Rixner, and W. J. Dally. Media processing
applications on the Imagine stream processor. In
Proceedings of the IEEE International Conference on
Computer Design, pages 295–302, sep 2002.

[10] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-
Lagunas, P. R. Mattson, and J. D. Owens. A bandwidth-
efficient architecture for media processing. In Proceedings of
the 31st annual ACM/IEEE international symposium on
Microarchitecture, pages 3–13. IEEE Computer Society
Press, 1998.

[11] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D.
Burger, S. W. Keckler, and C. R. Moore. Exploiting ilp, tlp,
and dlp with the polymorphous trips architecture. In
Proceedings of the 30th annual international symposium on
Computer architecture, pages 422–433. ACM Press, 2003.

[12] L. Snyder. Programming Guide to ZPL. MIT Press,
Cambridge, MA, USA, 1999.

[13] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B.
Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A.
Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M.
Frank, S. Amarasinghe, and A. Agarwal. The raw
microprocessor: a computational fabric for software circuits
and general-purpose programs. IEEE Micro, 22:25–35,
March 2002.

[14] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A
language for streaming applications. In International
Conference on Compiler Construction, Grenoble, France,
Apr. 2002.

