Stanford | ENGINEERING

Electrical Engineering Computer Science

Spatial: A Language and Compiler for Application Accelerators

David Koeplinger	Matthew Feldman	Raghu Prabhakar
Yaqi Zhang	Stefan Hadjis	Ruben Fiszel
Tian Zhao	Luigi Nardi	Ardavan Pedram
Christos K	Cozyrakis Kunle C	Dlukotun

PLDI June 21, 2018

Instructions Add Overheads

Instruction-Based

Mark Horowitz, Computing's Energy Problem (and what we can do about it) ISSCC 2014

SRAM

Regs

A Dark Tale: The CPU Power Wall

42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

A More Efficient Way

Configuration-Based

*Also not to scale

*Not to scale

Instruction-Based

The Future Is (Probably) Reconfigurable

Key Question

How can we more productively target reconfigurable architectures like FPGAs?

Language Taxonomy

Reconfigurable Architectures (FPGAs)

Instruction-Based Architectures (CPUs)

Abstracting Hardware Design

Reconfigurable Architectures (FPGAs)

Instruction-Based Architectures (CPUs)

HDLs

C + Pragmas

Existing High Level Synthesis (C + Pragmas)

e.g. Vivado HLS, SDAccel, Altera OpenCL

Performance

- X No memory hierarchy
- X No arbitrary pipelining

Productivity
✓ Nested loops
X Ad-hoc mix of software/hardware

X Difficult to optimize

Portability
√ Portable for single vendor

Criteria for Improved HLS

Requirement	C+Pragmas
Represent memory hierarchy explicitly Aids on-chip memory optimization, specialization	X
Express control as nested loops Enables analysis of access patterns	
Support arbitrarily nested pipelining Exploits nested parallelism	X
Specialize memory transfers Enables customized memory controllers based on access patterns	X
Capture design parameters Enables automatic design tuning in compiler	X

Design Space Parameters Example

Small and simple, but slow!

Important Parameters: Buffer Sizes

- Increases length of DRAM accesses Runtime
- Increases exploited locality
- Increases local memory sizes

Important Parameters: Pipelining

- Overlaps memory and compute Runtime
- Increases local memory sizes Area
- Adds synchronization logic

Important Parameters: Parallelization

- Improves element throughput Runtime
- Duplicates compute resources Area

Important Parameters: Memory Banking

- Improves memory bandwidth
- May duplicate memory resources Area

Criteria for Improved HLS

Requirement	C+Pragmas
Represent memory hierarchy explicitly Aids on-chip memory optimization, specialization	X
Express control as nested loops Enables analysis of access patterns	
Support arbitrarily nested pipelining Exploits nested parallelism	X
Specialize memory transfers Enables customized memory controllers based on access patterns	X
Capture design parameters Enables automatic design tuning in compiler	X

Rethinking HLS

Abstracting Hardware Design

Reconfigurable Architectures (FPGAs)

Instruction-Based Architectures (CPUs)

Spatial: Memory Hierarchy

Spatial: Control And Design Parameters

Implicit/Explicit parallelization factors (optional, but can be explicitly declared)	<pre>val P = 16 (1 → 32) Reduce(0)(N by 1 par P){i => data(i) }{(a,b) => a + b}</pre>		
Implicit/Explicit control schemes (also optional, but can be used to override compiler)	<pre>Stream.Foreach(0 until N){i => }</pre>		
Explicit size parameters for loop step size and buffer sizes (informs compiler it can tune this value)	<pre>val B = 64 (64 → 1024) val buffer = SRAM[Float](B) Foreach(N by B){i => }</pre>		
Implicit memory banking and buffering schemes for parallelized access	<pre>Foreach(64 par 16){i => buffer(i) // Parallel read }</pre>		

```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
```



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
Accel {
```



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
```

```
Accel {
    Reduce(output)(N by B){ i =>
```



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
```

Accel {

```
Reduce(output)(N by B){ i =>
  val tileA = SRAM[Float](B)
  val tileB = SRAM[Float](B)
  val acc = Reg[Float]
```



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
```

```
Accel {
```

}

```
Reduce(output)(N by B){ i =>
  val tileA = SRAM[Float](B)
  val tileB = SRAM[Float](B)
  val acc = Reg[Float]
```

tileA load vectorA(i :: i+B)
tileB load vectorB(i :: i+B)


```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
```

```
Accel {
```

```
Reduce(output)(N by B){ i =>
  val tileA = SRAM[Float](B)
  val tileB = SRAM[Float](B)
  val acc = Reg[Float]
```

```
tileA load vectorA(i :: i+B)
tileB load vectorB(i :: i+B)
```

```
Reduce(acc)(B by 1){ j =>
   tileA(j) * tileB(j)
}{a, b => a + b}
```



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
```

```
Accel {
```

```
Reduce(output)(N by B){ i =>
  val tileA = SRAM[Float](B)
  val tileB = SRAM[Float](B)
  val acc = Reg[Float]
```

```
tileA load vectorA(i :: i+B)
tileB load vectorB(i :: i+B)
```

```
Reduce(acc)(B by 1){ j =>
    tileA(j) * tileB(j)
    }{a, b => a + b}
}{a, b => a + b}
```



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
Accel {
  Reduce(output)(N by B){ i =>
    val tileA = SRAM[Float](B)
   val tileB = SRAM[Float](B)
                                 Parameters
   val acc = Reg[Float]
   tileA load vectorA(i :: i+B)
    tileB load vectorB(i :: i+B)
    Reduce(acc)(B by 1){ j =>
     tileA(j) * tileB(j)
    \{a, b => a + b\}
 \{a, b => a + b\}
}
```

The Spatial Compiler

Control Scheduling

Spatial IR

Control Inference

Control Scheduling

Access Pattern Analysis

Mem. Banking/Buffering

Area/Runtime Analysis

[Optional] Design Tuning

Pipeline Unrolling

Pipeline Retiming

Host Resource Allocation

Control Signal Inference

Chisel Code Generation

- Creates loop pipeline schedules
 - Detects data dependencies across loop intervals
 - Calculate initiation interval of pipelines
 - Set maximum depth of buffers

Supports arbitrarily nested pipelines

(Commercial HLS tools don't support this)

Local Memory Analysis

Mem. Banking/Buffering

Chisel Code Generation

- Insight: determine banking strategy in a single loop nest using the polyhedral model [Wang, Li, Cong FPGA '14]
- Spatial's contribution: find the (near) optimal banking/buffering strategy across all loop nests
- Algorithm in a nutshell:
 - I. Bank each reader as a separate coherent copy (accounting for reaching writes)
 - 2. Greedily merge copies if merging is legal and cheaper

Design Tuning

Design Parameters

Control Inference

Original tuning methods:

- Pre-prune space using simple heuristics
- Randomly sample ~100,000 design points
- Model area/runtime of each point

Proposed tuning method

- Active learning: HyperMapper (More details in paper)
- Fast: No slow transformers in loop

The Spatial Compiler: The Rest

Spatial IR

Control Inference

Control Scheduling

Access Pattern Analysis

Mem. Banking/Buffering

Area/Runtime Analysis

[Optional] Design Tuning

Pipeline Unrolling

Pipeline Retiming

Host Resource Allocation

Control Signal Inference

Chisel Code Generation

Code generation

- Synthesizable Chisel
- C++ code for host CPU

Evaluation: Performance

FPGA:

- Amazon EC2 FI Instance: Xilinx VU9P FPGA
- Fixed clock rate of 150 MHz

Applications

- SDAccel: Hand optimized, tuned implementations
- Spatial: Hand written, automatically tuned implementations
- Execution time = FPGA execution time

Performance (Spatial vs. SDAccel)

Average 2.9x faster hardware than SDAccel

32

Productivity: Lines of Code

Average 42% shorter programs versus SDAccel

Evaluation: Portability

FPGA I

- Amazon EC2 F1 Instance: Xilinx VU9P FPGA
- I9.2 GB/s DRAM bandwidth (single channel)
- FPGA 2
 - Xilinx Zynq ZC706
 - 4.3 GB/s

Applications

- Spatial: Hand written, automatically tuned implementations
- Fixed clock rate of 150 MHz

Portability: VU9P vs. Zynq ZC706

Portability: VU9P vs. Zynq ZC706

Portability: VU9P vs. Zynq ZC706

Portability: Plasticine CGRA

Identical Spatial source, multiple targets Even reconfigurable hardware that isn't an FPGA!

	DRAM Bandwidth (%)		Resource Utilization (%)			Speedup
Benchmark	Load	Store	PCU	PMU	AG	vs. VU9P
BlackScholes	77.4	12.9	73.4	10.9	20.6	1.6
GDA	24.0	0.2	95.3	73.4	38.2	9.8
GEMM	20.5	2.1	96.8	64.1	11.7	55.0
K-Means	8.0	0.4	89.1	57.8	17.6	6.3
TPC-H Q6	97.2	0.0	29.7	37.5	70.6	1.6

Prabhakar et al. Plasticine: A Reconfigurable Architecture For Parallel Patterns (ISCA '17)

Conclusion

- **Reconfigurable architectures** are becoming key for performance / energy efficiency
- Current programming solutions for reconfigurables are still inadequate
- Need to rethink outside of the C box for high level synthesis:
 - Memory hierarchy for optimization
 - Design parameters for tuning
 - Arbitrarily nestable pipelines
- **Spatial** prototypes these language and compiler criteria:
 - Average speedup of 2.9x versus SDAccel on VU9P
 - Average 42% less code than SDAccel
 - Achieves transparent portability through internal support for automated design tuning (HyperMapper)

Spatial is open source: spatial.stanford.edu

The Team

David Koeplinger

Matt Feldman

Raghu Prabhakar

Yaqi Zhang

Stefan Hadjis

Ruben Fiszel

Tian Zhao

Ardavan Pedram

Luigi Nardi

Christos Kozyrakis

Kunle Olukotun