Towards Energy-Proportional Datacenter Memory with Mobile DRAM

Krishna Malladi1
Benjamin Lee2

Frank Nothaft1
Christos Kozyrakis1

Karthika Periyathambi
Mark Horowitz1

Stanford University1
Duke University2
Outline

- Inefficiencies of server DRAM systems
- Mobile DRAM
- Evaluation
Outline

- Inefficiencies of server DRAM systems
- Mobile DRAM
- Evaluation
Server DRAM systems

- Server power main energy bottleneck in datacenters
 - PUE of ~1.1 → the rest of the system is energy efficient

- Significant main memory (DRAM) power
 - 25-40% of server power across all utilization points
 - Low dynamic range → no energy proportionality
 - Power hungry active-idle and power-down states

DDR3 energy characteristics

- **DDR3 optimized for high bandwidth (1.5V, 800MHz)**
 - On chip DLLs, on-die-termination
 - 70pJ/bit at 100% bus utilization with 40% static cost
 - Increases to 260pJ/bit at low datarates due to static power

- **LVDDR3 alternative (1.35V, 400MHz)**
 - Lower voltage → Higher on-die-termination
 - Still disproportional at 190pJ/bit

- Need memory systems that consume lower energy and are proportional
 - What metric can we trade for efficiency?
Workloads in datacenters

- Web-search and map-reduce
 - CPU or DRAM latency bound in stress-test and in-the-field measurements \(^{[2][3][4]}\)
 - At peak load, need < 6% DRAM bandwidth \(^{[2]}\)

- Memory caching, DRAM-based storage, social media
 - memcached and RAMCloud
 - Overall bandwidth limited by network (<10% of DRAM bandwidth)

- Datacenter DRAM needs
 - ✓ Low latency
 - ✓ High capacity
 - ✓ High reliability
 - ✗ High bandwidth

- Our focus: tradeoff bandwidth for energy efficiency & proportionality

\(^{[2]}\) Kozyrakis et al, “Server Engineering Insights for Large-Scale Online Services”, IEEE Micro 2010

\(^{[3]}\) Ferdman et al, “Clearing the Clouds”, ASPLOS 2012

\(^{[4]}\) Tang et al, “The impact of memory subsystem resource sharing on datacenter applications”, ISCA 2011
Outline

- Inefficiencies of server DRAM systems
- Mobile DRAM
- Evaluation
Mobile DRAM characteristics

<table>
<thead>
<tr>
<th>Technology Parameter</th>
<th>DDR3</th>
<th>LPDDR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing (tCAS, tRAS, tRC)</td>
<td>15, 38, 50ns</td>
<td>15, 42, 57ns</td>
</tr>
<tr>
<td>Active current (Read, Write)</td>
<td>180, 185mA</td>
<td>210, 175mA</td>
</tr>
<tr>
<td>Idle current (Powerdown, Standby)</td>
<td>35, 45mA</td>
<td>1.6, 23mA</td>
</tr>
<tr>
<td>Powerdown exit latency</td>
<td>24ns</td>
<td>7.5ns</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>1.5V</td>
<td>1.2V</td>
</tr>
<tr>
<td>Typical operating frequency</td>
<td>800MHz</td>
<td>400MHz</td>
</tr>
<tr>
<td>Device width</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

- Same core as DDR3 devices
 - Same capacity per device, same access latency, same active currents
- IO interface optimized for very low static power
 - Including faster powerdown modes, no termination
- Same chip bandwidth
 - Wider interface operating at slower clock rate
LPDDR2 advantages

- Energy proportional
- Energy efficient ~ 40pJ/bit
 - 2x to 5x reduction over DDR3
LPDDR2 disadvantages

- **Channel bandwidth**: Pin bandwidth is 2x lower → halves peak data rate per rank. Datacenter workloads require lower bandwidth.

- **System capacity**?
 - Not optimized for multi-chip modules or multi-rank channels.
 - Inter-symbol interference (ISI) due to electrical loading.
 - Datacenter workloads require high memory capacity.

- **Reliability**?
 - ECC works best with x4 devices.
 - Complicated or expensive with x16 devices.
 - See paper for details.
Building capacity with LPDDR2

- **Key problems**
 - Wide interface \rightarrow limits # devices in parallel in a 64-bit channel
 - No termination \rightarrow limits # devices in series due to ISI

- **Basic memory package**
 - Commodity LPDDR2 devices stacked (edge bonded)
 - Four 2Gb x16 chips \rightarrow 8Gb x32 package
 - Two devices share Chip Select
High capacity LPDDR2 module

- Minimize ISI by getting stubs close together (single point load)
- Dual Line Package (DLP) module
 - Mirrored connected with on-board vias
 - Four 8Gb x32 packages → 32Gb x64 module
 - Striped ranks to minimize stub distance
- No changes needed to LPDDR2 controller
High capacity LPDDR2 channel

- **Key problem**
 - More modules per channel → more ISI, degraded operation

- **Load Reduced (LR) LPDDR2 channel**
 - Introduce buffer to limit load on channel (similar to LRDDR3)
 - 2x DQ and 4x CA lines to provide device isolation
 - Two 32Gb x64 modules → 64Gb x64 channel
Signal integrity validation

- Signal integrity for the proposed LPDDR2 channel
 - Using SPICE and models for board traces, wire bonds, devices, connectors
 - 1.5V, 800Mbps PRBS
 - 2pF ESD cap, 2nH wire-bond
 - Industrial buffer models

- Hardest links have open eyes
 - Good time and voltage margins
 - More devices would close the eye

- Device DQ to Board-buffer
- Board-buffer to CA
Outline

- Inefficiencies of server DRAM systems
- Mobile DRAM
- Evaluation
Methodology

Workloads

- Websearch at peak throughput
 - 30GB Wikipedia dataset, 500 top queries
- Memcached at peak throughput
 - Access to key, value pairs with 100B and 10KB values
 - Zipf popularity distribution with exponential inter-arrival times
- SPECJbb, SPECPower, SPECWeb
- Multiprogrammed SPEC CPU2006, OMP2001, PARSEC

System Architecture

- 8 OoO Nehalem cores at 3GHz, with 8MB shared L3 cache
- 2 memory channels: 16 GB capacity using 2Gb DDR3, LPDDR2 chips
- Validated Pin-driven simulator
Datacenter workloads

- 5-6x lower DRAM power
 - Low active-idle states
 - Very low power down state
 - No static termination
 - Fewer active devices/access

- Negligible performance impact
Other applications

- 4-5x lower DRAM power
 - Similar breakdowns

- 0-55% IPC penalty
 - Depends on application bandwidth requirements
TCO sensitivity to cost of LPDDR2 modules

<table>
<thead>
<tr>
<th></th>
<th>Xeon + DDR3 (8 cores)</th>
<th>Xeon + LPDDR2 (8 cores)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost ($)</td>
<td>Power (W)</td>
</tr>
<tr>
<td>Processor (2 socket)</td>
<td>760</td>
<td>125</td>
</tr>
<tr>
<td>Motherboard</td>
<td>200</td>
<td>30</td>
</tr>
<tr>
<td>Network Interface</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Memory (32GB/2-sockets)</td>
<td>600</td>
<td>40</td>
</tr>
<tr>
<td>Storage (HDD)</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>1660</td>
<td>210</td>
</tr>
<tr>
<td>No. of Servers (X 10^3, in 15MW)</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>TCO (in $ per sever per month)</td>
<td>$86.4</td>
<td></td>
</tr>
<tr>
<td>Capability</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

- Equal cost per server analysis
 - Based Hamilton’s TCO model and Reddi et.al Bing analysis
- Can tolerate up to 30% price premium for LPDDR2 modules initially
 - Will drop as LPDDR2 modules get commoditized
- LPDDR2 improves datacenter capability by 20%
Combining energy efficient memory + processors

<table>
<thead>
<tr>
<th></th>
<th>Xeon + DDR3 (8 cores)</th>
<th>Atom + LPDDR2 (16 cores)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost ($)</td>
<td>Power (W)</td>
</tr>
<tr>
<td>Processor (2 socket)</td>
<td>760</td>
<td>125</td>
</tr>
<tr>
<td>Motherboard</td>
<td>200</td>
<td>30</td>
</tr>
<tr>
<td>Network Interface</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Memory (32GB/2-sockets)</td>
<td>600</td>
<td>40</td>
</tr>
<tr>
<td>Storage (HDD)</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>1660</td>
<td>210</td>
</tr>
<tr>
<td>No. of Servers (X 10³, in 15MW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCO (in $ per sever per month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capability</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

- Similar equal cost per server analysis
- Similar results for other energy efficient processors (e.g., ARM)
- Can tolerate premiums for LPDDR2 modules, Atom boards
- LPDDR2 + Atom improves datacenter capacity and throughput by 4x
- Note: simple cores can slowdown latency-critical queries
Other conclusions (see paper)

- **Reliability**
 - Options for ECC with x16 devices
 - Virtualized ECC
 - Chipkill
 - Tradeoff between parity overhead and energy efficiency

- **Implications to on-chip cache hierarchy**
 - Improved DRAM energy efficiency magnifies LLC static power
 - Question: how big should the LLC be?
 - Tradeoff: reduced execution time Vs. increased static power
 - Introduce AMAE metric similar to AMAT to guide analysis
Conclusions

- **DDR3 memory systems**
 - Energy inefficient and disproportional due to high static power

- **Datacenter workloads have low memory BW requirements**
 - Low bandwidth utilization at 100% load (typical load ~30%)
 - DDR3 ill suited for these workloads

- **LPDDR2 memory systems**
 - Tradeoff peak BW for energy efficiency
 - 4-5x lower DRAM power and energy proportional
 - High capacity using die-stacking and buffered channel

- **Datacenter implications**
 - Significant capacity improvement even with higher cost modules