
FARM:  A Prototyping Environment 
for Tightly-Coupled, Heterogeneous 

Architectures

Tayo Oguntebi, Sungpack Hong, 

Jared Casper, Nathan Bronson

Christos Kozyrakis, Kunle Olukotun



Outline

 Motivation

 The Stanford FARM

 Using FARM



Motivation

 FARM:  Flexible Architecture Research Machine

 A high-performance flexible vehicle for exploring 
new tightly-coupled computer architectures

 New heterogeneous architectures have unique 
requirements for prototyping

 Mimic heterogeneous structures and 
communication patterns

 Communication among prototype components 
must be efficient...



Motivational Examples

 Prototype a hardware memory watchdog using 
an FPGA
 FPGA should know about system-level 

memory requests
 FPGA must be placed closely enough to CPUs 

to monitor memory accesses

 An intelligent memory profiler
 Hardware race detection
 Transactional memory accelerator
 Other fine-grained, tightly-coupled coupled 

coprocessors...

4



Motivation

 CPUs + FPGAs:  Sweet spot for prototypes
 Speed + Flexibility
 New, exotic computer architectures are being 

introduced:  need high performing prototypes

 Natural fit for hardware acceleration
 Explore new functionalities
 Low-volume production

 “Coherent” FPGAs
 Prototype architectures featuring rapid, fine-

grained communication between elements

5



Motivation:  
The Coherent FPGA

 Why coherence?
 Low latency coherent polling
 FPGA knows about system off-chip accesses

 Intelligent memory configurations, memory 
profiling

 FPGA can “own” memory
 Memory access indirection: security, encryption, 

etc.

 What‟s required for coherence?
 Logic for coherent actions: snoop handler, etc.
 Properly configure system registers
 Coherent interconnect protocol (proprietary)
 Perhaps a cache

6



Outline

 Motivation

 The Stanford FARM

 Using FARM



The Stanford FARM

 FARM (Flexible Architecture Research Machine)

 A scalable fast-prototyping environment 

 “Explore your HW idea with a real system.”

 Commodity full-speed CPUs, memory, I/O 

 Rich SW support (OS, compiler, debugger … )

 Real applications and realistic input data sets

 Scalable

 Minimal design effort



The Stanford FARM:
Single Node

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FPGA

SRAM

GPU / Stream
I
O

 Multiple units connected by high-
speed memory fabric 

 CPU (or GPU) units give state-of-
the-art computing power

 OS and other SW support

 FPGA units provide flexibility 

 Communication is done by the 
(coherent) memory protocol

 Single node scalability is 
limited by the memory 
protocol

An example of a single FARM node



The Stanford FARM:
Multi-Node

 Multiple FARM nodes connected 
by a scalable interconnect 

 Infiniband, ethernet, PCIe …

 A small cluster of your own

MemoryMemory

Memory Memory

Core 
0

Core 
1

Core 
2

Core 
3

Core 
0

Core 
1

Core 
2

Core 
3

Core 
0

Core 
1

Core 
2

Core 
3

FPGA

SRAM

Infiniband

or other scalable 

interconnect

I
O

An example of a multi-node FARM configuration



 Initial platform for single FARM node
 Built by A&D Technology, Inc.




















The Stanford FARM:
Procyon System







 CPU Unit (x2)
 AMD Opteron Socket F (Barcelona)
 DDR2 DIMMs x 2















The Stanford FARM:
Procyon System













 FPGA Unit (x1)
 Altera Stratix II, SRAM, DDR
 Debug ports, LEDs, etc.









The Stanford FARM:
Procyon System



















 Each unit is a board
 All units connected via cHT backplane

 Coherent HyperTransport (version 2)
 We implemented cHT compatibility for 

FPGA unit (next slide)

The Stanford FARM:
Procyon System



The Stanford FARM:
Base FARM Components

2MB
L3 Shared Cache

…

Hyper
Transport

2MB
L3 Shared Cache

Hyper
Transport

32 Gbps

32 Gbps

~60ns

AMD Barcelona

6.4 Gbps

~380ns

6.4 Gbps cHTCore™

Hyper Transport (PHY, LINK)‏

Altera Stratix II FPGA   (132k Logic Gates)‏

Configurable

Coherent Cache

Data 

Transfer Engine

Cache IF

Data Stream IF

User Application
MMR

IF

1.8G
Core 0
64K L1

512KB
L2 

Cache

1.8G
Core 3
64K L1

512KB
L2 

Cache

…

1.8G
Core 0
64K L1

512KB
L2 

Cache

1.8G
Core 3
64K L1

512KB
L2 

Cache

 Block diagram of FARM on Procyon system
 Three interfaces for user application

 Coherent cache interface
 Data stream interface
 Memory mapped register interface

*cHTCore was created by the University 
of Manhiem



The Stanford FARM:
Base FARM Components

cHTCore™

Hyper Transport (PHY, LINK)‏

Altera Stratix II FPGA   (132k Logic Gates)‏

Configurable

Coherent Cache

Data 

Transfer Engine

Cache IF

Data Stream IF

User Application
MMR

IF











 FPGA Unit: communication 
logic + user application



The Stanford FARM:
Data Transfer Engine

 Ensures protocol-level 
correctness of cHT
transactions
 e.g. Drop stale data 

packets when multiple 
response packets arrive

 Handles snoop requests 
(pull data from the cache 
or respond negative)

 Traffic handler: memory 
controller for reads/writes 
to FARM memory
 MMR loads/stores also 

handled here



The Stanford FARM:
Coherent Cache

 Coherently stores system 
memory for use by application

 Write buffer: stores evicted 
cache lines until write back

 Prefetch buffer: extended fill 
buffer to increase data fetch 
bandwidth

 Cache lines either modified or 
invalid



Resource Usage

Resource Usage

4 Kbit Block RAMs 144 (24%)

Logic Registers 16K (15%)

LUTs 20K

 Cache module is heavily parameterized
 Numbers reflect 4KB, 2-way set associative 

cache
 And our FPGA is a Stratix II...



Outline

 Motivation

 The Stanford FARM

 Using FARM



Communication Mechanisms

 CPU  FPGA

 Write to Memory Mapped Register (MMR) 

Number of 
Register Reads

Registers on 
FARM FPGA

Registers on a 
PCIe Device

1 672 ns 1240 ns

2 780 ns 2417 ns

4 1443 ns 4710 ns



Communication Mechanisms

 CPU  FPGA

 Write to Memory Mapped Register (MMR) 

 Asynchronous write to FPGA (streaming interface)

 FPGA owns special address ranges which causes non-
temporal store. 

 Page table attribute: Write-Combining. 

(Weaker consistency than non-cacheable)

 Write to cacheable address; FPGA reads it out later 
(coherent polling)



Communication Mechanisms

 FPGA  CPU
 CPU read from MMR (non-coherent polling)

 FPGA writes to cacheable address; CPU reads it out 
later (coherent polling)



Communication Mechanisms

 FPGA  CPU
 CPU read from MMR (non-coherent polling)

 FPGA writes to cacheable address; CPU reads it out 
later (coherent polling)

 FPGA throws interrupt



Proof of Concept:
Transactional Memory

 Prototype hardware acceleration for TM
 Transactional Memory

 Optimistic concurrency control (programming 
model)

 Promise: simplifying parallel programming
 Problem: Implementation overhead

 Hardware TM: expensive, risky
 Software TM: too slow
 Hybrid TM: FPGAs are ideal for prototyping…  



Briefly…

 Hardware performs conflict 
detection and notification

 Messages
 Address transmission (CPUFPGA)

 At every shared read
 Fine-grained & asynchronous
 Stream interface

 Ask for Commit (CPUFPGACPU)
 Once at the end of a transaction.
 Synchronous; full round-trip 

latency
 Non-coherent polling

 Violation notification (FPGACPU)
 Asynchronous
 Coherent polling

FPGA
HW

Thread1 Thread2

Read A

Read B

To write B

OK to 
commit?

You’re‏
Violated

Yes



Performance Results



Thank You!

Questions?



Backup Slides



Summary: TMACC

 A hybrid TM scheme

 Offloads conflict detection to external HW

 Saves instructions and meta-data

 Requires no core modification 

 Prototyped on FARM

 First actual implementation of Hybrid TM

 Prototyping gave far more insight than simulation.

 Very effective for medium-to-large sized 
transactions 

 Small transaction performance gets better with ASIC or 
on-chip implementation.

 Possible future combination with best-effort HTM



What can I prototype with 
FARM?

 Question

 What units/nodes can I put together?

 What functions can I put on FPGA units?

 Heterogeneous systems

 Co-processor or off-chip accelerator

 Intelligent memory system

 Intelligent I/O device

 Emulation of future large scale CMP 
system

MemoryMemory

Memory Memory

FP 
GA
SRAM

GPU I
O



High-level

Test Bench

Verification Environment

 Bus Functional Model

 cHT Simulator from AMD

 Cycle-based

 HDL co-simulation via PLI 
interface

 FARM SimLib

 A glue library that connects 
high-level test-benches to 
cycle-based BFM

 High-level test-bench 

 Simple Read/Write + 
Imperative description + 
Complex functionality …

 Concept similar to 
Synopsis VERA or Cadence 
Specman

FARM
SimLib

Bus Functional Model
(BFM) for cHT Simulation

HDL 
Component

(DUT)

High-level

Test Bench

PLI

…

v1 =  Read (Addr1);

v2 =  Read (Addr2);

v3 = foo (v1, v2);

Delay (N);

Write(Addr3, v3);



Implementation Result

 We prototyped TMACC on FARM

 HW Resource Usage

Comm. IP TMACC-GE TMACC-LE

4Kb BRAM 144 (24%) 256 (42%) 296 (49%)

Logic Register 16K (15%) 24K (22%) 24K (22%)

LUT 20K 30K 35K

FPGA Type Altera Stratix II EPS130 (-3)

Max Freq 100 MHz



Tables



Graphs



Graphs (projection)



Hardware Acceleration

 FARM is ideal vehicle for evaluating accelerators
 FPGA closely coupled with CPUs

 High level analytical model for accelerator speedup:

   

Speedup=
G(Ton +Toff )

G(Ton+aToff )+tovhd -tovlp

Toff

Time to execute the offloaded work on the 

processor


Acceleration factor for the offloaded work 

(doubled rate would have =0.5)‏

Ton

Time to execute remaining work (i.e. 

unaccelerated work) on the processor

G
Percentage‏of‏offloaded‏work‏done‏between‏

each communication with the accelerator

tovlp

Time the processor is doing work in parallel 

with communication and/or work done on the 

accelerator

tovhd Communication overhead



Analytical Model

b: breakeven point for half-synch model

a: breakeven point for full synch model



Initial Application: Transactional 
Memory

 Accelerate STM without changing the processor
 Use FPGA in FARM to detect conflicts between 

transactions 

 Significantly improve expensive read barriers in STM 
systems

 Can use FPGA to atomically perform transaction commit

 Provides strong isolation from non-transactional access

 Not used in current rendition of FARM



What’s‏inside‏TMACC‏HW?

 A set of generic BloomFilters + control logic

 (BloomFilter: a condense way to store „set‟ information)

 Read-set: Addresses that a thread has read

 Write-set: Addresses that other threads have written

 Conflict detection

 Compare read-address against write-set

 Compare write-address against read-set



Problem of Being Off-Core

 Asynchronous 
communications

 Variable latency to 
reach the HW

 Network latency

 Amount of time spent 
in the store buffer

 How can we determine 
correct ordering? 

TMACC
HW

Thread1 Thread2

Read A

Write A 
+ Commit

OK to 
commit?



Global and Local Epochs

A

B

C C

B

A

 Global Epochs

 Each command embeds epoch number (a global variable).

 Finer grain but requires global state

 Know A < B,C but nothing about B and C

 Local Epochs

 Each threads declare start of new epoch

 Cheaper, but coarser grain (non-overlapping epochs)‏

 Know C < B, but nothing about A and B or A and C

Global Epochs Local Epochs

Epoch N Epoch N+1Epoch N-1



Two TMACC Schemes

 We proposed two TM schemes.

 One using global epoch (TMACC-GE); the other using local 
epoch (TMACC-LE)

 Trade-Offs 

 TMACC-GE is more accurate in conflict detection. (i.e. less 
false positives)

 TMACC-GE has more SW overhead.  (i.e. global epoch 
management)

 TMACC-LE uses even less meta-data.

 It allows, but detects, reading partial-committed data.

 TMACC-LE is more expensive in HW resource.

 Due to BloomFilter copy operation

 Misc. optimizations

 Global epoch merging, private global epoch, local epoch 
splitting …



Performance Analysis: 
micro-benchmark
 Why micro-benchmark?

 Simple and easy to understand

 Free from pathologies and 2nd-order 
effects  Focus on overhead

 Decouple effects of parameters

 Parameters

 Size of Working Set (A1)

 Size of Transaction; Number of 
Read/Writes (R,W)

 Degree of Conflicts (C, A2)

 Implementation

 Random array accesses

 Array1[A1]: partitioned (non-
conflicting)

 Array2[A2]: fully-shared (possible 
conflicts) 

Parameters: A1, A2, R, W, C

TM_BEGIN
for I = 1 to (R + W) {

p = (R / R + W)

/* Non-conflicting Access */
a1 = rand(0, A1 / N) + tid * A1/N;
if (rand_f(0,1) < p)) 

TM_READ( Array1[a1])
else

TM_WRITE(Array1[a1])

/* Conflicting Access */
if (C) {

a2 = rand(0, A2);
if (rand_f(0,1) < p)) 

TM_READ(Array2 [a2])
else

TM_WRITE(Array2[a2])
}

}
TM_END



Micro-benchmark Results

 TL2: baseline STM

 Unprotected: upper-bound 
of performance

 Y-axis

 Speed up with 8 cores. 

 % of violation

(a) Working set size (A1)

 The knee is size of cache.

 Constant spread-out of speed-ups  

(b) Transaction size (R; W = R *.05)

 All violations are false positive.

 Plateau in the middle; drop for small-
sized TXs. 

(a) Size of working set (b) Size of transaction



HT Core

FPGA Breakdown

HT Interface

HT

Cache

RSM

C
o

m
m

it
te

r



CPU  FPGA Communication

 Driver

 Modify system registers to create DRAM 
address space mapped to FPGA

 “Unlimited” size (40 bit addresses)‏

 User application maps addresses to virtual 
space using mmap

 No kernel changes necessary



CPU  FPGA Commands
 Uncached stores

 Half-synchronous communication

 Writes strictly ordered

 Write combining buffers

 Asynchronous until buffer overflow

 Command offset: configure addresses to 
maximize merging

 DMA

 Fully asynchronous

 Write to cached memory and pull from FPGA



FPGA  CPU Communication

 FPGA writes to coherent memory

 Need a static physical address (e.g. pinned 
page cache) or coherent TLB on FPGA

 Asynchronous but expensive, usually 
involves stealing a cache line from CPUs…

 CPU reads memory mapped registers 
on the FPGA

 Synchronous, but efficient



Communication in TM

 CPU  FPGA

 Use write-combining buffer

 DMA not needed, yet.

 FPGA  CPU

 Violation notification uses coherent writes

 Free incremental validation

 Final validation uses MMR



Tolerating FPGA-CPU Latency

 Decouple timeline of CPU command 
firing from FPGA reception

 Embed a global time stamp in commands 
to FPGA

 Software or hardware increments time 
stamp when necessary

 Divides time into “epochs”

 Currently using atomic increment – looking 
into Lamport clocks

 FPGA uses time stamp to reason about 
ordering



Example: Use in TM

 Read Barrier

 Send command with global timestamp and 
read reference to FPGA

 FPGA maintains per-txn bloom filter

 Commit

 Send commands with global timestamp 
and each written reference to FPGA

 FPGA notifies of already known violations

 Maintains a bloom filter for this epoch

 Violates new reads with same epoch



Time Stamp illustration

CPU 0 CPU 1 FPGA
Read x

Start Commit
Lock x

Violate x



Synchronization‏“Fence”

 Occasionally you need to synchronize

 E.g. TM validation before commit

 Decoupling FPGA/CPU makes this 
expensive – should be rare

 Send fence command to FPGA

 FPGA notifies CPU when done

 Initially used coherent write – too 
expensive

 Improved: CPU reads MMR



Results

Single thread execution breakdown for STAMP apps



Results

Speedup over sequential execution for STAMP apps



Classic Lessons

 Bandwidth

 CPU vs Simulator

 In-order single-cycle CPUs do not look like 
modern processors (Opteron)‏

 Off chip is hard

 CPUs optimized for caches not off-chip 
communication



Proof of Concept:
Transactional Memory

 Prototype hardware acceleration for TM
 Transactional Memory

 Optimistic concurrency control (programming 
model)

 Promise: simplifying parallel programming
 Problem: Implementation overhead

 Hardware TM (HTM) – expensive
 Software TM (STM) – slow
 Hybrid TM

 Idea 
 Accelerate STM with out-of-core hardware 

(e.g. an off-chip accelerator)
 No core modification, but still good 

performance



Possible Directions

 Possibility of building a much bigger 
system (~28 cores)‏

 Security 

 Memory watchdog, encryption, etc.

 Traditional hardware accelerators

 Scheduling, cryptography, video encoding, 
etc.

 Communication Accelerator

 Partially-coherent cluster with FPGA 
connecting coherence domains



Let‏us‏accelerate‏you…

 How could your domain/app use an 
FPGA co-processor?


