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Motivation

m FARM: Flexible Architecture Research Machine

®= A high-performance flexible vehicle for exploring
new tightly-coupled computer architectures

= New heterogeneous architectures have unique
requirements for prototyping

m Mimic heterogeneous structures and
communication patterns

= Communication among prototype components
must be efficient...




Motivational Examples

m Prototype a hardware memory watchdog using
an FPGA
= FPGA should know about system-level
memory requests
= FPGA must be placed closely enough to CPUs
to monitor memory accesses

An intelligent memory profiler
Hardware race detection
Transactional memory accelerator

Other fine-grained, tightly-coupled coupled
COprocessors...




Motivation

m CPUs + FPGAs: Sweet spot for prototypes
= Speed + Flexibility
= New, exotic computer architectures are being
introduced: need high performing prototypes

= Natural fit for hardware acceleration
= Explore new functionalities
= Low-volume production

m "Coherent” FPGAs
= Prototype architectures featuring rapid, fine-
grained communication between elements




Motivation:
The Coherent FPGA

= Why coherence?
= Low latency coherent polling

= FPGA knows about system off-chip accesses
« Intelligent memory configurations, memory
profiling

= FPGA can “"own” memory

=« Memory access indirection: security, encryption,
etc.

= What's required for coherence?
= Logic for coherent actions: snoop handler, etc.
= Properly configure system registers
= Coherent interconnect protocol (proprietary)
= Perhaps a cache
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The Stanford FARM

= FARM (Flexible Architecture Research Machine)
m A scalable fast-prototyping environment
= "Explore your HW idea with a real system.”
= Commodity full-speed CPUs, memory, I/0O
= Rich SW support (OS, compiler, debugger ... )
= Real applications and realistic input data sets
= Scalable
= Minimal design effort




The Stanford FARM:
Single Node

Multiple units connected by high-
speed memory fabric

CPU (or GPU) units give state-of-
the-art computing power

m OS and other SW support

FPGA units provide flexibility

Communication is done by the
mEEn FPGA J (coherent) memory protocol
N ~ m Single node scalability is

aEEEn SRAM limited by the memory

| | protocol
Memory J Memory J

An example of a single FARM node




The Stanford FARM:
Multi-Node

= Multiple FARM nodes connected
by a scalable interconnect

m Infiniband, ethernet, PCle ...

m A small cluster of your own

FPGA iJ
_J | Infiniband

s or other scalable

| interconnect

Memory J Memory J 1

An example of a multi-node FARM configuration




The Stanford FARM:
Procyon System

m Initial platform for single FARM node
= Built by A&D Technology, Inc.




The Stanford FARM:
Procyon System

CPU Unit (x2)
= AMD Opteron Socket F (Barcelona)
= DDR2 DIMMs x 2




The Stanford FARN
Procyon System

FPGA Unit (x1)
s Altera Stratix II, SRAM, DDR
= Debug ports, LEDs, etc.




The Stanford FARM:
Procyon System

m Each unit is a board -
= All units connected via cHT backplane
= Coherent HyperTransport (version 2)
= We implemented cHT compatibility for
FPGA unit (next slide)




The Stanford FARM:
Base FARM Components

1.8G 1.8G 1.8G 1.8G
Core O Core 3 CoreO Core 3
64K L1 64K L1 64K L1 64K L1

512KB 512KB 512KB 512KB Cache IF
L2 L2 L2 L2 -
Cache Cache Cache Cache Conflgurable
Data Stream IF Coherent Cache
are ache .
Lo Shared Ssle Transfer Engine
" cHTCore™
yper Hyper -

AMD Barcelona

*cHTCore was created by the University
of Manhiem

m Block diagram of FARM on Procyon system
m Three interfaces for user application

m Coherent cache interface

m Data stream interface

m Memory mapped register interface




The Stanford FARM:

Base FARM Components

m FPGA Unit: communication
logic + user application

Altera Stratix Il FPGA (132k Logic Gates)

mMR

IF

Configurable

Data Stream IF Coherent Cache

Data
Transfer Engine

cHTCore™

o

Hyper Transport (PHY, LINK) /




The Stanford FARM:
Data Transfer Engine

m Ensures protocol-level
correctness of cHT
transactions
m e.g. Drop stale data ~ -
Stream-in

packets when multiple t—{_Traffic Handler
response packets arrive

Handles snoop requests '( Data
(pull data from the cache ' . N
or respond negative) - [ bata Handler Loyl Co-
s Traffic handler: memory “1 |herent
controller for reads/writes Cache
to FARM memory
m MMR loads/stores also
handled here ~—

to user App




The Stanford FARM:
Coherent Cache

m Coherently stores system
memory for use by application

m Write buffer: stores evicted
cache lines until write back

m Prefetch buffer: extended fill
buffer to increase data fetch
bandwidth

m Cache lines either modified or
invalid
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Resource Usage

4 Kbit Block RAMs 144 (24%)
Logic Registers 16K (15%)
LUTs 20K

m Cache module is heavily parameterized
s Numbers reflect 4KB, 2-way set associative
cache
= And our FPGA is a Stratix II...
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Communication Mechanisms

= CPU = FPGA
= Write to Memory Mapped Register (MMR)

Number of Registers on | Registers on a
Register Reads | FARM FPGA PCIe Device

1 672 ns 1240 ns
2 780 ns 2417 ns
4 1443 ns 4710 ns




Communication Mechanisms

= CPU = FPGA

= Write to Memory Mapped Register (MMR)

= Asynchronous write to FPGA (streaming interface)

=« FPGA owns special address ranges which causes non-
temporal store.

= Page table attribute: Write-Combining.

(Weaker consistency than non-cacheable)

= Write to cacheable address; FPGA reads it out later
(coherent polling)




Communication Mechanisms

= FPGA = CPU

= CPU read from MMR (non-coherent polling)

= FPGA writes to cacheable address; CPU reads it out
later (coherent polling)

CPU FPGA CPU FPGA

(1) M)

—

Non-coherent polling Coherent polling




Communication Mechanisms
= FPGA = CPU

= CPU read from MMR (non-coherent polling)

= FPGA writes to cacheable address; CPU reads it out
later (coherent polling)

s FPGA throws interrupt




Proof of Concept:
Transactional Memory

m Prototype hardware acceleration for TM
m Transactional Memory
= Optimistic concurrency control (programming
model)
= Promise: simplifying parallel programming
= Problem: Implementation overhead
=« Hardware TM: expensive, risky
« Software TM: too slow
« Hybrid TM: FPGAs are ideal for prototyping...




Briefly...

Hardware performs conflict
detection and notification

Messages

s Address transmission (CPU->FPGA)
= At every shared read
« Fine-grained & asynchronous
« Stream interface

s Ask for Commit (CPU>FPGA->CPU)
= Once at the end of a transaction.
« Synchronous; full round-trip

latency

=« Non-coherent polling

= Violation notification (FPGA->CPU)
=« Asynchronous
=« Coherent polling

Threadl

\
[_Read B |

r
| Violated
I

—

OK to
commit?

Yes




Performance Results

—fl— Software TM
iy FPGA Scheme 1
FPGA Scheme 2

— - - - Upper Bound

Vacation-Low

4 8
Vacation-High




Thank You!

Questions?




Backup Slides




Summary: TMACC

m A hybrid TM scheme

s Offloads conflict detection to external HW
m Saves instructions and meta-data
= Requires no core modification

= Prototyped on FARM

= First actual implementation of Hybrid TM
= Prototyping gave far more insight than simulation.

m Very effective for medium-to-large sized
transactions

= Small transaction performance gets better with ASIC or
on-chip implementation.

s Possible future combination with best-effort HTM




What can | prototype with
FARM?

Question
= What units/nodes can I put together?
= What functions can I put on FPGA units?

Heterogeneous systems

Co-processor or off-chip accelerator
Intelligent memory system
Intelligent I/O device

Emulation of future large scale CMP
system




Verification Environment

vl = Read (Addrl);
v2 = Read (Addr2);
v3 =foo (v1, v2);
Delay (N);
Write(Addr3, v3);

\/
High-level
Test Bench

FARM
SimLib

Component

Bus Functional Model
(BFM) for cHT Simulation

m Bus Functional Model
m CHT Simulator from AMD
= Cycle-based

m HDL co-simulation via PLI
interface

= FARM SimLib

= A glue library that connects
high-level test-benches to
cycle-based BFM

= High-level test-bench

« Simple Read/Write +
Imperative description +
Complex functionality ...

=« Concept similar to
Synopsis VERA or Cadence
Specman




Implementation Result

= We prototyped TMACC on FARM
= HW Resource Usage

Comm. IP TMACC-GE TMACC-LE

4Kb BRAM
Logic Register
LUT

FPGA Type
Max Freq

144 (24%) 256 (42%) 296 (49%)
16K (15%) 24K (22%) 24K (22%)
20K 30K 35K
Altera Stratix II EPS130 (-3)
100 MHz




Tables

Name Input parameters WER/tx  CPU cycles/tx Memory Conflicts
usage (MB)

vacation-low | n2 q90 u98 r1048576 14194304 5.5 37740 573 very low
vacation-high | nd q60 u90 r1048576 14194304 8.3 37642 573 low
genome 163584 s64 nl6777216 1.9 48836 1932 low
labyrinth X3 12-y512-z7-n512.1xt 177 6.1 * 10° 32 high

sscal s2011.0ul.0 13 p3 2 2360 1320 very low
kmeans-low m40 n40 65536-d32-c16.xt 2 25 6380 16 low
kmeans-high | m256 n256 65536-d32-cl6.txt 25 25 690 16 high

parameter set label A l*s1zeof(int) A2 R W C
{a) working-set size 0.5 ~ 64 (MB) - 80 4 false
(b) transaction size 64 (MB) - 10~ 400 mazx(l. R+0.05) false
{(c) true conflicts 64 (MB) 256 ~ 16,384 40 2 true
{(d) write-sef sizes 64 (MB) - S0 |~ 128 false
{e) #of threads (med-sized TX) 64 (MB) - 80 4 false 1~ 8
# of threads (small-sized TX) 64 (MB) - 4 | false 1~8




Graphs

(a) impact of working-set size
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Graphs (projection)

(d) impact of write-set size (e) impact of number of threads

Madilum TX Zhort TX
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(f) performance comparison of TMACC-GE

and TL?2 for short sized transactions
WER
14
12
10
B

B
4
2

10{12|14(RD

TL2 performs better by more than 3 %
2| Two schemes show similar performance
3

TMACC-GE performs better by more than 3%




Hardware Acceleration

= FARM is ideal vehicle for evaluating accelerators
m FPGA closely coupled with CPUs

= High level analytical model for accelerator speedup:

G(T,, =T,,)
Accelerator
G(Y—;n ﬁ”) ovhd @ .

ovlp

Speedup H

Time to execute the offloaded work on the
processor

Acceleration factor for the offloaded work
(doubled rate would have &=0.5)

Time to execute remaining work (i.e.
unaccelerated work) on the processor

Percentage of offloaded work done between
each communication with the accelerator

Time the processor is doing work in parallel

with communication and/or work done on the

accelerator (A) Fully Synchronous (B) Merged Return (C) Asynchronous
(Half Synchronous)

Communication overhead




Analytical Model

Theoretical
Limit (1/B) = 2

—— Full Synch (Modeled)

—— Half Synch (Modeled)

—&— ASynch (Modeled)

-=-%--- Full Synch (Measured)

_____ &+ Half Synch (Measured)

""" & Asynch (Measured)

10
Granularity (Normalized by Roundtrip Latency)

b: breakeven point for half-synch model
a: breakeven point for full synch model




PRALELEN

Initial Application: Transactior EbL
MemOry sl VS

m Accelerate STM without changing the processor

s Use FPGA in FARM to detect conflicts between
transactions

= Significantly improve expensive read barriers in STM
systems

= Can use FPGA to atomically perform transaction commit
= Provides strong isolation from non-transactional access
=« Not used in current rendition of FARM
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What's inside TMACC vaﬁ

m A set of generic BloomFilters + control logic
= (BloomFilter: a condense way to store ‘set’ information)
= Read-set: Addresses that a thread has read
= Write-set: Addresses that other threads have written

m Conflict detection
= Compare read-address against write-set
= Compare write-address against read-set

o Fjlremi
%, hits_in '

i 1 Filter 0

1

-
|| Filter 1
1

M Fiter 2

1
: 1']-'_|Ib.'rn
1




Problem of Being Off-Core

= Asynchronous
communications

Variable latency to
reach the HW

= Network latency

= Amount of time spent
in the store buffer

How can we determine
correct ordering?

Threadl

Thread?2

\
Write A
+ Commit

-

OK to
commit?




Global and Local Epochs

Epoch N-1 Epoch N Epoch N+1

— F A H

H

.[
.[
H HC cH

_[
_[
_[

H H

Global Epochs Local Epochs
= Global Epochs

= Each command embeds epoch number (a global variable).
= Finer grain but requires global state
= Know A < B,C but nothing about B and C
m Local Epochs
= Each threads declare start of new epoch
= Cheaper, but coarser grain (non-overlapping epochs)
= Know C < B, but nothing about A and B or A and C




Two TMACC Schemes

m We proposed two TM schemes.

= One using global epoch (TMACC-GE); the other using local
epoch (TMACC-LE)

m Trade-Offs

TMACC-GE is more accurate in conflict detection. (i.e. less
false positives)

TMACC-GE has more SW overhead. (i.e. global epoch
management)

TMACC-LE uses even less meta-data.
« It allows, but detects, reading partial-committed data.

TMACC-LE is more expensive in HW resource.
=« Due to BloomFilter copy operation
m Misc. optimizations

= Global epoch merging, private global epoch, local epoch
splitting ...




Performance Analysis:
micro-benchmark

= Why micro-benchmark? Parameters: Al, A2, R, W, C
Simple and easy to understand ™ BEGIN

Free from pathologies and 2"d-order forl=1to (R+ W) {
effects @ Focus on overhead p=(R/R+W)

Decouple effects of parameters /* Non-conflicting Access */

m Parameters al =rand(0, A1/ N) + tid * A1/N;
if (rand_f(0,1) < p))

Size of Working Set (A1) TM_READ( Arrayl[al])

Size of Transaction; Number of else
Read/Writes (R,W) TM_WRITE(Arrayl[al])

Degree of Conflicts (C, A2) /* Conflicting Access */
= Implementation f (i)z{z rand(0, A2);
Random array accesses if (rand_f(0,1) < p))

Array1[A1]: partitioned (non- elseTM—READ(A”ay2 [a2])

conflicting) TM_WRITE(Array2[a2])
Array2[A2]: fully-shared (possible
conflicts)




Micro-benchmark Results

(a) Size of working set (b) Size of transaction
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8

-~

Speed-up

% Violation
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TMACC-LE Violation
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100
Number of RD

o i+
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(a) Working set size (Al)
= The knee is size of cache.

= Constant spread-out of speed-ups
(b) Transaction size (R; W = R *.05)
= All violations are false positive.

= Plateau in the middle; drop for small-
sized TXs.

m TL2: baseline STM

m Unprotected: upper-bound
of performance

m Y-axis
m Speed up with 8 cores.
= % of violation




FPGA Breakdown

4 N

/ A\ 4
» Committer J
\_

Ao

HT Interface

HT Core

S




CPU - FPGA Communicatiiim

m Driver

= Modify system registers to create DRAM
address space mapped to FPGA

« "Unlimited” size (40 bit addresses)

= User application maps addresses to virtual
space using mmap

= No kernel changes necessary




CPU =2 FPGA Commands

m Uncached stores
= Half-synchronous communication
= Writes strictly ordered

= Write combining buffers
= Asynchronous until buffer overflow

= Command offset: configure addresses to
maximize merging

m DMA

= Fully asynchronous
= Write to cached memory and pull from FPGA




PRGN
Ay L'S
w

FPGA - CPU Communicati%m

m FPGA writes to coherent memory

= Need a static physical address (e.g. pinned
page cache) or coherent TLB on FPGA

= Asynchronous but expensive, usually

involves stealing a cache line from CPUs...

m CPU reads memory mapped registers
on the FPGA

= Synchronous, but efficient




Communication in TM

= CPU = FPGA

= Use write-combining buffer
= DMA not needed, yet.

= FPGA - CPU

= Violation notification uses coherent writes
= Free incremental validation

= Final validation uses MMR
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Tolerating FPGA-CPU Lateriﬁﬂj'm

m Decouple timeline of CPU command
firing from FPGA reception

= Embed a global time stamp in commands
to FPGA

= Software or hardware increments time
stamp when necessary

« Divides time into “epochs”

= Currently using atomic increment - looking
into Lamport clocks

= FPGA uses time stamp to reason about
ordering




Example: Use iIn TM

m Read Barrier

= Send command with global timestamp and
read reference to FPGA

= FPGA maintains per-txn bloom filter

E Commit

= Send commands with global timestamp
and each written reference to FPGA

= FPGA notifies of already known violations

= Maintains a bloom filter for this epoch
= Violates new reads with same epoch




Time Stamp illustration

CPUO CPU1 FPGA

Read x

. Start Commit
Lock x
Violate x




Synchronization “Fence”

m Occasionally you need to synchronize

= E.g. TM validation before commit

= Decoupling FPGA/CPU makes this
expensive — should be rare

m Send fence command to FPGA

m FPGA notifies CPU when done

= Initially used coherent write - too
expensive

= Improved: CPU reads MMR




Results

Single thread execution breakdown for STAMP apps

[ Body
B Commit

Vacation (Low) Vacation (high) Genome Labyrinth SSCA2 Intruder




Results

normalized speedup

normalized speedup

Speedup over sequential execution for STAMP apps
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T
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normalized speedup
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processors




Classic Lessons

m Bandwidth

m CPU vs Simulator

= In-order single-cycle CPUs do not look like
modern processors (Opteron)

m Off chip is hard

= CPUs optimized for caches not off-chip
communication




Proof of Concept:
Transactional Memory

m Prototype hardware acceleration for TM
m Transactional Memory
= Optimistic concurrency control (programming
model)
= Promise: simplifying parallel programming
= Problem: Implementation overhead
« Hardware TM (HTM) - expensive
= Software TM (STM) - slow
= Hybrid TM
m Idea
= Accelerate STM with out-of-core hardware
(e.g. an off-chip accelerator)
= No core modification, but still good
performance




Possible Directions

m Possibility of building a much bigger
system (~28 cores)

m Security
= Memory watchdog, encryption, etc.

m Traditional hardware accelerators

= Scheduling, cryptography, video encoding,
etc.

m Communication Accelerator

= Partially-coherent cluster with FPGA
connecting coherence domains




Let us accelerate you...

= How could your domain/app use an
FPGA co-processor?




