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Good News — Bad News

® The opportunities
+ Lots of parallelism (request-level)
+ Mostly focused on throughput
Latency often limited by WAN

+ Room for innovation in SW & HW
Assuming SaaS, VMs, data-center in a box, ...

= The challenges
— Cost sensitive, consumer systems
Commodity components, energy efficiency, ...
— Large distributed systems
Large number of nodes, heterogeneity, —~O(1) scaling, ...

— Efficiency across range of evolving apps and scenarios
— Non-stop operation
Availability, durability, predictability, ...




So what’s an architect to do?




1. Design a System, not a Chip

m Top-down design of middleware & HW
= Meaningful metrics and goals
= Focus on true bottlenecks (e.g. HW vs language efficiency)
= Use high-level properties & system-wide techniques

m Example: assuming system-wide data replication
= Focus on per-node error detection instead of error correction
= Forward requests to avoid latency spikes, thermal issues, ...
= Energy proportionality by turning nodes on/off

E.g. results from_energy-efficient Hadoop | Multi-job Mix (32GB Scans and Sorts)
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2. From Compute- to Data-Centric %
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= Compute is now cheap and efficient

= Focus on memory, storage, and network

= Throughput, latency, energy, power,
= Rethink arch, HW/SW interface, support for distributed ops

= Tradeoff compute for communication
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3. Rethink Components & Balance %

= What are the right components for the system?

= Server, notebook, or embedded?

= Best way to connect them and balance their features?

m Example: energy efficient sorting
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4. Tools and Methodologies %

= In great need of
= Analysis of workloads and systems

Models for emerging apps & architectures
Benchmarks (workloads and metrics)

Convincing prototyping techniques

Understanding of performance, energy, and
reliability tradeoffs




