Designing for the Cloud

An Architect’s Perspective

Christos Kozyrakis

Computer Systems Lab
Stanford University
http://csl.stanford.edu/—christos

WIOSCA Workshop — June 2009

Good News — Bad News

® The opportunities
+ Lots of parallelism (request-level)
+ Mostly focused on throughput
Latency often limited by WAN

+ Room for innovation in SW & HW
Assuming SaaS, VMs, data-center in a box, ...

= The challenges
— Cost sensitive, consumer systems
Commodity components, energy efficiency, ...
— Large distributed systems
Large number of nodes, heterogeneity, —~O(1) scaling, ...

— Efficiency across range of evolving apps and scenarios
— Non-stop operation
Availability, durability, predictability, ...

So what’s an architect to do?

1. Design a System, not a Chip

m Top-down design of middleware & HW
= Meaningful metrics and goals
= Focus on true bottlenecks (e.g. HW vs language efficiency)
= Use high-level properties & system-wide techniques

m Example: assuming system-wide data replication
= Focus on per-node error detection instead of error correction
= Forward requests to avoid latency spikes, thermal issues, ...
= Energy proportionality by turning nodes on/off

E.g. results from_energy-efficient Hadoop | Multi-job Mix (32GB Scans and Sorts)
5 18 nodes disabled =23
no nodes disabled E==20

9 18 9 18 9 20 40 60 80
Sleeping nodes Sleeping nodes Sleeping nodes Inactivity Duration (s)

ot
o]

Runtime Energy Power (kW)

1.2

1
0.8 |
0.6

o
o

N
~

197'secohds '
82 seconds
Fraction of Runtime

Nt
o

Cumulative Inactivity Distributio

OSO—= NV WhEUAD OO

Sort
Scan

)
j=;

27 27

=)
f=

2. From Compute- to Data-Centric %

/COI‘G

~

Core

Buf

Buf

Core

Core

Buf

Buf

Core

Core

wur

BUf/

/CO e

-

"

Memory L Storage ‘

MemoryL Storage _ _ Memory

ey — Core Core

Memory | Storage | Memory

Storage

= Compute is now cheap and efficient

= Focus on memory, storage, and network

= Throughput, latency, energy, power,
= Rethink arch, HW/SW interface, support for distributed ops

= Tradeoff compute for communication

2\
3. Rethink Components & Balance %

= What are the right components for the system?

= Server, notebook, or embedded?

= Best way to connect them and balance their features?

m Example: energy efficient sorting

Norm '1hzed
JouleSo

Notebook-based

Cost-optimized

Embedded-based
¢erver -based

Performance-optimized

N

Z‘*‘

Energy-aware systems PennySort winners

Fileserver
BSIS (2006)
Postman
Sort (2005)
(2005)
THSort
(2004)
DMSort

GPUTeraSort
SheenkSort

(2006)
(2002)
HMSort

(2000)
NTSort

(1998)

HPVMSort

(1999-2000)
NowSort

SCS (2005)

Nsort (2004)
SPSort
(2000)

‘ e

MinuteSort and TerabyteSort
winners

4. Tools and Methodologies %

= In great need of
= Analysis of workloads and systems

Models for emerging apps & architectures
Benchmarks (workloads and metrics)

Convincing prototyping techniques

Understanding of performance, energy, and
reliability tradeoffs

