
Designing for the Cloud  

An Architect’s Perspective 

Christos Kozyrakis 

Computer Systems Lab 

Stanford University 

http://csl.stanford.edu/~christos 



Good News – Bad News 

The opportunities 
+ Lots of parallelism (request-level) 

+ Mostly focused on throughput  

Latency often limited by WAN 

+ Room for innovation in SW & HW 

Assuming SaaS, VMs, data-center in a box, …  

The challenges 
Cost sensitive, consumer systems 

Commodity components, energy efficiency, …  

Large distributed systems 

Large number of nodes, heterogeneity, ~O(1) scaling, …  

Efficiency across range of evolving apps and scenarios 

Non-stop operation 

Availability, durability, predictability, …  

2 



So what’s an architect to do? 

3 



1. Design a System, not a Chip 

Top-down design of middleware & HW 

Meaningful metrics and goals 

Focus on true bottlenecks (e.g. HW vs language efficiency) 

Use high-level properties & system-wide techniques 

Example: assuming system-wide data replication 

Focus on per-node error detection instead of error correction 

Forward requests to avoid latency spikes, thermal issues, …  

Energy proportionality by turning nodes on/off 

E.g. results from energy-efficient Hadoop 

4 



2. From Compute- to Data-Centric 

Compute is now cheap and efficient 

Focus on memory, storage, and network 
Throughput, latency, energy, power, … 

Rethink arch, HW/SW interface, support for distributed ops 

Tradeoff compute for communication 
5 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

Core 

Buf 

DRAM 
DRAM Memory 

DRAM 
DRAM Storage 

DRAM 
DRAM Net 

DRAM 
DRAM Memory 

Core 
DRAM 
DRAM Storage 

Core 
DRAM 
DRAM Net 

Core 
DRAM 
DRAM Memory 

Core 

DRAM 
DRAM Memory 

Core 
DRAM 
DRAM Storage 

Core 
DRAM 
DRAM Net 

Core 
DRAM 
DRAM Memory 

Core 

DRAM 
DRAM Memory 

Core 
DRAM 
DRAM Storage 

Core 
DRAM 
DRAM Net 

Core 
DRAM 
DRAM Memory 

Core 

DRAM 
DRAM Memory 

Core 
DRAM 
DRAM Storage 

Core 
DRAM 
DRAM Net 

Core 
DRAM 
DRAM Memory 

Core 



3. Rethink Components & Balance 

What are the right components for the system? 

Server, notebook, or embedded? 

Best way to connect them and balance their features?  

Example: energy efficient sorting 

6 

Notebook-based 

Embedded-based 

Server-based 
Cost-optimized 

Performance-optimized 



4. Tools and Methodologies 

In great need of 

Analysis of workloads and systems 

Models for emerging apps & architectures 

Benchmarks (workloads and metrics) 

Convincing prototyping techniques 

Understanding of performance, energy, and 
reliability tradeoffs 

7 


