
ARCHITECTURES FOR TRANSACTIONAL MEMORY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Austen McDonald

June 2009

© Copyright by Austen McDonald 2009

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor

of Philosophy.

(Christos Kozyrakis) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor

of Philosophy.

(Oyekunle Olukotun)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor

of Philosophy.

(Mendel Rosenblum)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

Engineers have successfully worked for decades to improve single thread CPU perfor-

mance, but we have now reached a peak in what a single thread can do. Average pro-

grammers are now facing the eventuality that their code must be parallel to take advan-

tage of the performance potential of multi-core chips.

Unfortunately, writing parallel programs is hard because synchronizing accesses to

shared state is complex and error-prone—many techniques have been tried, but achiev-

ing performance and correctness simultaneously still requires expert programmers, and

the method of choice is decades old (locks). Transactional Memory (TM) is a relatively

new programming paradigm promising an easier road to correctness and performance

using atomic code regions. These regions may then be speculatively executed in parallel,

potentially providing performance gains.

This dissertation focuses on architecting and evaluating hardware TM systems. We

begin by briefly arguing that TM should be implemented in hardware, since proposed

software solutions suffer from poor performance. We then study qualitatively and quan-

titatively the large design space for hardware TM as defined by primary options such

as version management and conflict detection, and vary the secondary options such as

the structure of the memory hierarchy, the instructions per cycle, and the configuration

of the interconnect. Orthogonally, we determine the semantics and interfaces needed

by any hardware TM system to support rich software functionality in modern operating

systems and programming languages. Finally, we extend hardware support for transac-

tional execution to create a multi-core architecture that provides cache coherence and

memory consistency at the granularity of atomic transactions.

v

We conclude that programs written with transactional memory can achieve com-

parable to and often superior performance than the same programs written with tradi-

tional synchronization methods. Furthermore, a transactional architecture implement-

ing lazy versioning and optimistic conflict detection is the preferred method of imple-

menting TM in hardware due to its simplicity and good performance across a wide

range of contention scenarios. Also, to support rich semantics, you need four mecha-

nisms: two-phase transaction commit, software handlers, nested transactions, and non-

transactional loads and stores. Finally, a continuously transactional architecture called

Transactional Coherence and Consistency (TCC) maintains performance benefits while

simplifying the hardware implementation of TM.

vi

Acknowledgments

Special thanks to my advisor Christos, for picking me as his student and for guiding me

through the long Ph.D. process, for teaching me how to do research, and for always re-

minding me of what’s important “at the end of the day.”

To Kunle, a.k.a., Papa K., a.k.a., the Wild Nigerian, thanks for keeping me on task and for

being there to joke around with.

Also, a thank you goes out to Mendel Rosenblum, my third dissertation reader.

No acknowledgments page would be complete without thanking our hard-working ad-

ministrators, Teresa Lynn and Darlene Hadding. And of course, thank you to Uncle Sam,

the sources of the money they so skillfully administered: NSF Career Award 0546060,

NSF Grants CNS-0720905 and CCF-0444470, FCRP contract 2003-CT-888, DARPA NBCH-

104009, Army High Performance Computing Research Center HPTi W911NF-07-2-0027-

1.

The work for this thesis was not completely my own, but is the product of numerous stu-

dents’ sweat and tears: to Brian David David Carlstrom, thanks for writing “The Robot,”

for managing the benchmarks, for the Java results, for numerous late-night debugging

sessions, and for all the money you loaned me to go to the Thai Cafe; to JaeWoong Chung,

even though you never learned to heed the coding standards, your numerous contribu-

tions to the simulator code were invaluable; to Hassan Chafi, for help debugging and for

the color you added to our group; to Chi Cao Minh, thanks for parallelizing a bunch of

vii

benchmarks and for creating STAMP; to Nathan Bronson, thanks for the EP simulator

and for introducing me to climbing; to Ben Hertzberg, your x86 simulation code was

greatly appreciated; and to Lance Hammond, for inspiring the simulator code and leav-

ing me with the solemn duty of resident graph designer.

Thanks to my advisor at the Georgia Institute of Technology, Kenneth Mackenzie, and

to his students, for teaching me what research is, for helping me get to Stanford, and for

convincing me I should stay out of a hardware-based Ph.D.

There are too many friends to name, but thank you to all those who celebrated victories

with me, persevered through my hard times, offered their shoulders to cry on, and gave

me a life outside of the Gates Building.

Of course, I wouldn’t be here without my loving. Thanks for threatening to come out

here if I didn’t finish and thanks especially for all your support throughout my entire life!

Finally, thanks be to God, to whom often I prayed the prayer of Moses: May the favor of

the Lord our God rest upon us; establish the work of our hands for us—yes, establish the

work of our hands. Psalm 90:17.

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Transactional Memory . 1

1.2 The Case for Hardware Transactional Memory 4

1.3 Thesis . 5

1.4 Organization . 6

2 The Architectures of HTM 7

2.1 Basic TM Framework . 8

2.1.1 Architectural Interface . 9

2.1.2 Strong versus Weak Isolation . 10

2.2 Eager-Pessimistic (EP) . 11

2.3 Lazy-Optimistic (LO) . 14

2.4 Lazy-Pessimistic (LP) . 16

2.5 Eager-Optimistic (EO) . 17

2.6 Contention Management . 17

2.6.1 Contention Management Policies . 18

2.6.2 Pathologies . 19

2.6.3 Universal Contention Manager . 21

2.7 Virtualization . 23

2.8 Other Uses of HTM . 25

ix

2.9 Related Work . 26

3 Evaluation of HTM Design Space 29

3.1 Expected Performance . 29

3.2 Experimental Setup . 32

3.2.1 Eager-Pessimistic . 33

3.2.2 Lazy-Optimistic . 36

3.2.3 Lazy-Pessimistic . 37

3.2.4 Contention Management . 37

3.3 Benchmarks for Evaluation . 39

3.3.1 bayes . 39

3.3.2 genome . 40

3.3.3 intruder . 42

3.3.4 kmeans . 42

3.3.5 labyrinth . 42

3.3.6 ssca2 . 43

3.3.7 vacation . 43

3.3.8 yada . 44

3.3.9 barnes . 44

3.3.10 mp3d . 45

3.3.11 radix . 45

3.3.12 swim . 45

3.4 Baseline Evaluation . 46

3.5 Contention Management in Pessimistic Conflict Detection 48

3.5.1 Discussion . 51

3.6 Comparing Transactional Systems . 52

3.7 Comparing to Traditional Parallelization . 58

3.8 Shallow vs. Deep Memory Hierarchy . 60

3.9 Instruction-Level Parallelism . 63

3.10 Interconnect Parameters . 66

3.11 Related Work . 69

x

3.12 Conclusions . 72

4 The Architectural Semantics of HTM 75

4.1 The Need for Rich HTM Semantics . 77

4.2 HTM Instruction Set Architecture . 79

4.2.1 Two-phase Commit . 82

4.2.2 Commit Handlers . 82

4.2.3 Violation Handlers . 83

4.2.4 Abort Handlers . 84

4.2.5 Nested Transactions . 84

4.2.6 Nested Transactions and Handlers . 86

4.2.7 Non-Transactional Loads and Stores 88

4.2.8 Discussion . 89

4.3 Flexibly Building Languages and Systems . 90

4.4 Hardware Implementation . 93

4.4.1 Two-Phase Commit . 93

4.4.2 Commit, Violation, and Abort Handlers 94

4.4.3 Nested Transactions . 95

4.5 Evaluation . 99

4.5.1 Performance Optimizations with Nesting 99

4.5.2 I/O within Transactions . 101

4.5.3 Conditional Synchronization within Transactions 102

4.6 Conclusion . 103

5 All Transactions All the Time 105

5.1 Continuous Transactional Execution . 107

5.2 Transactional Coherence and Consistency 109

5.3 Design Alternatives . 111

5.3.1 Coherence Granularity . 111

5.3.2 Coherence Protocol . 112

5.3.3 Commit Protocol . 113

5.4 Performance Evaluation . 114

xi

5.4.1 Methodology . 114

5.4.2 Baseline Evaluation . 115

5.4.3 Coherence Granularity: Line-level versus Word-level 119

5.4.4 Coherence Protocol: Update versus Invalidate 121

5.4.5 Commit Protocol: Commit-through versus Commit-back 124

5.4.6 Bus Utilization . 127

5.5 Conclusions . 128

6 Conclusions and Future Work 131

Bibliography 133

xii

List of Tables

2.1 The fundamental design space of transactional memory. 11

2.2 Qualitative performance evaluations in the fundamental TM design space. 12

3.1 Default simulator parameters. Experiments use this setup unless other-

wise noted. 33

3.2 Cache and transactional statistics for benchmark applications. 41

3.3 Descriptions of each of the components of execution time. 46

4.1 State needed for rich HTM semantics. 80

4.2 Instructions needed for rich HTM semantics. 81

4.3 HTM mechanisms needed to implement various TM programming lan-

guages. 90

5.1 Cache and transactional statistics for benchmark applications under con-

tinuous transactions. 115

5.2 Speedups on each of the TCC systems. 130

xiii

xiv

List of Figures

2.1 Basic multicore TM environment. 8

2.2 How optimistic and pessimistic conflict detection schemes work. 13

2.3 Contention management pathologies. 20

3.1 Undo log unrolling implementation. 35

3.2 Execution time breakdown of STAMP on EP-BASE. 47

3.3 Execution time breakdown of STAMP on LO-BASE. 47

3.4 Execution time breakdown of STAMP on LP-BASE. 48

3.5 Comparing speedups of different the contention management configura-

tions. 49

3.6 Execution time breakdown of the best evaluated contention management

configurations, by application, of the first four STAMP applications across

all systems. 54

3.7 Execution time breakdown of the best evaluated contention management

configuration, by application, of the second four STAMP applications across

all systems. 55

3.8 Execution time breakdown comparison between TM and traditional MESI

parallelization. 59

3.9 Speedups of kmeans and vacation on LO, EP, and LP with and without a

private L2. 62

3.10 Execution time breakdown of vacation on LO with only a private L1. . . . 62

3.11 Speedups of all three systems on a single issue, a 2-issue, and a 4-issue CPU. 63

3.12 Execution time breakdown, on all three systems, of selected STAMP appli-

cations using a higher arbitration time. 67

xv

4.1 Timeline of three nested transactions: two closed-nested and one open-

nested. 85

4.2 The Transaction Stack. 87

4.3 Conditional synchronization using open nesting and violation handlers . 91

4.4 Cache line structure for denoting nesting levels 96

4.5 Performance improvement with full nesting support over flattening. . . . 100

4.6 Performance of transactional conditional synchronization. 103

5.1 Execution time breakdown of STAMP on TCC-BASE. 117

5.2 Execution time breakdown of STAMP on TCC-WORD. 120

5.3 Execution time breakdown of STAMP on TCC-UPDATE. 122

5.4 Execution time breakdown of STAMP on TCC-BACK. 125

5.5 TCC bus utilization on STAMP applications. 128

xvi

Chapter 1

Introduction

Mainstream computing has reached a critical juncture. On one hand, with Instruction-

Level Parallelism (ILP) techniques running out of steam, multicore processors are the

norm. On the other hand, writing correct and efficient multithreaded programs with

conventional programming models is still an incredibly complex task limited to a few

expert programmers. Unless we develop programming models and execution environ-

ments that make parallel programming the common case, the performance potential

of multicore machines will be limited to multiprogramming workloads and a few server

applications.

1.1 Transactional Memory

A great deal of the difficulty in creating multithreaded programs comes from the need

to manage shared state. When two threads need to communicate or operate on shared

data, some mechanism must be employed to ensure correct, serializable execution. Mu-

tual exclusion implemented via locks has been the traditional solution to this problem.

Programmers use locks by surrounding accesses to shared state with lock() and unlock()

pairs. Once a thread enters the lock region, no other threads are allowed to execute the

region’s code.

While simple in concept, locks present a number of challenges. First, locks present

1

2 CHAPTER 1. INTRODUCTION

programmers with a simplicity versus performance tradeoff. A program using few coarse-

grained locks is easy to reason about and programmers have a good chance of generat-

ing a correct version of such a program. However, with large lock regions, performance

will be poor, as mutual exclusion prevents parallelism. On the other hand, a program

with many small locks is likely to perform better, but may be difficult implement cor-

rectly.

This difficulty stems from a number of sources. First, fine-grained locks require pro-

grammers to associate specific locks with specific data items. Unfortunately, this associ-

ation is only in the programmer’s mind, creating opportunities for careless bugs. Using

monitors to incorporate locks into data structures [51] may alleviate this problem. How-

ever, monitors do not solve the problem of lock composability: using multiple locks

requires strict programmer discipline to avoid deadlock and, in the case of monitors,

is difficult to do without access to the locks themselves. For example, the published

code for Sun’s JDK 1.0.2 implementation of java.lang.String.intern() contains an

atomicity bug because locks were not acquired in the correct order [15]. Additionally,

pathological interactions, like priority inversion and convoying, can be created between

locks and system code like context switches.

Another problem with locks is the poor debugging environment offered by most sys-

tems. Many mortal programmers who have written lock-based programs have struggled,

at one time or another, with the above-listed problems of deadlock or simply forgetting

to lock shared accesses. Unfortunately, finding these bugs is difficult without expensive

profiling operations and tools. These tools are usually poor because, as we mentioned

earlier, locks and the data they protect is not an easy relationship to establish automati-

cally. Additionally, synchronization-related bugs often fail to reproduce consistently.

There are alternatives to locks like non-blocking synchronization, which avoids the

deadlock and priority inversion problems of locks. These methods can offer better per-

formance, but correctness is even harder: new problems are created like livelock and

starvation. In fact, perfecting non-blocking algorithms even for simple data structures

has been the subject of a number of Ph.D. theses.

To address these challenges with locks, it has been proposed that transactional tech-

niques from the realm of databases [34] be applied to general-purpose programming

1.1. TRANSACTIONAL MEMORY 3

in the form of “transactional memory” (TM) [57, 48, 90]. In TM, large to medium-sized

programmer-defined regions are executed by the runtime system atomically, automati-

cally detecting conflicts. This is achieved by tracking what reads occur inside the trans-

action (the so-called read-set) and what writes occur (the so-called write-set). At some

point before the transaction commits, its read- and write-sets are compared to other

transactions to detect and resolve conflicts. In this way, transactions implement the A

and I (atomicity and isolation) qualities of database transactions. Database transactions

also implement consistency, but this is the responsibility of the TM programmer, who

must properly managing his own data-structures, and durability, but TM operates on

only memory objects and no persistence is guaranteed.

Transactions present a number of advantages over locks. First, by using one simple

language construct, atomic {}, users no longer must manage named locks, allowing

the compiler to check for closed regions. Additionally, transactions provide atomicity in-

stead of mutual exclusion, which is usually what programmers want when they use locks.

In this way, TM allows two transactions to speculatively execute in parallel, improving

performance if they do not conflict. In this way, larger atomic regions can be used, and

conflicts are detected only if they exist, instead of prevented via mutual exclusion.

Since atomic guarantees atomicity, it avoids the lock combining problem and be-

cause there are no named lock regions, composing atomic is trivial (to the programmer

that is, we’ll talk more about implementation of nested transactions in Section 4.4.3).

There are also enhanced benefits from TM, like easier debugging and using the TM

constructs for other applications. Debugging tools are easier to implement because TM

systems track information about program reads/writes and their interactions between

threads. This information can then be exposed to the programmer and used to better

tune and debug their program [20]. TM also has numerous applications outside of sim-

ply protecting shared memory accesses. The ability to roll back an action could be useful

in security applications where operations should be tried before they are actually done.

Also, a useful debugging technique called deterministic replay can be implemented us-

ing the rollback features of TM [68, 101, 28]. TM can be used to efficiently implement

memory snapshots [28] which can be used for concurrent garbage collection, among

other things.

4 CHAPTER 1. INTRODUCTION

In conclusion, transactional memory is a promising new parallel programming en-

vironment, empowering programmers to better utilize the newly available parallelism

provided by multicore processors.

1.2 The Case for Hardware Transactional Memory

The first TM systems were hardware systems with very limited “transactions” [57, 48],

but researchers soon extended the ideas from these proposals to what we know today

as transactional memory [46, 41]. In fact, the fundamental mechanisms of TM may be

implemented completely in hardware (we call these systems HTMs), completely in soft-

ware (STMs), or in a mixture of the two (hybrid TMs). In this section we argue that HTM,

even though requiring a more intensive development effort considering its hardware

nature, is the preferred way to provide TM.

STMs do have a number of advantages over hardware systems. The biggest advan-

tage of STMs is that they operate on existing hardware, providing immediate support

for transactional memory. Also, as we discuss later (Section 2.7), HTM systems require

extra support for transactions of arbitrary size and length, whereas STMs manage this

case with ease. Additionally, since STMs can track read- and write-sets at very fine gran-

ularities, their conflict detection mechanisms may be less susceptible to false sharing.

Another benefit of STMs has been the semantic flexibility: researchers have been able to

experiment with various transactional languages and constructs without having to build

hardware systems first.

Unfortunately, there are also a number of disadvantages to STMs. Read- and write-

sets in STMs must be managed by added code, creating a great deal of overhead not

present in HTMs. This overhead stands to significantly reduces performance gains from

concurrency. Additionally, since this management code must be added to any code run-

ning inside a transaction, legacy and library code cannot be used within transactions

without recompiling. Finally, if strong isolation is desired (see Section 2.1.2), this man-

agement code must be added to non-transactional code as well, further degrading per-

formance. These disadvantages are unlikely to disappear unless programmers use very

small, infrequent transactions, which mitigates the programming advantages of TM.

1.3. THESIS 5

Because of these tradeoffs, researchers have proposed hybrid, hardware/software,

solutions [14, 59, 31, 85]. While these systems begin to bridge the gap between STM and

HTM performance, HTM is still significantly better [13].

STM advocates argue that quickly getting TM into the hands of programmers may

help to convert them to TM, following up with hardware at a later date. But, first im-

pressions are important: if a new TM programmer sees poor performance, he may not

understand that hardware can make it faster, but may instead abandon TM all together.

The remainder of this dissertation explores Hardware Transactional Memory: its imple-

mentations, performance, and design alternatives.

1.3 Thesis

This dissertation characterizes transactional architectures and explores the design points

and potential alternatives. We compare performance between transactional architec-

tures and traditional parallel architectures, examine the semantics needed to support

real-world applications, and evaluate the performance and practical considerations sur-

rounding continuous transactions.

My dissertation provides the following specific contributions:

• Programs written with transactional memory can achieve comparable performance

to those written by experts with traditional synchronization methods.

• Furthermore, a transactional architecture called “Lazy-Optimistic” is the preferred

method of implementing TM in hardware.

• Performance is not enough though, as TM must also support modern languages

and operating systems. To do this, you need four mechanisms: two-phase transac-

tion commit, software handlers, nested transactions, and non-transactional loads

and stores.

• Finally, we can extend “Lazy-Optimistic” to use transactions as the only means

of coherence and consistency, maintaining the performance benefits of TM while

even further simplifying the hardware implementation.

6 CHAPTER 1. INTRODUCTION

1.4 Organization

The remainder of this dissertation is organized as follows.

Chapter 2 explores, in detail, the possible architectures for hardware transactional

memory, including the so-called “Lazy-Optimistic” scheme, mentioned in the thesis

above.

Chapter 3 evaluates the architectures described in Chapter 2 on a number of axes

using transactional applications.

Chapter 4 describes the ISA-level semantics for and their implementation in a fully-

functional transactional memory system that supports modern programming languages

and operating systems.

Chapter 5 introduces the concept and semantics of continuous transactions, or “All

Transactions All the Time,” in a system called Transactional Coherence and Consistency

(TCC). I then discuss the merits of such an approach, and evaluate the performance

against non-continuous transactional systems.

Chapter 6 concludes, summarizing the impact of my work on the world of transac-

tional memory and parallel computing.

Chapter 2

The Architectures of HTM

Fundamentally, there are three mechanisms needed to implement an atomic and iso-

lated transactional region: versioning, conflict detection, and contention management.

We will describe them briefly here and explain how to put them together to form com-

plete systems in the following sections.

To make a transactional code region appear atomic, all its modifications must be

stored and kept isolated from other transactions until commit time. The system does

this by implementing a versioning policy. Two versioning paradigms exist: eager and

lazy. An eager versioning system stores newly generated transactional values in place

and stores previous memory values on the side, in what is called an undo-log. A lazy

versioning system stores new values temporarily in what is called a writebuffer, copying

them to memory only on commit. In either system, the cache is used to optimize storage

of new versions.

To ensure serializability between transactions, conflicts must be detected and re-

solved. The system detects conflicts by implementing a conflict detection policy, either

optimistic or pessimistic. An optimistic system executes transactions in parallel, check-

ing for conflicts only when a transaction commits. Pessimistic systems check for con-

flicts at each load and store. Similar to versioning, conflict detection also uses the cache,

marking each line as either part of the read-set, part of the write-set, or both. The system

resolves conflicts by implementing a contention management policy. Many policies ex-

ist, some more appropriate for optimistic conflict detection and some more appropriate

7

8 CHAPTER 2. THE ARCHITECTURES OF HTM

CPU 1

Inst.
Cache

Data Cache with
TM Support

Interconnect Control

CPU 2

Inst.
Cache

Data Cache with
TM Support

Interconnect Control

Register
Checkpoint

TM Registers

Processor

MESI
bits R TagsW Data

(a) (b)

Interconnect

Shared Cache

Figure 2.1: Our basic multicore TM environment. Part (a) shows many TM-enabled
CPUs on one die, connected with an interconnect. Part (b) shows the details of a trans-
actional CPU, including additions to support TM.

for pessimistic. In this chapter, we describe some popular policies and how they work.

Since each TM system needs both versioning and conflict detection, these options

give rise to four distinct TM designs: Eager-Pessimistic (EP), Eager-Optimistic (EO), Lazy-

Pessimistic (LP), and Lazy-Optimistic (LO). Table 2.1 briefly describes all four combina-

tions and provides citations to the major proposed implementations of each design.

The remainder of this chapter describes the four basic designs and how to imple-

ment them, their advantages and disadvantages, and then discusses potential issues

with TM implementations.

2.1 Basic TM Framework

For the sake of discussion, we describe TM architectures in the context of a multicore sys-

tem similar to the one shown in Figure 2.1. Essentially, it is a number of small processor

cores, each with some private cache, connected through an interconnect implementing

the MESI coherence protocol or some derivative [5, 95]. The TM designs described in

this chapter can be used on other architectures like traditional shared memory multi-

processors, distributed shared memory machines [69, 21], and probably others. We do

not describe the changes required to implement TM on such systems.

2.1. BASIC TM FRAMEWORK 9

To enforce versioning of registers, each core includes a fast, hardware register check-

pointing mechanism, shown in Figure 2.1. These units are common in CPUs that sup-

port out-of-order execution and checkpoints [67]. Also shown are the additional bits

in each cache line used to support conflict detection: a Read (R) bit and a Written (W)

bit. Each system uses these to quickly test containment within the read- and write-set,

respectively and we assume these can be quickly reset.

Other TM features include status registers (like one to determine whether a transac-

tion is aborting or running) and configuration registers (like the ones required for con-

tention management, see below). Each TM system proposed in literature describes a

slightly different set and usage of such registers; a more complete description of the set

we use can be found in Chapter 4.

2.1.1 Architectural Interface

All of our designs share a common architectural interface: they all share the same mech-

anisms to begin and end transactions. For the sake of discussion, let tm_begin() and

tm_end() represent the code that begins and ends a transaction, respectively. These

constructs can be used to build more advanced constructs like atomic [17]. tm_begin()

consists of taking a register checkpoint and changing the status registers to reflect that

a transaction has begun. It may also set up any undo log needed in an eager versioning

system.

As further described in Chapter 4, tm_end() has two phases, called validation and

commit by the database community [34]. The validation phase ensures that other trans-

actions do not conflict with the completing transaction and commit makes that transac-

tion’s write-set available to other transactions. The available mechanisms for validation

and commit are dictated by the choice of versioning and conflict detection policy.

Like commit, aborting a transaction depends on how versioning and conflict detec-

tion is performed, but there are a few commonalities. We split the abort process into two

distinct operations (again, see Chapter 4 for motivation): tm_discard(), which discards

the read- and write-set (R and W bits); and tm_rollback() which rolls the transaction

back to its beginning, including restoring the register checkpoint.

10 CHAPTER 2. THE ARCHITECTURES OF HTM

2.1.2 Strong versus Weak Isolation

A key detail for programmers in any TM system is how non-transactional accesses in-

teract with transactions. By definition, transactional accesses are screened from each

other using the mechanisms above, but how will a regular, non-transactional load in-

teract with a transaction containing a new value for that address? Or, how will a non-

transactional store interact with a transaction that has read that address?

These are issues of the database concept isolation. A TM system is said to imple-

ment strong isolation (sometimes called strong atomicity in older literature) when ev-

ery non-transactional load and store acts like an atomic transaction. Therefore, non-

transactional loads cannot see uncommitted data and non-transactional stores cause

atomicity violations in any transactions that have read that address. A system where this

is not the case is said to implement weak isolation (sometimes called weak atomicity in

older literature).

Strong isolation is desired because it is easier to reason about. Additionally, the pro-

grammer may have forgotten to surround some shared memory references with trans-

actions, causing bugs. With strong isolation, the programmer will detect this using a

simple debug interface because she will see a non-transactional region causing atomic-

ity violations [20]. Also, programs written in one model may work differently on another

model [11].

Strong isolation is easy to support in hardware TM: since the coherence protocol

already manages load and store communication between processors, transactions can

detect non-transactional loads and stores and act appropriately. To implement strong

isolation in software TM, non-transactional code must be modified to include read- and

write-barriers, potentially crippling performance. Great effort has been expended to

remove un-needed barriers, but techniques are complex and performance still signifi-

cantly worse than HTMs [91, 89].

2.2. EAGER-PESSIMISTIC (EP) 11

Transactional Memory Design Space

VERSIONING

C
O

N
F

L
IC

T
D

E
T

E
C

T
IO

N Lazy Eager
Optimistic Storing updates in a writebuffer;

detecting conflicts at commit
time. TCC [39], FlexTM [92],
BulkTM [19]

Not practical: waiting to update
memory until commit time but
detecting conflicts at access time
guarantees wasted work and pro-
vides no advantage.

Pessimistic Storing updates in a writebuffer;
detecting conflicts at access time.
LTM [8], VTM [80]

Updating memory, keeping
old values in undo log; de-
tecting conflicts at access
time. LogTM [69], UTM [8],
MetaTM [82]

Table 2.1: The fundamental design space of transactional memory (versioning and con-
flict detection). Included are references to significant recent proposals for HTMs of each
type, if applicable.

2.2 Eager-Pessimistic (EP)

The first TM design we describe is Eager-Pessimistic. An EP system stores its write-set

“in place” (hence the name “eager”) and, to support rollback, stores the old values of

overwritten lines in an “undo log”. Processors use the W and R cache bits to track read-

and write-sets and detect conflicts when receiving snooped load requests. Perhaps the

most notable examples of EP systems in the literature are LogTM [69] and UTM [8].

Beginning a transaction in an EP system is much like beginning a transaction in other

systems: tm_begin() takes a register checkpoint and initializes any status registers. An

EP system also requires initialing the undo log, the details of which are dependent on

the log format, but probably involves initializing a log base pointer to a region of pre-

allocated, thread-private memory and clearing a log bounds register. Section 3.2 de-

scribes the log format we implemented for our experiments, but many other formats

could be used.

Versioning: In EP, the MESI state transitions are left mostly unchanged due to the way

eager versioning works. Of course, outside a transaction, MESI is completely unchanged.

When reading a line inside a transaction, the standard coherence transitions apply (S→S,

12 CHAPTER 2. THE ARCHITECTURES OF HTM

Qualitative Comparison

VERSIONING

Lazy Eager
+ No additional per store access penalty.
− Commit may be slower, requiring per
cache line memory transactions, making
transactions with high writes to instruc-
tions ratios vulnerable to performance
degradation.
+ Rollback is fast, with only local changes
required.

− Per store access penalty: old value must
be written to undo log.
+ Commit-in-place makes commit in-
stantaneous.
− Undo log must be applied making roll-
back slow.

CONFLICT DETECTION

Optimistic Pessimistic
+ Because conflicts are detected at com-
mit time, no information need be ex-
changed on a per access basis.
− At validation time however, the write-
set must be communicated to all other
transactions for conflict checking.
− “Doomed” transactions, containing ac-
cess that will cause conflicts are allowed
to continue, wasting resources.
+ However, more serializable schedules
are allowed.

− Conflict detection on the critical path:
each load must be seen by all transac-
tions to detect conflicts and a contention
management decision may potentially be
made on each access.
+ No additional validation time required
since exclusive rights to lines are acquired
on access.
+ “Doomed” transactions die early.
− But, not all serializable schedules are al-
lowed.

Table 2.2: Qualitative performance evaluations in the fundamental TM design space.

I→S, or I→E), issuing a load miss as needed, but the R bit is also set. Likewise, writing

a line applies the standard transitions (S→M, E→I, I→M), issuing a miss as needed, but

also sets the W bit. The first time a line is written, the old version of the entire line is

loaded then written to the undo log to preserve it in case the current transaction aborts.

The newly written data is then stored “in-place,” over the old data.

Conflict Detection: Pessimistic conflict detection uses coherence messages exchanged

on misses or upgrades to look for conflicts between transactions (see Figure 2.2(a)). When

a read miss occurs within a transaction, other processors receive a load request. Of

course, they ignore the request if they do not have the line. If they have it non-speculatively

2.2. EAGER-PESSIMISTIC (EP) 13

LD x

(a) Pessimistic Conflict
Detection

(b) Optimistic Conflict
Detection

LD x
ST x

LD x
LD x

ST x

(c) “Doomed”
Transaction

LD

(d) Serializable Schedules

ST

Optimistic

LD
ST

Pessimistic

LD

ST
LD

Optimistic Pessimistic

ST
LD

LD

LD

T0 T1 T0 T1

Conflict Check:
no conflict

Conflict Check:
conflict

Abort Commit

T0 T1 T0 T1 T0 T1 T0 T1

Figure 2.2: How optimistic and pessimistic conflict detection schemes work and some
tradeoffs in conflict detection. (a) pessimistic conflict detection. (b) optimistic conflict
detection. (c) how optimistic conflict detection wastes work by allowing “doomed” trans-
actions to continue, while pessimistic does not. (d) how optimistic allows more serializ-
able schedules to coexist, while pessimistic does not.

or have the line R, they downgrade their line to S and perhaps issue a cache-to-cache

transfer if they have the line in MESI’s M or E state. But if the cache has the line W, then

a conflict is detected between the two transactions and some action must be taken im-

mediately.

Similarly, when a transaction seeks to upgrade a line from shared to modified (on its

first write), it issues an exclusive load request, which is also used to detect conflicts. If

a receiving cache has the line non-speculatively, they invalidate it and perhaps issue a

cache-to-cache transfer (M or E states). But, if the line is R or W, a conflict is detected.

Validation: Because conflict detection is performed on every load, a transaction always

has exclusive access to its write-set. Therefore, validation does not require any addi-

tional work.

Commit: Since eager versioning stores the new version of data items in place, the com-

mit process simply clears the W and R bits and discards the undo log (this is very fast).

Abort: When a transaction rolls back, the original version of each cache line in the undo

log must be restored, a process called “unrolling” or “applying” the log. This is done dur-

ing tm_discard() and must be atomic with regard to other transactions. Specifically,

the write-set must still be used to detect conflicts: this transaction has the only correct

14 CHAPTER 2. THE ARCHITECTURES OF HTM

version of lines in its undo log and requesting transactions must wait for the correct ver-

sion to be restored from the log. The log can be applied using a hardware state machine

or software abort handler. For our systems, we implemented a software log unroller,

described in Section 3.2.

Advantages: Commit is simple and since it is in-place, very fast. Similarly, validation is

a no-op.

Pessimistic detects conflicts early, as shown in Figure 2.2(c), avoiding “doomed” trans-

actions: T0 and T1 are involved in a Write-After-Read dependency which is detected

immediately in pessimistic conflict detection, but not until the writer commits in opti-

mistic.

Disadvantages: As described above, the first time a cache line is written, the old value

must be written to the log, incurring extra cache accesses. Aborts are expensive as they

require undoing the log. For each cache line in the log, a load must be issued, perhaps

going as far as main memory before continuing to the next line.

Pessimistic conflict detection also prevents certain serializable schedules from exist-

ing. Figure 2.2(d) describes this phenomenon: T0 reads a line and T1 later writes to the

same line. When T1 attempts to upgrade its line to M, it detects a conflict and aborts T0.

But, a serializable schedule exists for these transactions (namely T0, T1), and is allowed

by optimistic conflict detection.

Additionally, because conflicts are handled as they occur, there is a potential for live-

lock and careful contention management mechanisms must be employed to guarantee

forward progress (see Section 2.6).

2.3 Lazy-Optimistic (LO)

Another popular TM design is Lazy-Optimistic (LO), which stores its write-set in a “write-

buffer” or “redo log” and detects conflicts at commit time (still using the R and W bits).

An LO system exploits different tradeoffs than an EP system, and has been chiefly advo-

cated by the TCC [39] system, further described in Chapter 5.

Versioning: Just as in the EP system, the MESI protocol is enforced outside of transac-

tions. Once inside a transaction, reading a line incurs the standard MESI transitions

2.3. LAZY-OPTIMISTIC (LO) 15

but also sets the R bit. Likewise, writing a line sets its W bit, but handling the MESI

transitions is different. First, with lazy versioning, the new versions of written data are

stored in the cache hierarchy until commit while other transactions have access to old

versions available in memory or other caches (see potential problems with cache over-

flow in Section 2.7). To make available the old versions, dirty lines must be evicted when

first written by a transaction. Second, no upgrade misses are needed because of opti-

mistic conflict detection: if a transaction has a line in the S state, it can simply write to

it and upgrade to M without communicating with other transactions because conflict

detection is done at commit time.

Conflict Detection and Validation: To validate a transaction and detect conflicts, LO

communicates the addresses of speculatively modified lines to other transactions only

when it is preparing to commit (see Figure 2.2(b)). On validation, the processor sends

one, potentially large, network packet containing all the addresses in the write-set. Data

is not sent, but left in the committer’s cache and marked dirty (M). To build this packet

without searching the cache for lines marked W, we use a simple bit vector, called a “store

buffer,” with one bit per cache line to track these speculatively modified lines.

Other transactions use this address packet to detect conflicts: if an address is found

in the cache and the R and/or W bits are set, a conflict is initiated. If the line is found but

neither R nor W is set, the line is simply invalidated, like processing an exclusive load.

Of course, to support transaction atomicity, these address packets must be handled

atomically, i.e., no two address packets may exist at once with the same addresses. In our

LO system, we achieve this by simply acquiring a global commit token before sending

the address packet (see Section 3.2). However, a two-phase commit scheme could be

employed by first sending out the address packet, collecting responses, enforcing an

ordering protocol (perhaps oldest transaction first), and committing once all responses

are satisfactory [21].

Commit: Once validation has occurred, commit needs no special treatment: simply

clear W and R bits and the store buffer. The transaction’s writes are already marked dirty

in the cache and other caches’ copies of these lines have been invalidated via the ad-

dress packet. Other processors can then access the committed data through the regular

coherence protocol.

16 CHAPTER 2. THE ARCHITECTURES OF HTM

Abort: Rollback is equally easy: because the write-set is contained within the local caches,

we simply invalidate these lines then clear W and R bits and the store buffer. The store

buffer allows us to easily find W lines to invalidate without the need to search the cache.

Advantages: Aborts are very fast, requiring no additional loads or stores and making only

local changes. More serializable schedules can exist (see Figure 2.2(d) and the discussion

for EP), which allows an LO system to more aggressively speculate that transactions are

independent, perhaps improving performance. Finally, late detection of conflicts can

make guaranteeing forward progress easier (see Section 2.6).

Disadvantages: Validation takes global communication time proportional to size of write-

set. Doomed transactions can waste work since conflicts are detected only at commit

time. See Figure 2.2(c) and the above description for EP.

2.4 Lazy-Pessimistic (LP)

Lazy-Pessimistic (LP) represents a third TM design option, sitting somewhere between

EP and LO: storing newly written lines in a writebuffer but detecting conflicts on a per-

access basis. LP has been proposed in the form the LTM [8] and VTM [80] systems.

Versioning: Versioning is similar but not identical to that of LO: reading a line sets its R

bit, writing a line sets its W bit, and a store buffer is used to track W lines in the cache.

Also, dirty lines must be evicted when first written by a transaction, just as in LO. How-

ever, since conflict detection is pessimistic, load exclusives must be performed when

upgrading a transactional line from I,S→M, unlike in LO.

Conflict Detection: LP’s conflict detection operates the same as EP’s: using coherence

messages to look for conflicts between transactions.

Validation: Like in EP, pessimistic conflict detection ensures that at any point, a running

transaction has no conflicts with any other running transaction, so validation is a no-op.

Commit: Commit needs no special treatment: simply clear W and R bits and the store

buffer, like in LO.

Abort: Rollback is also like that of LO: simply invalidate the write-set using the store

buffer and clear the W and R bits and the store buffer.

2.5. EAGER-OPTIMISTIC (EO) 17

Advantages: Like LO, aborts are very fast. Like EP, its pessimistic conflict detection

avoids doomed transactions (Figure 2.2(c)).

Disadvantages: Like EP, some serializable schedules are not allowed (Figure 2.2(d)) and

conflict detection must be performed on each cache miss.

2.5 Eager-Optimistic (EO)

The final combination of versioning and conflict detection is Eager-Optimistic (EO). Un-

fortunately, EO is not a logical choice for HTM systems: since new transactional versions

are written in-place, other transactions have no choice but to notice conflicts as they oc-

cur (i.e., as cache misses occur). But since EO waits until commit time to detect conflicts,

those transactions become “zombies,” continuing to execute, wasting resources, yet are

doomed to abort. We do not implement or evaluate any EO system.

EO has proven to be useful in STMs and is implemented by Bartok-STM [43] and

McRT [86]. A lazy versioning STM needs to check its writebuffer on each read to ensure

that it is reading the most recent value. Since the writebuffer is not a hardware structure,

this is expensive, hence the preference for write-in-place eager versioning. Additionally,

since checking for conflicts is also expensive in an STM, optimistic conflict detection

offers the advantage of performing this operation in bulk.

2.6 Contention Management

We’ve learned how a transaction rolls back once the system has decided to abort it but,

since a conflict involves two transactions, which one should abort, how should that

abort be initiated, and when the aborted transaction should be retried? These are ques-

tions of Contention Management (CM), a key component to transactional memory. In

this section, we describe how the systems we implemented initiate aborts and the var-

ious established methods of managing which transactions should abort in a conflict

(called the Contention Management Policy).

18 CHAPTER 2. THE ARCHITECTURES OF HTM

2.6.1 Contention Management Policies

A Contention Management (CM) Policy is a mechanism to determine which transaction

involved in a conflict should abort and when it should be retried. For example, it is often

the case that simply retrying immediately does not lead to the best performance, but

employing some backoff mechanism would be better. STMs first grappled with finding

the best contention management policies and many of the policies outlined below were

originally developed for STMs.

Policies draw on a number of measures to make their decisions, including ages of

the transactions, size of read- and write-sets, the number of previous aborts, etc. Com-

binations are endless, but certain combinations have been used in the literature and we

describe a number of them here, roughly in order of increasing complexity.

To establish some nomenclature, first note that in a conflict there are two sides: the

attacker and the defender. The attacker is the transaction requesting access to a shared

memory location. In pessimistic conflict detection, the attacker is the transaction issu-

ing the load or load exclusive. In optimistic, the attacker is the transaction attempting

to validate. The defender is the transaction receiving the attacker’s request.

The Aggressive [47] policy immediately and always retries either the attacker or the

defender. In LO, Aggressive means that the attacker always wins, and so Aggressive is

sometimes called committer wins. It was used for the earliest LO systems [66]. For EP,

aggressive can be either defender wins or attacker wins.

Restarting a conflicting transaction that will immediately experience another con-

flict is bound to waste work—namely interconnect bandwidth refilling cache misses.

The Polite [47] policy employs exponential backoff (but linear could also be used) be-

fore restarting conflicts. To prevent starvation, it guarantees transaction success after

some n retries.

Of course, one could just choose to randomly abort the attacker or defender (a pol-

icy called Randomized [87]). The inventors combine this with a randomized backoff

scheme to avoid unneeded contention.

Perhaps wiser than making random choices is to avoid aborting transactions that

have done “a lot of work.” One measure of work could be a transactions age. Oldest is a

2.6. CONTENTION MANAGEMENT 19

simple timestamp method that aborts the younger transaction in a conflict [79]. BulkTM

uses this scheme [19]. SizeMatters [82] is like Oldest but instead of transaction age, the

number of read/written words is used as the priority. The inventors revert to Oldest after

a fixed number of aborts. Karma [87] is similar, using the size of the write-set as priority.

Rollback then proceeds after backing off a fixed amount of time. Aborted transactions

keep their priorities after being aborted (hence the name Karma). Polka [88] works like

Karma but instead of backing off a predefined amount of time, it backs off exponentially

more each time.

Since aborting wastes work, it is logical to argue that stalling an attacker until the de-

fender has finished their transaction would lead to better performance. Unfortunately,

such a simple scheme easily leads to deadlock: T0 reads X, T1 reads Y, T0 tries to write Y,

stalls on T1, while T1 tries to write X, and stalls on T0.

Deadlock avoidance techniques can be used to solve this problem. Greedy [36] uses

two rules to avoid deadlock: First, if T1 has lower priority than T0, or if T1 is waiting for

another transaction, then T1 aborts when conflicting with T0. Second, If T1 has higher

priority than T0 and is not waiting, then T0 waits until T1 commits, aborts, or starts wait-

ing (in which case the first rule is applied). Greedy provides some guarantees about time

bounds for executing a set of transactions. One EP design (LogTM [69]) used a CM policy

similar to Greedy to achieve stalling with conservative deadlock avoidance.

We did not cover every contention management policy devised (for example, Kinder-

garten and Eruption [88]), but we provided a picture of the CM design space. In Chap-

ter 3 we evaluate a few of these policies.

2.6.2 Pathologies

Unfortunately, choosing a CM policy is difficult, not only because there are so many

available policies, but also because predicting performance using a particular policy is

difficult. Frequently encountered transaction mixes often conspire to create patholo-

gies, which are contention phenomena that reduce performance. Some pathologies sim-

ply degrade performance while others create worse problems like starvation or livelock.

This section describes some of these pathologies (illustrated in Figure 2.3) and what can

20 CHAPTER 2. THE ARCHITECTURES OF HTM

TX Begin

Stalling

TX Abort

TX Restart

TX Commit

writer

readers

Upgrade

FRIENDLYFIRE

STARVINGWRITER

SERIALIZEDCOMMIT

FUTILESTALL

STARVINGELDER

RESTARTCONVOY

DUELINGUPGRADES

Figure 2.3: Illustration of the contention management pathologies. Reproduced from
Bobba et al. [12].

be done to alleviate them. Pathologies were first categorized by Bobba et al. [12], and

their work contains more details.

The FRIENDLYFIRE pathology may arise when pessimistic conflict detection is com-

bined with an attacker-wins Aggressive CM policy. When one transaction conflicts with

and aborts another transaction, then subsequently is aborted by a third transaction.

This, of course, can lead to livelock but can be mitigated by using randomized linear

backoff before restarting.

STARVINGWRITER may occur in a pessimistic system when one transaction attempts

to write and conflicts with a number of concurrent readers. If a CM policy is used that

stalls attackers without combining with a priority scheme to ensure forward progress,

the writer may stall on the readers, but before the writer can retry its accesses, another

reader has appeared. Using a policy like Stall (described in Section 3.2), which combines

stalling with transaction age, will guarantee forward progress but performance may still

suffer.

FUTILESTALL may also occur in a pessimistic system with a stalling policy when one

transaction stalls waiting for another transaction that eventually aborts. In this case,

stalling just wasted time. This can be exacerbated in EP because aborting takes extra

time to undo the log.

Another pathology that occurs in EP systems with a stalling policy is DUELINGUP-

GRADES: when two transactions both read then attempt to write (i.e., upgrade) the same

address, conflicts are detected and they attempt to stall on each other, with the dead-

lock avoidance protocol eventually aborting one. If the continuing thread commits then

2.6. CONTENTION MANAGEMENT 21

begins another similar transaction, which frequently occurs in loops, then the restarted

transaction may conflict with the new transaction, entering the pathology pattern once

again.

Two pathologies may occur in LO systems with an Aggressive, attacker-wins CM

policy. Since small transactions reach their commit phase before longer transactions,

small transactions can starve older, longer ones, creating the STARVINGELDER pathology.

Some priority scheme is required to prevent starvation in these cases. If many similar,

conflicting transactions execute concurrently, then the first to commit may abort all oth-

ers, creating a so-called RESTARTCONVOY. Members of the convoy may repeatedly exe-

cute, wasting system resources even though all but one are doomed to abort. A backoff

mechanism can help to alleviate RESTARTCONVOY.

SERIALIZEDCOMMIT can occur in optimistic conflict detection systems that serial-

ize at commit time to achieve a global order. Many small transactions may attempt to

commit simultaneously, creating contention for global commit permission even though

there may be no conflicts. This can be fixed by using a parallel commit scheme like that

one described in the LO section above.

In conclusion, it is important to choose a proper contention management policy

that avoids pathologies, but this is highly dependent on application characteristics. Pes-

simistic conflict detection leads to more and more likely pathologies than optimistic,

though empirical studies (like those in Chapter 3) are required to determine if patholog-

ical transaction mixes really do exist and what their performance impact may be.

2.6.3 Universal Contention Manager

To implement these contention management policies, we introduce a mixed hardware

and software solution called the Universal Contention Manager (UCM). The goals of

the UCM are to make rapid decisions about which transaction should abort, so as not

to degrade performance on each access, but also provide enough flexibility to support

many CM policies.

In any policy, the actual abort process begins when one of these transactions exe-

cutes a software violation handler (see Section 4.2.3 for details). The minimum required

22 CHAPTER 2. THE ARCHITECTURES OF HTM

handler would call tm_discard, tm_rollback, and perhaps undoing the log if the sys-

tem is EP. This violation handler is the software component of the UCM and is key to sup-

porting a wide range of CM policies without needed to design specific hardware struc-

tures to implement each one. Specifically, software handlers have access to any hard-

ware registers tracking transaction state (like length and number of lines read/written)

and can store their own software state.

To decide which processor will invoke its software violation handler, the UCM uses

two global hardware registers (SENSE and TIEBREAK) and an additional per-processor

register (PRIORITY). The PRIORITY register is sent over the interconnect along with each

item of coherence traffic (e.g., load miss).

The SENSE register determines which transaction will run its handler: the one with

the smaller priority register (SENSE=SMALLERWINS), the one with the larger priority

register (SENSE=BIGGERWINS), or to defer to the TIEBREAK setting (SENSE=ALWAYSTIE).

The TIEBREAK register specifies which transaction, the defender or the attacker, should

execute their handler in the case of a tie on the priority register or if SENSE is ALWAYSTIE.

Possible values for TIEBREAK are DEFENDERWINS (i.e., run the handler on the attacker)

or ATTACKERWINS (i.e., run the handler on the defender).

Some examples will help the reader understand the UCM. To implement Aggressive,

we do not use the priority register, so we set SENSE to ALWAYSTIE and TIEBREAK to

ATTACKERWINS to ensure that the committing transaction is allowed to proceed. The

software violation handler then simply executes tm_discard() and tm_rollback().

To incorporate the transactions’ ages using the UCM (e.g., to implement Oldest), we

could set the priority register to the time during tm_begin(). Oldest would then set

SENSE to SMALLERWINS and TIEBREAK to either DEFENDER or ATTACKERWINS. Sim-

ilarly, to incorporate abort counts or write-set sizes, the software violation handler can

store these values in thread-private variables, perhaps copying them into the PRIORITY

register for future rapid comparison to the values from other transactions.

Different abort characteristics can also be implemented using the software violation

handler. Linear and exponential backoff can be implemented by simply spinning in a

loop before calling tm_discard(); tm_rollback().

2.7. VIRTUALIZATION 23

The UCM is very simple hardware yet achieves important goals: making abort con-

flict resolution decisions quickly and locally while maintaining the flexibility of a soft-

ware handler.

2.7 Virtualization

Because transactions use caches to track read- and write-sets, a number of issues can

arise when cache space is exhausted or the cache is needed for another thread, like on

a context switch. These are issues of so-called transactional virtualization. This section

describes some of the challenges and related work.

First, restricting the user to transactions whose metadata (W and R bits) and data fit

in local caches is unacceptable. Studies have found that the common-case behavior of

transactional systems is small transactions [27], but also that reasonable programming

practices result in transactions too large for some cache structures [8], inducing what is

called “cache overflow.” Certain architectural extensions can be employed, like victim

caches, to significantly reduce the probability that such transactions will exist [66], but

no matter how large are local caches, systems will need some method of virtualizing

space.

Second, if transactions are employed on a large scale, then it is certain that context

switches, page faults, process migration, etc. will occur during a transaction. How can

transactional semantics be maintained when cache structures can no longer be used

exclusively for one transaction? This problem is called time virtualization. Major chal-

lenges include maintaining isolation of yet-to-be-committed data and maintaining con-

flict detection between running transactions and those “swapped out” of the caches.

There are a number of goals for these virtualization systems. Obviously, they must

support transactional semantics like atomicity and isolation, but the presence of virtu-

alizing mechanisms (i.e., hardware and software overhead) should also not affect the

common-case transactional performance. Additionally, once a virtualized transaction

exists, it is preferable that the performance of other transactions in the system not suf-

fer because of it. Finally, since we assume virtualization will be rarely used, additional

complexity (especially hardware complexity) should be avoided.

24 CHAPTER 2. THE ARCHITECTURES OF HTM

There have been a number of proposals to virtualize transactions, not all achieving

every goal or even virtualizing both time and space. What follows is a brief look at some

of the proposed mechanisms.

One simple approach to handle space virtualization, chosen by us in early research

on LO systems [66], is simply to acquire a global token preventing others from validating,

flush out the transaction’s write-set (essentially committing), then continue execution,

holding the token until encountering a user-defined commit. This approach guaran-

tees atomicity of the overflowed transaction, but punishes the entire system, not just the

overflowed transaction. It is also important to note that this approach exposes a transac-

tion’s writes to the system before it commits, preventing that transaction from aborting

on its own and violating strong isolation (giving non-transaction threads access to un-

committed state). We continue to employ this approach to simplify implementation of

our LO system because overflows are rare in our applications.

Ananian et al. [8] were the first to propose an HTM design with more significant solu-

tions to virtualization problems, namely their UTM system, which is EP. UTM is an ide-

alized system utilizing additional per-location memory pointers and global virtual ad-

dresses to virtualize both time and space, but at significant overheads. The same work

introduces LTM, a more reasonable system, but it lacks time virtualization and limits

space virtualization to the size of main memory.

Like LTM, LogTM [69] virtualizes space but not time. One advantage of an eager

versioning system like LogTM is that the undo log can grow to arbitrary size without

special handling. However, metadata overflow still occurs and LogTM chooses to simply

keep the W/R bits on overflowed lines, OR-ing any future metadata modifications. Of

course, this causes additional conflicts but it is a simple low-overhead solution. Later

LogTM designs used signatures for conflict detection, allowing time virtualization by

saving/restoring signatures [105].

VTM [80] is an LP system supporting time and space virtualization. It supports two

execution modes, one for common case, non-virtualized transactions, and one for virtu-

alized transactions. Virtualized transactions have their overflowed write-set mapped to

virtual memory and similarly, swapped-out transactions also store their state in virtual

memory. To accomplish this, VTM uses an additional hardware-managed hash table

2.8. OTHER USES OF HTM 25

and a Bloom filter to perform rapid conflict checks.

A number of software-enhanced virtualization mechanisms have also been proposed.

HybridTM [31] simply switches to software transactions when virtualization is needed,

but requires two copies of all transactional code: one for the HTM and one for the STM.

XTM [26] and Page-based TM [23] (PTM) both use extra pages to enable space virtual-

ization. XTM employs lazy versioning, buffering writes in a newly created page, while

PTM employs eager versioning, storing its writes in place, keeping the last committed

version in a new page. Also, XTM is mostly software while PTM employs more hardware

structures. Enhancements to XTM also support line-granularity virtualization.

In conclusion, implementing time and space virtualization is important in any real

TM system, but it should be thought of as a rarely-used feature. Virtualization systems

need to be tailored to the chosen versioning and conflict detection mechanisms. Eager

versioning may make space virtualization easier since you do not have to store new ver-

sions separately. Lazy versioning may make virtualizing time easier since you do not

have to protect other loads/stores from eagerly-committed data. Despite these biases,

efficient solutions exist at all TM design points.

2.8 Other Uses of HTM

The hardware TM employs for supporting atomicity and optimistic concurrency can

also be used to accelerate a number of important systems applications, not just multi-

threaded applications. Fundamentally, TM provides isolated memory regions and highly-

observable application behavior, which have wide-ranging applicability in OSs, debug-

ging, optimization, reliability, and security.

Conflict detection requires constant program introspection. This can be used to

provide debugging and optimization support. With Transactional Application Profil-

ing Environment (TAPE) [20], we suggested using a conflict logging system to identify

potentially fruitful optimizations and to detect non-transactional accesses to shared

state. Similarly, having hardware track read- and write-sets enables data race detec-

tion [63, 74, 75].

By providing isolation, HTMs already have support for a kind of hardware memory

26 CHAPTER 2. THE ARCHITECTURES OF HTM

snapshot, which can greatly improve the ease of developing a host of often serialized ap-

plication components including concurrent garbage collectors, dynamic profilers, and

copy-on-write, as observed by Chung et al. [28].

ASeD [25] uses the mechanisms provided by TM as building blocks for Availability,

Security, and Debugging. The authors show how versioning hardware can be used to

support recovery schemes to deal with hardware failures, both permanent and tran-

sient, and to provide isolation for suspicious code. They also show how TM-supported

fine-grained address protection can be used to implement canaries and low-overhead

read/write barriers for security. Finally, ASeD supports hardware watchpoints and the

ability to step backward through multi-threaded code.

Other work has also been done to exploit TM’s features to build deterministically

replayable multi-threaded systems [68, 52, 32, 75]. We discuss this possibility more in

Chapter 5.

Finally, as an easier-to-implement synchronization mechanism, TM can be used in

environments where generating correct multi-threaded code is complex. For example,

shared access to the metadata used to perform Dynamic Binary Translation can be made

thread-safe using TM [24], which enables many applications like runtime optimization,

debugging, and security analysis.

2.9 Related Work

Major proposed systems that represent each of the TM design points have been cited

above. For a more thorough discussion of TM developments as of 2006 see Larus and

Rajwar [61]. This section describes some additional TM systems and other related work.

Sun’s Rock [33] is a recent highly-speculative multicore processor with a isolating

hardware checkpointing feature. Rock uses this mechanism to implement a “best effort”

HTM scheme designed to accelerate software transactions without concern for properly

handling all events that may occur within a transaction (like TLB misses, page faults,

etc.). They find that Rock’s HTM can improve performance and make a number of sug-

gestions on using and improving it.

MetaTM [82] is an EP system the designers used to evaluate a transactional version

2.9. RELATED WORK 27

of Linux, including evaluating a number of contention managers using software abort

handlers. An extension to MetaTM, DATM [81] introduces dependence-aware transac-

tions, altering the coherence protocol to forward dependencies between transactions

instead of aborting them, significantly improving performance.

A number of authors have advocated decoupling versioning and conflict detection

to build flexible TM systems [50, 92]. They argue that architecting a TM system in this

way is good because it fosters early adoption of transactional memory without locking

designers into one system. Just as we discussed in the previous section, versioning and

conflict detection can also be used to implement a number of other useful features.

Recent TM systems have been proposed that replace the use of cache bits for con-

flict detection with aggregated address signatures, usually implemented using Bloom

filters [19, 105]. This should reduce hardware complexity in the latency-sensitive local

caches and eases virtualization, especially of time (see Section 2.7). Of course, false con-

flicts may arise, degrading performance.

28 CHAPTER 2. THE ARCHITECTURES OF HTM

Chapter 3

Evaluation of HTM Design Space

The HTM design space described in Chapter 2 embodies a number of design decisions.

In this section we analyze the performance implications of those decisions, attempting

to answer a number of questions.

First, what are the performance implications of choosing one TM design approach

(Lazy-Optimistic, Eager-Pessimistic, or Lazy-Pessimistic) over another and how do they

perform under different workloads and contention management policies? What hap-

pens to performance when we vary parameters like depth of the memory hierarchy,

available instruction-level parallelism, and interconnect parameters? Second, is HTM’s

performance comparable to that of traditional shared memory multiprocessors? If the

programmability advantages of TM come at a large performance cost, then TM is un-

likely to be practical. Finally, given what we’ve learned from these experiments, what is

the best recommended TM design and why?

3.1 Expected Performance

Before measuring the performance using quantitative methods, it is useful to discuss

our expectations from a qualitative point of view. This section provides an initial as-

sessment of the three different HTM designs and the expected answers to the questions

posed in the introduction.

29

30 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

TM Designs, Workloads, and Contention Management

Fundamentally, the three TM systems all provide the same programming interface.

However, each system embodies implementation tradeoffs in versioning and conflict de-

tection summarized in Table 2.2. Because of these differences, we cannot expect perfor-

mance to be the same between systems under all circumstances. For example, if commit

is the common case for most transactions, perhaps lazy’s bulk commit operations will

degrade performance compared to eager’s commit-in-place. On the other hand, eager’s

log writes create more cache pressure, also perhaps degrading performance. Only quan-

titative experiments will determine if and when either of these effects are significant.

We expect performance differences to grow with contention. If restarted transac-

tions contain many writes, then the eager versioning system will incur significant over-

head undoing the log, whereas lazy systems rollback quickly. On the other hand, op-

timistic systems may waste work in “doomed transactions,” waiting for conflicts to be

detected once transactions commit. A pessimistic system avoids this wasted work by de-

tecting conflicts early, but may abort a transaction even though it is part of a serializable

schedule.

It is these effects that create the contention management pathologies described in

Section 2.6.2. Many pathologies have been identified in pessimistic systems and the

best solutions are difficult to predict without experimentation. On the other hand, op-

timistic’s abort-related pathologies (STARVINGELDER and RESTARTCONVOY) are few and

require very specific transaction access patterns, leading us to believe they will be rare

in practice. Our contention management experiments will help us decide how frequent

are pathologies and how difficult it is to mitigate them in practice.

Traditional Parallel Architectures

TM may provide an easier-to-use alternative to lock-based synchronization, but if

comparable speedups cannot be achieved with TM, programmers may abandon it. Com-

paring the two systems on the same benchmarks should show how much, if any, perfor-

mance is sacrificed for a simplified programming environment.

We expect any performance differences to arise from differences between lock over-

head and transaction overhead. Highly-turned lock-based applications have very small

3.1. EXPECTED PERFORMANCE 31

lock regions and if these applications are converted to transactions by changing lock

and unlock to tm_begin and tm_end, respectively, the resulting transactions will also

be small. Beginning and ending transactions require more overhead (about 20 cycles

to begin, assuming cache hits, and 4 cycles to end, assuming instant commit) than be-

ginning and ending lock regions (9 cycles to acquire, 4 cycles to release), especially with

software handlers like those we implement described in Chapter 4, so applications con-

verted in this manner should experience some performance degradation compared to

lock-based synchronization. On the other hand, if lock regions are large, potentially cre-

ating mutual exclusion where none is needed, then TM’s optimistic concurrency may

result in better performance for transactions.

Shallow Memory Hierarchy

TM systems use local cache space to store speculative state, turning to overflow

mechanisms when this space is exhausted. Without evaluating the effectiveness or per-

formance of different overflow mechanisms, what can we say about the impact of reduc-

ing local cache space?

Obviously, we should see decreased performance in applications with large working

sets, due to capacity misses. But how many overflows will be seen in the workloads we

have chosen to evaluate? If overflows become common, we expect our implementations

of LO and LP, when used with simple serializing overflow mechanisms, to perform poorly.

Our EP implementation however, should perform well since its overflowed transactions

do not serialize the system.

Instruction-Level Parallelism

Eager versioning requires two extra cache accesses for each store incurring a log

write—one to read the old value and one to write it to the log—for a total of three ac-

cesses. Ideally, these would be hidden by subsequent non-memory instructions, thereby

avoiding processor stall. However, as instructions per cycle (IPC) increases, it may be-

come difficult to hide these extra accesses without an additional L1 data port.

Our baseline comparison uses an in-order, single issue CPU design. To understand

the impact of IPC on EP’s log writes, we evaluate the benchmarks on a system with

greater issue width. At higher IPCs, we expect the single-ported data cache to become

32 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

a bottleneck and for EP’s performance to suffer relative to the other systems. The mag-

nitude of performance degradation will depend on the instruction mix within transac-

tions, specifically the ratio of write-set size to transactional instructions.

Interconnect Parameters

Because systems use the shared interconnect differently, we expect they will be af-

fected differently by varying the parameters of this interconnect. For example, increas-

ing the time to acquire permission to send data (arbitration time) will adversely affect

all systems but LO may especially suffer because of its extra bus transactions to commit.

EP and LP may also suffer because they acquire exclusive access to each line they write

before the transaction proceeds.

Just as altering interconnect latency interacts with TM overheads, so does altering

available bandwidth. Of course, decreasing bandwidth should slow all systems, but

since write-set addresses are broadcast at commit time in LO, its performance may suf-

fer acutely. Similarly, if any log writes are spilling out of the private caches, EP will expe-

rience additional slowdown.

3.2 Experimental Setup

To evaluate the HTM systems, we built an execution driven simulator based on Lance

Hammond’s extensions [37] to SimOS [84]. It models a number of single-issue, in-order

x86 cores (compliments of Ben Hertzberg’s x86 frontend [49]) in a CMP environment,

with a full memory hierarchy. The CMP organization we study is similar to those in pre-

vious studies [10, 38, 58]: a number of simple processors with private L1s sharing an

additional large, on-chip shared cache. Our system also has an exclusive private L2, like

some of AMD and Intel’s recent designs [5, 95]. Each private cache has a fully associative,

16-entry victim cache. The processors and shared cache are connected through split-

transaction request and refill buses. The two buses provide high bandwidth through

wide data transfers and bursts. The request bus has de-multiplexed address and data

lines and is used to initiate shared accesses (address only) and writebacks (address and

data). The refill bus is used to transmit refill data and cache-to-cache transfers (data

3.2. EXPERIMENTAL SETUP 33

CPU 1–32 in order, single-threaded, single-issue x86 cores
L1 64KB, 32B cache line, 2-way associative,

1 cycle latency, 16 entry victim cache
L2 Private, exclusive 512KB, 32B cache line,

16-way associative, 3 cycle latency, 16 entry victim cache
Bus Width 32 bytes

Bus Arbitration 3 pipelined cycles
Bus Transfer Latency 3 pipelined cycles

Shared L3 Cache 8MB, 16-way, 8 banks, 20 cycles hit time
Main Memory 100 cycles latency, up to 8 outstanding transfers

Table 3.1: Default simulator parameters. Experiments use this setup unless otherwise
noted.

only). Both buses are logical but not physical buses, providing serialization and broad-

cast. To support high bandwidth, they are implemented using a star-like topology with

point-to-point connections that supports pipelined operation for both arbitration and

transfers [56].

For all systems, we used single-ported data caches with dual-ported tags. This allows

us to perform loads and process snoop requests in the same cycle, but if a cache-to-

cache transfer is needed or if a log write is being processed, we cannot use the cache for

loads/stores from the processor.

The default configurations are described in Table 3.1. We will vary those parameters

throughout this chapter to explore different aspects of HTMs; the differences will be

noted appropriately.

There are a number of low level decisions made in architecting any one of the three

basic HTM designs. The following sections describe these decisions for each design.

3.2.1 Eager-Pessimistic

Building an efficient undo log key to obtaining reasonable performance in an eager ver-

sioning system. Our log design consists of a number of groups, contiguous in memory,

each group beginning with one cache line full of addresses—our 32B cache lines hold

8 of these addresses. Following this group header are the 8 line-sized and line-aligned

data items holding the old values at the addresses in the header.

34 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

To build this log during execution, the processor buffers speculatively written cache

line addresses until a full header is collected, then writing it as one, line-sized store.

Data log entries are written immediately to the log, using a single store, when a non-

transactional line is first written in a transaction. This means the cache is unavailable

for three subsequent cycles: one to read the old line, one to write the old line to the log,

and one to write the new word coming from the processor.

Care must also be taken when designing a mechanism to undo the log. Some sys-

tems have implemented this in hardware [69]. Using our log structure, it is conceivable

that a hardware undo mechanism could take as little as 4 cycles assuming cache hits:

one to read the address, one to read the old data, one to write the old data, and one to

increment the address counter. While this is undoubtedly more efficient than a software

undo handler, we feel our software solution is quite efficient and easily enables a variety

of contention management policies (see Section 4.2.3 about violation handlers).

Figure 3.1 presents a high-level language version of our software log unroller. To in-

crease its efficiency, we introduced a special instruction, LINE_MOVE, which copies an

entire cache line of data from one address to another. This is done in 2 cycles, assum-

ing cache hits. Without this special instruction, or some other vector instruction like it,

our system would incur an additional 8 loads and 8 stores (one for each word), or 16

cycles, per line. The inner loop of our software handlers is compiled and unrolled to a

10 instruction kernel, which executes in 11 cycles (assuming cache hits). In other words,

undoing a cache line takes an amortized 11 cycles.

As described in Section 2.2, atomic abort requires continuing to detect conflicts on

the transaction’s write-set until the log unroller has restored the original versions of spec-

ulatively written lines. In our system, when a conflict is detected with a currently abort-

ing transaction, the requester will not abort, which would waste work, but rather retry

its request immediately until its desired line is available.

To handle overflow, our eager system employs a Bloom filter approach similar to

LogTM-SE [105]: the addresses of speculative evicted lines are registered with a per-

processor Bloom filter. This filter is then checked when processing snoop requests, thereby

maintaining conflict detection without global performance loss. We keep one Bloom fil-

ter for overflowed, speculatively read lines and one for overflowed, speculatively written

3.2. EXPERIMENTAL SETUP 35

const WORD_SIZE = 4

const LINE_SIZE = 32

const WORDS_PER_LINE = LINE_SIZE / WORD_SIZE

// log entries are grouped with one line full of

// addresses and then a set of data lines

const GROUP_SIZE = (1 + WORDS_PER_LINE) * LINE_SIZE

const STRIDE = GROUP_SIZE / WORD_SIZE

lh = GET_LOG_HEADER()

// the outer loop walks groups of addresses

for (group = lh.lastGroup;

group >= lh.firstGroup AND group != 0;

group -= STRIDE)

{

// the inner loop walks data lines within groups

for (i = WORDS_PER_LINE - 1; i >= 0; --i) {

// first line in group contains addresses...

addr = group[i]

if (addr == NULL) {

continue

}

// ...all subsequent lines contain data

data = group[(1 + i) * WORDS_PER_LINE]

LINE_MOVE(data, addr)

}

}

Figure 3.1: Implementation of undo log unrolling in a high level language. Inner loop is
compiled into a 10 instruction, unrolled kernel.

36 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

lines, each 2,048 bits wide. There is a small chance of false positive snoop matches on

the Bloom filter, causing additional aborts, but this is rare.

3.2.2 Lazy-Optimistic

Only a few notes need to be made about the details of lazy’s implementation. As men-

tioned in Section 2.3, if only one copy of each line can exist in the cache, lazy versioning

systems must write back dirty lines before transactionally writing to them. We found

that this significantly increases the amount of bus traffic. To alleviate this bottleneck,

we utilized the hardware support for nesting levels described in Section 4.4.3 to store the

original dirty line at nesting level 0 and copy it into nesting level 1 for use in a transaction.

In this way, a speculative write to a dirty line does not immediately incur a writeback.

We implement validation and commit slightly differently than described in Section 2.3.

To validate its transaction, a processor acquires a global commit token, preventing other

transactions from validating. Commit then sends out the packet containing write-set

addresses. The execution time breakdowns in this section’s graphs reflect this division

of work between validation and commit. Obviously, an application with many small

transactions may experience significant contention for this commit token. We chose

this implementation for simplicity, but the original description in Section 2.3 describes

a more efficient parallel commit scheme.

We implement overflow in LO by serializing the overflowed transaction using the

global commit token. First, the overflowed transaction acquires the token then “com-

mits,” sending a commit packet and marking its write-set as committed, allowing more

speculative state to be stored in the cache. The token is not released and no other trans-

actions may commit until the overflowed transaction completes. Unfortunately, this

causes performance degradation to the entire system. There are many better virtualiza-

tion options (discussed in Section 2.7), but since overflows were rare in our applications,

we did not implement or evaluate them.

We use a bit vector to model a full-sized store buffer (up to the size of the private

caches), able to designate each cache line as being speculatively written or not.

3.2. EXPERIMENTAL SETUP 37

3.2.3 Lazy-Pessimistic

LP’s versioning implementation is similar to LO’s, including using the hardware support

for nesting levels to avoid writing back dirty lines and the design of the store buffer to in-

validate lines on abort. Validation and commit, of course, are different since pessimistic

conflict detection precludes the need for explicitly communicating the write-set at com-

mit time.

Overflow is also different, being a kind of hybrid between LO and EP’s: LP’s overflow

does not require an explicit “commit” step as does LO’s, but instead lines are simply

evicted when needed. Conflict detection is then maintained by using a Bloom filter, just

as in EP. Since the overflowed transaction cannot recall the writes it has evicted to mem-

ory, it cannot abort. Therefore, the first step in LP’s overflow mechanism is to acquire

a global token. This serializes overflowed transactions but allows other non-conflicting

transactions to commit, since LP’s transactions do not require a token to commit. If any

transactions conflict with the overflowed transaction, once it has acquired the token,

those transactions must abort.

3.2.4 Contention Management

For optimistic conflict detection, we chose the Aggressive contention manager. See Sec-

tion 2.6.1 for a description and the UCM settings. We call LO with Aggressive LO-BASE.

It’s interesting to note that the simple contention management policy for optimistic

conflict detection provides for guaranteed forward progress (but not fairness). This

makes LO attractive from a simplicity perspective. Unfortunately, it takes more effort

to provide a similar guarantee for pessimistic conflict detection.

We also used Aggressive as the default policy for our pessimistic systems. Specifi-

cally, we chose the “defender wins” variant, where a requesting transaction aborts upon

discovering a conflict with another transaction. We use this contention manager for the

EP-BASE and LP-BASE configurations.

Unfortunately, “defender wins” does not guarantee forward progress. One of many

possible livelock patterns starts with T0 writing X, T1 writing Y. Then T0 attempts to read

Y but aborts, seeing that T1 already has rights to Y. T1 then attempts to read X but aborts

38 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

seeing T0 already has rights to X. This pattern then repeats, with no threads making

progress.

Later in our investigation, we also evaluate two more CM policies for pessimistic

conflict detection, in an attempt to find livelock and deadlock-free policies that also

improve performance. We evaluate Oldest, where the younger transaction involved in a

conflict aborts. This guarantees that, at all times, at least the oldest transaction makes

forward progress. We call our systems EP-OLDEST and LP-OLDEST that use this policy.

In pessimistic conflict detection, aborts are expensive, not only because they waste

work already done, but also because unrolling the undo log is expensive. Since avoiding

aborts is advantageous, it could be wise to stall a requesting transaction that encoun-

ters a conflict, wait until the conflicting transaction commits or aborts, then continue

with the request. This is the idea behind the Stall CM policy, which is similar to base-

line policy of a popular EP design, LogTM [69] and also similar to Greedy. LogTM im-

plemented their policy in hardware, but it can easily be implemented using the UCM.

Each thread keeps, in software, a possibleDeadlock flag, set in the software contention

manager when a younger transaction is waiting on it. We then use the UCM settings

SENSE: ALWAYSTIE, TIEBREAK: DEFENDERWINS, and set the priority register to the time

at the beginning of the transaction. When an attacker sees a conflict, it stalls unless its

possibleDeadlock flag is set and the defender is older (checking the priority register to

determine this), in which case it aborts.

Stall calls for waiting for the conflicting transaction to commit or abort, which re-

quires global knowledge of commit and abort events. We did not implement a system

that includes this knowledge as it would require even more changes to the coherence

protocol, but instead stall by waiting for 500 cycles then retrying the request, perhaps

stalling again if a conflicting transaction still exists. We adjusted this number but we

do not claim to have found the optimal value. Too small a stall creates too many bus

requests, and too large a stall wastes time.

Many other CM policies exist for pessimistic conflict detection (see Section 2.6.1) but

we did not implement them. Our goal was not to present a thorough study of contention

management policies, but rather to create a set of competitive TM architectures for com-

parison. Some discussion of preliminary results with other policies is in Section 3.5.1.

3.3. BENCHMARKS FOR EVALUATION 39

3.3 Benchmarks for Evaluation

To evaluate the HTM systems described above, we use the benchmarks in STAMP [13]

version 0.9.10, and in our comparison with traditional parallelization methods, we se-

lected benchmarks from SPEC CPUFP [97], SPLASH [94], and SPLASH-2 [104]. Table 3.2

summarizes measured application characteristics.

STAMP allows us to evaluate transactional systems with applications traditionally

considered difficult to parallelize. The parallel code for each application uses coarse-

grain transactions to execute concurrent tasks that operate on one or more irregular

data structures such as graphs or trees. The resulting code is very close to the sequential

algorithm, creating frequent, coarse-grain transactions. The characteristics of STAMP’s

transactions vary widely, making TM’s performance on STAMP a good measure of the

effectiveness of this new programming model.

On the other hand, SPEC, SPLASH and SPLASH-2 allow us to compare transactional

systems using applications that represent important workloads amenable to traditional

synchronization methods. Programmers have exerted great effort optimizing the perfor-

mance of these benchmarks, so they present a worst-case evaluation of the additional

overhead of TM’s easier programming model.

From SPEC CFP we chose swim, from SPLASH we chose mp3d, and from SPLASH-2

we chose barnes and radix. We parallelized these applications by simply replacing the

lock regions with transactions. This made for very small transactions as can be seen in

Table 3.2 and is probably not representative of how a TM programmer would parallelize

these applications directly from sequential versions. However, it is still instructive to

evaluate their performance. It should be noted that simply replacing locks with transac-

tions may create correctness issues, especially in the presence of benign races [11].

The remainder of this section describes each benchmark in detail.

3.3.1 bayes

bayes implements an algorithm for learning the structure of Bayesian networks from

observed data, which is an important part of machine learning. The network is repre-

sented by a directed, acyclic graph with nodes for variables and edges for dependencies.

40 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

On each iteration, a thread analyzes a variable using the existing dependencies and the

observed data to learn and add new dependencies. Since most of bayes’s time is spent

analyzing the dependency graph and since a transaction protects these accesses, bayes

has long transactions. bayes also has a high contention rate as newly discovered depen-

dencies often change the graph.

The algorithm uses a hill climbing approach, combining local and global search, to

converge to a solution. Because of this randomizing effect, we expect convergence rates

to heavily depend on transaction scheduling. Long transactions and high contention

may result in widely varying transaction schedules between TM systems, therefore pro-

ducing equally varying execution times. To combat this effect, we average the perfor-

mance from three runs of bayes, each with different random seeds, for all experiments

involving this application.

Input: Dependencies for 32 variables are learned from 1,204 records, which have 2×20 parents
per variable on average. Edge insertion has a penalty of 2, and up to 2 edges are learned per
variable.

3.3.2 genome

genome is a bioinformatics application that performs gene sequencing: from a large pool

of gene segments, it finds the most likely original sequence. The basic data structure is

a hash table for unmatched segments. In the parallel version of the segment matching

phase, each thread tries to add to its partition of currently matched segments by search-

ing the shared pool of unmatched segments. Since multiple threads may try to grab the

same segment, transactions are used to ensure atomicity.

Little contention exists in genome, despite execution time being spent mostly in trans-

actions, and transactions are small. Because of these factors, we expect genome to per-

form similarly across TM systems.

Input: Gene segments of 16 nucleotides are sampled from a gene with 256 nucleotides. A total
of 16,384 segments are analyzed to reconstruct the original gene.

3.3.
B

E
N

C
H

M
A

R
K

S
F

O
R

E
V

A
LU

AT
IO

N
41

GLOBAL L2 MISS LOCAL L3 MISS PER TRANSACTION

per
1K ins

per
1K ins

Time
in
Tx instructions* reads*† writes*†

writes†

per 1K ins* retries‡

bayes 0.22% 1.5 58.59% 1.24 83.3% 60,578 (614) 149 (43) 97 (18) 1.6 (29.3) 0.70
genome 0.41% 1.8 86.37% 1.59 97.4% 1,717 (241) 48 (36) 12 (14) 7.1 (58.1) 0.10

intruder 0.18% 0.9 79.37% 0.73 32.7% 330 (82) 21 (10) 10 (7) 31.6 (85.4) 2.08
kmeans 0.25% 0.9 37.10% 0.35 6.6% 118 (143) 12 (14) 5 (5) 42.6 (35.0) 0.07

labyrinth 0.01% 0.1 99.33% 0.05 99.7% 219,572 (194) 132 (23) 217 (12) 1.0 (61.9) 0.71
ssca2 3.44% 19.0 20.72% 4.95 15.2% 50 (50) 10 (10) 4 (4) 80.0 (80.0) 0.01

vacation 1.52% 9.6 33.76% 3.35 86.6% 2,612 (2,778) 96 (97) 20 (21) 7.7 (7.6) 0.41
yada 0.29% 2.0 51.57% 1.63 99.8% 9,801 (121) 51 (13) 28 (8) 2.9 (66.1) 0.52

barnes 0.01% 0.1 56.13% 0.08 1.4% 227 (62) 12 (9) 10 (6) 42.7 (96.8) 0.07
mp3d 0.09% 0.5 43.16% 0.22 61.0% 71 (56) 6 (5) 4 (4) 61.1 (71.4) 0.04
radix 0.27% 1.9 24.13% 0.67 0.0% 38 (38) 5 (5) 3 (3) 78.9 (78.9) 0.00
swim 5.55% 44.5 60.66% 34.23 0.0% 45 (45) 7 (7) 5 (5) 111.1 (111.1) 0.00

Table 3.2: Cache and transactional statistics for benchmark applications. *Averages are presented, with medians in
parentheses. †Reads and writes are numbers of cache lines (32B) read and written, not number of read and write
operations. Simulation parameters are the defaults presented in Table 3.1. ‡Retries per transaction presented for 16
CPU, Lazy-Optimistic case.

42 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

3.3.3 intruder

intruder is a signature-based network intrusion detection simulation where network

packets are compared in parallel to known intrusion signatures. Packets are reassem-

bled (presumably after being fragmented in transmission) using a shared dictionary, im-

plemented using a self-balancing tree. Access to this tree is protected by coarse-grain

transactions creating a high contention rate, so we expect performance to differ between

systems. Also, it has a high writes to transactional instructions ratio, which may expose

log and commit overheads.

Input: 2,048 flows, each consisting of not more than 4 packets. 10% of the flows are attacks.

3.3.4 kmeans

kmeans is an algorithm that clusters objects into k partitions based on some attributes.

It is commonly used in data mining workloads. Input objects are partitioned across

threads and synchronization is necessary when two threads attempt to insert objects

in the same partition. Thus, the amount of contention varies with the value of k. Our

version of kmeans is commonly called kmeans-high or kmeans-high-vios in other lit-

erature.

Despite being the “high contention” edition of kmeans, our measured contention

level is relatively low compared to other applications. Therefore, we expect performance

to be similar between systems. However, it does have many small transactions, so there

is a possibility that LO will experience overhead from its serialized commit.

Input: High Contention Edition: The number of cluster centers is 15. A convergence threshold
of 0.05 is used, and analysis is performed on an input with 2,048 points of 16 dimensions
generated about 16 centers.

3.3.5 labyrinth

labyrinth is a three dimensional maze solving algorithm where threads choose a start

and end point, then finds a path connecting the points through the grid and add their

path to a global maze structure. This is done within one transaction. While computing

3.3. BENCHMARKS FOR EVALUATION 43

the path, each thread has its own privatized copy of the grid, verifying its path against the

global structure once a successful path is found by re-reading all its edges. Transactions

are ideal for this application because the checking phase would require a global lock or

some other deadlock avoidance/detection technique.

High contention and long transactions may make this application sensitive to trans-

action scheduling. Spending a lot of time in long transactions as labyrinth does may

pose problems for our optimistic system since it waits to detect conflicts until commit

time.

Input: The reference input with a 32×32×3 grid, routing 96 paths.

3.3.6 ssca2

ssca2 is an implementation of Scalable Synthetic Compact Applications 2 [9], which

applies four commonly used kernels to a large, directed, weighted multi-graph. The

STAMP version of this application focuses on Kernel 1, which constructs an efficient

graph using adjacency and auxiliary arrays. Transactions protect access to the adjacency

array and adding nodes to the graph, which are relatively small components of execution

time. This makes transactions few and contention low so we expect systems to perform

similarly. However, small transactions mean possible validation and/or commit over-

head in LO.

Input: There are 213 nodes in the graph. The probability of inter-clique edges and unidirectional
edges are 1.0 and 1.0, respectively. The max path length is 3, and the max number of parallel
edges is 3.

3.3.7 vacation

vacation implements a travel reservation system powered by an in-memory database

using trees to track items, orders, and customer data. vacation is similar in design

to the SPECjbb2000 [98] benchmark. The workload consists of several client threads

interacting with the database via the system’s task manager. The workload generator

can be configured to produce a certain percentage of read-only (e.g., ticket lookups) and

read-write (e.g., reservations) tasks. For our experiments, we used one with a balanced

44 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

set of read-only and read-write tasks to generate significant contention. Our version of

vacation is also called vacation-high or vacation-high-vios in other literature.

Tasks operate on multiple trees and execute fully within transactions to maintain

the database’s atomicity, consistency, and isolation. vacation has a medium to high

contention rate so performance differences between designs may emerge.

Input: High Contention Edition: 4 queries per task, 60% of relations queried, 16,384 possible
relations, 90% user tasks, 4,096 tasks.

3.3.8 yada

yada (Yet Another Delaunay Application) implements Delaunay mesh generation, an

algorithm for producing guaranteed quality meshes for applications such as graphics

rendering and PDE solvers. The basic data structure is a graph that stores mesh data.

Each parallel task involves three transactions. The first one removes a “bad” triangle

from a work queue, the second processes the cavity around the triangle, and the third

inserts newly created triangles into the work queue.

Since most of yada’s work is done within transactions and since it continually mod-

ifies a shared graph, its contention rate is high and we expect different performance

characteristics on different TM systems.

Input: 633.node test file with 1,264 elements. Mesh must have a minimum angle of 20 degrees.

3.3.9 barnes

barnes is a SPLASH-2 benchmark simulating the interactions of a number of bodies

(like planets for example) in three dimensions using the Barnes-Hut N-body method.

Its principle data structure is an octree that is traversed on each time step, for each body,

to compute the forces acting on that body.

barnes has the most contention of the traditionally parallelized applications we ex-

amined, as locks/transactions protect access to nodes in the tree. We expect to see con-

flicts play a key role in determining performance, perhaps helping us understand the

differences between how traditional systems and TM systems handle contention.

Input: Reference input but with only 2,048 particles.

3.3. BENCHMARKS FOR EVALUATION 45

3.3.10 mp3d

mp3d is a SPLASH benchmark simulating rarefied fluid flow. It was excluded from SPLASH-

2 because of its poor scalability, which makes it an ideal candidate to for parallelization

using transactions, since it proved cumbersome with traditional methods. It has many

lock regions and moderate contention (compared to other SPLASH applications), so it

will test the performance limits of short transactions.

Input: 3,000 molecules.

3.3.11 radix

In radix, an iterative algorithm sorts a number of integer keys using a radix sort method.

On each iteration, a thread generates a histogram of the keys it has been assigned, which

are then accumulated into a global histogram. Finally, each thread uses the global his-

togram to permute its assigned keys.

radix uses no locks (except those in barriers), but instead has its own user-defined

synchronization (i.e., “done” flags). Even though Table 3.2 lists radix as having 0% time

in transactions, this is a roundoff effect: the only transactions are within barriers, so

there are very few.

Input: 262,144 keys.

3.3.12 swim

swim comes from the SPEC CFP95 benchmarks and solves shallow water equations us-

ing finite difference methods. We parallelized it using standard techniques. swim has

only one, short global reduction phase that requires synchronization, that is why it ap-

pears from Table 3.2 that 0% of time is spent in transactions. Like radix, swim should

scale well on any parallel system, including transactions, and tests only basic synchro-

nization pressure.

Input: Reference input.

46 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

Useful Cycles spent executing non-memory instructions that contributed
to the final result. Includes overhead from tm_begin() and
tm_end() (but not time from any associated misses).

Overflow Cycles of all types when a transaction has overflowed.
L1 Miss Cycles spent accessing the private L2.

Memory Cycles spent waiting for interconnect, shared cache, and
main memory (i.e., time after the last private cache).

Idle/Synch Cycles spent in barriers, locks, and idle (from load imbalance).
Validate Cycles spent validating the transactional read-set.
Commit Cycles spent committing.

Violate Stall Rolled back cycles that were memory or cache stalls.
Violate All remaining cycles that were rolled back.

Total Total cycles.

Table 3.3: Descriptions of each of the components of execution time. “Total” does not
appear in all graphs.

3.4 Baseline Evaluation

We start our evaluation by examining the results from the default configurations of the

three systems described in Chapter 2 (LO-BASE, EP-BASE, and LP-BASE). Figures 3.3,

3.2, and 3.4 present the results as breakdowns of execution time, normalized to sequen-

tial execution (lower is better). Table 3.3 describes each component of the breakdown

graphs.

Clearly, pessimistic’s simple contention management scheme creates many livelocks,

especially on applications with high contention like bayes, intruder, vacation, and

yada. Here, frequent conflicts conspire to create crushing pathologies as many threads

attempt to gain rights to a small number of cache lines.

Pessimistic’s plight is unfortunate but expected since its CM scheme does not guar-

antee forward progress. Fortunately, LO’s equally simple scheme does guarantee for-

ward progress, avoiding livelock and, furthermore, appears not to create pathologies, ex-

cept SERIALIZEDCOMMIT in ssca2 (high Validation time on 32 CPUs due to small trans-

actions). Other optimistic pathologies like STARVINGELDER or RESTARTCONVOY do not

appear. We expected this outcome, as those pathologies require very specific thread

configurations.

3.4. BASELINE EVALUATION 47

84

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

ViolateViolate StallCommitValidateIdle/SynchMemoryOverflowUseful L1 Miss

yadavacationssca2labyrinthkmeansintrudergenomebayes

Eager-Pessimistic
Baseline Evaluation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3216

LI
V

EL
O

C
K

Figure 3.2: Execution time breakdown of STAMP applications on 2–32 CPUs on EP-BASE.
Normalized to sequential execution. Default simulator parameters (see Table 3.1).

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Lazy-Optimistic
Baseline Evaluation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

84

ViolateViolate StallCommitValidateIdle/SynchMemoryOverflowUseful L1 Miss

yadavacationssca2labyrinthkmeansintrudergenomebayes
2 3216

Figure 3.3: Execution time breakdown of STAMP applications on 2–32 CPUs on LO-BASE.
Normalized to sequential execution. Default simulator parameters (see Table 3.1).

48 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

84

ViolateViolate StallCommitValidateIdle/SynchMemoryOverflowUseful L1 Miss

yadavacationssca2labyrinthkmeansintrudergenomebayes
2 3216

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Lazy-Pessimistic
Baseline Evaluation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LI
V

EL
O

C
K

Figure 3.4: Execution time breakdown of STAMP applications on 2–32 CPUs on LP-BASE.
Normalized to sequential execution. Default simulator parameters (see Table 3.1).

Further evaluation between systems is pointless until we adjust pessimistic’s con-

tention management scheme to something more reasonable. We return to comparing

the different TM systems in Section 3.6.

3.5 Contention Management in Pessimistic Conflict Detec-

tion

In Section 2.6.2, we described the pathologies and myriad solutions to address con-

tention management issues in pessimistic conflict detection. In this section, we evalu-

ate a handful of those solutions in an attempt to first, understand how CM policies affect

the STAMP workloads on EP and LP, and second, to aid us in comparing EP and LP to LO.

This should in no way be thought of as an exhaustive look at contention management.

For our limited study, we studied EP and LP with two CM policies, both with forward

progress guarantees to avoid livelock: Stall and Oldest (see Section 3.2.4 for implemen-

tation details). Figure 3.5 compares speedups between the two policies on the STAMP

3.5. CONTENTION MANAGEMENT IN PESSIMISTIC CONFLICT DETECTION 49

1

2

3

4

5

6

Sp
ee

d
u

p

0

2

4

6

8

10

12

EP-OLDEST EP-STALLLP-OLDEST LP-STALL

bayes

4 8 16 322

intruder

4 8 16 322

kmeans

4 8 16 322

genome

4 8 16 322

Sp
ee

d
u

p

labyrinth

4 8 16 322

vacation yadassca2

4 8 162

Pessimistic Conflict Detection Contention Management Comparison

0

1

2

3

4

32 42

CPUs

CPUs

0

2

4

6

8

10

12

1

2

3

4

5

6

1

2

3

4

5

6

7

8

8 16 32 4 8 16 322
1

2

3

4

5

6

7

8

0

1

2

3

4

Figure 3.5: Comparing speedups of EP-OLDEST, EP-STALL, LP-OLDEST, and LP-STALL
(the various contention management configurations) on the STAMP applications with
2–32 CPUs. Normalized to sequential execution. Default simulator parameters (see Ta-
ble 3.1).

applications using EP-OLDEST, EP-STALL, LP-OLDEST, and LP-STALL.

Between the policies, performance is governed by two factors: number of aborts and

thread scheduling. The policy that results in fewer aborts will perform better because

less work is wasted and aborts are expensive in EP. The policy whose schedule results in

less load imbalance and fewer pathologies will also perform better, for obvious reasons.

Unfortunately, which policy results in fewer aborts or a better transaction schedule de-

pends on the application’s transaction mix and memory access patterns and is difficult

to determine a priori.

In our results, the STAMP applications with low-to-medium contention generally

performed similarly on both the Stall and Oldest policies. On high contention bench-

marks, significant differences begin to emerge between the policies.

50 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

bayes

In bayes, Oldest performs consistently better than Stallbecause bayes’s long trans-

actions experience the FUTILESTALL pathology: transactions stalling only to later abort.

In these cases, it would be better to abort and restart quickly, which a policy like Oldest

encourages.

genome

genome has small transactions, a low contention rate, and no pathological transac-

tion mixes. In this environment, the two policies result in very similar abort counts so

they perform similarly.

intruder

intruder is the first application on which we see a crippling pathology in one of the

policies. In this case, we see DUELINGUPGRADES in Stall: two transactions attempt to

read then upgrade the same cache lines, each tripping over the other’s requests. Old-

est more strictly enforces priority between the feuding transactions and makes faster

progress.

kmeans

kmeans has a medium level of contention, and we see STALL keeping abort count

lower than OLDEST until 32 CPUs. At 32 CPUs, with only 15 clustering centers, it is

highly probable two transactions are reading, modifying, and writing the same center.

If another transaction attempts to modify that center, then a probable deadlock is de-

tected using the conservative deadlock avoidance mechanism and an abort is triggered,

increasing the number of aborts and slowing the STALL configuration.

labyrinth

labyrinth has a high contention rate, yet no pathologies because very few of its

transactions abort. Of course, it has very large transactions (the largest by an order of

magnitude compared to any other application in STAMP), so any aborts degrade perfor-

mance, but there are not interactions between aborting transactions that would create

pathologies. As with other applications where performance between STALL and OLD-

EST is similar, the number of aborts is similar and the performance follows.

3.5. CONTENTION MANAGEMENT IN PESSIMISTIC CONFLICT DETECTION 51

ssca2

Like genome, ssca2 has small transactions, a low contention rate, and no patholog-

ical transaction mixes. The two policies result in very similar abort counts so they per-

form similarly.

vacation

In vacation, many transactions perform reads and writes to the same data. Because

of this transaction mix, Stall creates a pathology similar to STARVINGWRITER. Similar to

intruder, Oldest enforces stricter priority, feeding the starved transactions.

yada

yada’s story is similar to kmeans: STALL reduces the number of aborts until con-

tention becomes high, when performance becomes more similar.

3.5.1 Discussion

As was mentioned in the introduction to this section, our study is by no means exhaustive—

many other CM options exist. In fact, even the policies we tried have variations and even

tunable parameters (like time before retrying an access in Stall, which should probably

be randomized). We did not explore these variations or parameters. It is possible that

the poor performance seen with Stall in certain applications and even the pathologies

in vacation and intruder could be eliminated with proper parameter tuning.

Clearly, the pessimistic conflict detection CM policy design space is large and find-

ing the one best-performing policy across all applications may prove impossible, or at

least require much experimentation. To avoid choosing one policy and dooming certain

workloads to poor performance, an adaptive software approach could be taken, chang-

ing the policy based on recently seen pathologies. This is an ideal use case for our soft-

ware violation handlers discussed in Section 4.2.3.

One additional policy worth attention is the suggestion of a hardware write-set pre-

dictor, as described by Bobba et al. [12]. The predictor attempts to determine what lines

will eventually be upgraded with an exclusive load request. When it encounters one of

52 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

these addresses, the initial load is converted to an exclusive load, addressing the Duelin-

gUpgrades pathology. Unfortunately, this requires extra hardware, which seems like an

extreme measure just to achieve the same performance as a much simpler LO imple-

mentation.

We did not extensively evaluate this write-set predictor, but a Stanford colleague,

Woongki Baek, examined a few STAMP applications with a combination of transaction

age and write-set prediction and found that intruder is positively affected by such a

policy, proving that DuelingUpgrades can be addressed.

It is also useful to note that we did not see significant LO pathologies, suggesting

that LO is a more robust TM design. However, there are pathologies that can exist in LO

(see Section2.6.2) and we tried a commonly advocated [12] CM policy to combat them:

randomized linear backoff before aborting. Unfortunately, no applications improved

and many of applications got worse. For example, intruder got 2.54×worse on 32 CPUs.

This further proves that determining the proper CM policy and tweaking its parameters

(such as maximum backoff time) is a difficult task and perhaps some adaptive method

is required.

3.6 Comparing Transactional Systems

Now that we have created a relatively well-performing implementation of each of the

fundamental TM designs, let’s compare them to each other. Figures 3.6 and 3.7 present

execution time breakdowns of the STAMP applications on the best evaluated CM config-

uration for each application (lower is better).

First, we notice good speedups can be achieved using any of the TM systems, with an

average speedup of 7.3×on 32 CPUs across all systems and all applications (maximum of

18.9× with kmeans on LO). TM’s non-contention related overheads were also low: little

validation or commit time (except in ssca2) means LO’s overheads were low; similar

Idle/Synch times between EP and other systems means extra log writes were not creating

pressure on the single-ported L1 cache. Overall, this paints a promising picture for TM’s

usefulness as a new parallelism paradigm. Further insights into the performance of TM

relative to it’s traditional MESI predecessor are gathered in Section 3.7.

3.6. COMPARING TRANSACTIONAL SYSTEMS 53

Similar to our experience in the contention management experiment (Section 3.5),

performance characteristics of the STAMP applications are dictated by contention level.

In applications with low contention, all systems scale well and performance is similar be-

tween them. Differences between systems emerge when considering higher contention

applications. Detailed results follow; speedups listed with each application are those

achieved at 32 CPUs.

bayes
LO: 6.1× EP: 4.6× LP: 5.9×

While bayes has a high contention rate, it does scale, mainly with load imbalance

(high Idle/Synch time) preventing further scalability. Load is randomly distributed across

processors so convergence rates very depending on processor count and scheduling.

Specifically, we see that EP’s runs have more difficulty converging, suffering from vastly

greater Useful time than the other two systems.

Varying convergence rates are made worse by contention: bayes’s transactions are

very long and if one rolls back after a significant portion of its execution, that processor

will be significantly behind the others in completing its work. In fact, 50% of bayes’s

transaction conflicts on EP occurred after the transaction had executed over 13,000 cy-

cles. Given bayes’s high contention rate and intrinsically random nature, this effect ac-

cumulates to acutely affect a handful of processors (in this case 2 CPUs), creating further

load imbalance.

genome
LO: 12.0× EP: 10.5× LP: 10.0×

genome’s transactions rarely interact, given the large pool from which they pull their

gene segments. This low contention rate makes results in similar performance across all

three systems. However, when there are conflicts, pessimistic’s early conflict detection,

even tempered by the Stall policy, wastes more time in violations than optimistic.

intruder
LO: 4.5× EP: 2.8× LP: 2.9×

Because intruder has high contention between its many small transactions, we are

not surprised that performance is limited to low CPU counts. After 8 CPUs, intruder

54 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

Lazy-Optimistic Eager-Pessimistic Lazy-Pessimistic

bayes
LO-BASE EP-OLDEST LP-OLDEST

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.0

0.1

0.2

0.3

0.4

0.5

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Total

genome
LO-BASE EP-STALL LP-STALL

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.0

0.1

0.2

0.3

0.4

0.5

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Total

intruder
LO-BASE EP-OLDEST LP-OLDEST

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.0

0.1

0.2

0.3

0.4

0.5

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Total

kmeans
LO-BASE EP-STALL LP-STALL

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.0

0.1

0.2

0.3

0.4

0.5

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Total

2 8 32

2 8 32

2 8 32

2 8 32

CPUs

CPUs

CPUs

CPUs

Figure 3.6: Execution time breakdown of the best evaluated contention management
configuration, by application, of the first four STAMP applications on 2–32 CPUs across
all systems. Normalized to sequential execution. Default simulator parameters (see Ta-
ble 3.1).

3.6. COMPARING TRANSACTIONAL SYSTEMS 55

Lazy-Optimistic Eager-Pessimistic Lazy-Pessimistic

labyrinth
LO-BASE EP-OLDEST LP-OLDEST

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Total

ssca2
LO-BASE EP-STALL LP-STALL

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Total

vacation
LO-BASE EP-OLDEST LP-OLDEST

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Total

yada
LO-BASE EP-STALL LP-STALL

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.0

0.1

0.2

0.3

0.4

0.5

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Total

2 8 32

2 8 32

2 8 32

2 8 32

CPUs

CPUs

CPUs

CPUs

Figure 3.7: Execution time breakdown of the best evaluated contention management,
by application, of the second four STAMP applications on 2–32 CPUs across all systems.
Normalized to sequential execution. Default simulator parameters (see Table 3.1).

56 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

is dominated by conflicts, which most likely come from the rebalancing of the packet

assembly tree [13].

In LO, the majority of wasted time is marked as Violation Stall because these con-

flicting transactions are waiting on memory: most of the transactions are small (around

82 instructions) yet access somewhere between 14 and 20 cache lines worth of data. In

EP and LP, intruder still exhibits prohibiting violations, but time is marked as Violation

instead of Violation Stall because conflicts are detected early, before many of the ex-

pensive memory operations are performed. Performance still suffers because the high

contention rate means there are many of these quickly aborted transactions.

As discussed in Section 3.5.1, pessimistic’s performance suffers because of the DU-

ELINGUPGRADES pathology. While Oldest does better than Stall, we would prefer to stall

then use a write-set predictor to avoid DUELINGUPGRADES, since a stall-based CM pol-

icy would reduce the number of aborts.

intruder also exposes the impact of undoing EP’s log: Violate time is significantly

higher than LP’s for all CPU counts. Its high writes per transactional instructions ratio

combined with high contention rate, makes intruder particularly vulnerable to slow

aborts.

kmeans
LO: 18.9× EP: 9.9× LP: 10.3×

kmeans’s medium contention level results in scalability on all systems but perfor-

mance is much better on LO, with EP and LP both being similarly plagued by conflicts

at 32 CPUs. Perhaps an additional pathology is at work in the pessimistic conflict de-

tection systems, as evidenced by OLDEST’s performance overtaking STALL’s at 32 CPUs

(see Section 3.5).

labyrinth
LO: 5.8× EP: 4.5× LP: 5.1×

labyrinth’s performance is almost identical between systems despite its high con-

tention rate. As described in Section 3.5, aborting labyrinth’s large transactions con-

tributes to its degraded performance, but no pathologies are created. We also know that

labyrinth is sensitive to scheduling changes so we see a different system performing

3.6. COMPARING TRANSACTIONAL SYSTEMS 57

better at each of 8, 16, and 32 CPUs, though the differences are small (almost impercep-

tible on the graphs).

ssca2
LO: 5.9× EP: 6.7× LP: 6.6×

ssca2 is an exception to the trend that low contention applications perform simi-

larly among the different TM systems. It has very low contention but does not scale past

16 CPUs on LO due to time spent validating. Because our implementation of LO serial-

izes on validation, other transactions must wait to validation. This is acceptable as long

as there are few transactions or the transactions are large (low write-set to instruction

ratio), which will likely distribute their commit times. ssca2 has few transactions but

unfortunately, they are very small, creating high contention for commit permission. If

our system supported parallel commit—allowing non-conflicting transactions to com-

mit simultaneously—this pressure could be reduced and ssca2 may continue to scale

on LO.

EP and LP do not serialize on commit, allowing multiple non-conflicting transac-

tions to exist simultaneously, and so continues to scale (even if slightly) until 32 CPUs.

Further scaling is prevented by upgrade misses contending for the bus (visible in the

Memory column), which is not experienced by LO.

vacation
LO: 14.5× EP: 7.5× LP: 7.2×

vacation has a similar story to kmeans though it has a higher contention rate. Again,

Oldest seems to make poor choices about which transaction to abort, causing many

wasted cycles. As discussed in Section 3.5.1, our informal experiments with write-set

prediction did not seem to improve vacation, so by detecting conflicts too early, pes-

simistic conflict detection disallows a number of serializable schedules and vacation’s

medium level of contention magnifies this effect.

yada
LO: 4.8× EP: 3.3× LP: 3.3×

yada performs much better on LO than on the pessimistic systems. Even though

contention is high and LO suffers from a great many Violate cycles, pessimistic’s Stall

58 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

policy wastes even more time. Clearly, Stall is often stalling transactions for a long time

until they can proceed (evidenced by the high L1 Miss column). This would be good, sav-

ing wasted work, if all these stalled transactions eventually succeeded. However, many

such transactions are subsequently violated (evidenced by many Violate cycles). For this

reason, we believe yada-STALL may suffer from the FUTILESTALL pathology.

yada, like intruder, also exposes the effect of the undo log because its high con-

tention rate and many writes per transaction. Unrolling the log increases Violate time

on EP at 32 CPUs, further hindering scalability.

TM systems can achieve impressive speedups on parallel applications with minimal

effort. When applications are parallelized using coarse-grained transactions, overheads

are low, making TM a promising alternative to lock-based synchronization.

When comparing between TM systems, the largest performance differences are found

on applications with significant contention. This confirms the hypothesis we made in

Section 3.1.

In 7 out of 8 STAMP applications, LO performed better than the configurations of EP

and LP we evaluated. In general, poor contention management (including pathologies)

and additional overhead due to log unrolling limited scalability on pessimistic systems.

The remaining application, despite performing better on EP and LP than on LO, does

not form a strong argument in favor of pessimistic conflict detection: in ssca2, LO’s

serialized commit policy limited scalability.

3.7 Comparing to Traditional Parallelization

Unfortunately, simply improving the programming model and providing scalability is

not sufficient to justify switching to HTM—after all, sequential programming is even

easier and STMs also exhibit scalability. To determine whether TM is competitive with

traditional synchronization, we must compare their performance.

Figure 3.8 shows the normalized execution time for our selected SPEC, SPLASH, and

SPLASH-2 applications on a traditional MESI architecture using locks and done flags for

3.7. COMPARING TO TRADITIONAL PARALLELIZATION 59

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

ViolateViolate StallCommitValidateIdle/SynchMemoryOverflowUseful L1 Miss

TM vs. Traditional Parallelization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LO
-4

EP
-4

LP
-4

M
ES

I-
4

LO
-8

EP
-8

LP
-8

M
ES

I-
8

LO
-4

EP
-4

LP
-4

M
ES

I-
4

LO
-8

EP
-8

LP
-8

M
ES

I-
8

LO
-4

EP
-4

LP
-4

M
ES

I-
4

LO
-8

EP
-8

LP
-8

M
ES

I-
8

LO
-4

EP
-4

LP
-4

M
ES

I-
4

LO
-8

EP
-8

LP
-8

M
ES

I-
8

barnes mp3d radix swim

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.0

0.1

0.2

0.3

0.4

0.5

LO
-1

6
EP

-1
6

LP
-1

6
M

ES
I-1

6
LO

-3
2

EP
-3

2
LP

-3
2

M
ES

I-3
2

LO
-1

6
EP

-1
6

LP
-1

6
M

ES
I-1

6
LO

-3
2

EP
-3

2
LP

-3
2

M
ES

I-3
2

LO
-1

6
EP

-1
6

LP
-1

6
M

ES
I-1

6
LO

-3
2

EP
-3

2
LP

-3
2

M
ES

I-3
2

LO
-1

6
EP

-1
6

LP
-1

6
M

ES
I-1

6
LO

-3
2

EP
-3

2
LP

-3
2

M
ES

I-3
2

barnes mp3d radix swim

Figure 3.8: Execution time breakdown of selected SPEC, SPLASH, and SPLASH-2 appli-
cations on 4–32 CPUs using LO-BASE for all applications, EP-OLDEST and LP-OLDEST
for barnes and EP-STALL and LP-STALL for mp3d, radix, and swim, and a traditional
MESI parallelization. Normalized to sequential execution.

60 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

synchronization versus that of LO, EP-STALL, and LP-STALL. We chose Stall because it

performed better than Oldest on all these benchmarks.

On all but one application, both TM systems and the traditional system performed

similarly. We do see the expected difference in conflict detection schemes in barnes be-

tween LO, EP, and LP. Clearly, the early detection of pessimistic hurts performance. Not

much can be said about radix and swim, both having very few transactions. It suffices

to say that TM can achieve comparable speedups on these, mostly barrier-based parallel

applications.

mp3d is a much more interesting study. First, we see that transactional overhead

is more expensive than lock-overhead: the Busy portions of each TM graph are much

higher than MESI’s. However, we are using heavy transactions including full, unopti-

mized support for empty commit handlers (see Section 4.2.2). Ideally, this code would

be stripped at compile time, making for much lower TM overhead.

Since it spends much of its time in transactions and has many small transactions,

we see LO suffering from SERIALIZEDCOMMIT just as we did with ssca2 in Section 3.6.

Presumably, LO with parallel commit would perform similarly to the other two transac-

tional systems on mp3d, just as LO does on the other benchmarks in this section.

Even though mp3d performs better at all CPU counts with MESI, EP and LP almost

catch up at 32 CPUs. MESI begins to experience slow downs at higher CPU counts be-

cause of false sharing and global lock contention. TM will experience similar false shar-

ing effects, but only contention that represents real shared data dependencies and not

just dependencies on the same lock. As CPU counts increase, we expect performance to

equalize between MESI and TM systems.

3.8 Shallow vs. Deep Memory Hierarchy

To examine how important was our choice of both a private L1 and a private L2, we eval-

uated the STAMP applications using only the 64-KB L1 cache. With this configuration,

we found a number of applications experienced significant capacity overflows across all

systems, associativity overflows being already accounted for by a victim cache (similar

3.8. SHALLOW VS. DEEP MEMORY HIERARCHY 61

to our findings in McDonald et al. [66]). Since our basic systems differ in how they han-

dle overflow (see Section 3.2), comparing their performance has limited value. However,

we present the speedups for kmeans and vacation on LO, EP-OLDEST, and LP-OLDEST

compared with those configurations without private L2s in Figure 3.9.

kmeans represents one of the applications that experienced no capacity overflows.

This is expected since it has very few transactions each with few reads and writes. We do

see some degradation in performance between those runs with L2 and those without L2

due to the cost of additional capacity misses. But, since kmeans’s miss rates are also low,

this effect is small.

vacation on the other hand, represents those applications that experienced signif-

icant capacity overflow—speedups are much lower in the LO and LP’s runs without the

private L2. This is clearly caused by the fact that LO and LP’s overflow mechanisms serial-

ize until the overflowed transaction completes. Since EP’s overflow mechanism does not

serialize, its L1 performance is almost identical to that of its L1+L2 performance. Note

that LP-L1 performs so much better at 32 CPUs than at 16 CPUs because the extra con-

tention causes conflicts, and therefore aborts, to happen sooner, reducing the number

of overflows and, in turn, the amount of serialization.

It is instructive to look closer at vacation, which exhibits the same problems seen, at

various severities, in other applications. Figure 3.10 presents the execution time break-

down of vacation on LO without private L2 for 2–32 CPUs. Clearly, overflow cycles play

a significant role in diminishing performance, slowly relinquishing their hold as overall

cache capacity increases with larger CPU counts. Even though fewer transactions over-

flow, performance remains much the same between 16 and 32 CPUs due to increasing

Validation time caused by LO’s serializing overflow implementation.

These results should not be interpreted as a direct comparison between LO, EP, and

LP, but rather to support the need for efficient virtualization mechanisms. As we dis-

cussed in Section 2.7, overflow implementations are affected by choice of TM system,

but are not inherent to them and more efficient implementations for our lazy version-

ing systems have been proposed.

In conclusion, for TM to perform competitively, adequate speculative storage must

62 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE
Sp

ee
du

p

LO-L1
LO-L1+L2

EP-OLDEST-L1
EP-OLDEST-L1+L2

LP-OLDEST-L1
LP-OLDEST-L1+L2

kmeans

4 8 16 322

Deep vs. Shallow Memory Hiearchy

0

5

10

15

20

CPUs
Sp

ee
du

p

vacation

4 8 16 322
0

3

6

9

12

15

CPUs

Figure 3.9: Speedups of kmeans and vacation on 2–32 CPUs on LO, EP-OLDEST, and
LP-OLDEST with and without a private L2. L1 runs normalized to sequential execution
with only L1; L1+L2 runs normalized to sequential execution with both an L1 and an L2.
Note that on both graphs, the EP lines are almost collinear, and on kmeans, the LP lines
are almost collinear.

ViolateViolate StallCommitValidateIdle/SynchMemoryOverflowUseful

Normalized Execution Time

2 CPUs

4 CPUs

8 CPUs

32 CPUs

16 CPUs

0.0 0.1 0.2 0.3 0.4 0.5 0.6

vacation
LO-BASE without Private L2

Figure 3.10: Execution time breakdown of vacation on 2–32 CPUs on LO, but without a
private L2. Normalized to sequential execution with only L1.

3.9. INSTRUCTION-LEVEL PARALLELISM 63

EP-OLDEST LP-OLDEST

2 41

intruder kmeansgenome

vacation yadassca2

Instructions Per Cycle Comparison

8

12

16

2.0

2.5

3.0

3.5

4.0

4.5

2 41 2 41

5

6

7

8

2 41 1
5

10

15

2 4
2

3

4

5

2 41

10

11

12

13

14

15

16

17

Figure 3.11: Speedups of all three systems on a single issue, a 2-issue, and a 4-issue CPU.
All applications are presented at 32 CPUs. The Oldest CM policy is used for pessimistic
systems. Speedups relative to sequential, single issue execution.

be available or a reasonable overflow scheme must be employed. Not surprisingly, vic-

tim caches, while shown to be useful in avoiding associativity overflows [66], are not

sufficient for avoiding capacity overflows.

3.9 Instruction-Level Parallelism

We speculated that EP’s additional log writes did not degrade performance in our ear-

lier experiments because our simulated machine issues only one instruction per cycle.

In other words, because back-to-back speculative writes are rare, computation instruc-

tions hid the fact that the single-ported L1 was also serving log writes.

To test the sensitivity of TM designs, especially EP, to a more realistic CPU, we simu-

lated a multi-issue machine by continuing to execute instructions in a single cycle until

either an IPC limit was reached, or an instruction accessed memory. We simulated IPCs

64 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

of 1, 2, and 4, but attempted no instruction re-ordering. Figure 3.11 shows speedups

on all three systems with these configurations. We chose OLDEST as our pessimistic

conflict manager because it produced the most consistently acceptable results in Sec-

tion 3.5.

When examining Figure 3.11, do not consider the absolute speedup values at each

configuration. Instead, compare the shape of the curves: if two systems exhibit a similar

shaped curve, then we can conclude that one system is not more affected by IPC than

the other. However, if the change in speedup is less for one system than for another, the

first system is experiencing bottlenecks exposed by high IPCs. For this experiment, we

focused on the differences between the EP curve and LP curve, which should highlight

the impact of log writes while factoring out contention management effects.

Examining the results, we found that most applications with high ratios of writes to

instructions (listed as “writes per 1K instructions per transaction” in Table 3.2) did expe-

rience slightly slowed speedup at higher IPCs on EP versus LP. In these applications, we

find many cycles where the processor issues a store, but must stall because the L1 is busy

processing a log write. bayes and labyrinth were excluded from this experiment be-

cause varying the IPC drastically changed the transaction scheduling and convergence

rates, making conclusions about how IPC affects overheads impossible. Detailed results

follow.

genome

genome has a small writes per 1,000 instructions ratio (7.1), so we expect EP’s log

writes to have little impact on performance. Indeed this is the case, with EP performing

only slightly worse than LP due to its more expensive aborts, just as we see in Section 3.6.

Because EP’s log unroller also benefits from higher IPC, we see the gap between EP and

LP’s performance close as IPC reaches 4.

intruder

intruder has a high writes per 1,000 instructions ratio (31.6), so we begin to see a

difference between EP’s speedup and LP’s speedup at higher IPCs. .5% of cycles in EP-

IPC4 were spent waiting for an unavailable L1 cache compared to only .3% of cycles in

LP-IPC4. While this demonstrates the sensitivity of EP to higher IPCs, LP outperforms

3.9. INSTRUCTION-LEVEL PARALLELISM 65

EP by only 5%, so perhaps the extra log writes are not of great concern.

kmeans

kmeans has a similar story to intruder: a high writes per transactional instruction

ratio makes speedup suffer on EP at higher IPCs. Again though, the performance differ-

ence between EP and LP is only about 6%.

Because higher IPC makes transactions shorter, contention increases for commit

permission in LO, finally reaching a point of degrading performance at IPC=4. This is

the same SerializedCommit pathology we saw in ssca2 in Section 3.6, further justifying

the need for parallel commit in LO systems.

ssca2

ssca2 is an exception: it has the highest writes per 1,000 instructions ratio, yet EP

performs better than LP at IPC=4, if only 1.4% better. So, despite spending 1.6% more of

its cycles waiting for the L1, EP outperforms LP because ssca2 has few transactions and

waiting while unrolling the log acts as a backoff mechanism to improve load imbalance

(see STALL’s slight lead over OLDEST in Figure 3.5).

vacation

Performance was almost identical between EP and LP on vacation. It has only 7.7

writes per 1,000 instructions, which is quite low, so we expected increased IPC to have

little impact.

yada

yada has an even lower writes per 1,000 instructions ratio than vacation, so its per-

formance is also roughly identical between EP and LP.

In conclusion, while EP does show some sensitivity at high IPC values, only two ap-

plications (intruder and kmeans) demonstrated performance degradation on EP. Even

that difference was small (about 5%) and only obtained at IPC=4, a rather high number

considering most recent multi-core machines are dual-issue. In conclusion, the addi-

tional pressure EP’s log writes exert on a single-ported L1 cache are not of great concern.

66 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

3.10 Interconnect Parameters

Similar to our concerns about higher IPC and EP’s log writes, we speculated that LO may

be especially sensitive to bus bandwidth and latency because it broadcasts its write-set

addresses on commit. We also had concerns about pessimistic’s use of the bus to ac-

quire immediate write permission on speculatively modified cache lines. To test these

hypotheses, we evaluated the performance of all three systems with 32 CPUs, first in-

creasing arbitration time, then in a separate experiment, reducing the available band-

width. For these experiments, we chose the OLDEST contention manager for EP and LP

since it produced the most consistently acceptable results across all applications.

First, we increased the arbitration time from 3 cycles to 6 cycles. Performance degra-

dation averaged 10.8% and varied from .29% (EP yada) to 31.1% (EP ssca2). Strangely,

performance improved as much as 17.2% (EP bayes) on select configurations in certain

applications because fortuitous scheduling reduced load imbalance (LO: labyrinth,

EP: bayes and labyrinth).

The cause of performance differences varied between applications and between sys-

tems. For further investigation, we examine the execution time breakdown for three rep-

resentative cases: intruder, labyrinth, and ssca2. Figure 3.12 presents the results.

intruder, with its long transactions full of memory accesses, experienced greater

Violate Stall time in LO because that system waits to detect conflicts until commit time,

after many accesses made by other transactions. EP and LP experienced similar perfor-

mance degradation but the cause was having to wait longer to detect conflicts, causing

an increase in the Violate time (see intruder’s performance with the Stall policy in Sec-

tion 3.5). vacation’s performance pattern was similar.

On ssca2, an application with a high global L2 miss rate, all systems experienced

additional time spent sending refill requests across the bus (represented by increased

Memory time). Increased Validate and slightly increased Commit time show the sensi-

tivity of LO to increased arbitration time. This is a validation of our hypothesis that LO’s

overheads are affected by interconnect characteristics. However, as we established in

Section 3.6, since ssca2 suffers from the SerializedCommit pathology, this effect would

be mitigated by parallel commit. labyrinth represents two classes of applications. First,

3.10. INTERCONNECT PARAMETERS 67

LO-BASE EP-OLDEST LP-OLDEST
LO-High Arbitration EP-High Arbitration LP-High Arbitration

intruder

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.0

0.1

0.2

0.3

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.0

0.1

0.2

0.3

0.4

Total

labyrinth

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.00

0.05

0.10

0.15

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.00

0.05

0.10

0.15

0.20

0.25

Total

ssca2

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.00

0.05

0.10

0.15

ViolateViolate StallCommitValidateIdle/SynchMemoryL1 MissOverflowUseful

0.00

0.05

0.10

0.15

0.20

0.25

Total

Figure 3.12: Execution time breakdown, on all three systems, of selected STAMP appli-
cations using both 3-cycle and 6-cycle arbitration time on 32 CPUs. Normalized to se-
quential execution with 3-cycle arbitration time.

68 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

we see increased load imbalance (Idle/Synch time) in some configurations due to schedul-

ing changes (LP in this case). Secondly, labyrinth and bayes exhibit the strange effect

of certain systems improving their performance. This happens when significant load im-

balance exists initially and a change in transaction scheduling reduces this imbalance.

Unfortunately, both genome, kmeans, and yada exhibited increased load imbalance like

these applications, but not the fortuitous scheduling.

Next, we reduced the bus bandwidth from 32B per cycle (a full cache line per cycle)

to 16B per cycle. Performance degraded an average of 6.5% and varied from almost 0%

to 42.4%. Again, we saw some configurations improve their performance. As expected,

performance did not degrade or improve as much as in the arbitration experiment, since

many packets do not require much bandwidth (such as load requests) but all requests

must arbitrate for the bus.

The results are quite similar to the arbitration experiment, only with decreased ef-

fects, so we do not present any detailed breakdowns. In fact, intruder and vacation

experienced only slightly more Violate Stall on LO and Violate on EP and LP. ssca2 did

experience significant additional memory stall since refills now require an additional

cycle to cross the bus. LO overhead was slightly higher, but even less significant than

in the arbitration experiment. Because ssca2 writes few lines per transaction, band-

width is not the limiting factor, instead it is the number of commit packets sent, which

is more affected by arbitration time. Again, some applications (labyrinth and yada)

improved their performance due to scheduling differences, while other applications

(bayes, genome, and kmeans) experienced increased load imbalance.

In conclusion, we observed only a slight sensitivity in LO-specific overhead to higher

arbitration time or lower bandwidth, and that only when Commit or Validation time is

already significant. Reasonable arbitration and bandwidth limits are more than suffi-

cient to achieve reasonable performance from all TM systems, including LO. Finally but

not surprisingly, interconnect latency has a larger impact on overall performance than

bandwidth in TM systems.

3.11. RELATED WORK 69

3.11 Related Work

As mentioned in Section 3.5, Bobba et al. [12] also examined the three fundamental TM

design points. They evaluate the systems using some SPLASH applications (including

barnes and mp3d) and two microbenchmarks, and come to many similar conclusions:

differences arise between systems mainly in high contention applications and dealing

with CM is the most important element in determining performance.

However, they try significantly more complex CM schemes to address the patholo-

gies seen among pessimistic conflict detection systems for their LogTM design. Specif-

ically, they find that using a hardware write-set predictor alone or combining it with a

timestamp scheme (similar to OLDEST) performs best for EP. From their results, it seems

that LO performs almost as well or better than other options except on mp3d where the

complex EP schemes requiring the additional hardware write-set perform significantly

better. This is similar to our results: LO performs very well despite its simplicity.

Ceze et al. [19] compare their transactional Bulk architecture to an LO and an EP sys-

tem across applications from the Java Grande Forum [55] benchmark as well as SPECjbb-

2000 [98]. In general, they find the two systems perform quite similarly except on SPEC-

jbb2000. In that application, LO performs significantly better than EP due to the Du-

elingUpgrades pathology and the fact that pessimistic detects conflicts that eventually

result in a serializable schedule.

Cao Minh et al. [13], while introducing the STAMP benchmarks, also compares their

performance on both an LO and EP HTM as well as various STMs. They find, as we do,

that EP experiences significant contention management problems and that LO generally

performs the better. They also show that simple virtualization techniques, like serializ-

ing on overflow, are not adequate.

FlexTM [92] employs a set of architectural components to build a TM system of your

choice, including choice between conflict detection schemes. FlexTM builds on their

earlier work [93] which decouples version management and conflict detection but re-

quires software metadata handling. From their experiments, using microbenchmarks

and vacation, they conclude that simple performance is superior with optimistic. They

70 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

perform an additional experiment however, designed to evaluate the two conflict detec-

tion schemes on a timesharing system where thread switching occurs on transactional

abort. Pessimistic’s early conflict detection proves to outperform optimistic in through-

put tests with microbenchmarks because optimistic waits to detect conflicts. We did not

evaluate virtualization of TM systems; see Section 2.7 for a discussion of how to virtual-

ize the different TM systems, including better options for virtualizing LO.

Numerous studies have been published comparing various TM designs to traditional

parallelization techniques. Their conclusions are similar to ours, namely that perfor-

mance is similar or better between TM and traditional, lock-based synchronization, mak-

ing TM an attractive alternative.

Ananian et al. [8] proposed two TM designs: Unbounded Transactional Memory

(UTM, an EP design) and Large Transactional Memory (LTM, an LP design), with a fo-

cus on solving challenges with transactional virtualization. They compare LTM to a tra-

ditional lock-based architecture using a shared counter microbenchmark and transac-

tionalized versions of the Linux kernel and some SPECjvm98 benchmarks. They con-

vert locks and synchronized regions in transactions, similar to our technique. On the

shared counter microbenchmark, they found that LTM scales better, despite having very

small transactions, because their load-linked, store-conditional locks introduce much

unneeded network traffic and cache invalidations.

On their larger benchmarks, they evaluate lock overhead versus TM overhead, find-

ing TM introduces far less execution time (typically under 10%) than spinlocks (some-

times as much as 75%). They attribute this pleasing result to the fact that, in their trans-

actional conversion, nested locks are subsumed into one transaction. They assume their

UTM design will perform similarly to their LTM design, though they do not evaluate it.

Moore et al. [69] compared LogTM to a traditional system using microbenchmarks

and SPLASH-2. First, they examine LogTM versus various locking schemes on a shared

counter benchmark, finding that TM continues to scale far beyond the lock-based im-

plementations, further supporting claims made by the authors cited above. For their

SPLASH-2 applications, they also replace locks with transactions, just as we did. They

3.11. RELATED WORK 71

find that LogTM performs better than their traditional parallelization on every applica-

tion, citing TM’s optimistic concurrency. Our results are not as stellar because of our

unoptimized tm_begin() and tm_end() functions.

Recently, researchers have proposed two extensions to conventional parallel ma-

chines that target some of its performance bottlenecks. Coherence Decoupling (CD) [53]

allows a processor to use invalid data in the cache while coherence messages are ex-

changed over the interconnect. This reduces the performance impact of false sharing

and silent stores. The CD evaluation shows a 1% to 12% performance improvement for

SPLASH applications on a 16 processor SMP. Speculative Synchronization (SS) [79, 64]

allows a processor to speculatively proceed past locks and barriers and achieve the ben-

efits of optimistic non-blocking synchronization. It provides a 5% to 25% performance

improvement for SPLASH applications on a 16 processor SMP [79].

For the CMP environment in this study, false sharing, silent stores, and synchroniza-

tion pose smaller performance challenges than with a SMP system, as the on-chip inter-

connect in a CMP has higher bandwidth and lower latency. Hence, the benefits from CD

and SS in a CMP will be significantly lower and are unlikely to change the comparison

between TM and MESI.

For our evaluation, MESI used sequential consistency and all loads and stores from

each processor in both systems are strictly ordered. The use of a relaxed consistency

model would undoubtedly improve performance [2]. Nevertheless, TM would also im-

prove as we can freely reorder loads and stores within transactions. In fact, TM with

an out-of-order processor can be thought of as implementing release consistency, with

transaction begin and end being acquire and release, respectively.

Only a handful of researchers have examined the sensitivity of TM designs to inter-

connect parameters. Hammond et al. [39] performed preliminary, trace-driven evalu-

ations of an ideal TCC system (which is LO with continuous transactions; see Chap-

ter 5) using a number of benchmarks from various suites include SPLASH-2, SPECjvm98,

SPEC CFP, and SPECjbb2000. They expected that LO’s bandwidth requirements, while

72 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

higher than what has been required for traditional CMPs, were in fact reasonable.

As a follow up to that study, we performed a more rigorous, execution-driven evalua-

tion in McDonald et al. [66]. Through execution-driven experiments, we confirmed the

conclusion of Hammond et al., that even with the added burden of continuous transac-

tions, LO’s bandwidth and latency sensitivity is not a concern.

We did not directly compare bandwidth usage between TM systems, however Ceze

et al. [19] found that, for their TM implementations, EP used more bandwidth than LO

on half of their benchmarks (because of additional invalidations and subsequent refills),

and LO used more bandwidth on the remainder of applications (because of commit re-

quirements). Despite the fact that The average across all applications showed LO using

slightly less bandwidth, overall bandwidth requirements for both systems were reason-

able in a modern CMP environment.

3.12 Conclusions

The biggest performance differences between systems are to be found on applications

with high contention and therefore, contention management becomes critical to perfor-

mance. Furthermore, pessimistic conflict detection presents the most complicated CM

needs in the applications we examined. Even though we found well performing versions

of pessimistic conflict systems by varying CM policies, it is difficult to choose a one best

CM policy for all applications. Finally, even though we did not fully explore pessimistic’s

CM design space, the fact that the basic CM policy for LO performed as good or bet-

ter than EP and LP in most of our benchmarks suggests that LO (with the addition of

parallel commit) is the preferred TM system from a performance and implementation

complexity standpoint. We believe the work of others also supports this conclusion (see

Section 3.11).

Speculative state storage is critical to performance and in the cases where storage is

insufficient, overflow management is important. Though we did not evaluate different

overflow mechanisms, a non-serializing option is clearly best since performance suffers

greatly without it.

EP’s log writes are not a great concern because they are generally cached and, while

3.12. CONCLUSIONS 73

they do introduce additional pressure on cache ports at high IPC, this did not result in a

significant performance bottleneck.

Likewise, LO’s additional latency and bandwidth requirements are not a great con-

cern either. We saw only one application where any overhead-specific effect was seen

and that application has an overhead pathology with a known solution (ssca2’s serial-

ized commit).

Finally, comparing TM to traditional parallel systems reveals that TM is a viable al-

ternative to lock-based parallelization. Most applications we evaluated performed sim-

ilarly between a MESI-based system and our three TM systems. However, TM design-

ers must be careful to minimize the overhead associated with creating and destroying a

transaction if similar performance is to be expected from a parallelization where locks

have simply been replaced with transactions.

74 CHAPTER 3. EVALUATION OF HTM DESIGN SPACE

Chapter 4

The Architectural Semantics of HTM

All the uses of TM and the exact semantics required to implement languages and operat-

ing systems are not clear and will not be until TM is firmly established. However, for re-

search to take place, systems must have flexible and powerful tools with which to exper-

iment. STMs provide the most flexible environment, able to implement any semantics

on any hardware system, but this flexibility comes at a hefty performance cost. Instead,

we would like to define minimal hardware constructs (and software conventions) easily

implemented in an HTM.

At the instruction set level, the HTM systems presented above provide only a few in-

structions to define transaction boundaries. While such limited semantics have been

sufficient to demonstrate HTM’s performance potential using simple benchmarks, they

fall short of supporting several key aspects of modern programming languages and op-

erating systems such as transparent library calls, conditional synchronization, system

calls, I/O, and runtime exceptions. Moreover, simple HTM semantics are insufficient to

support recently proposed languages and runtime systems that build upon transactions

to provide an easy-to-use concurrent programming model [40, 42, 22, 6, 30, 83, 62, 35,

1, 17]. For HTM systems to become useful to programmers and achieve widespread ac-

ceptance, it is critical to carefully design expressive and clean interfaces between trans-

actional hardware and software.

This chapter defines a comprehensive instruction set architecture (ISA) for hardware

75

76 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

transactional memory. The architecture introduces four basic mechanisms: (1) two-

phase transaction commit, (2) support for software handlers on transaction commit, vi-

olation, and abort, (3) closed- and open-nested transactions with independent rollback,

and (4) non-transactional loads and stores. Two-phase commit enables user-initiated

code to run after a transaction is validated but before it commits in order to finalize tasks

or coordinate with other modules. Software handlers allow runtime systems to assume

control of transactional events to control scheduling and insert compensating actions.

Closed nesting is used to create composable programs for which a conflict in an inner

module does not restrict the concurrency of an outer module. Open nesting allows the

execution of system code with independent atomicity and isolation from the user code

that triggered it. Non-transactional loads and stores allow transactions to avoid gener-

ating spurious dependencies on data known to be private. The proposed mechanisms

require a small set of ISA resources, registers and instructions, as a significant portion

of their functionality is implemented through software conventions. This is analogous

to function call and interrupt handling support in modern architectures, which is lim-

ited to a few special instructions (e.g., jump and link or return from interrupt), but rely

heavily on well-defined software conventions.

We demonstrate that the four proposed mechanisms are sufficient to support rich

functionality in programming languages and operating systems including transparent

library calls, conditional synchronization, system calls, I/O, and runtime exceptions

within transactions. We also argue that their semantics provide a solid substrate to sup-

port future developments in TM software research. We describe practical implementa-

tions of the mechanisms that are compatible with HTM architectures. Specifically, we

present the modifications necessary to properly track transactional state and detect con-

flicts for multiple nested transactions. Using execution-driven simulation, we evaluate

I/O and conditional synchronization within transactions.

Overall, this chapter is an effort to revisit concurrency support in modern instruc-

tion sets by carefully balancing software flexibility and hardware efficiency. Our specific

contributions are:

4.1. THE NEED FOR RICH HTM SEMANTICS 77

• We propose the first comprehensive instruction set architecture for hardware trans-

actional memory that introduces support for two-phase transaction commit; soft-

ware handlers for commit, violation, and abort; closed- and open-nested transac-

tions with independent rollback; and non-transactional loads and stores.

• We demonstrate that the three proposed mechanisms provide sufficient support

to implement functionality such as transparent library calls, conditional synchro-

nization, system calls, I/O, and runtime exceptions within transactions. No further

concurrency control mechanisms are necessary for user or system code.

• We implement and quantitatively evaluate the proposed ISA. We show that over-

heads for these mechanisms are reasonable. We also demonstrate scalable perfor-

mance for transactional I/O and conditional scheduling.

4.1 The Need for Rich HTM Semantics

Basic HTM systems provide instructions to define transaction boundaries, which is suffi-

cient to support programming constructs such as atomic{} and demonstrate the HTM

performance potential with simple benchmarks. However, these systems fall short of

supporting key aspects of modern programming environments [60]. Moreover, there

is a significant body of work on languages and runtime systems that builds on transac-

tions to provide an easy-to-use concurrent programming model [40, 42, 22, 6, 30, 83, 62,

35, 1, 17, 16]. To gain the flexibility of STM semantics but with superior performance,

HTM systems must support a full programming environment and allow for innovation

in transaction-based software. This section reviews the basic software requirements that

motivate the semantics proposed in Section 4.2.

Composable Software (libraries): Modern programs use hierarchies of libraries, which

have well-defined interfaces, but their implementation is hidden from users. Since li-

braries called within transactions may include atomic blocks, transactions will often be

nested. One simple way to deal with nested transactions is by subsuming (or flattening)

all inner transactions within the outermost one [39, 8, 69]. Flattening can hurt perfor-

mance significantly as a conflict in a small, inner transaction may cause the re-execution

78 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

of a large, outer transaction. Such conflicts may even occur due to bookkeeping data

maintained by the library, which are only tangentially related to the concurrency in the

overall program. To avoid such bottlenecks without nesting, a programmer must be

aware of the implementation details of the library code, which is completely impracti-

cal. Hence, HTM systems must support independent abort of nested transactions.

Contention and Error Management: As seen previously, it is beneficial to extend sim-

ple abort and re-execute semantics with contention managers. We simulated their ex-

ecution in software which is well suited to improve performance and eliminate starva-

tion [35]. But, there must be an infrastructure for executing this software when conflicts

are detected by hardware. Language constructs such as tryatomic [6] and Context-

Listener [40] allow alternate execution paths on transaction aborts. With nested trans-

actions, programmers may define separate conflict policies for each nesting level. Fi-

nally, it is necessary for both error handling (e.g., try/catch) and debugging to expose

some information about the aborted transaction before its state is rolled back. Hence,

HTM systems must intervene on all exceptional events and manage transactional state

and program control flow.

Conditional Synchronization: Transactions must replace locks not only for atomic ex-

ecution but also for conditional synchronization (e.g., wait/notify). Conditional syn-

chronization is useful with producer/consumer constructs and efficient barriers. Re-

cently proposed languages include a variety of constructs that build upon transactions

to provide conditional synchronization without explicit notify statements (conditional

atomic [41], retry and orElse [42], yield [83], when [22], watch and retry [17]). To

support such constructs, software needs control over conflicts and commits, and HTMs

must also facilitate communication between uncommitted transactions.

System Calls, I/O, and Runtime Exceptions: Simple HTM systems prohibit system calls,

I/O, and runtime exceptions within transactions [8, 69] or revert to sequential execu-

tion on such events [39]. Both approaches are unacceptable as real programs include

system calls and cause exceptions, often hidden within libraries. To avoid long trans-

actions through system code invoked explicitly (system calls) or implicitly (exceptions),

system code should update shared-memory independently of the user transaction that

4.2. HTM INSTRUCTION SET ARCHITECTURE 79

triggered it. There should also be mechanisms to postpone system calls until the corre-

sponding user code commits or compensate for the system call if the corresponding user

code aborts. Furthermore, system programmers should be able to use the atomicity and

isolation available with transactional memory to simplify system code development.

4.2 HTM Instruction Set Architecture

To provide robust support for user and system software, we introduce four key mech-

anisms to HTM architectures: two-phase commit, transactional handlers, closed- and

open-nested transactions, and non-transactional loads and stores. This section describes

their ISA-level semantics and introduces the necessary state and instructions. We dis-

cuss their implementation in Section 4.4. The instructions should be used by language

and system developers to implement high-level functionality that programmers access

through language constructs and APIs. The instructions provide key primitives for flexi-

ble software development and do not dictate any end-to-end solutions.

Throughout this section, we refer to Tables 4.1 and 4.2 that summarize the state and

instructions necessary for the four mechanisms. Some basic instructions are already

available in some form in HTM systems (e.g., xbegin, xabort, xregrestore, and xr-

wsetclear), but we need to modify their semantics. The exact encoding or name for

instructions and registers depends on the base ISA used and is unimportant.

Each transaction is associated with a Transaction Control Block (TCB) in the same

manner as a function call is associated with an activation record. The TCB is a logical

structure that stores basic transaction state: a status word, the register checkpoint at the

beginning of the transaction (including the PC), the read-set and write-set addresses,

and the writebuffer or undo log. Conceptually, all TCB fields can be stored in cacheable,

thread-private main memory. In practice, several TCB fields will be in caches (e.g., the

read-set, write-set, and writebuffer/undo log) or in registers (e.g., the status word) for

faster access. Figure 4.2 summarizes the final view of the TCB.

80 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

BASIC STATE

xstatus reg Transaction info: ID, type (closed, open), status
(active, validated, committed, aborted, or wait-
ing to abort), nesting level

xtcbptr_base reg Base address of TCB stack
xtcbptr_top reg Address of current TCB frame

HANDLER STATE

xchcode reg PC for commit handler code
xvhcode reg PC for violation handler code
xahcode reg PC for abort handler code
xchptr_base TCB Base of commit handler stack
xchptr_top TCB Top of commit handler stack
xvhptr_base TCB Base of violation handler stack
xvhptr_top TCB Top of violation handler stack
xahptr_base TCB Base of abort handler stack
xahptr_top TCB Top of abort handler stack

VIOLATION & ABORT STATE

xvPC reg Saved PC on violation or abort
xvaddrs[0...m] TCB List of conflicting addresses
xvcount TCB Size of xvaddrs
xvoverflow TCB Bit set if xvaddrs overflows
xvaddrs_s[0...n] reg Hardware’s shadow version of xvaddrs
xvlevels_s[0...n] reg xvaddrs_s[i] is a conflicting address for nest-

ing level xvlevels_s[i]
xvcount_s reg The current length of xvaddrs_s and also

xvlevels_s.
xvoverflow_s reg Bit set if xvaddrs_s overflows

Table 4.1: State needed for rich HTM semantics. State may be in a processor register or
stored in a TCB field.

4.2. HTM INSTRUCTION SET ARCHITECTURE 81

TRANSACTION DEFINITION

xbegin Checkpoint registers & start (closed-nested)
transaction

xbegin_open Checkpoint registers & start open-nested trans-
action

xvalidate Validate read-set for current transaction
xcommit Atomically commit current transaction

STATE & HANDLER MANAGEMENT

xrwsetclear Discard current read-set and write-set; clear
xvpending at current nesting level

xregrestore Restore current register checkpoint
xabort Abort current transaction; jump to xahcode; dis-

able further violation reporting
xvret Return from abort or violation handler;

jump to xvPC; enable violation reporting
xenviolrep Enable violation reporting

NON-TRANSACTIONAL OPERATIONS

imld Load without adding to read-set
imst Store to memory without adding to write-set
imstid Store to memory without adding to write-set; no

undo information maintained

Table 4.2: Instructions needed for rich HTM semantics.

82 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

4.2.1 Two-phase Commit

Semantics: We replace the monolithic commit instruction in with two-phase commit [34].

The xvalidate instruction verifies that atomicity was maintained (i.e., no conflicts) and

sets the transaction status to validated. Its completion specifies that the transaction will

not be rolled back due to a prior memory access. The xcommit instruction marks the

transaction committed, which makes its writes visible to shared memory. Any code be-

tween the two instructions executes as part of the current transaction and has access

to its speculative state. The code can access thread-private state safely, but accesses

to shared data may cause conflicts and should be wrapped within open-nested trans-

actions (see Section 4.2.5). The code can also initiate voluntary aborts instead of an

xcommit.

Use: Two-phase commit allows the compiler or runtime to insert code between xvali-

date and xcommit. This is useful for commit handlers that help finalize system calls and

I/O. It also enables the transaction to coordinate with other code before it commits. For

example, we can run a transaction in parallel with code that checks its correctness (e.g.,

for memory leaks, stack overflows, etc.) [77]. Alternatively, we can coordinate multiple

transactions collaborating on the same task for group commit [62].

4.2.2 Commit Handlers

Semantics: Commit handlers allow software to register functions that run once a trans-

action is known to complete successfully. Commit handlers execute between xvalidate

and xcommit and require no further hardware support. Everything else is flexible soft-

ware conventions. It is desirable that transactions can register multiple handlers, each

with an arbitrary number of arguments. Hence, we define a commit handler stack in

thread-private memory. The base and top of the stack are tracked in the TCB fields xch-

ptr_base and xchptr_top, respectively. To register a commit handler, the transaction

pushes a pointer to the handler code and its arguments on the stack. An additional TCB

field, (xchcode), points to the code that walks the stack and executes all handlers after

xvalidate. To preserve the sequential semantics of the transaction code, commit han-

dlers should run in the order they were registered. As transactions may include multiple

4.2. HTM INSTRUCTION SET ARCHITECTURE 83

function calls and returns, handler developers should rely only on heap allocated data.

Use: Commit handlers allow us to finalize tasks at transaction commit. System calls with

permanent side-effects execute as commit handlers (e.g., write to file or sendmsgs).

4.2.3 Violation Handlers

Semantics: Violation handlers allow software to register functions to be automatically

triggered when conflicts are detected in the current transaction and access information

about those conflicts. A transaction can register multiple violation handlers with arbi-

trary arguments in the violation handler stack stored in thread-private memory. The

stack base and top are tracked in the TCB fields xvhptr_base and xvhptr_top, but

code located at xvhcode is responsible for running all registered handlers (as described

below). Violation handlers should run in the reverse order from which they were regis-

tered to preserve correct undo semantics.

Like commit handlers, violation handlers start as part of the current transaction and

have access to its speculative state. They can safely access thread-private state, but

should use open-nested transactions to access shared state.

Handlers may access a list of each of the xvcount conflicting addresses through the

xvaddrs TCB element. Since xvaddrs is populated from a hardware register (see Sec-

tion 4.4.2), only a limited number of address may be presented. If more addresses were

detected than could be recorded, the xvoverflow bit is set.

The violation handler returns by executing the xvret instruction, which jumps to

the address in xvPC. By manipulating xvPC before returning, violation handlers can con-

tinue the current transaction (i.e., ignore the conflict), roll back and re-execute, or roll

back and run other code. To roll back the transaction, the handler must flush the write-

buffer or process the undo log, discard the read-set and write-set using xrwsetclear,

and restore the register checkpoint with xregrestore.

Use: Violation handlers allow for software contention management on a conflict [42,

35] (see Section 2.6). It also allows for compensation code for system calls that execute

within the transaction if it rolls back (e.g., read or lseek to a file).

84 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

4.2.4 Abort Handlers

Semantics: Abort handlers are identical to violation handlers but they are triggered

when a transaction uses an explicit xabort instruction. A separate register points to

the code to invoke (xahcode). Abort handlers have a separate stack bounded by the xah-

ptr_base and xahptr_top fields in the TCB. The uses of abort handlers are similar to

those of violation handlers.

4.2.5 Nested Transactions

We define two types of nesting, explained in Figure 4.1.

Closed Nesting Semantics: A closed-nested transaction starts when an xbegin instruc-

tion executes within another transaction (TB and TC in Figure 4.1). The HTM system

separately tracks the read-set, write-set, and speculative state of the child transaction

from that of its parent. However, the child can access any state generated by an ancestor.

If a child detects a conflict, we can independently roll back only the child, without af-

fecting any ancestors. When a child commits using xcommit, hardware merges its spec-

ulative writes (¶) and read-/write-set (·) with that of its parent, but no update escapes

to shared memory. We make writes visible to shared memory only when the outermost

transaction commits (¸, ¹).

Open Nesting Semantics: An open-nested transaction starts when an xbegin_open in-

struction executes within another transaction (see TE in Figure 4.1). Open nesting differs

from closed nesting only in commit semantics. On open-nested commit, we allow the

child transaction to immediately update shared memory with its speculative writes (¸,

¹). The parent transaction updates the data in its read-set or write-set if they overlap

with the write-set of the open-nested transaction. However, conflicts are not reported

and no overlapping addresses are removed from the parent’s read-set or write-set. If

we want to undo the open nested transaction after it commits and its parent aborts, we

need to register an abort and/or violation handler.

Our closed nesting semantics are identical to those presented by Moss and Hosk-

ing [73]. However, our open nesting semantics differ. Moss and Hosking propose that

open-nested transactions remove from their ancestors’ read-set or write-set any addresses

4.2. HTM INSTRUCTION SET ARCHITECTURE 85

xbegin
 (NL=1)

xbegin
 (NL=2)

xbegin
 (NL=2)

Ti
m

e
TB

TC

TA

xbegin
 (NL=1)

xbegin_open
 (NL=2)

TD

TE

1 2

1 2

3

3

1 3 4

4

4

Closed
Nesting

Open
Nesting

xvalidate
xcommit

xvalidate
xcommit

xvalidate
xcommit

xvalidate
xcommit

xvalidate
xcommit

Commit transaction’s writes to
memory.

3

Discard transaction’s read-/write-set.4

1 Update parent with child’s writes.
Merge child’s read-/write-set with
parent’s.

2

Figure 4.1: Timeline of three nested transactions: two closed-nested and one open-
nested.

they update while committing. Their motivation is to use open nesting as an early re-

lease mechanism that trims the read-/write-set for performance optimizations [30]. We

find these semantics non-intuitive and dangerous: an open-nested transaction within

library code that is a black box to the programmer can change the atomicity behavior of

the user’s code in an unanticipated manner.

Unfortunately, there are pitfalls in our open nesting semantics. First, if the open-

nested transaction TD registers a violation/abort handler to be run when its parent, TE,

aborts, that handler’s view of memory will be that at the end of TE instead of at the end

of TD. Some advocate “rolling back” the state of TE to the proper point before executing

TD’s violation/abort handler [70]. Unfortunately, this can only be done in a system with

eager versioning.

Also, if sharing is implemented at the cache line level, an open-nested transaction

may expose a parent’s write: if a parent writes to a line and its open-nested child writes

to a different address in the same line, the open-nested commit will expose the entire

line.

86 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

All these issues are examples of a more general problem: what should be the seman-

tics of open-nested children that access their parent’s data? Agarwal et al. [4] describes

these problems, including serializability and composability issues. Both Agarwal et al.

and Moravan et al. [70] observe that these problems are eliminated if children and their

compensating actions do not write the same data as any of their ancestors (starting with

their immediate parent), an assumption they call O1.

It suffices to say that open nesting should be used by system-level programmers

and library designers to implement complicated functionality and not whimsically em-

ployed by application programmers looking for increased performance.

Use: Closed-nested transactions allow for independent rollbacks and contention man-

agement at each nesting level, which typically leads to better performance. Open-nested

transactions can both roll back and commit independently from their parents, which

provides a powerful tool for system code development (this was independently observed

by Moss et al. [72]). We can use them within a transaction to perform system calls with-

out creating frequent conflicts through system state (e.g., time). We can use them for

calls that update system state before parents commit (e.g., brk). We also use them in

handlers to access shared state independently. Note that within an open-nested trans-

action, we still provide atomicity and isolation, hence system code does not need locks

for synchronization. In many cases, open-nested transactions must be combined with

violation handlers to provide undo capabilities.

4.2.6 Nested Transactions and Handlers

Nested transactions can have separate handlers. To properly track all information, each

transaction has its own TCB frame. We implement a stack of TCB frames in thread-

private memory as shown in Figure 4.2, with a frame allocated before xbegin or xbe-

gin_open and deallocated on xcommit or a rollback. The base and current top of the

TCB stack are identified by registers xtcbptr_base and xtcbptr_top. TCB frames have

fixed length as the read-set, write-set, and speculative state of the transaction are phys-

ically tracked in caches or undo logs. For each transaction, xstatus tracks the current

nesting level. Overall, TCB management for transactions is similar to activation record

4.2. HTM INSTRUCTION SET ARCHITECTURE 87

write-buffer or undo log*

xstatus†

xchcode†

xvhcode†

xahcode†

xchptr_base‡

xchptr_top‡

xvhptr_base‡

xvhptr_top‡

xahptr_base‡

xahptr_top‡

read-set & write-set*

TCB1

TCB2

TCB3

Nesting
Level

3

2

1

TCB Stack
Transaction Control Block

xtcbptr_base

xtcbptr_top

* Kept in caches (logically part of the TCB).
† Must be stored in registers (logically part of the TCB).
‡ TCB fields stored in thread-private memory.

arg. 0

...

arg. n

...

Abort Handler
Stack

arg. 0

...

arg. n

...

Violation
Handler Stack

Handler PC

arg. 0

...

arg. n

Handler PC

...

Commit Handler
Stack

Register Checkpoint

xvaddrs_s[0...n]

xvlevels_s[0...n]

xvcount_s

xvoverflow_s

xvaddrs[0...m]

xvcount

xvoverflow

Registers for Violation
Handlers

xvPC

Figure 4.2: The Transaction Stack containing three Transaction Control Blocks (TCBs),
one per active nested transaction. The second entry is shown in detail, complete with
commit, violation, and abort handler stacks. Also shown are the additional registers
needed for violation handlers.

88 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

management for function calls.

A single stack is necessary to store all registered handlers of a certain type. Each

transaction has separate base and top pointers to identify its entries in the stack. At

commit, a closed-nested transaction merges its commit, violation, and abort handlers

with those of its parent by copying its top pointer (e.g., xchptr_top) into the parent’s

top pointer. The fixed length of TCB frames makes such an operation trivial. On an

open-nested commit, we execute commit handlers immediately and discard violation

and abort handlers. If the violation/abort handlers need to persist, the open-nested

commit handler should copy them to the parent’s violation/abort handler stack.

With nesting, conflicts can be detected for a transaction at any active nesting level

and some conflicts may affect multiple levels at once. We always run the violation han-

dler of the innermost transaction (top TCB), even if the conflict involves one of its par-

ents. This is convenient as it allows software to run violation handlers at all levels as

needed. It is also required for open-nested transactions that execute system code, as

system handlers should be the first to be invoked.

4.2.7 Non-Transactional Loads and Stores

Semantics: An immediate load (imld) does not add the address to the current transac-

tion read-set. An immediate store (imst) updates memory immediately without a com-

mit and does not add the address to the current write-set. We also introduce an idem-

potent immediate store (imstid) that does not maintain undo information for the store

in the writebuffer or the undo log either. These immediate accesses can be interleaved

with regular accesses tracked by HTM mechanisms—i.e., there is no non-transactional

“region,” but rather single instructions.

Use: Transactions often access thread-private data such as various fields in their TCB. To

reduce the pressure on HTM mechanisms on such accesses, immediate loads and stores

can be used. However, these should only be used when the compiler or system developer

can prove they access thread-private or read-only data. Other useful places to use non-

transactional accesses may be in handlers, where generating additional dependencies is

not desired.

4.2. HTM INSTRUCTION SET ARCHITECTURE 89

4.2.8 Discussion

Some advocate providing an early release mechanism [30], including the original pub-

lished version of this work [65], which removes an address from the transaction’s read-

set. This instruction is attractive for performance tuning, but can complicate program-

ming. Currently, we do not advocate its use in a high-level programming language and

believe it can also be excluded from the ISA [96]. Early release is difficult to implement

consistently in some HTM systems: if the read-set is tracked at cache-line granularity,

and an early release instruction provides a word address, it is not safe to release the en-

tire cache line.

We do not support mechanisms to temporarily pause or escape a transaction and

run non-transactional code. While, such mechanisms may seem attractive for invoking

system calls, we find them redundant and dangerous. Open-nested transactions allow

us to run (system) code independently of the atomicity of the currently running user

transaction. Moreover, open-nesting provides independent atomicity and isolation for

the system code as well. With pausing or escaping, a system programmer would have

to use lock-based synchronization and deal with all its shortcomings (deadlocks, races,

etc.). We believe the benefits of TM synchronization should be pervasive even in system

code.

A recently proposed half-way point between open nesting and pause/escape regions

for implementing non-transactional operations (like I/O) is called irrevocable transac-

tions [103]. Before a transaction performs I/O, an irrevocable instruction is executed

which permanently validates the transaction, preventing it from rolling back even in the

face of future conflicts. This is similar to but fundamentally different than simply execut-

ing xvalidate—after xvalidate, new dependencies can be created and new conflicts

detected; after irrevocable, no dependencies are generated. We believe that open nest-

ing is sufficient to implement most inherently non-transactional operations, but irre-

vocable could be useful when interacting with devices that, for whatever reason, cannot

have their I/O buffered.

90 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

Language Nesting Two-
phase/Commit
Handlers

Violation &
Abort Handlers

Harris et al. [41, 40] open for AtomicAbort-

Exception; cond. synch.
I/O undo I/O; ex-

ceptions; cond.
synch.

Welc et al. [102] – – –
Harris et al. [42] closed; open for cond. synch. – cond. synch.
AtomCaml [83] open for cond. synch. – cond. synch.
Atomos [17] closed; open for cond. synch. I/O cond. synch.
X10 [22] open for cond. synch. – cond. synch.
Chapel [30] – – –
Fortress [6] – – tryatomic

Table 4.3: The HTM mechanisms needed to implement recently proposed transactional
programming languages. We list which language features are implemented by each
mechanism. “–” means this feature is not needed.

4.3 Flexibly Building Languages and Systems

Section 4.2 generally described the uses of the proposed HTM mechanisms. This sec-

tion provides specific examples that implement language or system code functionality

to showcase the expressiveness of the mechanisms. We argue that these mechanisms

provide all or most of the flexibility needed to implement reasonable TM systems.

Transactional Programming Languages: We studied the proposed languages for pro-

gramming with TM including Harris et al. [41, 40], Welc et al. [102], Transactional Haskell [42],

X10 [22], Chapel [30], Fortress [6], AtomCaml [83], and Atomos [17]. The proposed ISA se-

mantics are sufficient to implement these languages on HTM systems. Some languages

formally support closed nesting [42, 17], and Atomos supports open nesting [17]. Addi-

tionally, open nesting can be used to implement the AbortException construct in Har-

ris [40], conditional synchronization [42, 22, 83, 17], transactional collection classes [16],

and transactional I/O [42, 17]. Two-phase commit and commit handlers are used for

I/O and transactional collection classes as well. Violation and abort handlers are used

for error handling [42], the tryatomic construct in X10 [22], and in most implemen-

tations of conditional synchronization and I/O. Table 4.3 summarizes which semantic

components are required for which language functionality.

4.3. FLEXIBLY BUILDING LANGUAGES AND SYSTEMS 91

watch (void* addr) {
 atomic_open {
 1. enqueue (tid, addr)

 2. write schedComm to cause violation
 } }

watch

Scheduler Command
Queue

...

schedComm

Scheduler Command
Memory Location

schedComm in
scheduler’s read-set: on
modification, scheduler’s
violation handler is run.

Scheduling Queues:
wait and run

...

...

schedVioHandler

atomic_open {
 if (xvaddr == schedComm) {

 } else {

return(); // return to scheduler

1. while dequeue (tid, COMMAND)!= NULL
 2a. if COMMAND is address, add address to
 scheduler’s read-set
 b. add (address, tid) to waiting
 hash table
 3. If COMMAND is CANCEL, remove
 all tid’s entries from waiting
4. goto 1

1. tidToWake = waiting.remove(xvaddr)
2. add tidToWake to the run queue } }

cancel

atomic_open {
1. enqueue (tid, CANCEL)

 2. write schedComm to cause violation }
rollback(); // restart

Consumer:
atomic {
 if(!available) {
 regVioHandler(cancel);
 watch available;
 retry; }
 available = false;
 consume(); }

retry
retry() {
 atomic_open {

1. move this thread from run to wait
 2. abort and yield processor
 } }

Producer:
atomic {
 if(available) {
 regVioHandler(cancel);
 watch available;
 retry; }
 available = true;
 produce(); }

atomic {
 regVioHandler(schedVioHandler);
 read(schedComm)
 while (TRUE) {

1. process run and wait queues
 } }

Scheduler

Figure 4.3: Conditional synchronization using open nesting and violation handlers for
producer/consumer code in the Atomos programming language [17].

92 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

Conditional Synchronization: Figure 4.3 illustrates the concept of conditional synchro-

nization for producer/consumer code in the Atomos programming language [17]. When

a transaction wishes to wait for a value to change, it adds the corresponding addresses to

a watch-set and yields the processor. If any values in the watch-set change, the thread is

re-scheduled. This has the attractive property of avoiding the need for an explicit notify

statement: the notifier does not need to know explicitly that someone is waiting for this

value as the system automatically detects the change using conflict detection.

We implement this functionality using open nesting and violation handlers. An open-

nested transaction communicates a waiting thread’s watch-set to a scheduling thread

that incorporates it as part of its read-set. Hence, the scheduler will then receive con-

flicts when any values in the watch-set change. Its violation handler will then add the

proper thread to the run queue. To communicate with the scheduler, the waiting thread

uses open nesting to write to a command queue and then violates the scheduler via the

shared schedComm variable. Further details about conditional scheduling in Atomos are

available [17]. With the proposed HTM mechanisms, we can implement similar runtime

systems for other languages that support conditional synchronization within transac-

tional code [42, 83, 22].

System Calls and I/O: To illustrate the implementation of system calls within transac-

tions, we discuss I/O such as read and write calls without serialization. For input, we

perform the system call immediately but register a violation handler that restores the

file position or the data in case of a conflict. The system call itself executes within an

open-nested transaction to avoid dependencies through system code. For output, we

provide code that temporarily stores data in user buffers and registers a commit han-

dler to perform the actual system call. This transactional scheme works with simple

request/reply I/O, often the common case in applications [78, 27]. In a similar manner,

we can implement other system calls within transactions that read or write system state.

For example, a memory allocator can execute as an open-nested transaction including

the brk call. For C and C++, a violation handler is registered to free the memory if the

transaction aborts. For managed languages like Java and C#, no handler is needed, as

garbage collection will eventually deallocate the memory.

4.4. HARDWARE IMPLEMENTATION 93

Transactional Collection Classes These ISA primitives are also used in the Atomos pro-

gramming language to implement performance enhancing, yet simple, transactional

data-structures [16]. For example, if two transactions are inserting two different values

into a binary search tree but the values will be appended to the same leaf node, then the

transactions will conflict even though logically, there is no data-structure-level conflict.

Using the primitives proposed above, Atomos implements a database concept called Se-

mantic Concurrency Control to prevent memory-level conflicts that are not logical con-

flicts. Atomos uses open nesting and transactional handlers to store semantic conflict

information but defer modification of the data-structure until commit.

4.4 Hardware Implementation

This section summarizes the hardware implementation of the mechanisms presented in

Section 4.2. Our goal is to demonstrate that they have practical implementations com-

patible with current HTM proposals [39, 8, 80, 69].

4.4.1 Two-Phase Commit

The xvalidate instruction is a no-op for closed-nested transactions. For outer-most or

open-nested transactions, the implementation must guarantee that the transaction can-

not violate due to prior memory accesses once xvalidate completes. For HTM systems

with eager conflict detection, xvalidate must block until all previous loads and stores

are known to be conflict-free by acquiring exclusive (for stores) or shared (for loads) ac-

cess to the corresponding data. If timestamps are used for conflict resolution, the con-

flict algorithm must guarantee that a validated transaction is never violated by an active

one even if it has a younger timestamp. For optimistic conflict detection systems, xvali-

date triggers conflict resolution, which typically involves acquiring ownership of cache

lines in the write-set.

The xcommit instruction atomically changes the transaction status to committed.

Finishing the transaction also involves either resetting the undo log or merging the con-

tents of the writebuffer to shared memory. These steps can be executed within xcommit

94 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

or in a lazy manner after xcommit returns. We discuss the implementation of xcommit

for nested transactions in Section 4.4.3.

4.4.2 Commit, Violation, and Abort Handlers

The stack management for handlers is done in software without additional hardware

support, other than some TCB fields stored in registers (see Table 4.1) and hardware

needed for violation information collection (see below). Handlers allow for additional

functionality in HTM systems at the cost of additional overhead for commit, violation, or

abort events. Since transactions with a few hundred instructions are common [27], our

handler registration and management code is based on carefully tuned assembly. The

code is also optimized for the common case of a commit without any registered commit

handler or a violation that restarts the transaction without any registered violation han-

dler. We present quantitative results in Section 4.5. Note that the same assembly code

for handler management can be used by all languages or system code that builds upon

the proposed semantics.

Additional hardware is required to invoke violation handlers and to deliver the se-

mantic information like conflict addresses described in Section 4.2.3. To store this in-

formation, the hardware appends conflicting addresses to the xvaddrs_s register as

they are detected, setting xvoverflow_s if more addresses have been detected than

can be stored. The nesting level of the conflict with address xvaddrs_s[i] is placed

in xvlevels_s[i].

The mechanisms for invoking and returning from the violation handler resemble a

user-level exception. The hardware interrupts the current transaction by saving its PC

in the xvPC register and jumps to the code indicated by xvhcode. Then, each address

xvaddrs_s[i] is appended to the xvaddrs register of the nesting level xvlevels_s[i].

xvcount is used to indicate the next free slot in xvaddrs; xvcount is incremented for

each address appended. Additionally, if a conflict is registered for a level, its xstatus is

set to pending abort if they are not already aborting. This is to remember which handlers

must be run after a handler finishes. If xvaddrs overflows or if xvoverflow_s is set,

xvoverflow is set. Finally, the hardware shadow registers are cleared, but are updated

4.4. HARDWARE IMPLEMENTATION 95

normally if new conflicts are detected.

To avoid repeated jumps to xvhcode if additional conflicts are detected, we automat-

ically disable further violation reporting until either a nested transaction is created (see

below) or the handler returns using xvret. After a handler returns, the xstatus regis-

ters of each TCB are checked. If any are pending abort, then the violation/abort handler

for the topmost transaction waiting to abort is invoked, repeating the process.

4.4.3 Nested Transactions

For nested transactions, the hardware must separately manage the speculative state,

read-set, and write-set for each active transaction. On a nested commit, we must merge

its speculative state, read-set, and write-set with those of its parent. An additional com-

plication is that multiple transactions in a nest may be writing the same cache line,

which requires support for multiple active versions of the same data. While it is attrac-

tive to disallow this case, this will overly complicate the development of transparent

libraries where arguments and return values can be frequently written by two transac-

tions in a nest.

Hence, nesting requires significant changes to the caches used in HTM systems for

read-/write-set tracking and speculative buffering. We propose two basic approaches:

(1) the multi-tracking scheme that allows each cache line to track the read-set and write-

set for multiple transactions, and (2) the associativity scheme that uses different lines

in the same cache set to track multiple versions of the same data [99]. Even though

there are numerous possible combinations of these two schemes with all other HTM

design options, we will briefly describe two practical design points that illustrate their

implementation details.

Nesting Support with Multi-tracking Lines

We consider the multi-tracking scheme for HTM designs using eager versioning. Each

cache line tracks read-/write-set membership for multiple transactions in the nest, but

the multiple versions of the data are buffered in the undo log. Each transaction tracks

the base point of its entries in the undo log using a separate register or TCB field. On a

96 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

V D E R4R1 R2 R3 W4W1 W2 W3

NL1

(a)

NL1:0

= Address

(b)
Nesting Level

Data
...
...Tag

NL2 NL3

V D E Tag Data
...
...

NL4

Match?

= Address Match?

R W

Figure 4.4: Cache line structure for (a) multi-tracking, and (b) associativity schemes with
four levels of nesting.

closed-nested commit, the log entries are automatically appended to those of its parent

without any action. On a nested conflict, we can roll back by processing the undo log

entries for this nesting level in FILO order. The only complication is that if an open-

nested commit overwrites data also written by its parent, we must update the log entry

of the parent to avoid restoring an incorrect value if the parent is later rolled back. This

requires a potentially expensive search through the undo log.

Figure 4.4(a) shows the cache line organization for multi-tracking. A line has multi-

ple copies of the Ri and Wi bits that indicate membership in the read-set and write-set

for the transaction at nesting level i (N Li). If word-level tracking is implemented, we

need per-word R and W bits. On a memory access, the hardware uses the nesting level

counter in xstatus to determine which bits to set. On an cache lookup for conflict de-

tection, all R and W bits are checked in parallel. Hence, we can detect conflicts for all

active transactions in parallel. On a rollback at N Li , we gang invalidate (flash clear) all

Ri and Wi bits. On a closed-nested commit at N Li , we must merge (logical OR) all Ri bits

into Ri−1 and all Wi bits into Wi−1. Such merging is difficult to implement as a fast gang

operation. To avoid latency proportional to the read-set and write-set size of the nested

transaction, we can merge lazily while continuing the execution at N Li−1: on a load or

store access to a cache line, we perform the merging if needed with a read-modify-write

as we lookup the cache line and update its LRU bits. During the lazy merge, the conflict

resolution logic should consider R and W bits at both levels as one. The merging must

complete before a new transaction at the level N Li level is started. On an open-nested

commit at N Li , we simply gang invalidate all Ri and Wi bits.

4.4. HARDWARE IMPLEMENTATION 97

Nesting Support with Associative Caches

We consider the associativity scheme for HTM designs using lazy versioning. As always,

the cache tracks read-/write-set membership, but also buffers multiple versions of old

data for nested transactions. Figure 4.4(b) shows the new cache line organization. Each

line has a single set of R and W bits, but also includes a nesting level field (N L) to specify

which transaction it holds data for. We reserve N L = 0 for cached data that do not yet

belong to any read- or write-set. If the same data is accessed by multiple nested transac-

tions, we use different lines in the same cache set. The most recent version is in the line

with the highest N L field. Hence, cache lookups can return multiple hits and additional

comparisons are necessary to identify the proper data to return, so cache access latency

may increase in highly associative caches. On an access by a transaction at N Li , we first

locate the most recent version. If the cache line has N L = 0 (potentially after a cache

refill), we change N L = i and set the R or W bits. If there is another speculative version

at level i −1 or below, we first allocate a new line in the same set that gets a copy of the

latest data and uses N L = i . On an external lookup for conflict detection, we check all

lines in the set with N L 6= 0 to detect, in parallel, conflicts at all nesting levels.

On a rollback at N Li , we must invalidate all cache entries with N L = i . This can be

implemented as a gang invalidate operation if the N L field uses CAM bits. Alternatively,

the invalidation can occur lazily as we access cache lines and before we start a new trans-

action at N Li . On a closed nested commit at N Li , we must change all lines with N L = i

to N L = i −1. If an N L = i −1 entry already exists, we merge its read-set and write-set

information into the older entry and then discard it. Again, the best way to implement

this is lazily. While lazily merging, the conflict detection logic must consider cache lines

with N L = i and N L = i −1 to belong to the same transaction. An open nested commit

is similar, but now we change entries from N L = i to N L = 0. If there are more versions

of the same data for other active transactions, we also update their data with that of the

N L = i entry without changing their R or W bits.

98 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

Discussion

Each nesting scheme has different advantages. The multi-tracking scheme does not

complicate cache lookups and avoids replication for lines with multiple readers. The

associativity scheme scales to a number of nesting levels equal to the total associativity

of private caches without significant per-line overhead. A hybrid scheme with multi-

tracking in the L1 cache and associativity in the L2 cache may provide the best of both

approaches.

Any practical HTM implementation can only support a limited number of nesting

levels. Hence, nesting levels must be virtualized just like any other buffering resource in

HTM systems. Virtualization schemes like Rajwar et al. [80] can be extended to support

unlimited nesting levels by adding a nesting level field in each entry in the overflow ta-

bles in virtual memory. Early studies have shown that the common case is 2 to 3 levels

of nesting [27], which is easy to support in hardware. The hardware support for nesting

can also be used to overlap the execution of independent transactions (double buffer-

ing), which can be useful with hiding any commit or abort overheads [66].

Moss and Hosking [73] discuss a nesting implementation similar to our associativity

scheme. Apart from the different semantics for open nesting (see Section 4.2.5), their

approach is overly complex. In addition to the N L field, each line includes a variable

length stack with pointers to all child transactions with new versions of the data. To

maintain the stacks, we need to push or pop values from multiple cache lines on stores,

commits, and aborts. The two schemes we propose are simpler and introduce lower

area and timing overheads.

The proposed nesting schemes do not support nested parallelism: the ability to ex-

ecute a single transaction atomically over multiple processors [62, 6, 3, 44, 71, 76]. 2,

10, 16, 17 Nested parallelism requires that we can merge read-sets and write-sets across

processors as parallel tasks complete within a transaction. Such functionality can be

implemented using a shared cache between collaborating processors that serves as a di-

rectory for the latest version of any data. Note, however, that the semantics of nesting

defined in Section 4.2.5 are correct even for nested parallelism.

4.5. EVALUATION 99

4.5 Evaluation

The simulation environment used for these experiments is slightly different than that of

Chapter 3—principally, the simulator runs PowerPC code instead of x86. Our goal was

to examine optimization opportunities and use the new mechanisms to implement the

programming constructs and runtime code functionality discussed in Section 4.1. An

extensive comparison of alternative implementations for the proposed semantics was

beyond the scope of this research.

The simulator uses an LO HTM system and supports three levels of nesting using

the associativity scheme with lazy merging. None of the evaluated programs use more

than N L = 2. The system simulates up to 16 cores, with private L1 Caches (32KB, 1-cycle

access), and private L2 caches (512KB, 12-cycle access). The processors communicate

over a 16-byte, split-transaction bus.

The simulator models all overheads associated with two-phase commit and the soft-

ware for TCB and handler management. We carefully optimized the assembly code for

common events to avoid large overheads for small transactions. Starting a transaction

requires 3 instructions for TCB allocation. A commit without any handlers requires 4

instructions, while a rollback without handlers requires 5 instructions. Registering a

handler without arguments takes 3 instructions. Note that some of these instructions

access thread-private data in memory and may lead to cache misses. Yet, such misses

are rare as private stacks cache well. Overall, the new HTM functionality does not intro-

duce significant overheads.

4.5.1 Performance Optimizations with Nesting

This evaluation used nested transactions to reduce the overhead or frequency of con-

flicts in scientific and enterprise applications. We used swim and tomcatv from the

SPECcpu2000 suite [97]; barnes, fmm, mp3d, and water-nsquared (called simply water)

from the SPLASH and SPLASH-2 suites [94, 104]; and a C version of moldyn from the

Java Grande suite [55]. For these applications, we used transactions to speculatively par-

allelize loops. We also used a modified version of SPECjbb2000 [98] running on the Jikes

RVM [7]. Note that these are slightly different parallelizations with different transaction

100 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

Nested Transactions

Sp
ee

d
u

p
 O

ve
r

Fl
at

te
n

in
g

0

1

2

3

4

5

barnes fmm moldyn mp3d swim tomcatv water SPECjbb-
closed

SPECjbb-
open

5.24 4.61

7.70

5.10

7.58 7.30 6.78

3.94 4.25

Figure 4.5: Performance improvement with full nesting support over flattening for 8 pro-
cessors. Values shown above each bar are speedups of nested versions over sequential
execution with one processor.

boundaries than those of the same applications in Chapter 3.

Figure 4.5 plots the performance improvement achieved with the proposed nesting

implementation over the conventional HTM approach that simply flattens nested trans-

actions. The results were produced running 8 processors. The number above each bar

reports the overall speedup achieved with nesting over sequential execution on one pro-

cessor (maximum speedup is 8). Overall, no application is affected negatively by the

overhead of TCB and handler management for nested transactions. Most outer transac-

tions are long and can amortize the short overheads of the new functionality. Most inner

transactions are short, hence lazy merging at commit does not become a bottleneck. On

the other hand, several applications benefit significantly from the reduced cost of con-

flicts compared to flattening. For the scientific benchmarks, we applied closed nesting

mainly to update reduction variables within larger transactions. This allows us to avoid

several outer transaction rollbacks, particularly when the inner transaction is near the

end of the outer one. The improvements are dramatic for mp3d (4.93×) where we also

used nesting to eliminate expensive violations due to particle updates on collisions.

As a three-tier enterprise benchmark, SPECjbb2000 is far more interesting from the

point of view of concurrency. We parallelized SPECjbb2000 within a single warehouse,

4.5. EVALUATION 101

where customer tasks such as placing new orders, making payments, and checking sta-

tus manipulate shared data-structures (B-trees) that maintain customer, order, and stock

information. Conceptually, there is significant concurrency within a single warehouse,

as different customers operate mostly on different objects. Nevertheless, conflicts are

possible and are difficult to statically predict. We defined one outer-most transaction

for each SPECjbb2000 operation (order, payment, etc.). Even though we achieved a

speedup of 1.92 using this flat-transaction approach, rollbacks significantly degrade per-

formance. With nesting support, we developed two additional versions of the code.

The first version, SPECjbb2000-closed, uses closed-nested transactions to surround

searches and updates to B-trees. Performance is improved by 2.05× (total speedup of

3.94) as the violations occur frequently within the small inner transactions and do not

cause the outer-most operation to roll back. The second version, SPECjbb2000-open,

uses an open-nested transaction to generate a unique global order ID for new order op-

erations. Without open nesting, all new order tasks executing in parallel will experience

conflicts on the global order counter. With open nesting, we observe a performance im-

provement of 2.22× (total speedup of 4.25) as new orders can commit the counter value

independently before they complete the rest of their work. Hence, conflicts are less

frequent and less expensive. Note that no compensation code is needed for the open-

nested transaction as the order IDs must be unique, but not necessarily sequential. We

could use both open and closed nesting to obtain the advantages of both approaches,

but we did not evaluate this.

4.5.2 I/O within Transactions

We designed a C microbenchmark where each thread repeatedly performs a small com-

putation within a transaction and outputs a message into a log. We designed a trans-

actional library function that buffers output in a private buffer and registers a commit

handler before returning control to the application. If the transaction violates, the local

buffer is automatically discarded because it is part of the write-set. If the transaction

successfully validates, the commit handler copies the local buffer to a shared buffer in

the operating system.

102 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

We evaluated three versions of this I/O microbenchmark: the transactional one de-

scribed above and two using conventional lock-based synchronization. The coarse-grain

version acquires a lock at the boundaries of the library function call; so it formats and

copies the log message into the shared buffer while holding the lock. The fine-grain

version holds the lock only while copying to the shared buffer. Figure 4.6 compares the

performance of the three versions as we scale from 1 to 16 processors. Since there is

little work per repetition except printing to the log, the coarse-grain version completely

serializes and shows no scalability. The fine-grain version allows for concurrency in mes-

sage formatting. Still, its scalability is limited by serialization on buffer updates and the

overhead of acquiring and releasing the lock. Initially, the performance of the transac-

tional version suffers because it performs two copies: one to a local buffer then one to

the shared buffer. However, because the overhead is fixed and does not scale with the

number of threads, as the lock overhead does, the transactional version continues to

scale. With more processors, we would notice the HTM version flattening as well due to

conflicts when updating the shared buffer.

Despite its simplicity, the I/O benchmark shows that the proposed semantics allow

for I/O calls within transactions. Moreover, despite the overhead of extra copying, trans-

actional I/O in a parallel system scales well.

4.5.3 Conditional Synchronization within Transactions

To measure the effectiveness of the conditional synchronization scheme in Figure 4.3,

we use the Atomos TestWait microbenchmark, which mimics an experience from Har-

ris and Frasier [41], that stresses thread scheduling in a producer-consumer scenario.

TestWait creates 32 threads, arranged in a ring of producers and consumers with a

shared buffer between each pair. The benchmark scales the number of tokens in the ring

and begins passing a fixed number of tokens from one thread to the next. Every thread

uses a transaction to perform one token operation (dequeue from receiving buffer and

copy to the outgoing buffer). An efficient system should scale with the number of tokens.

4.6. CONCLUSION 103

Sp
ee

du
p

HTM Coarse-grained Locks Fine-grained Locks

TestWait

2 4 8 161

Semantics-Related Microbenchmarks

0

5

10

15

20

25

30

35

Tokens

Sp
ee

du
p

TestIO

2 4 8 161
0.5

1.0

1.5

2.0

2.5

3.0

3.5

CPUs

Figure 4.6: On the left, speedup of token exchanges for TestWait with 32 processors,
scaling the number of tokens from 1 to 16. On the right, speedup for the I/O microbench-
mark with HTM, fine-grain locks, and coarse-grain locks.

Figure 4.6 shows that passing the tokens scales super-linearly with the number of to-

kens in the ring; this is expected since with more tokens, a consumer may find an avail-

able token immediately without having to synchronize with the producer. See further

discussion in the evaluation of the Atomos programming language [17]. Hence, condi-

tional synchronization within transactions using open nesting and violation handlers is

quite effective for the studied system. Both the open-nested transactions and the viola-

tion handlers are quite small and introduce negligible overhead.

4.6 Conclusion

For HTM systems to become useful to programmers and achieve widespread accep-

tance, we need rich semantics at the instruction set level that support modern program-

ming languages and system code. I proposed the first comprehensive ISA for HTM that

includes three key mechanisms (two-phase commit, transactional handlers, and open-

and closed-nested transactions). I described the hardware and software conventions

necessary to implement these mechanisms in various HTM systems. Moreover, I have

quantitatively evaluated the proposed mechanisms by showing their use for both system

104 CHAPTER 4. THE ARCHITECTURAL SEMANTICS OF HTM

code functionality (scalable I/O and conditional synchronization) and performance op-

timizations through nested transactions.

Armed with these implementation-independent semantics at the instruction set level,

the TM community can effectively develop and evaluate hardware proposals that are

practical for programmers and support a wide range of applications. Similarly, software

researchers can design efficient languages and runtime systems for HTM on top of a rich

interface between their programs and the underlying hardware.

Chapter 5

All Transactions All the Time

In previous chapters, we examined systems that supported transactions specified by

users and executed non-transactional code using some other coherence and consis-

tency mechanism. It is conceivable and indeed beneficial to consider a system that

not only executes code within programmer-defined atomic regions as transactions, but

also executes all other code inside some form of transaction. In such a continuously

transactional system, there is only one execution mode (transactions) and as such, all

thread communication, including that required to maintain coherence and consistency,

is achieved through transactional commit. This chapter explores the potential advan-

tages of “all transactions all the time” and evaluates an implementation called Transac-

tional Coherence and Consistency.

Continuously transactional systems provide a number of advantages to both hard-

ware and software developers:

• Hardware Complexity and Scalability. If coherence and consistency need only be

maintained at transaction boundaries, then conventional protocols for these con-

cepts can be discarded. Furthermore, this larger scale communication creates less

sensitivity to latency (vis a vis MESI coherence messages) and more exploitation

of available bandwidth (since write-set data can be aggregated), creating better

scalability.

• Software Programmability. Continuous transactions provide programmers with

105

106 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

a single, high-level abstraction to reason about parallelism, communication, con-

sistency, and failure atomicity, making for a more intuitive programming model.

Also, with transactions offering a larger observable unit than instructions, it is eas-

ier to monitor program progress, creating opportunities for low-overhead collec-

tion of profiling and debugging data. Finally, when applied in a continuous way,

TM constructs prove useful for creating various tools like deterministic replay of

parallel systems, traditionally a hard problem.

To build a system that provides these benefits , we introduce Transactional Coher-

ence and Consistency (TCC), built by modifying LO. This chapter provides the following

contributions:

• Motivation and Implementation. We motivate and describe an efficient imple-

mentation of a continuously transactional HTM system called Transactional Co-

herence and Consistency, which is an extension of Lazy-Optimistic, described in

Section 2.3.

• Performance Comparison on Multicores. We provide the first execution-driven

simulation results of a continuously transactional HTM. A straight-forward imple-

mentation of TCC scales and performs adequately compared to its ancestor, LO.

• Design Alternatives. We evaluate three TCC design alternatives: choice of coher-

ence granularity (word or cache line) for speculative state tracking, snooping pro-

tocol (invalidate or update), and choice of commit protocol (commit-through or

commit-back). Experiments show performance is not significantly impacted by

snooping protocol or commit protocol, though using a word-level coherence gran-

ularity clearly benefits applications with fine-grained sharing patterns and false

sharing.

• Interconnect Utilization. Continuous transactions means more transactions to

commit, possibly stretching available interconnect bandwidth. However, the com-

mit bandwidth requirements for TCC are only slightly higher than with other TM

schemes, but well within the capabilities of bus-based interconnects, even for a

multicore processor with 32 CPUs.

5.1. CONTINUOUS TRANSACTIONAL EXECUTION 107

• Buffering Requirements. Efficient continuous transactional execution does not

require more buffering than the transactional systems presented in Chapter 2 when

combined with a periodic commit scheme (see Section 5.1). Similar to those sys-

tems, TCC uses private caches to buffer speculative state and simple victim caches

to eliminate associativity overflows.

Our results show that continuous transactional execution is practical to implement

for multicore systems. TCC provides for easier parallel programming without significant

compromises in the peak performance possible for each application.

In fact, after our work on TCC, other projects have adopted continuous transactions.

The Bulk Multicore Architecture [100], envisioned by researchers at UIUC, is meant to

be a general-purpose, easy-to-program architecture supporting advanced programming

and debugging tools. It accomplishes this by continuously executing “chunks,” which

are very similar to transactions: groups of instructions executing atomically. Also, a team

at Microsoft Research has developed Automatic Mutual Exclusion [54], a programming

model built around continuous transactions to provide the programming advantages

listed earlier in this introduction.

5.1 Continuous Transactional Execution

Continuous transactions means executing transactions at all times—every instruction

in the system is part of some transaction. Obviously, every programmer-defined transac-

tion is mapped to a single hardware transaction, but even code between atomic regions

is run as one or more transactions. This creates two types of transactions: programmer-

defined transactions we call “explicit” and other transactions we call “implicit.”

Both implicit and explicit transactions have the same basic semantics as the trans-

actions we encountered in previous chapters: they are executed atomically and isolated

from other transactions. As such, they can be implemented using similar techniques as

those described in Chapter 2. However, the hardware in those TM implementations was

also required to execute non-transactional threads, requiring the appropriate logic and

communication to maintain coherence and consistency between those threads. Contin-

uous transactions allows us to replace coherence and consistency protocols with only

108 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

transactions, greatly simplifying both the programmer’s view of communication and the

hardware implementation.

Traditional consistency protocols use special instructions and messages to reason

about and maintain order between individual memory references. A continuously trans-

actional model maintains no such ordering but instead imposes a serializable ordering

between entire transactions. From a memory model point of view, all memory refer-

ences contained within transactions that committed earlier happened before all mem-

ory references contained within transactions that committed after, regardless of the ac-

tual interleaving of the accesses. In fact, we can implement relaxed memory models

within transactions, making more compiler optimizations available, while exposing Se-

quential Consistency (SC) to the programmer. It is known that Sequential Consistency

is easier to reason about [2] and with software correctness tools often assuming SC, a

continuously transactional system can exploit those as well [18].

Similarly, traditional coherence protocols require exchanging frequent messages re-

garding single cache lines to ensure a coherent view of memory. Since transactions

ensure the proper ordering and sharing of data between threads via conflict detection,

a continuously transactional system maintains coherence without special messages or

protocol states. Furthermore, maintaining coherence at this larger granularity (i.e., trans-

actions) this makes it possible to detect, and perhaps even execute correctly, unwanted

data races even in code not marked as a transaction by programmers.

Because continuous transactions implement coherence and consistency at transac-

tion boundaries with only basic TM mechanisms, hardware designs can be much sim-

pler. No longer needed are coherence protocols or carefully reasoning about the im-

plementation of memory barriers. And, because transaction commit communicates

larger amounts of data more infrequently than single coherence messages, a continu-

ously transactional system is less latency sensitive and stands to better utilize available

bandwidth, potentially reducing hardware costs.

Continuous transactions can be also used to implement useful debugging tools. Part

5.2. TRANSACTIONAL COHERENCE AND CONSISTENCY 109

of our Transactional Application Profiling Environment (TAPE) [20] enables program-

mers to use continuous transactions to easily identify data races with very little addi-

tional overhead. Deterministic replay of parallel systems [68] is also possible with con-

tinuous transactions. Data race detection and deterministic replay have been imple-

mented before, but hardware support for continuous transactions makes these tools run

at “production speed,” perhaps allowing them to be “on” all the time.

Unfortunately, a hardware system cannot execute implicit transactions of any size or

duration (see Section 2.7). Specifically, implicit transactions are still subject to resource

overflow and so must be split. Two methods exist: commit and create new implicit trans-

actions every n cycles [18] or when buffering is expended. For our implementation of

TCC, we chose to commit when speculative buffering was expended, maximizing the

size of implicit transactions and minimizing the commit overhead.

5.2 Transactional Coherence and Consistency

Unlike previous proposals using transactional memory merely for non-blocking syn-

chronization, TCC uses continuous transactions as the basic unit of parallel work, syn-

chronization, memory coherence, and consistency. In this section, we begin with a sim-

ple HTM design from Chapter 2 and modify it to include continuous transactions. We

then discuss design alternatives in Section 5.3

To gain the benefits of maintaining coherence and consistency at transaction bound-

aries, TCC only communicates at transaction boundaries, making the choice of opti-

mistic conflict detection obvious. Therefore, we decided to build TCC on the Lazy-Optimistic

(LO) system (see Section 2.3). Beginning with LO, we remove the MESI-based coherence

protocol and instead have transactions broadcast their shared data on commit. Other

processors snoop these broadcasts to maintain coherence and detect violations. Unlike

MESI coherence messages containing only addresses, both addresses and data are sent

on a TCC commit.

Versioning: TCC uses a similar versioning scheme as LO, but without the need for MESI

transitions. In fact, a simple TCC implementation would require only three bits of state

per cache line: valid (V), read (R), and written (W). When a transaction reads a line, it is

110 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

marked R, and when a transaction writes a line, it is marked W, just like in LO. There is no

requirement for a dirty bit, since when a transaction commits, it sends its write-set data

to memory, clears its R/W bits and leaves the line simply V. There is also no requirement

for read-exclusive requests, just as within an explicit transaction in LO.

As an optimization, we also include a per-line Exclusive (E) bit to enable cache-to-

cache transfers. Recently committed data and lines only present in one cache are marked

E, then subsequent snooped reads clear the E bit. This is not a dirty bit since the line can

be evicted without writing back because the commit process has already sent the data

to memory.

Conflict Detection: TCC uses broadcast packets full of write-set addresses to detect con-

flicts at commit time, just as LO does: if a cache has a line R or W and detects a commit

to the same line, it must signal a conflict.

Validation and Commit: Since we modified our LO design to support TCC, we are using

the same commit token and bulk commit packet described in Section 3.2. Of course,

with no dirty bits or other writeback mechanism, the TCC commit packet must include

data, not only addresses. This data is then snooped by the shared cache and stored

there. Because of this “commit-through” policy (analogous to write-through caches),

TCC should require more bandwidth than LO and in Section 5.4.6 we evaluate the bus

utilization of TCC.

Coherence: Coherence is maintained via the conflict detection and resolution mecha-

nisms. When a processor snoops a commit packet containing a write to a line within

its cache, that line is invalidated and a conflict is signaled if necessary. In this way, any

transaction reaching commit has read only the most recent version of any line. For our

baseline system, we implemented this invalidate protocol, but we also explore and eval-

uate an update protocol in Section 5.3.2.

Consistency: Transactions provide a serialized ordering between themselves via valida-

tion and conflict detection, ensuring that programmers can reason about the ordering

between any two accesses. In this way, commits act like memory barriers: the accesses

from all committed transactions occurred “before” the accesses of the currently commit-

ting transaction and all subsequent transactions’ accesses happened “after.”

5.3. DESIGN ALTERNATIVES 111

Contention Management: We use the Aggressive policy, just as we did with LO: com-

mitting transactions always win conflicts and other transactions always rollback. This

guarantees forward progress and since we’re using lazy versioning, aborts are efficient.

Virtualization: We do not expect to experience overflow with TCC since our cache con-

figuration is the same as our experiments with LO. However, we handle overflow of ex-

plicit transactions like LO does: grab a global token and commit, holding the token un-

til we encounter an explicit commit. This degrades performance by preventing other

transactions from committing, but will suffice as a correctness measure. The techniques

listed in Section 2.7 for virtualizing LO systems can be used with TCC as well.

I/O: Because TCC is continuously transactional, all I/O in a program is done within

transactions. As such, designers of a TCC system must employ one of the I/O strate-

gies outlined in Chapter 4. Fortunately, any of the strategies compatible with LO are also

compatible with TCC.

5.3 Design Alternatives

A number of alternatives can be employed to modify the baseline TCC design. This sec-

tion describes them and their potential advantages and disadvantages.

5.3.1 Coherence Granularity

The baseline design uses cache lines as its granularity of coherence and conflict detec-

tion. It has been known for some time that, for traditional machines, this is a fair trade-

off between false sharing between threads and excessive communication between pro-

cessors [45]. However, since continuous transaction systems communicate only along

transaction boundaries, this aggregate communication makes it possible to efficiently

track conflicts at word level.

TCC-WORD is a modification of TCC-BASE that uses word-level versioning and con-

flict detection. It replaces the per-line Valid, R, and W bits with per-word Valid, R, and

W bits. On commit, transactions send not only the addresses and data of speculatively

written lines, but also a mask representing which words were written, and hence which

112 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

words in the commit packet are valid. Processors then use this information for conflict

detection and also to invalidate written words.

State transitions work much like they do in line-level granularity: W is set when a

word is written and R is set when a word is read. This implements privatization, allow-

ing multiple concurrent writers to the same word. Of course, corresponding changes

must be made to the conflict detection logic: a write-write conflict (two words with only

their W bits set) is no longer an atomicity violation. With this scheme, an optimization

is available: the R bit does not need to be set on a word-sized read if the W bit is already

set. A note about sub-word accesses: sub-word reads and writes set the R and W bits,

respectively, but to avoid losing updates, sub-word writes must also set the R bit to pre-

vent two transactions writing different bytes in the same word and, at commit time, that

being mis-identified as a W-W conflict and wrongly ignored.

Of course, cache miss handling is made somewhat more complex as a line can be in

the cache but the requested word can be invalid. The entire line must then be fetched

from memory, with care to void overwriting any modified words in the line. Also, a cache-

to-cache transfer can only be initiated if a processor has all words in the line; otherwise,

the request must go to memory. This may lead to decreased performance in applications

with false sharing or high contention. A system could be devised that delivered partial

lines, using a per-word Exclusive and Dirty bit, aggregating them in the requesting pro-

cessor, but we did not implement such a system.

TCC-WORD should perform better than TCC-BASE in cases where false sharing ex-

ists between transactions—i.e., where two transactions share the same line but not the

same words. False sharing between transactions in TCC-BASE requires one of the trans-

actions to abort, whereas those transactions would not abort in TCC-WORD.

5.3.2 Coherence Protocol

In a traditional system, updating shared cache lines written by other processors is called

using an update protocol. Disregarding the additional communication it requires, up-

date should improve performance by reducing cache misses caused by an invalidate

5.3. DESIGN ALTERNATIVES 113

protocol, however the additional communication often results in a net loss in perfor-

mance [45]. For this reason, our baseline TCC design used an invalidate protocol.

In TCC however, we are already paying the additional communication cost so it is

logical to evaluate TCC with an update protocol in a system we call TCC-UPDATE. For

TCC-UPDATE, we chose to use word-level granularity checking. When snooping other

transactions’ commits, instead of invalidating written words, TCC-UPDATE replaces the

written word with the new version included in the commit packet.

TCC-UPDATE should perform better than TCC-WORD for applications where trans-

actions frequently read-modify-write shared words. In TCC-WORD, a transaction may

read a word, then detect a conflict, invalidate it and restart, only having to refill the word

immediately. TCC-UPDATE will still incur an abort, but upon restart the line will already

be valid in the cache.

5.3.3 Commit Protocol

We call TCC-BASE’s method of committing “commit-through” since it sends its write-set

across the interconnect, similar to so-called write-through caches. One could imagine

imagine a “commit-back” system where commit data is left dirty in the committing pro-

cessor and only the addresses are sent across the interconnect, much like LO. We call

such a system TCC-BACK.

TCC-BACK requires adding a Dirty (D) bit, similar to the one in MESI. When a line

is committed, the D bit is set but the data for the line is not sent in the commit packet,

only the address. The dirty data is written back if the line is evicted or transferred (and

the D bit cleared) if the cache snoops a load request. To summarize, a cache line may

now be in one of the following states: invalid (V=0, R=?, W=?, E=?, D=?), valid (V=1, R=0,

W=0, E=0/1, D=0), speculatively read (V=1, R=1, W=0, E=0/1, D=0), speculatively writ-

ten (V=1, R=0, W=1, E=0, D=1), speculatively read and subsequently written (V=1, R=1,

W=1, E=0/1, D=1), and dirty (V=1, R=0, W=0, E=1, D=1). Of course, TCC-BACK must use

an invalidate protocol, but could use a word or line granularity coherence protocol; we

evaluated only a line-based system. A word-based system would require dirty bits for

each word and aggregating multiple dirty words worth of data during cache-to-cache

114 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

transfers, complicating the protocol.

TCC-BACK may have an number of advantages. Since data is only sent when and

where it is needed by other threads, commit-back should not require as much band-

width as commit-through. Additionally, since in large-scale systems, the interconnect

often consumes a great deal of energy, this bandwidth savings may save energy and

therefore, total cost of ownership. Finally, since commit-through requires storing com-

mit data into the shared cache (or memory if no shared cache is present), commit-back

should relieve pressure on this shared resource.

5.4 Performance Evaluation

To explore the possibilities of continuous transactional execution, we compared the per-

formance of our TCC implementation to that of LO. Additionally, we implemented and

evaluated the various design alternatives discussed in the previous section. This section

describes our methodology and results. Note that Table 5.2 presents the speedups of the

STAMP applications on LO and all our TCC design variants for easy comparison.

5.4.1 Methodology

We use the same experimental setup and simulator defaults as we did in Chapter 3.

Namely, we use the same interconnect, CPU architecture, and cache parameters de-

scribed in Table 3.1. We chose the Aggressive contention management policy, which

is the same as that for LO.

We evaluated our TCC systems using the same STAMP applications described in

Chapter 3. We did not change the parallelization of the applications or the location and

size of explicit transactions. However, since TCC uses continuous transactions, many

new implicit transactions were created, so we present new transactional application

characteristics in Table 5.1. Because the statistics now include both implicit and explicit

transactions, and because implicit transactions are by definition of a medium size, al-

most all the applications experience regression toward the mean of more moderately

5.4. PERFORMANCE EVALUATION 115

PER TRANSACTION

instructions* reads*† writes*†
writes†

per 1K ins* retries‡

bayes 29,795 (37) 75 (6) 45 (3) 1.5 (81.1) 0.34
genome 846 (78) 26 (9) 7 (4) 7.9 (51.3) 0.09

intruder 610 (71) 14 (9) 6 (6) 9.5 (84.5) 1.04
kmeans 924 (143) 23 (15) 5 (5) 5.3 (35.0) 0.05

labyrinth 98,586 (56) 58 (7) 99 (5) 1.0 (89.3) 0.39
ssca2 140 (50) 12 (9) 6 (4) 41.1 (80.0) 0.01

vacation 1,640 (907) 53 (29) 15 (11) 9.4 (12.1) 0.21
yada 4,700 (35) 26 (4) 14 (3) 2.9 (85.7) 0.25

Table 5.1: Cache and transactional statistics for benchmark applications under contin-
uous transactions. Includes both implicit and explicit transactions. *Averages are pre-
sented, with medians in parentheses. †Reads and writes in cache lines. ‡Retries per
transaction presented for 16 CPU, TCC-BASE case. Simulation parameters are the de-
faults presented in Table 3.1.

sized transactions, with a corresponding change in reads/writes per transactions and re-

tries per transaction. For example, the average transaction size in bayes and labyrinth,

with their large explicit transactions, shrinks due to smaller implicit transactions. Simi-

lar but smaller changes occur in genome, vacation, and yada. But, intruder, kmeans,

and ssca2, with their small explicit transactions, experience increases.

5.4.2 Baseline Evaluation

We begin our evaluation of continuous transactions and TCC by comparing the baseline

system to LO-BASE. Execution time breakdowns are presented in Figure 5.1. In general,

the performance of most applications is worse than that of LO due to false sharing. For-

tunately, it does not appear that performance is significantly affected by using the same

level of speculative buffering as LO. Detailed results follow.

bayes

In bayes we begin to see a common pattern in the execution time breakdowns be-

tween LO and TCC: idle time replaced with time spent on conflicts (Violated time). This

116 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

occurs because the loop within barriers is now being run within a transaction, and so

when other threads notify the waiting threads by writing a flag, the waiting transactions

rollback, marking their time as Violated. This is more of a bug in reporting than an im-

portant phenomenon of TCC.

A more important pattern we see is more Violated time, especially at higher proces-

sor counts, even if we factor out the time spent in barriers. This is because of false shar-

ing created between transactions: the non-transactional regions in LO can interleave

reads and writes to different parts of the same cache line without the need to perform

the entire enclosing computation again. A continuous transaction system using line-

level granularity cannot differentiate this false sharing from true accesses to the same

word, so one of the transactions needlessly aborts.

A final common pattern is increased time spent waiting for refills (Memory and Vi-

olate Stall time). This is again due to false sharing and TCC-BASE’s invalidate protocol:

when a transaction restarts after aborting due to false sharing, it must refill the conflict-

ing line. This increases Violate Stall time when the subsequent transaction aborts and

Memory time when the transaction commits.

genome

We see similar patterns in genome as in bayes. We see Idle/Synch time being re-

placed with Violated time, more violations due to false sharing, and more refill time. Ad-

ditionally, since continuous transactions means more simultaneous transactions, there

is more contention for commit permission (Validate) time as CPU counts increase.

intruder

intruders does not seem to be as affected by false sharing as other applications,

as evidenced by its similar performance to LO. However, it does experience some false

sharing, as can be seen by the increase in Violate and Violate Stall time.

kmeans

kmeans experiences false sharing culminating in more conflicts as CPU counts in-

crease. Also, kmeans begins to experience higher Validate time because of the many new

transactions introduced in by TCC.

5.4. PERFORMANCE EVALUATION 117

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

ViolateViolate StallCommitValidateIdle/SynchMemoryOverflowUseful L1 Miss

TCC Baseline
LO-BASE TCC-BASE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LO
-4

TC
C-

4
LO

-8
TC

C-
8

bayes

LO
-4

TC
C-

4
LO

-8
TC

C-
8

genome

LO
-4

TC
C-

4
LO

-8
TC

C-
8

intruder

LO
-4

TC
C-

4
LO

-8
TC

C-
8

kmeans

LO
-4

TC
C-

4
LO

-8
TC

C-
8

labyrinth

LO
-4

TC
C-

4
LO

-8
TC

C-
8

ssca2

LO
-4

TC
C-

4
LO

-8
TC

C-
8

vacation

LO
-4

TC
C-

4
LO

-8
TC

C-
8

yada

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

LO
-1

6
TC

C-
16

LO
-3

2
TC

C-
32

bayes

LO
-1

6
TC

C-
16

LO
-3

2
TC

C-
32

genome

LO
-1

6
TC

C-
16

LO
-3

2
TC

C-
32

intruder

LO
-1

6
TC

C-
16

LO
-3

2
TC

C-
32

kmeans

LO
-1

6
TC

C-
16

LO
-3

2
TC

C-
32

labyrinth

LO
-1

6
TC

C-
16

LO
-3

2
TC

C-
32

ssca2

LO
-1

6
TC

C-
16

LO
-3

2
TC

C-
32

vacation

LO
-1

6
TC

C-
16

LO
-3

2
TC

C-
32

yada

Figure 5.1: Execution time breakdown of STAMP applications on 4–32 CPUs on TCC-
BASE compared with LO-BASE. Normalized to sequential execution. Default simulator
parameters (see Table 3.1).

118 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

labyrinth

labyrinth’s performance is not as affected by false sharing as other applications due

to the fact that most time is spent in explicit transactions. We do see the characteristic

replacement of Idle time by Violate/Violate Stall due to barriers.

ssca2

ssca2 performs the worst of all applications, partly due to the exacerbation of the

SERIALIZEDCOMMIT pathology (more Validate time) we observed in Chapter 3, but also

due to false sharing. ssca2’s false sharing is particularly bad, as evidenced by the large

Violated time, considering almost no true conflicts occur between explicit transactions

(see Table 3.2).

vacation

vacation on TCC-BASE mostly suffers from the increased memory pressure created

by more transactions committing and an already high global L2 miss rate. It also has

some false sharing. Both these effects can be seen in the Memory and Violate Stall cate-

gories.

yada

yada’s story is similar to that of labyrinth because it spends most of its time in

explicit transactions, minimizing the effect of false sharing among implicit transactions.

In conclusion, TCC can perform similarly to its predecessor LO, but false sharing

seriously degrades performance of most applications. On 32 CPUs, TCC performs an

average of 15% worse than LO, though only 11% worse if you ignore ssca2 with its SERI-

ALIZEDCOMMIT.

Clearly, just as parallel commit is useful for LO, it is even more essential in the contin-

uous transaction environment. While more contention was seen for commit permission

because of TCC’s periodic commit, it did not hinder any application’s scalability that

was not already affected in LO. This tells us that while more speculative buffering would

probably reduce contention by allowing longer implicit transactions, the level provided

by our default cache parameters is sufficient.

5.4. PERFORMANCE EVALUATION 119

5.4.3 Coherence Granularity: Line-level versus Word-level

To combat the false sharing seen in TCC-BASE, we evaluated TCC-WORD and compared

their performance in Figure 5.2. In general, word granularity positively affects those ap-

plications with false sharing between transactions, but negatively affects those applica-

tions heavily dependent on cache-to-cache transfers. Detailed results follow.

bayes

Reducing the false sharing in bayes seems to significantly improve its performance,

as fewer violations have a favorable effect on transaction scheduling. bayes represents

the most dramatic improvement, even to surpassing LO’s performance (see Table 5.2),

but this may be due to fortunate scheduling more than architectural improvements.

genome

In genome, we see the effect of decreased Violate and Violate Stall time due to the

elimination of false sharing. However, we also see a slight increase in Memory time due

to the reduction in cache-to-cache transfers.

intruder

intruder does not have a lot of false sharing (as evidenced by TCC-BASE’s similar

performance to LO) and so the principle effects we see in TCC-WORD is the reduction

in cache-to-cache transfers (slight increase in Memory time and the larger increase in

Violate Stall).

kmeans

kmeans is a unique case: because TCC-WORD avoids the little false sharing there is

in kmeans, there are slightly fewer violations, meaning more transactions attempting to

commit at once. This causes more contention for commit permission (Validate time) as

CPU counts increase.

labyrinth

labyrinth’s little false sharing prevents TCC-WORD from demonstrating its advan-

tages. In fact, its performance gets worse on TCC-WORD because, as we explained in

Section 3.3, labyrinth has very long transactions and a high contention rate, making

120 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME
N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e

ViolateViolate StallCommitValidateIdle/SynchMemoryOverflowUseful L1 Miss

TCC Line vs. Word Granularity
TCC-BASE TCC-WORD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TC
C-

4
W

O
RD

-4
TC

C-
8

W
O

RD
-8

bayes

TC
C-

4
W

O
RD

-4
TC

C-
8

W
O

RD
-8

genome

TC
C-

4
W

O
RD

-4
TC

C-
8

W
O

RD
-8

intruder

TC
C-

4
W

O
RD

-4
TC

C-
8

W
O

RD
-8

kmeans

TC
C-

4
W

O
RD

-4
TC

C-
8

W
O

RD
-8

labyrinth
TC

C-
4

W
O

RD
-4

TC
C-

8
W

O
RD

-8

ssca2

TC
C-

4
W

O
RD

-4
TC

C-
8

W
O

RD
-8

vacation

TC
C-

4
W

O
RD

-4
TC

C-
8

W
O

RD
-8

yada

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

TC
C-

16
W

O
RD

-1
6

TC
C-

32
W

O
RD

-3
2

bayes

TC
C-

16
W

O
RD

-1
6

TC
C-

32
W

O
RD

-3
2

genome

TC
C-

16
W

O
RD

-1
6

TC
C-

32
W

O
RD

-3
2

intruder

TC
C-

16
W

O
RD

-1
6

TC
C-

32
W

O
RD

-3
2

kmeans

TC
C-

16
W

O
RD

-1
6

TC
C-

32
W

O
RD

-3
2

labyrinth

TC
C-

16
W

O
RD

-1
6

TC
C-

32
W

O
RD

-3
2

ssca2

TC
C-

16
W

O
RD

-1
6

TC
C-

32
W

O
RD

-3
2

vacation

TC
C-

16
W

O
RD

-1
6

TC
C-

32
W

O
RD

-3
2

yada

Figure 5.2: Execution time breakdown of STAMP applications on 4–32 CPUs on TCC-
WORD compared with TCC-BASE. Normalized to sequential execution. Default simula-
tor parameters (see Table 3.1).

5.4. PERFORMANCE EVALUATION 121

later detection of conflicts waste more work. We see this reflected in the increased Vi-

olate time. It could be that better contention management (such as backoff on abort)

would improve performance.

ssca2

In the previous section, we noted that ssca2 on TCC-BASE experienced significant

false sharing so we expect TCC-WORD to greatly improve performance, and it clearly

does. Unfortunately, the decrease in cache-to-cache transfers (increase in Memory time)

prevents performance from reaching that obtained by LO.

vacation

False sharing is eliminated with TCC-WORD, reducing the Violate and Violate Stall

cycles, improving performance. However, the difference between TCC-BASE and TCC-

WORD is small at all CPU counts.

yada

On TCC-WORD, yada experiences significant improvement compared to TCC-BASE.

Since the performance improves to be even better than LO’s (see Table 5.2) and yada

spends most of its time in explicit transactions, we can conclude that the explicit trans-

actions experience significant false sharing and TCC-WORD helps avoid it.

In conclusion, word-level granularity significantly improves performance (an aver-

age of 27% on 32 CPUs) over line-level granularity. Some applications’ performance was

hindered by poor contention management, which is further support for our conclusions

from Chapter 3, namely that contention management is a chief concern.

5.4.4 Coherence Protocol: Update versus Invalidate

To test the performance of the two coherence protocols, we compared TCC-WORD to

TCC-UPDATE and the results are presented in Figure 5.3. Most applications experience

little or no change using the update protocol instead of invalidate. Detailed results fol-

low.

122 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME
N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e

ViolateViolate StallCommitValidateIdle/SynchMemoryOverflowUseful L1 Miss

TCC Invalidate vs. Update
TCC-WORD TCC-UPDATE

0.0

0.1

0.2

0.3

0.4

0.5

W
O

RD
-4

U
PD

AT
E-

4
W

O
RD

-8
U

PD
AT

E-
8

bayes

W
O

RD
-4

U
PD

AT
E-

4
W

O
RD

-8
U

PD
AT

E-
8

genome

W
O

RD
-4

U
PD

AT
E-

4
W

O
RD

-8
U

PD
AT

E-
8

intruder

W
O

RD
-4

U
PD

AT
E-

4
W

O
RD

-8
U

PD
AT

E-
8

kmeans

W
O

RD
-4

U
PD

AT
E-

4
W

O
RD

-8
U

PD
AT

E-
8

labyrinth
W

O
RD

-4
U

PD
AT

E-
4

W
O

RD
-8

U
PD

AT
E-

8

ssca2

W
O

RD
-4

U
PD

AT
E-

4
W

O
RD

-8
U

PD
AT

E-
8

vacation

W
O

RD
-4

U
PD

AT
E-

4
W

O
RD

-8
U

PD
AT

E-
8

yada

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

W
O

RD
-1

6
U

PD
AT

E-
16

W
O

RD
-3

2
U

PD
AT

E-
32

bayes

W
O

RD
-1

6
U

PD
AT

E-
16

W
O

RD
-3

2
U

PD
AT

E-
32

genome

W
O

RD
-1

6
U

PD
AT

E-
16

W
O

RD
-3

2
U

PD
AT

E-
32

intruder

W
O

RD
-1

6
U

PD
AT

E-
16

W
O

RD
-3

2
U

PD
AT

E-
32

kmeans

W
O

RD
-1

6
U

PD
AT

E-
16

W
O

RD
-3

2
U

PD
AT

E-
32

labyrinth

W
O

RD
-1

6
U

PD
AT

E-
16

W
O

RD
-3

2
U

PD
AT

E-
32

ssca2

W
O

RD
-1

6
U

PD
AT

E-
16

W
O

RD
-3

2
U

PD
AT

E-
32

vacation

W
O

RD
-1

6
U

PD
AT

E-
16

W
O

RD
-3

2
U

PD
AT

E-
32

yada

Figure 5.3: Execution time breakdown of STAMP applications on 4–32 CPUs on TCC-
UPDATE compared with TCC-WORD. Normalized to sequential execution. Default sim-
ulator parameters (see Table 3.1).

5.4. PERFORMANCE EVALUATION 123

bayes

The update protocol makes little impact on the performance of bayes, except chang-

ing its transaction scheduling. Less time waiting for what would have been refills in

TCC-WORD leads to shorter transactions, which alters commit order and therefore con-

vergence rates. Performance is about the same as that of TCC-WORD.

genome

genome seems minimally affected by the change in coherence protocol, with a negli-

gible increase in performance over TCC-WORD.

intruder

On intruder, we see a significant improvement with TCC-UPDATE as additional

load misses are being avoided due to the update protocol. We see this reflected in the

decreased Memory and Violate Stall time. Since intruder accesses the same data struc-

ture with its transactions even after conflicts, this behavior is expected.

kmeans

TCC-UPDATE negligibly improves kmeans up to 16 CPUs, reducing Memory and Vi-

olate Stall time. However, we see the same pathological behavior at 32 CPUs as we did

with TCC-WORD: faster transactions makes for more contention for commit permission

(increased Validate time) and possible contention pathologies (increased Violate time).

labyrinth

Surprisingly, more conflicts are present in labyrinth using TCC-UPDATE than with

TCC-WORD. In fact, as TCC designs get “better” (from TCC-BASE to TCC-WORD to TCC-

UPDATE), labyrinth’s performance gets worse. Search is the main component of this

benchmark and as the long searching transactions become faster (by avoiding refills

caused by the invalidate protocol), they contend more with each other due to their im-

mediate restart CM policy, resulting in more Violate time. As in the TCC-WORD case,

perhaps backoff on abort would mitigate this effect.

124 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

ssca2

Little effect is seen on ssca2 due to its low contention rate—few conflicts means

fewer opportunities for refills caused by the invalidate protocol.

vacation

Like genome, vacation is not greatly affected by an update protocol, demonstrating

a slight improvement in Violate Stall due to avoiding refills.

yada

yada’s story is similar to labyrinth’s: long transactions and high contention make

shorter transactions more contentious. Perhaps backoff would mitigate this effect.

On average, TCC-UPDATE performed 2% worse than TCC-WORD on 32 CPUs. If

kmeans and labyrinth, the two applications with contention management problems,

are factored out, TCC-UPDATE performed only 3% better than TCC-WORD. In conclu-

sion, from our experiments, an update protocol is not beneficial. This agrees with our

earlier findings in McDonald et al. [66].

5.4.5 Commit Protocol: Commit-through versus Commit-back

Figure 5.4 presents execution time breakdowns of the STAMP applications on TCC-BASE

and TCC-BACK, comparing commit protocols. For most applications, the choice of

commit-through versus commit-back makes little impact on performance. Detailed re-

sults follow.

bayes

In TCC-BACK, we see a reduction in Memory time due to the reduced pressure on

the request bus; but more significantly, we see a drop in Violate cycles. Like other bayes

experiments, changing the memory access patterns changes the transaction schedule.

In this case, despite similar abort counts, the shorter transactions in TCC-BACK cause

conflicts to be detected earlier, leading to aborted transactions being 50% shorter in

TCC-BACK than in TCC.

5.4. PERFORMANCE EVALUATION 125

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

ViolateViolate StallCommitValidateIdle/SynchMemoryOverflowUseful L1 Miss

TCC Commit Through vs. Commit Back
TCC-BASE TCC-BACK

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TC
C-

4
BA

CK
-4

TC
C-

8
BA

CK
-8

bayes

TC
C-

4
BA

CK
-4

TC
C-

8
BA

CK
-8

genome

TC
C-

4
BA

CK
-4

TC
C-

8
BA

CK
-8

intruder

TC
C-

4
BA

CK
-4

TC
C-

8
BA

CK
-8

kmeans

TC
C-

4
BA

CK
-4

TC
C-

8
BA

CK
-8

labyrinth

TC
C-

4
BA

CK
-4

TC
C-

8
BA

CK
-8

ssca2

TC
C-

4
BA

CK
-4

TC
C-

8
BA

CK
-8

vacation

TC
C-

4
BA

CK
-4

TC
C-

8
BA

CK
-8

yada

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

TC
C-

16
BA

CK
-1

6
TC

C-
32

BA
CK

-3
2

bayes

TC
C-

16
BA

CK
-1

6
TC

C-
32

BA
CK

-3
2

genome

TC
C-

16
BA

CK
-1

6
TC

C-
32

BA
CK

-3
2

intruder

TC
C-

16
BA

CK
-1

6
TC

C-
32

BA
CK

-3
2

kmeans

TC
C-

16
BA

CK
-1

6
TC

C-
32

BA
CK

-3
2

labyrinth

TC
C-

16
BA

CK
-1

6
TC

C-
32

BA
CK

-3
2

ssca2

TC
C-

16
BA

CK
-1

6
TC

C-
32

BA
CK

-3
2

vacation

TC
C-

16
BA

CK
-1

6
TC

C-
32

BA
CK

-3
2

yada

Figure 5.4: Execution time breakdown of STAMP applications on 4–32 CPUs on TCC-
BACK compared with TCC-BASE. Normalized to sequential execution. Default simulator
parameters (see Table 3.1).

126 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

genome

In genome, TCC-BACK reduces the time needed for refills because it reduces pressure

on the shared cache—the shared cache no longer must store commit data, providing

more bandwidth for refills (commit data takes an pipelined 3 cycles to cross the line-

sized bus). Performance gains are somewhat tempered by the fact that shorter transac-

tions lead to more contention for commit permission (increased Validate time), just as

we saw with kmeans on TCC-WORD and TCC-UPDATE.

intruder

Similar to genome, intruder experiences performance gains in TCC-BACK due to

the reduction in memory pressure. Because of intruder’s high contention rate, most of

the memory accesses are in transactions that later abort, so TCC-BACK’s effect is seen

predominantly in the reduction of Violate Stall time.

kmeans

Having small transactions and a low contention rate, kmeans has little memory pres-

sure to begin with, so TCC-BACK makes little performance impact.

labyrinth

labyrinth’s explicit transactions are very long and make few writes per transac-

tional instruction, so performance is not significantly affected by the decrease in mem-

ory pressure offered by TCC-BACK. Similar to the effect at 32 CPUs in TCC-UPDATE,

TCC-BACK makes labyrinth’s transactions faster, increasing contention and resulting

in more Violate time. Again, proper contention management may mitigate this.

ssca2

Like in other applications, ssca2 experiences a decrease in memory pressure, seen

in lower Memory and Violate Stall times. This results in a net performance gain, even

though faster transactions do increase contention for commit permission (increased Val-

idate time).

5.4. PERFORMANCE EVALUATION 127

vacation

Again, we see the same patterns in vacation: decreased Memory and Violate Stall

components due to avoiding the storage of commit data in the shared cache.

yada

Like yada under TCC-UPDATE, little improvement is found with TCC-BACK since

very little of yada’s execution time is spent accessing memory. Also like TCC-UPDATE,

TCC-BACK does reduce the execution time of its long transactions enough to create in-

creased contention at high CPU counts.

In conclusion, commit-back does not perform significantly better than commit-through

(only an average of 3% on 32 CPUs) and since it is difficult to combine with word gran-

ularity, which did improve performance, it may not be worth implementing. However,

commit-back may offer an energy advantage since data is sent only when and where it

is needed. Additionally, in large scale systems, a broadcast interconnect may not be fea-

sible, forcing the need for commit-back. It is worth noting that Commit time was not

affected by this experiment because our bus is one cache line wide. On thinner buses,

where each commit-through packet would take longer to process, we expect TCC-BACK

to improve more compared to TCC-BASE. Finally, just as we saw with the previous ex-

periments, TCC-BACK suffers from SERIALIZEDCOMMIT and would benefit from parallel

commit.

5.4.6 Bus Utilization

Because TCC is always executing transactions, and those transactions are frequently

committing, we expect it to tax interconnect resources more than LO. Figure 5.5 presents

the bus utilization breakdowns on 32 CPUs between TCC-BASE and LO-BASE.

Clearly, neither the LO nor TCC systems push the bus to its limits, and the TCC sys-

tems utilize the bus only slightly more (an average of 5% more). ssca2 shows a decrease

in bus utilization because the TCC system had many transactions waiting to validate,

increasing the time the bus was idle.

128 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

TCC Bus Utilization
LO-BASE TCC-BASE

B
u

s
U

ti
liz

at
io

n

0.0

0.2

0.4

0.6

0.8

1.0

LO TCC LO TCC LO TCC LO TCC LO TCC LO TCC LO TCC LO TCC

IdleTransferArbitration
bayes genome intruder kmeans labyrinth ssca2 vacation yada

Figure 5.5: Comparing TCC-BASE’s and LO-BASE’s bus utilization breakdowns on 32
CPUs. Default simulator parameters (see Table 3.1).

In conclusion, even though TCC’s continuous transactions do use more interconnect

resources than a traditional TM system, its requirements are well within the capabilities

of a modern multicore system. These findings echo our results in McDonald et al. [66],

where we examined TCC’s bus utilization compared to a traditional MESI system using

SPEC, SPLASH, and SPLASH-2 applications.

5.5 Conclusions

We investigated the implementation and performance of the first continuously transac-

tional system, called TCC, as compared to traditional TM methods. Using the STAMP

benchmarks, we found that TCC’s performance, while generally not as good as LO’s, is

adequate for transactional execution. Furthermore, using the same level of speculative

buffering and bus bandwidth as available in LO systems is adequate for TCC. Finally, as

we saw with LO, TCC and its design alternatives would benefit from parallel commit to

address the SERIALIZEDCOMMIT pathology.

We also studied implementation alternatives for TCC. We found that tracking state

at the word granularity is best, despite some scheduling effects that may be mitigated by

5.5. CONCLUSIONS 129

proper contention management. We showed that the update commit protocol was bet-

ter on most applications, but performance improvements may not justify the additional

complexity. Finally, we examined a commit-back protocol and found it useful, but not

as useful as word granularity, and the hardware costs most likely preclude combining

with word granularity. In conclusion, TCC with word-based granularity, an invalidate

coherence protocol, and commit-through is probably the best design. This agrees with

our findings in McDonald et al. [66].

Overall, TCC provides adequate parallel performance for transactional applications

in addition to the simpler parallel programming model. Continuous transactions contin-

ues to be explored actively in both the hardware and software communities. UIUC’s Bulk

Multicore Architecture [100] and Microsoft Research’s Automatic Mutual Exclusion [54]

projects have recognized the potential advantages and sought to develop practical con-

tinuous transaction systems.

130 CHAPTER 5. ALL TRANSACTIONS ALL THE TIME

TCC Speedups Across Design Alternatives

4 CPUs 8 CPUs

LO B
A

SE

W
O

R
D

U
P

D
AT

E

B
A

C
K

LO B
A

SE

W
O

R
D

U
P

D
AT

E

B
A

C
K

bayes 2.45 2.51 2.99 2.97 2.51 3.76 3.82 4.47 5.01 3.91
genome 3.43 3.31 3.33 3.34 3.37 6.00 5.63 5.76 5.83 5.90

intruder 3.19 3.08 3.06 3.18 3.17 4.44 4.16 4.00 4.30 4.41
kmeans 3.64 3.63 3.57 3.67 3.64 6.94 6.89 6.75 7.00 6.94

labyrinth 2.22 2.19 2.19 2.19 2.21 3.20 3.18 3.10 3.01 3.22
ssca2 2.79 1.84 2.39 2.41 2.02 4.67 2.85 3.72 3.74 2.99

vacation 3.50 3.40 3.40 3.42 3.51 6.34 6.03 6.07 6.11 6.24
yada 2.05 2.10 2.07 2.07 2.08 2.99 2.98 2.86 2.88 3.01

16 CPUs 32 CPUs

LO B
A

SE

W
O

R
D

U
P

D
AT

E

B
A

C
K

LO B
A

SE

W
O

R
D

U
P

D
AT

E

B
A

C
K

bayes 4.65 4.55 6.58 5.97 4.64 6.06 5.22 8.58 8.66 6.56
genome 9.27 8.24 8.35 8.41 8.66 12.08 9.30 9.44 9.68 9.77

intruder 4.56 4.32 4.08 4.31 4.51 4.48 4.22 3.78 4.36 4.42
kmeans 12.54 12.13 11.84 12.30 12.25 18.85 15.84 13.59 10.49 16.70

labyrinth 4.23 4.28 4.18 4.18 4.32 5.82 5.73 5.69 4.98 5.41
ssca2 5.92 3.43 4.55 4.57 3.55 5.89 3.50 4.50 4.52 3.63

vacation 10.61 9.10 9.74 9.83 10.24 14.13 12.44 12.79 13.04 11.72
yada 4.08 4.03 4.23 4.17 4.22 4.81 4.46 5.17 5.03 4.38

Table 5.2: Speedups for each application on each of the TCC systems and LO, from 2–32
CPUs. Simulation parameters are the defaults found in Table 3.1.

Chapter 6

Conclusions and Future Work

In this thesis, I set out to establish that Transactional Memory is an attractive alternative

to lock-based synchronization, that Lazy-Optimistic should be the preferred TM design,

that rich semantics for TM are needed to implement modern OS and language features,

and that hardware support for continuous transactions is not only useful but practical.

In Chapter 3, I compared transactional memory designs and concluded that Lazy-

Optimistic was consistently the best-performing and lowest-complexity TM design. Fur-

thermore, I found that TM’s performance was comparable to that of conventional syn-

chronization techniques. Because of the work of myself and others, TM has begun to

emerge in commercial processors like Azul’s Java Compute Appliances [29] and Sun’s

Rock [33]. Both of those designs implement LO systems. Future directions should in-

clude exploring low-cost virtualization mechanisms in such HTM systems and of course,

using these production systems to evaluate TM programming languages.

In Chapter 4, I argued that four mechanisms are needed to implement real-world

transactional memory: two-phase commit, software handlers, closed- and open-nesting,

and non-transactional loads and stores. I showed how they could be implemented with

low overhead to support modern operating systems and languages. Future work would

be to use these mechanisms to implement a complete TM system and evaluate it.

Finally, in Chapter 5, I described and examined the first continuous transaction ar-

chitecture, Transactional Coherence and Consistency (TCC), which is based on LO. I

131

132 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

found that its performance, while lower than LO, can be improved by choosing word-

level coherence granularity, and is adequate for transactional execution. Microsoft Re-

search’s AME and UIUC’s Bulk projects continue to explore the hardware and software

advantages and implementations of continuous transactions.

The future of transactional memory is a bright one, with many researchers in both

academia and industry actively pursuing a number of projects. More work is needed to

explore how TM applications will be built by programmers who exclusively use transac-

tions, and results from that work may influence HTM design philosophy. Also, as TM

becomes a reality in commodity systems, educators should examine their programming

curricula so as to adequately prepare the next generation of coders to exploit parallelism

via transactions.

Bibliography

[1] A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeisman.

Compiler and runtime support for efficient software transactional memory. In

PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, New York, NY, USA, 2006. ACM Press.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.

IEEE Computer, 29(12):66–76, December 1996.

[3] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism in transactional mem-

ory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and practice of parallel programming, pages 163–174, New York, NY, USA, 2008.

ACM.

[4] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory models for open-nested trans-

actions. In MSPC: Workshop on Memory Systems Performance and Correctness,

October 2006.

[5] A. Ahmed, P. Conway, B. Hughes, and F. Weber. Amd hammer. In Conference

Record of Hot Chips 14, Stanford, CA, August 2002.

[6] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. Steele, Jr., and

S. Tobin-Hochstadt. The Fortress Language Specification. Sun Microsystems, 2005.

[7] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi,

S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen,

133

134 BIBLIOGRAPHY

T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreed-

har, H. Srinivasan, and J. Whaley. The Jalapeño virtual machine. IBM Systems

Journal, 39(1):211–238, 2000.

[8] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded

Transactional Memory. In Proceedings of the 11th International Symposium on

High-Performance Computer Architecture (HPCA’05), pages 316–327, San Fran-

cisco, California, February 2005.

[9] D. A. Bader and K. Madduri. Design and implementation of the hpcs graph anal-

ysis benchmark on symmetric multiprocessors. In HiPC ’05: 12th International

Conference on High Performance Computing, December 2005.

[10] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,

S. Smith, R. Stets, and B. Verghese. Piranha: A scalable architecture based on

single-chip multiprocessing. In Proceedings of the 27th Annual International Sym-

posium on Computer Architecture, Vancouver, Canada, June 2000.

[11] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of transactional mem-

ory atomicity semantics. IEEE Computer Architecture Letters, 5(2), July–December

2006.

[12] J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill, M. M. Swift, and D. A. Wood.

Performance pathologies in hardware transactional memory. In Proceedings of

the 34th Annual International Symposium on Computer Architecture. June 2007.

[13] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transac-

tional applications for multi-processing. In IISWC ’08: Proceedings of The IEEE

International Symposium on Workload Characterization, September 2008.

[14] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,

C. Kozyrakis, and K. Olukotun. An effective hybrid transactional memory system

with strong isolation guarantees. In Proceedings of the 34th Annual International

Symposium on Computer Architecture. June 2007.

BIBLIOGRAPHY 135

[15] B. D. Carlstrom. Embedding Scheme in Java. Master’s thesis, Massachusetts Insti-

tute of Technology, February 2001.

[16] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and K. Olukotun. Trans-

actional Collection Classes. In Proceeding of the Symposium on Principles and

Practice of Parallel Programming, March 2007.

[17] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. Cao Minh, C. Kozyrakis, and

K. Olukotun. The Atomos Transactional Programming Language. In PLDI ’06: Pro-

ceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 1–13, New York, NY, USA, June 2006. ACM Press.

[18] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: bulk enforcement of se-

quential consistency. In ISCA ’07: Proceedings of the 34th annual international

symposium on Computer architecture, pages 278–289, New York, NY, USA, 2007.

ACM Press.

[19] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation of speculative

threads in multiprocessors. In ISCA ’06: Proceedings of the 33rd International Sym-

posium on Computer Architecture, pages 227–238, Washington, DC, USA, 2006.

IEEE Computer Society.

[20] H. Chafi, C. Cao Minh, A. McDonald, B. D. Carlstrom, J. Chung, L. Hammond,

C. Kozyrakis, and K. Olukotun. TAPE: a transactional application profiling envi-

ronment. In ICS ’05: Proceedings of the 19th annual international conference on

Supercomputing, pages 199–208, New York, NY, USA, 2005. ACM.

[21] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh, W. Baek,

C. Kozyrakis, and K. Olukotun. A scalable, non-blocking approach to transactional

memory. In HPCA ’07: Proceedings of the 2007 IEEE 13th International Symposium

on High Performance Computer Architecture, pages 97–108, Washington, DC, USA,

2007. IEEE Computer Society.

[22] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster

136 BIBLIOGRAPHY

computing. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN confer-

ence on Object oriented programming systems languages and applications, pages

519–538, New York, NY, USA, 2005. ACM Press.

[23] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. V. Biesbrouck,

G. Pokam, O. Colavin, and B. Calder. Unbounded page-based transactional mem-

ory. In ASPLOS-XII: Proceedings of the 12th international conference on Architec-

tural support for programming languages and operating systems. ACM Press, Oc-

tober 2006.

[24] J. Chung. System Challenges and Opportunities for Transactional Memory. PhD

thesis, Stanford University, Jun 2008.

[25] J. Chung, W. Baek, N. G. Bronson, J. Seo, C. Kozyrakis, and K. Olukotun.

Ased:availability, security, and debugging support using transactional memory. In

20th ACM Symposium on Parallelism in Algorithms and Architectures. Jun 2008.

[26] J. Chung, C. Cao Minh, A. McDonald, H. Chafi, B. D. Carlstrom, T. Skare,

C. Kozyrakis, and K. Olukotun. Tradeoffs in transactional memory virtualization.

In ASPLOS-XII: Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems. ACM Press, October

2006.

[27] J. Chung, H. Chafi, C. Cao Minh, A. McDonald, B. D. Carlstrom, C. Kozyrakis, and

K. Olukotun. The Common Case Transactional Behavior of Multithreaded Pro-

grams. In Proceedings of the 12th International Conference on High-Performance

Computer Architecture, February 2006.

[28] J. Chung, J. Seo, W. Baek, C. Cao Minh, A. McDonald, C. Kozyrakis, and K. Oluko-

tun. Improving software concurrency with hardwrae-assisted memory snapshot.

In SPAA ’08: Proceedings of the Twentieth Annual ACM Symposium on Parallel Al-

gorithms and Architectures, 2008.

BIBLIOGRAPHY 137

[29] C. Click. A tour inside the Azul 384-way Java appliance. Tutorial held in conjunc-

tion with the Fourteenth International Conference on Parallel Architectures and

Compilation Techniques (PACT), September 2005.

[30] Cray. Chapel Specification. February 2005.

[31] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hy-

brid transactional memory. In ASPLOS-XII: Proceedings of the 12th international

conference on Architectural support for programming languages and operating sys-

tems, October 2006.

[32] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: Deterministic shared memory

multiprocessing. In Proceedings of the 14th International Conference on Architec-

tural Support for Programming Languages and Operating Systems, 2009.

[33] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial

hardware transactional memory implementation. In Proceedings of the 14th In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, 2009.

[34] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, 1993.

[35] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon. Robust Contention Man-

agement in Software Transactional Memory. In OOPSLA 2005 Workshop on Syn-

chronization and Concurrency in Object-Oriented Languages (SCOOL). University

of Rochester, October 2005.

[36] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-

tention managers. In PODC ’05: Proceedings of the twenty-fourth annual ACM

symposium on Principles of distributed computing, pages 258–264, New York, NY,

USA, 2005. ACM Press.

[37] L. Hammond. Hydra: A Chip Multiprocessor with Support for Speculative Thread-

Level Parallelization. PhD thesis, Stanford University, 2002.

138 BIBLIOGRAPHY

[38] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Olukotun. The

Stanford Hydra CMP. IEEE Micro, 20(2):71–84, March/April 2000.

[39] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.

Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coher-

ence and consistency. In Proceedings of the 31st International Symposium on Com-

puter Architecture, pages 102–113, June 2004.

[40] T. Harris. Exceptions and side-effects in atomic blocks. In 2004 PODC Workshop

on Concurrency and Synchronization in Java Programs, July 2004.

[41] T. Harris and K. Fraser. Language support for lightweight transactions. In OOP-

SLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on Object-

oriented programing, systems, languages, and applications, pages 388–402. ACM

Press, 2003.

[42] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory trans-

actions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Prin-

ciples and practice of parallel programming, pages 48–60, New York, NY, USA, July

2005. ACM Press.

[43] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory transactions.

In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference on Programming

Language Design and Implementation, New York, NY, USA, 2006. ACM Press.

[44] T. Harris and S. Stipic. Abstract nested transactions. In Second ACM SIGPLAN

Workshop on Transactional Computing, 2007.

[45] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[46] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer. Software transac-

tional memory for dynamic-sized data structures. In PODC ’03: Proceedings of the

twenty-second annual symposium on Principles of distributed computing, pages

92–101, New York, NY, USA, July 2003. ACM Press.

BIBLIOGRAPHY 139

[47] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer. Software transac-

tional memory for dynamic-sized data structures. In PODC ’03: Proceedings of

the 22nd annual symposium on Principles of distributed computing, pages 92–101,

New York, NY, USA, 2003. ACM.

[48] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for

lock-free data structures. In Proceedings of the 20th International Symposium on

Computer Architecture, pages 289–300, 1993.

[49] B. Hertzberg. Runtime Automatic Speculative Parallelization of Sequential Pro-

grams. PhD thesis, Stanford University, 2009.

[50] M. D. Hill, D. Hower, K. E. Moore, M. M. Swift, H. Volos, and D. A. Wood. A case for

deconstructing hardware transactional memory systems. Technical Report CS-TR-

2007-1594, University of Wisconsin-Madison, Department of Computer Sciences,

June 2007.

[51] C. A. R. Hoare. Monitors: an operating system structuring concept. Communica-

tions of the ACM, 17(10):549–557, 1974.

[52] D. R. Hower and M. D. Hill. Rerun: Exploiting episodes for lightweight memory

race recording. In ISCA ’08: Proceedings of the 35th annual international sympo-

sium on Computer architecture, New York, NY, USA, 2008. ACM Press.

[53] J. Huh, J. Chang, D. Burger., and G. S. Sohi. Coherence decoupling: Making use of

incoherence. In Proceedings of the 11th International Conference on Architectural

Support for Programming Languages and Operating Systems, October 2004.

[54] M. Isard and A. Birrell. Automatic Mutual Exclusion. In 11th Workshop on Hot

Topics in Operating Systems, May 2007.

[55] Java Grande Forum, Java Grande Benchmark Suite. http://www.epcc.ed.ac.

uk/javagrande/, 2000.

[56] JBus Architecture Overview. Technical report, Sun Microsystems, April 2003.

http://www.epcc.ed.ac.uk/javagrande/
http://www.epcc.ed.ac.uk/javagrande/

140 BIBLIOGRAPHY

[57] T. Knight. An architecture for mostly functional languages. In LFP ’86: Proceedings

of the 1986 ACM conference on LISP and functional programming, pages 105–112,

New York, NY, USA, August 1986. ACM Press.

[58] P. Kongetira. A 32-way multithreaded Sparc processor. In Conference Record of Hot

Chips 16, Stanford, CA, August 2004.

[59] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional

memory. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on

Principles and practice of parallel programming, New York, NY, USA, March 2006.

ACM Press.

[60] J. Larus. It’s the software stupid. Talk at the Workshop on Transactional Systems,

April 2005.

[61] J. Larus and R. Rajwar. Transactional Memory. Morgan Claypool Synthesis Series,

2006.

[62] V. Luchangco and V. Marathe. Transaction Synchronizers. In OOPSLA 2005 Work-

shop on Synchronization and Concurrency in Object-Oriented Languages (SCOOL).

University of Rochester, October 2005.

[63] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-aid: Detecting and surviving

atomicity violations. In ISCA ’08: Proceedings of the 35th Annual International

Symposium on Computer Architecture, 2008.

[64] J. F. Martínez and J. Torrellas. Speculative synchronization: applying thread-

level speculation to explicitly parallel applications. In ASPLOS-X: Proceedings of

the 10th international conference on Architectural support for programming lan-

guages and operating systems, pages 18–29, New York, NY, USA, October 2002.

ACM Press.

[65] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. Chafi, C. Kozyrakis, and

K. Olukotun. Architectural Semantics for Practical Transactional Memory. In ISCA

BIBLIOGRAPHY 141

’06: Proceedings of the 33rd annual international symposium on Computer Archi-

tecture, pages 53–65, Washington, DC, USA, June 2006. IEEE Computer Society.

[66] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carlstrom, L. Hammond,

C. Kozyrakis, and K. Olukotun. Characterization of TCC on Chip-Multiprocessors.

In PACT ’05: Proceedings of the 14th International Conference on Parallel Architec-

tures and Compilation Techniques, pages 63–74, Washington, DC, USA, September

2005. IEEE Computer Society.

[67] W. mei W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order execution ma-

chines. In Proceedings of the 14th International Symposium on Computer Archi-

tecture, June 1987.

[68] P. Montesinos, L. Ceze, P. Montesinos, and J. Torrellas. DeLorean: Recording and

Deterministically Replaying Shared-Memory Multiprocessor Execution Efficiently.

In ISCA ’08: Proceedings of the 35th annual international symposium on Computer

architecture, New York, NY, USA, 2008. ACM Press.

[69] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:

Log-Based Transactional Memory. In 12th International Conference on High-

Performance Computer Architecture, February 2006.

[70] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M. Swift,

and D. A. Wood. Supporting nested transactional memory in LogTM. In Proceed-

ings of the 12th international conference on Architectural support for programming

languages and operating systems, pages 359–370, New York, NY, USA, 2006. ACM

Press.

[71] J. E. B. Moss. Nesting transactions: Why and what do we need? In TRANSACT In-

vited Talk: First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware

Support for Transactional Computing, 2006.

[72] J. E. B. Moss. Open Nested Transactions: Semantics and Support. In Poster at the

4th Workshop on Memory Performance Issues (WMPI-2006). February 2006.

142 BIBLIOGRAPHY

[73] J. E. B. Moss and T. Hosking. Nested Transactional Memory: Model and Prelimi-

nary Architecture Sketches. In OOPSLA 2005 Workshop on Synchronization and

Concurrency in Object-Oriented Languages (SCOOL). University of Rochester, Oc-

tober 2005.

[74] A. Muzahid, D. Suarez, S. Qi, and J. Torrellas. Sigrace: Signature-based data race

detection. In ISCA ’09: Proceedings of the 36th International Symposium on Com-

puter Architecture, 2009.

[75] V. Nagarajan and R. Gupta. Ecmon: Exposing cache events for monitoring. In ISCA

’09: Proceedings of the 36th International Symposium on Computer Architecture,

2009.

[76] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss,

B. Saha, and T. Shpeisman. Open nesting in software transactional memory. In

PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium on Principles and

Practice of Parallel Programming, pages 68–78, New York, NY, USA, 2007. ACM

Press.

[77] J. Oplinger and M. S. Lam. Enhancing software reliability with speculative threads.

In Proceedings of the 10th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 184–196, October 2002.

[78] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: cost-effective architectural sup-

port for rollback recovery in shared-memory multiprocessors. pages 111–122,

2002.

[79] R. Rajwar and J. R. Goodman. Transactional lock-free execution of lock-based pro-

grams. In ASPLOS-X: Proceedings of the 10th international conference on Architec-

tural support for programming languages and operating systems, pages 5–17, New

York, NY, USA, October 2002. ACM Press.

[80] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In ISCA ’05:

Proceedings of the 32nd Annual International Symposium on Computer Architec-

ture, pages 494–505, Washington, DC, USA, June 2005. IEEE Computer Society.

BIBLIOGRAPHY 143

[81] H. Ramadan, C. Rossbach, and E. Witchel. Dependence-aware transactional mem-

ory for increased concurrency. Microarchitecture, 2008. MICRO-41. 2008 41st

IEEE/ACM International Symposium on, pages 246–257, Nov. 2008.

[82] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann, A. Bhandari, and

E. Witchel. Metatm/txlinux: transactional memory for an operating system. In

ISCA ’07: Proceedings of the 34th annual international symposium on Computer

architecture, pages 92–103, New York, NY, USA, 2007. ACM.

[83] M. F. Ringenburg and D. Grossman. AtomCaml: first-class atomicity via rollback.

In ICFP ’05: Proceedings of the tenth ACM SIGPLAN international conference on

Functional programming, pages 92–104, New York, NY, USA, 2005. ACM Press.

[84] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete computer system

simulation: The SimOS approach. IEEE Parallel & Distributed Technology: Systems

& Applications, 3(4):34–43, 1995.

[85] B. Saha, A. Adl-Tabatabai, and Q. Jacobson. Architectural support for software

transactional memory. In MICRO ’06: Proceedings of the International Symposium

on Microarchitecture, 2006.

[86] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh, and B. Hertzberg. McRT-

STM: A high performance software transactional memory system for a multi-core

runtime. In PPoPP ’06: Proceedings of the 11th ACM SIGPLAN symposium on Prin-

ciples and practice of parallel programming, New York, NY, USA, March 2006. ACM

Press.

[87] W. N. Scherer III and M. L. Scott. Contention management in dynamic software

transactional memory. In Proceedings of the ACM PODC Workshop on Concurrency

and Synchronization in Java Programs, St. John’s, NL, Canada, July 2004.

[88] W. N. Scherer III and M. L. Scott. Advanced contention management for dynamic

software transactional memory. In PODC ’05: Proceedings of the twenty-fourth

annual ACM symposium on Principles of distributed computing, pages 240–248,

New York, NY, USA, 2005. ACM Press.

144 BIBLIOGRAPHY

[89] F. T. Schneider, V. Menon, T. Shpeisman, and A.-R. Adl-Tabatabai. Dynamic op-

timization for efficient strong atomicity. In OOPSLA ’08: Proceedings of the 23rd

ACM SIGPLAN conference on Object-Oriented Programming Systems, Languages,

and Applications, New York, NY, USA, October 2008. ACM.

[90] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the

14th Annual ACM Symposium on Principles of Distributed Computing, pages 204–

213, Ottawa, Canada, August 1995.

[91] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, D. Grossman, R. L.

Hudson, K. Moore, and B. Saha. Enforcing isolation and ordering in STM. In PLDI

’07: Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language

Design and Implementation, June 2007.

[92] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible decoupled transactional

memory support. In Proceedings of the 35th Annual International Symposium on

Computer Architecture. Jun 2008.

[93] A. Shriraman, M. F. Spear, H. Hossain, V. Marathe, S. Dwarkadas, and M. L. Scott.

An integrated hardware-software approach to flexible transactional memory. In

Proceedings of the 34rd Annual International Symposium on Computer Architec-

ture. June 2007.

[94] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for

Shared-Memory. Computer Architecture News.

[95] R. Singhal. Inside intel core microarchitecture (nehalem). In Conference Record of

Hot Chips 20, August 2008.

[96] T. Skare and C. Kozyrakis. Early release: Friend or foe? In Workshop on Transac-

tional Memory Workloads. June 2006.

[97] Standard Performance Evaluation Corporation, SPEC CPU Benchmarks. http://

www.specbench.org/, 1995–2000.

http://www.specbench.org/
http://www.specbench.org/

BIBLIOGRAPHY 145

[98] Standard Performance Evaluation Corporation, SPECjbb2000 Benchmark. http:

//www.spec.org/jbb2000/, 2000.

[99] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A Scalable Approach to

Thread-level Speculation. In Proceedings of the 27th International Symposium on

Computer Architecture, Vancouver, British Columbia, Canada, June 2000.

[100] J. Torrellas, L. Ceze, J. Tuck, C. Cascaval, P. Montesino, W. Ahn, and M. Prvulovic.

The bulk multicore architecture for improved programmability. Communications

of the ACM, 2009.

[101] S. Wee. ATLAS: Software Development Environment for Hardware Transactional

Memory. PhD thesis, Stanford University, 2008.

[102] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors for concurrent

objects. In M. Odersky, editor, Proceedings of the European Conference on Object-

Oriented Programming, volume 3086 of Lecture Notes in Computer Science, pages

519–542. Springer-Verlag, June 2004.

[103] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable Transactions and their Ap-

plications. In SPAA ’08: Proceedings of the twentieth annual ACM symposium on

Parallel algorithms and architectures, 2008.

[104] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH2 Programs:

Characterization and Methodological Considerations. In Proceedings of the 22nd

International Symposium on Computer Architecture, pages 24–36, June 1995.

[105] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift, and D. A.

Wood. LogTM-SE: Decoupling Hardware Transactional Memory from Caches. In

Proceedings of the 13th International Symposium on High Performance Computer

Architecture, February 2007.

http://www.spec.org/jbb2000/
http://www.spec.org/jbb2000/

	Abstract
	Acknowledgments
	Introduction
	Transactional Memory
	The Case for Hardware Transactional Memory
	Thesis
	Organization

	The Architectures of HTM
	Basic TM Framework
	Architectural Interface
	Strong versus Weak Isolation

	Eager-Pessimistic (EP)
	Lazy-Optimistic (LO)
	Lazy-Pessimistic (LP)
	Eager-Optimistic (EO)
	Contention Management
	Contention Management Policies
	Pathologies
	Universal Contention Manager

	Virtualization
	Other Uses of HTM
	Related Work

	Evaluation of HTM Design Space
	Expected Performance
	Experimental Setup
	Eager-Pessimistic
	Lazy-Optimistic
	Lazy-Pessimistic
	Contention Management

	Benchmarks for Evaluation
	bayes
	genome
	intruder
	kmeans
	labyrinth
	ssca2
	vacation
	yada
	barnes
	mp3d
	radix
	swim

	Baseline Evaluation
	Contention Management in Pessimistic Conflict Detection
	Discussion

	Comparing Transactional Systems
	Comparing to Traditional Parallelization
	Shallow vs. Deep Memory Hierarchy
	Instruction-Level Parallelism
	Interconnect Parameters
	Related Work
	Conclusions

	The Architectural Semantics of HTM
	The Need for Rich HTM Semantics
	HTM Instruction Set Architecture
	Two-phase Commit
	Commit Handlers
	Violation Handlers
	Abort Handlers
	Nested Transactions
	Nested Transactions and Handlers
	Non-Transactional Loads and Stores
	Discussion

	Flexibly Building Languages and Systems
	Hardware Implementation
	Two-Phase Commit
	Commit, Violation, and Abort Handlers
	Nested Transactions

	Evaluation
	Performance Optimizations with Nesting
	I/O within Transactions
	Conditional Synchronization within Transactions

	Conclusion

	All Transactions All the Time
	Continuous Transactional Execution
	Transactional Coherence and Consistency
	Design Alternatives
	Coherence Granularity
	Coherence Protocol
	Commit Protocol

	Performance Evaluation
	Methodology
	Baseline Evaluation
	Coherence Granularity: Line-level versus Word-level
	Coherence Protocol: Update versus Invalidate
	Commit Protocol: Commit-through versus Commit-back
	Bus Utilization

	Conclusions

	Conclusions and Future Work
	Bibliography

