%

PERVASIVE
PARALLELISM
LABORATORY

o |
Transactional Memory

Concepts, Implementations, &
Opportunities

Christos Kozyrakis

Pervasive Parallelism Lab

Stanford University
http://ppl.stanford.edu/~christos

My Background %

m Assistant Professor of EE & CS @ Stanford
= PhD from UC Berkeley, BS from U. of Crete
= Research focus: computer systems
= Architecture, design, runtimes, programming models, ...

m Active research projects
= Transactional memory (http://tcc.stanford.edu)
= Systems security (http://raksha.stanford.edu)
= Energy-efficient data-centers (http://joulesort.stanford.edu)

m Past research
= Network switches (ugrad work @ ICS-FORTH)
= Multimedia processors (grad work @ UC Berkeley)

My Experience on Transactional £
Memory %

Hardware support
= TCC architecture [ISCA’04, ASPLOS'04, PACT'05], HTM virtualization [ASPLOS'06]
= ISA for HTM systems [ISCA’06]
= SigTM hybrid system [ISCA’07]
Programming environments
= Java+TM=Atomos [SCOOL'05, PLDI'06], transctional collection classes [PPoPP'07]
= OpenMP+GCC+TM=0penTM [PACT'07, http://opentm.stanford.edu]

Applications
= Basic characterization [HPCA'05, WTW’06]
= STAMP benchmark suite [11swc'08, http://stamp.stanford.edu]
Full-system prototypes
= ATLAS FPGA-based prototype for HTM [DATE'07, FPGA'07]
TM beyond concurrency control
= Fix DBT races [HPCA'08], replay/tuning/debugging on ATLAS [ISCA’07 tutorial]

L

Acknowledgements

= Ali Adl-Tabatabai & Bratin Saha (Intel)
= Slides from our joined tutorial
= Hot Chips’06, PACT'06, PPoPP’07, PACT'07

= My co-authors on TM papers
= TCC group at Stanford
= Ali Adl-Tabatabai, Bratin Saha, Jim Larus

= The TM research community
= TM bibliography: http://www.cs.wisc.edu/trans-memory
= Extensive listing of TM papers

Course Objectives

= We will
= Introduce basic TM concepts & interfaces
= Cover a wide range of implementation tradeoffs
= Discuss opportunities beyond parallelism
= Provide basis for further reading & research on TM

= Non-goals
= Discuss every paper on TM technology
Impossible for an active research field
= Conclude with a single, optimal implementation
« Although we will draw some important insights
= Go over a large number of performance graphs
« Prefer to focus on insights instead
= Discuss how TM integrates with other novel ideas for parallelism

Perspective: TM & Parallel e
Programming %

B The challenges of parallel programming
1. Finding independent tasks in the algorithm
Mapping tasks to execution units (e.g. threads)

3. Defining & implementing synchronization
T Races, deadlock avoidance, memory model issues

Composing parallel tasks
Recovering from errors

Portable & predictable performance
Scalability

Locality management

All the sequential issues as well...

O 00 N 0SS

Course Outline

&

m Lecture 1
= TM introduction & programming concepts

m Lecture 2
= Introduction to TM implementation
= Software TM systems

m Lecture 3
= Hardware support for TM

m Lecture 4
= Hardware/software interface for TM
= TM uses beyond concurrency control

Course Etiquette

m Please ask questions
= Best way to set course pace & focus

= Best way to get most out of the course fee
= You could study my slides at your home

= Other students will benefit from your questions

= Keep in mind
= Must cover a decent subset of the material, so...
« May defer some questions till an appropriate slide
May defer some questions for offline
May only provide the insight & a pointer to the details

= I don’t have all the answers...

Questions?

L

Lecture 1:
TM Concepts & Programming

= QOutline
= TM definition & key advantages
= TM programming constructs
= Caveats and open issues

m Disclaimer

s The exact semantics and constructs for TM in
various languages are still an open research issue

= The goal of this lecture is to introduce the
constructs & related issues in order to motivate
the implementation

Will not provide formal/strict semantics

10

Motivation: The Parallel Programming @&
Crisis @

m Multi-core chips =inflection point for SW development
= Scalable performance now requires parallel programming

m Parallel programming up until now
= Limited to people with access to large parallel systems

= Using low-level concurrency features in languages
= Thin veneer over underlying hardware

= Too cumbersome for mainstream software developers
= Difficult to write, debug, maintain and even get some speedup

= We need better concurrency abstractions

= Goal = easy to use + good performance
= 90% of the speedup with 10% of the effort

11

Transactional Memory (TM) %

m Memory transaction [Lomet’77, Knight'86, Herlihy & Moss93]
= An atomic & isolated sequence of memory accesses
= Inspired by database transactions

= Atomicity (all or nothing)
= At commit, all memory writes take effect at once
= On abort, none of the writes appear to take effect
= Isolation
= No other code can observe writes before commit
m Serializability
= Transactions seem to commit in a single serial order
= The exact order is not guaranteed though

12

Programming with TM %

volid deposit (account, amount)({ volid deposit (account, amount)(
lock (account) ; atomic {
int t = bank.get (account); int t = bank.get (account);
t = t + amount; ‘ t = t + amount;
bank.put (account, t); bank.put {account, t):
unlock (account) ; }

m Declarative synchronization
= Programmers says what but not how
= No explicit declaration or management of locks

m System implements synchronization
= Typically with optimistic concurrency [Kung’81]
= Slow down only on conflicts (R-W or W-W)

13

Advantages of TM %

m Easy to use synchronization construct
= As easy to use as coarse-grain locks
s Programmer declares, system implements

m Performs as well as fine-grain locks
= Automatic read-read & fine-grain concurrency
= No tradeoff between performance & correctness

m Failure atomicity & recovery
= No lost locks when a thread fails
= Failure recovery = transaction abort + restart

= Composability
= Safe & scalable composition of software modules

14

Example: Java 1.4 HashMap %

m Fundamental data structure
= Map: Key — Value

public Object get(Object key) {
int idx = hash(key); // Compute hash
HashEntry e = buckets[idx]; // to find bucket
while (e '= null) { // Find element in bucket
if (equals(key, e.key))

return e.value;
e = e.next;

¥

return null;

¥

m Not thread safe - no lock overhead when not needed

15

Synchronized HashMap %

= Java 1.4 solution: synchronized layer
= Convert any map to thread-safe variant
= Uses explicit, coarse-grain locking specified by programmer

public Object get(Object key) {
synchronized (mutex) { // mutex guards all accesses to map m

return m.get(key);

¥
¥

m Coarse-grain synchronized HashMap
= Pros: thread-safe, easy to program

= Cons: limits concurrency, poor scalability
= Only one thread can operate on map at any time

16

Concurrent HashMap (Java 5) %

public Object get(Object key) {
int hash = hash(key);
// Try first without locking...
Entry[] tab = table;
int index = hash & (tab.length - 1);
Entry first = tab[index];
Entry e;

// Recheck under synch if key not there or interference
Segment seg = segments[hash & SEGMENT_MASK];
synchronized(seg) {
tab = table;
index = hash & (tab.length - 1);
Entry newFirst = tab[index];
if (e '=null || first != newFirst) {
for (e = newFirst; e = null; e = e.next) {
if (e.hash == hash && eq(key, e.key))
return e.value;
s
b

return null;

¥

for (e = first; e I= null; e = e.next) {
if (e.hash == hash && eq(key, e.key)) {
Object value = e.value;
if (value !'= null)
return value;
else
break;

b
b
m Fine-grain synchronized concurrent HashMap

= Pros: fine-grain parallelism, concurrent reads
= Cons: complex & error prone

17

Performance: Locks

L

’—O—coarse locks —#—fine locks

1
™ ———— ¢
06
04

T

0.2 | ‘._\-.

1 2 4 8 16

Processors

Hash-Table
Execution Time

—&—coarse locks —#—fine locks

QO

@

= e,

© [=

- \

O F2

c o

@ & r—*

E 0 T T T T T

m 1 2 4 8 16
Processors

18

Transactional HashMap

m Simply enclose all operation in atomic block
= System ensures atomicity

public Object get(Object key) {
atomic { // System guarantees atomicity
return m.get(key);

¥

® Transactional HashMap
= Pros: thread-safe, easy to program

= Q: good performance & scalability?
Depends on the implementation, but typically yes

19

Performance: Locks Vs
Transactions

L

—&—coarse locks —#—fine locks TCC ‘
Q 1 '_‘\" &
g 2 038 4 /
=
S 0.6
(2] £ 04 - =
© 3
- X 02
0
1 2 4 8 16
Processors
‘r—o—coarse locks —#—fine locks TCC

1 2 4 8 16

Balanced Tree
Execution Time

Processors

TCC: a HW-based TM system

20

L

Failure Atomicity: Locks

vold transfer (A, B, amount)
synchronized (bank) {

try({
withdraw (A, amount) ;

deposit (B, amount):;

}

catch (exceptionl) { /* undo code 1%*/}
catch (exception2) { /* undo code 2*/}

}

= Manually catch exceptions
= Programmer provides undo code on a case by case basis
« Complexity: what to undo and how...

= Some side-effects may become visible to other threads

« E.g., an uncaught case can deadlock the system...
21

L

Failure Atomicity: Transactions

volid transfer (A, B, amount)
atomic{
withdraw (A, amount) ;
deposit (B, amount);

m System processes exceptions
= All but those explicitly managed by the programmer
= Transaction is aborted and updates are undone

= No partial updates are visible to other threads
= No locks held by a failing threads...

= Open question: how to best communicate exception info

22

Composability: Locks %

volid transfer (A, B, amount) volid transfer (B, A, amount)
synchronized (A) { = (A) synchronized (B) {
synchronized (B) { & = - synchronized (A) {
withdraw (A, amount):; withdraw (B, amount):;

deposit (B, amount); deposit (A, amount):;

s Composing lock-based code is tough
= Goal: hide intermediate state during transfer
= Need global locking methodology now...

m Between the rock & the hard place
= Fine-grain locking: can lead to deadlock

23

Composability: Locks %

void transfer (A, B, amount) @ void transfer(C, D, amount)
synchronized (bank) { @Wﬂ synchronized (bank) {
withdraw (A, amount); withdraw (C, amount) ;
deposit (B, amount); deposit (A, amount):;

= Composing lock-based code is tough
= Goal: hide intermediate state during transfer
= Need global locking methodology now...

= Between the rock & the hard place
= Fine-grain locking: can lead to deadlock
= Coarse-grain locking: no concurrency

24

Composability: Transactions %

volid transfer (A, B, amount) volid transfer (B, A, amount)
atomic{ atomic{
withdraw (A, amount) ; withdraw (B, amount) ;
deposit (B, amount) ; deposit (A, amount);
} }

m Transactions compose gracefully

= Programmer declares global intend (atomic transfer)
=« No need to know of a global implementation strategy

= Transaction in transfer subsumes those in withdraw & deposit
=« Outermost transaction defines atomicity boundary

m System manages concurrency as well as possible
= Serialization for transfer(A, B, $100) & transfer(B, A, $200)
= Concurrency for transfer(A, B, $100) & transfer(C, D, $200)

25

Programming with TM (continued) %

m Basic atomic blocks: atomic{}

m User-triggered abort: abort

m Conditional synchronization: retry
s Composing code sequences: orelse

= Integration with parallel models: OpenTM

26

User-triggered Abort

L

= Abort statement
= Undo current transaction (no visible writes)

= Jump to a specified code location
= User Vs. system initiated abort

= Abort uses
= Check high-level invariants in user code
= Error and exception handling

void transfer (A, B, amount)
atomic{
try {
work () ;
}
galeh (errorl) { Tix codel();)
catch(error?2) { abort(); }

27

Conditional Synchronization with ¢
Retry %

Object blockingDequeue
// Block until queue is not empty
atomic{
1f (1sEmpty()) retry;
return dequeue();

}

m Retry statement
s Rolls back current transaction

= Waits for change in state accessed by the transaction
« Everything or what specified with a watch() statement

= Store by another thread implicitly signals blocked thread
= No lost wake up compared to traditional wait-notify schemes

m Alternative: conditional atomic statements
= Specify & test condition at transaction start

28

Composing Code Sequences %

atomic({

gl .blockingDequeue ()
} orelse {

g2 .blockingDequeue () ;
} orelse {

g3 -blockingDegqueue () ;

}

= Orelse statement
= Allows composition of alternative code statements

= If one clause fails due to retry, try next alternative
= Sequential order of clauses

29

L

Integration with Parallel Models

= Example: OpenTM = OpenMP + TM
= OpenMP: master-slave parallel model
« Easy to specify parallel loops & tasks
= TM: atomic & isolation execution
« Easy to specify synchronization and speculation

= OpenTM features
= Transactions, transactional loops & sections
= Data directives for TM (e.g., thread private data)
= Runtime system hints for TM

m Code example
#pragma omp transfor schedule (static, chunk=42, group=6)
for (1=0p i<N; i++) {
bin[Al i1]] = bin[Al i]] +1;
}

30

TM Caveats and Open Issues %

m TM Vs. Locks

m I/O and unrecoverable actions

m Interaction with non-transactional code

31

Atomic() # Lock()+Unlock()

= The difference
= Atomic: high-level declaration of atomicity
« Does not specify implementation/blocking behavior
=« Does not provide a consistency model
= Lock: low-level blocking primitive
Does not provide atomicity or isolation on its own

= Keep in mind
= Locks can be used to implement atomic(), but...
= Locks can be used for purposes beyond atomicity
=« Cannot replace all lock regions with atomic regions
= Atomic eliminates many data races, but
= Atomic blocks can suffer from atomicity violations
Atomic action in algorithm split into two atomic blocks

32

Example: Lock-based Code that does

)

Not Work with Atomic
//Thread 1 //Thread 2
synchronized (lockl) { synchronized (lock2) {
flagB = true; flagA = true;
while (flagA==0); while (f£lagB==0) ;

m What is the problem with replacing synchronized with atomic?

= How can we code this pattern with atomic blocks?

33

L

Example: Atomicity Violation

//Thread 1
atomic () {
Bt — B //Th?ead 2
atomic{

} ptr = NULL;

atomic () {
B = ptr—>field;
}

m What should be the transaction boundaries for the thread 1 code?

34

/O and Other Irrevocable Actions

= Challenge: difficult to undo output & redo input
= I/O devices, I/0 registers,...

= Alternative solutions (open problem)

= Buffer output & log input
« Finalize output & clear log at commit
Does not work if atomic does input after output
= Guarantee that transaction will not abort
« Abort interfering transactions or sequentialize the system
Does not work with abort(), input-after-output
= Transaction-based systems
= Multiple transactional devices (TM, log-based FS, ...)

« Manager coordinates transactions across devices
= See IBM’s Quicksilver system as a pre-TM era example

35

Interactions with Non-Transactional £
Code %

m Two basic alternatives

= Weak atomicity

= Transactions are serializable only against other transations

= No guarantees about interactions with non-transactional code
= Strong atomicity

= Transactions are serializable against all memory accesses

= Non-transactional loads/stores are 1-instruction transactions

= The tradeoff
s Strong atomicity seems intuitive
= Predictable interactions for a wide range of coding patterns
= But, strong atomicity has high overheads for software TM

36

Example of Atomicity Challenges %

//Thread 1
atomic () {
tl = A;
//Thread 2
B++;
t2 = A;

= With strong atomicity
= t1==t2 always
= Thread 2 may cause thread 1 transaction to abort
= With weak atomicity
= t1 may not be equal to t2
= Depends on exact interleaving, TM implementation, ...

37

Example of Atomicity Challenges %

//Thread 1
atomic () {
At+;
//Thread 2
t=A;
At+;

= With strong atomicity

= Thread 2 reads value of A before or after transaction
= With weak atomicity

= Thread 2 may also read intermediate value

= Depends on exact interleaving, TM implementation, ...

38

An Example without Races:

)

Privatization
Thread 1 Thread 2
synchronized (list) { synchronized (list) {
if (ligh = NULkj 1 if (list != NULL) {

e = list; .

list = e.next; P = ShEE
}} p.x = 9;
rl = e.x; }
r2 = e.x;
assert(rl '= r2); list L0] 7211 T

= Privatization example

= Thread 1 removes first element from list
s Correctly synchronized code with locks

« Thread 1 assertion should always succeed
= What happens if we use atomic() instead?

39

Privatization on a Weakly Atomic

™

Thread 1 Thread 2
atomic| = 1 atomic{
if (list ! = NULL) { if (list!=NULL) f{
e = list; ;
list = e.next; A
. p.x = 9;
rl = e.%; }
r2 = e.x;
assert(rl != r2); list '——BLQ —"€ﬂ1

e

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40

Privatization on a Weakly Atomic

™

Thread 1

atomic
1if (list ! = NULL)
e = list;
list = e.next;
b}
rl = e.x;
r2 = e.x;

assert(rl '= r2);

{

Thread 2

atomic{

1if (list!=NULL) {

Eb = lLists

P
p.x = 9;

list ——9|_o7\ —1>11

e

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40

Privatization on a Weakly Atomic

™

)

Thread 1

atomic|
1if (list ! = NULL)
e = list;
list = e.next;
b}
rl = e.x;
r2 = e.x;

assert(rl '= r2);

{

Thread 2

atomic{
if (list!=NULL) {
= lLists

P
p.x = 9;

list ‘I—_ylv\ —eﬁv

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40

Privatization on a Weakly Atomic

™

)

Thread 1
atomic|
1T (list ! = NULL) {
e = list;
list = e.next;
- @D
rl = e.x;
r2 = e.x;
assert(rl '= r2);

Thread 2

atomic{
if (list!=NULL) {
= lLists

P
p.x = 9;

list _Ijlv\ —eﬁv

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40

Privatization on a Weakly Atomic

™

)

Thread 1

atomic|
1if (list ! = NULL)
e = list;
list = e.next;
b}
rl = e.x;
r2 = e.x;

assert(rl '= r2);

{

Thread 2

atomic{
if (list!=NULL) {
= lLists

P
p.x = 9;

list _I__?P\ —eﬁv

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40

Privatization on a Weakly Atomic

™

)

Thread 1

atomic|
1if (list ! = NULL)
e = list;
list = e.next;
b}
rl = e.x; // rl =29
r2 = e.x;

assert(rl '= r2);

{

Thread 2

atomic{
if (list!=NULL) {
= lLists

P
p.x = 9;

list _I__?P\ —eﬁv

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40

™

Privatization on a Weakly Atomic %

Thread 1

atomic
i1f (list ! = NULL)
e = list;
list = e.next;
ki
rl = e.x; // rl =9
r2 = e.x;

assert(rl '= r2);

{

Thread

2

atomic{

1if (list!=NULL) {

P
P.

= lLists

x = 9;

&

list

e

R

LQ7\-_

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40

™

Privatization on a Weakly Atomic %

Thread 1

atomic|
i1f (list ! = NULL)
e = list;
list = e.next;
ki
rl = e.x; // rl =29
r2 = e.x; J/ r2 =0
assert(rl '= r2);

{

Thread 2

atomic{

1if (list!=NULL) {

= lLists

p

list |_07\ —eﬁv —

e

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40

™

Privatization on a Weakly Atomic %

Thread 1

atomic/

if (list ! =

e

list = e.next;

I3

rl = e.x;

r2 = @,X;

= litste

Thread 2

NULL)

// rl

atomic{

1if (list!=NULL) {

P
P.

lists

// r2

assert(rl '= r2) ;@C:

= Assuming an eager-versioning STM system

list

e

AENNES

p

= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40

Potential Solutions (Open Issue) %

m Strong atomicity using hardware support

= Full hardware TM or hardware-based conflict detection

m Optimize software overhead for strong atomicity
= Through compiler optimizations for private and non-shared data

= Possible for managed languages; difficult for unmanaged

= Programming models that explicitly segregate transactional from
non transactional data

= Allows correct handling of privatization & publication patterns

= Alternative system semantics
= Single lock atomicity, disjoint lock atomicity, ...
= Guarantees & costs in between strong and weak atomicity

= Similar to the discussion on relaxed consistency models

41

Q

Lecture 1: Select References "

Basics
= Herlihy & Moss. Transactional Memory: Architectural Support for Lock-Free Data Structures,
ISCA, 1993
= Kung & Robinson. On Optimistic Concurrency Control, ACM Trans. on DBs, 1981
TM Overview
= Larus & Rajwar. Transactional Memory, Morgan & Claypool Publishers, 2007
= Larus & Kozyrakis. Transactional Memory, CACM, 2008
TM Programming & Caveats
= Harris & Fraser. Language Support for Lightweight Transactions, OOPSLA, 2003
= Haris. Composable Memory Transactions, PPoPP, 2005
= Carlstrom et al. The Atomos Transactional Programming Language, PLDI, 2006

= Adl-Tabatabai et al. Compiler and runtime support for efficient software transactional
memory, PLDI, 2006

= Lu et al. AVIO: Detecting Atomicity Violation Bugs via Access Interleaving Invariants,
ASPLQOS, 2006

= Shpeisman et al. Enforcing Isolation and Ordering in STM, PLDI, 2007

= Yoo et al. Kicking the Tires of Software Transactional Memory: When the Going Gets Tough,
SPAA, 2008

= Welc et al. Irrevocable Transactions and their Applications, SPAA, 2008

42

Questions?

L

[2 PERVASIVE
2 PARALLELISM
[l LABORATORY

o |
Transactional Memory

Concepts, Implementations, &
Opportunities

Christos Kozyrakis

Pervasive Parallelism Lab

Stanford University
http://ppl.stanford.edu/~christos

44

Lecture 1 Summary %

= TM = declarative synchronization
= User specifies requirement (atomicity & isolation)
= System implements in best possible way

= Motivation for TM

= Difficult for user to get explicit sync right
« Correctness Vs performance Vs complexity

= Explicit sync is difficult to scale
=« Locking scheme for 4 CPUs is not the best for 64

= Difficult to do explicit sync with composable SW
= Need a global locking strategy

= Other advantages: fault atomicity, ...

45

Lecture 1 Summary (cont) %

= TM applicability
= Apps with irregular or unstructured parallelism

= Difficult to prove independence in advance
Difficult to partition data in advance

= Examples: 3-tier system, graphs apps, Al apps, ...

= A note to keep in mind

= TM does not generate new parallelism
It just helps you tap into what is there

= TM target: 90% of benefit @ 10% of work

« Given infinite time & a lock, you should always be
able to do as well as TM (roughly)

46

Lecture 2:
TM Implementation & Software TM

L

m Qutline

= Implementation requirements for TM
« Data versioning techniques
« Conflict detection techniques
=« Design space tradeoffs

= Software TM systems (STM)
=« STM data structures
« Example STM algorithm
« STM optimizations & challenges

47

TM Implementation Basics %

= TM systems must provide atomicity and isolation
= Without sacrificing concurrency

= Basic implementation requirements
= Data versioning
= Conflict detection & resolution

= Implementation options
= Hardware transactional memory (HTM)
= Software transactional memory (STM)

= Hybrid transactional memory
« Hardware accelerated STMs and dual-mode systems

48

Data Versioning %

= Manage uncommited (new) and commited (old) versions
of data for concurrent transactions

=" Eager versioning (undo-log based)
= Update memory location directly
= Maintain undo info in a log
+ Faster commit, direct reads (SW)
- Slower aborts, fault tolerance issues

=ahLazy versioning (write-buffer based)
= Buffer data until commit in a write-buffer
= Update actual memory location on commit
+ Faster abort, no fault tolerance issues
- Slower commits, indirect reads (SW)

49

Eager Versioning lllustration %

Beqgin Xaction

Thread

X: 10

|

Memory

Undo
Log

Write X<15

Thread j’
Undo
X: 10| Log

X: 15 Memory

Commit Xaction

Thread

X:15

Abort Xaction

Thread

X: 10 Memory

50

Lazy Versioning lllustration

Beqgin Xaction

Write X+15
Thread Thread
|—| Write
Buffer X: 15 |Buffer
X:10 Memory X:10 | Memory
Commit Xaction Abort Xaction
Thread Thread
rite
ffer
X:10 Memory y

Conflict Detection %

m Detect and handle conflicts between transaction
= Read-Write and (often) Write-Write conflicts

s Must track the transaction’s read-set and write-set
= Read-set: addresses read within the transaction
= Write-set: addresses written within transaction

rarPessimistic detection

= Check for conflicts during loads or stores

= SW: SW barriers using locks and/or version numbers
« HW: check through coherence actions

= Use contention manager to decide to stall or abort
=« Various priority policies to handle common case fast

52

Pessimistic Detection lllustration (%7

Case 1 Case 2 Case 3 Case 4

X0 X1

dNIL

check
restart

commit

rd A

commit

| restart

Success Early Detect Abort No progress
53

Conflict Detection (cont) %

2. Optimistic detection

= Detect conflicts when a transaction attempts to commit
SW: validate write/read-set using locks or version numbers

« HW: validate write-set using coherence actions
= Get exclusive access for cache lines in write-set

= On a conflict, give priority to committing transaction
=« Other transactions may abort later on

= On conflicts between committing transactions, use
contention manager to decide priority

m Note: optimistic & pessimistic schemes together

= Several STM systems use optimistic for reads and
pessimistic for writes

54

Optimistic Detection lllustration [55

Case 1 Case 2 Case 3 Case 4

X0 X1 X0 X1 X0 X1

dNIL

rd A
rA
rd A
commit commit

check check
Success Abort Success Forward progresg

Conflict Detection Tradeoffs %

=" Pessimistic conflict detection (aka encounter or eager)

+ Detect conflicts early
Undo less work, turn some aborts to stalls

- No forward progress guarantees, more aborts in some cases
- Locking issues (SW), fine-grain communication (HW)

2 Optimistic conflict detection (aka commit or lazy)
+ Forward progress guarantees

+ Potentially less conflicts, shorter locking (SW), bulk
communication (HW)

- Detects conflicts late, still has fairness problems

56

Conflict Detection Granularity

L

= Object granularity (SW/hybrid)

+ Reduced overhead (time/space)

+ Close to programmer’s reasoning

- False sharing on large objects (e.g. arrays)
= Word granularity

+ Minimize false sharing

- Increased overhead (time/space)
m Cache line granularity

+ Compromise between object & word

+ Works for both HW/SW

@ Mix & match = best of both words

= Word-level for arrays, object-level for other data, ...

57

L

TM Implementation Space (Examples)

= Hardware TM systems
= Lazy + optimistic: Stanford TCC
= Lazy + pessimistic: MIT LTM, Intel VTM
= Eager + pessimistic: Wisconsin LogTM

m Software TM systems
= Lazy + optimistic (rd/wr): Sun TL2
= Lazy+ optimistic (rd)/pessimistic (wr): MS OSTM
= Eager + optimistic (rd)/pessimistic (wr): Intel STM
= Eager + pessimistic (rd/wr): Intel STM

= Optimal design is still an open questions
= May be different for HW, SW, and hybrid
= Will discuss further in STM and HTM sections of the course

58

Questions?

L

Software Transactional Memory t%

atomic { tmTxnBegin ()
a.x = tl tmWr (&a.x, tl)
a.y = t2 tmWr (&a.y, t2)
if (a.z == 0) { » 1if (tmRd(&a.z) !'= 0) {
a.x = 0 tmWr (&a.x, 0);
a.z = t3 tmWr (&a.z, t3)
} }
} tmTxnCommit ()

m Software barriers for TM bookkeeping
= Versioning, read/write-set tracking, commit, ...
= Using locks, timestamps, data copying, ...

m Requires function cloning or dynamic translation

60

STM Approaches

m Static Vs dynamic
= Static: declare in advance all data access
= Dynamic: dynamically handle accesses in program
= Nearly all recent STMs are dynamic

= Non-blocking Vs lock-based
= Non-blocking: rely on non-blocking algorithms
=« Non-blocking STMs use lazy versioning
=« Overhead of reads (indirection or search write-buffer)
= Lock-based: rely on blocking locks
=« Can implement eager versioning (fast reads)
« There are also lock-based lazy systems (e.g., TL2)

= Will focus on dynamic, lock-based STMs

61

STM Runtime Data Structures %

m Transaction descriptor (per-thread)
= Used for conflict detection, commit, abort, ...
= Includes the read set, write set, undo log or write buffer

® Transaction memento (per thread)
= Used for nesting & partial rollback
= Includes checkpoints of machine and transaction descriptor

m Transaction record (per data)
= Pointer-sized record guarding shared data

= Tracks transactional state of data
= Shared: accessed by multiple readers
= Using version number or shared reader lock

= Exclusive: access by one writer
= Using writer lock that points to owner

62

Mapping Data to Transaction Records

%

Every data item has an associated transaction record

Java/C#

class Foo{ [gp%=:

int X; X
inty;
) Y
Embed in

each object

hash

X

y

C/C++
struct Foo {
int x; X
inty; y
}

Hash fields or
array elements to
global table

f(obj.hash, field.index)

Address-based hash
into global table

Cache-line or word
granularity

63

Conflict Detection Granularity

= Object granularity
= Low overhead mapping operation
= Exposes optimization opportunities

= Element/field granularity
= Reduces false sharing
= Improves scalability

m Cache line granularity
= Matches hardware TM
= Reduces storage overhead of transactional records
= Hard for programmer & compiler to analyze

= Mix & match per type basis

= E.g., element-level for arrays, object-level for non-arrays

64

An Example STM Algorithm

L

= Based on Intel’s McRT STM [PPoPP’06, PLDI'06, CGO’'07]
= Eager versioning, optimistic reads, pessimistic writes

= Based on timestamp for version tracking

= Global timestamp
= Incremented when an writing xaction commits

= Local timestamp per xaction
= Global timestamp value when xaction last validated

m Transaction record (32-bit)
= LS bit: O if writer-locked, 1 if not locked

= MS bits
« Timestamp of last commit if not locked
= Pointer to owner xaction if locked

65

STM Operations

L

m STM read (optimistic)
= Direct read of memory location (eager)
= Validate read data
=« Check if unlocked and data version < local timestamp
« If not, validate all data in read set for consistency
= Insert in read set
= Return value

m STM write (pessimistic)
= Validate data
= Check if unlocked and data version < local timestamp
= Acquire lock
= Insert in write set
Create undo log entry
= Write data in place (eager)

66

STM Operations (cont) %

= Read-set validation
= Get global timestamp
= For each item in the read set
« If locked by other or data version > local timestamp, abort
= Set local timestamp to global timestamp from initial step

m STM commit
= Atomically increment global timestamp by 2
= If old global timestamp > local timestamp, validate read-set
= For each item in the write set
= Release the lock and increment version number by 2

67

&

STM lllustration

foo |3 S bar
hdr hdr
XxX=9 X=0
T1 y=7} =0 T2
atomic { atomic_{
£ = foo.x; tl = bar.x;
bar.x = t; t2 = bar.y;
t = foo.y; }
bar.y = t;

m T1 copies object foo into object bar
= T2 should read bar to be [0,0] or [9,9]

68

&

STM lllustration

foo |3 S bar
hdr hdr
X=9 x=0
T1 y=7 y=0 To
t = foo.x; tl = bar.x:
bar.x = t; t2 = bar.v:
t = foo.y; }

bar.y = t;

&

STM lllustration

foo |3 3 bar
hdr hdr
X=9 x=0
T1 y=7 y=0 To
atomic { atomic_{
£ = foo.x; <= tl = bar.x:
bar.x = t; t2 = bar.v:
t = foo.y; }

bar.y = t;

&

STM lllustration

foo |3 S bar
hdr hdr
Xx=9 x=0
T1 y=7 y=0 To
atomic { atomic {
L = foo.x; &= tl = bar.x;
bar.x = t; t2 = bar.v:
t = foo.y; }
bar.y = t;

}

Reads <foo, 3>

&7

STM lllustration

foo |3 S bar
hdr hdr
Xx=9 Xx=0
T1 y=17 y=0 -
BEOITES atomic_{
t = foo.x; —_— t1 = bar.x;
bar.x = t; L5 = DoaiE
t = foo.y; }
bar.y = t;

}

Reads <foo, 3> Reads <bar, 5>

STM lllustration

&

foo |3

hdr

Xx=9
T1 y=7

< | X || On
I

o0

atomic {
t = foo.x;
bar.x = t; <=
t = foo.y;
bar.y = t;

}

Reads <foo, 3>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

foo |3

hdr

hdr

Xx=9
T1 y=7

<< | X
I
o0

atomic {
t = foo.x;
bar.x = t; <=
t = foo.y;
bar.y = t;

}

Reads <foo, 3>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

foo |3

hdr

hdr

Xx=9
T1 y=7

atomic {
t = foo.x;
bar.x = t; <=
t = foo.y;
bar.y = t;

}

Reads <foo, 3>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

Eﬁﬁg

foo

i}
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
}

Reads <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0>

3

hdr

hdr

x=9
y="7

G

bar
12
atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

Eﬁﬁg

11

atomic {

t = foo.x;

bar.x

t = foo.y;

bar.y

}
Reads <foo, 3>
Writes <bar, 5>

Undo <bar.x, 0>

3

hdr

hdr

x=9
y="7

bar
12
atomic {
Bl =
— tZ =

J

bar.x;
bar.y;

Reads <bar, 5>

69

STM lllustration

Eﬁﬁg

11

atomic {

t = foo.x;

bar.x

t = foo.y;

bar.y

}
Reads <foo, 3>
Writes <bar, 5>

Undo <bar.x, 0>

3

hdr

x=9
y="7

T1

hdr

x=9

y=0

bar

T2
atomic {
tl =

T2 waits ==> t2 =

J

bar.x;
bar.y;

Reads <bar, 5>

69

STM lllustration

&

foo

11

atomic {

t = foo.x;
bar.x = t;

3

hdr

hdr

x=9
y="7

t = foo.y,; ¢

bar.y = t;

}

Reads <foo, 3> <foo, 3>

Writes <bar, 5>
Undo <bar.x, 0>

bar

12
atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

foo

11

atomic {

t = foo.x;
bar.x = t;
t = foo.y;

3

hdr

hdr

x=9
y="7

bar.y = t; <=

}

Reads <foo, 3> <foo, 3>

Writes <bar, 5>
Undo <bar.x, 0>

bar

12
atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

foo |3

hdr

hdr

9
Z

X
T1 Yy

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t,; €=
}
Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12
atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

hdr

foo |3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
} < —

Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

hdr

foo |3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
} < —

Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

foo ~ | 3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y
} <—

Reads <foo, <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

foo |3

hdr

hdr
x=9
y=17

11

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
} <—
Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

hdr

foo |3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
} < —

Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

STM lllustration

&

2

< %

ERN
~|©

foo |3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
} < —

Reads <foo, 3> <foo, 3>
Writes

Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69

&

STM lllustration

foo |3 / bar
hdr hdr
Xx=9 X=9
T1 y=7] Y= T2
atomic { atomic {
£ = foo.x; tl = bar.x;
bar.x = t; t2 = bar.v:
t = foo.y; }
bar.y = t;

Reads <bar, 5>

69

STM lllustration

&

foo |3

hdr

2

Xx=9
T1 y=17

< %

ERN
~|©

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

bar

12

atomic {
tl = bar.x;
- T2 = bar.y;

J

Reads <bar, 5> <bar, 7>

69

STM lllustration

&

foo |3

hdr

- g
ERN
~|©

9
Z

< %

X
11 y

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

bar

12

atomic {
tl = bar.x;
t2 = bar.y;
—

Reads <bar, 5> <bar, 7>

69

STM lllustration

foo |3

hdr

2

Xx=9
T1 y=17

< %

ERN

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

Reads <bar, 5> <bar, 7>

69

STM lllustration

foo |3

hdr

=

Xx=9
T1 y=17

<< | X

ERN

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

Reads <bar, 5> <bar, 7>

69

Challenges for STM Systems

)

m Overhead of software barriers
= Function cloning
= Robust contention management

= Memory model (strong Vs. weak atomicity)
s See comments in Lecture 1

70

Optimizing Software Transactions %

atomic { tmTxnBegin ()
a.x = tl tmWr (&a.x, tl)
a.y = t2 tmWr (&a.y, t2)
1if (a.z == 0) { 1f (tmRd(&a.z) !'= 0)
a.x =0 Ill'} tmWr (&a.x, 0);
a.z = t3 tmWr (&a.z, t3)
} }
} tmTxnCommit ()

= Monolithic barriers hide redundant logging & locking

{

71

Optimizing Software Transactions %

atomic {
a.x = tl
a.y = t2
1f (a.z == 0) {
a.x =0 »
a.z = t3

= Decomposed barriers expose
redundancies

txnOpenForWrite (a)
txnLogObjectInt (&a.x, a)
a.x = tl
txnOpenForWrite (a)
txnLogObjectInt (&a.y, a)

a.y = t2
txnOpenForRead (a)
if(a.z !'= 0) {

txnOpenForWrite (a)
txnLogObjectInt (&a.x, a)
a.x =0
txnOpenForWrite (a)
txnLogObjectInt (&a.z, a)
a.z = t3

72

Optimizing Software Transactions %

atomic {
a.x = tl
a.y = t2
1f (a.z == 0) {
a.x =0 »
a.z = t3

= Decomposed barriers expose
redundancies

txnOpenForWrite (a)
txnLogObjectInt (&a.x, a)
a.x = til

txnLogObjectInt (&a.y, a)

a.y = t2
txnOpenForRead (a)
if(a.z !'= 0) {

txnLogObjectInt (&a.x, a)

a.x =0

txnLogObjectInt (&a.z, a)
a.z = t3

72

Optimizing Software Transactions %

atomic | txnOpenForWrite (a)
a = = il txnLogObjectInt (&a.x, a)
X = tl
a.y = t2 a-x
1f (a.z == 0) {
» txnLogObjectInt(&a.y, a)
a.x = 0
a.y = t2
a.z = t3
J if(a.z 1= 0) {

txnLogObjectInt (&a.x, a)

a.x =0

= Decomposed barriers expose

redundancies
txnLogObjectInt (&a.z, a)

a.z = t3

72

Optimizing Software Transactions %

atomic | txnOpenForWrite (a)
a = = il txnLogObjectInt (&a.x, a)
X = tl
a.y = t2 a-%
1f (a.z == 0) {
» txnLogObjectInt(&a.y, a)
a.x = 0
a.y = t2
a.z = t3
J if(a.z 1= 0) {
}
a.x =0

= Decomposed barriers expose

redundancies
txnLogObjectInt (&a.z, a)

a.z = t3

72

Optimizing Software Transactions %

txnOpenForWrite (a)

atomic { txnLogObjectInt (&a.x, a)
a.x = tl a.x = tl
a.y = t2 txnLogObjectInt (&a.y, a)
1f (a.z == 0) { » a.y = t2
a.x = 0 if (a.z !'= 0) {
a.z = t3 a.x =0
} txnLogObjectInt (&a.z, a)
} a.z = t3

= Allows compiler to optimize STM code
m Produces fewer & cheaper STM operations

73

Compiler Optimizations for STM %

m Standard compiler optimizations
= CSE, PRE, dead-code elimination, ...
= Assuming IR supports TM, few compiler mods needed

m STM-specific optimizations
= Partial inlining of barrier fast paths
= Often written in optimized assembly
= No barriers for immutable and transaction local data

= Impediments to optimizations
= Support for nested transactions
= Dynamically linked STM library
= Dynamic tuning of STM algorithm

74

Effect of Compiler Optimizations

)

m 1 thread overheads over thread-unsafe baseline

90%

80%

70%

o

S 60%
c

o 50%

D 40%

= N

—

g 30% |

< 20% -
10% -
0% -

HashMap TreeMap

= With compiler optimizations

asynchronized
ENo STMOpt
O+Base STM Opt
O +Immutability
B+TxnLocal

O+FastPath Inlining

= <40% over no concurrency control

= <30% over lock-based synchronization

75

&

Function Cloning

m Problem: need two version of functions
= One with and one without STM instrumentation

®= Managed languages (Java, C#)
= On demand cloning of methods using JIT

= Unmanaged languages (C, C++)
= Allow programmer to mark TM and pure functions
= TM functions should be cloned by compiler

= Pure functions touch only transaction-local data
= No need for clones

=« All other functions handled as irrevocable actions
s Some overhead for checks and mode transitions

76

Robust Contention Management

)

= How to handle pathological contention cases
without too much overhead for case of low

contention?

= Two approaches for STM systems
= Adjust STM algorithm
= Switch between versioning & detection schemes
« Adjust concurrency scale
= Use proper contention management policy
= Select conflict transactions to stall or abort
Select when transaction will restart

77

Example: Intel C++ STM Execution _
Modes %

= Optimistic mode
= Optimistic conflict detection for reads
= Pessimistic 2-phase locking for writes
= Quiescence for privatization safety
m Pessimistic mode
= Pessimistic 2-phase locking for reads & writes
= Can co-exist with optimistic transactions
= Obstinate mode
= One pessimistic transaction with highest priority
= Guaranteed not to fail
= Serial mode
= One transaction at a time single global lock

78

Contention Management Policies for %

STM

m Thorough study by Scherer & Scott (PODC'05)
= Nonetheless, still an active area of research

= The following actions are takes by a requesting xaction that
observes a conflict with an enemy xaction

m Policies

= Polite: stall requestor with randomized backoff
= After some retries, acquire highest priority

= Karma: xaction priority = size of read & write set
« Abort enemy if its priority is lower, otherwise stall request
= Requestor aborted when its retries exceed difference in priorities
= Priority not reset when xaction aborts

= Eruption: Karma with priority boosting
= Add the priority of a stalled xaction to that of the conflict transaction

79

Contention Management Policies '/
(Cont) %

m Policies (cont)
= Kindergarten: take turns in object access
= Hit-list of xactions that have stalled/aborted this one in the past
« Hit-list determines if an xaction should stall or abort the enemy
= Timestamp: age-based using timestamps
=« Older xaction wins conflicts
= Published timestamp: avoids old zombie xactions
« If conflicting xaction is too old, abort it
« Double the threshold for “too old” on each restart
= Polka: best of Karma and Polite
« Karma priorities + randomized backoff interval

= How to evaluate CM policies
= Measure throughput and fairness
= Consider scalability

= Consider wide range of workloads
80

Lecture 2: Select References

S

Overview

Larus & Rajwar. Transactional Memory, Morgan & Claypool Publishers, 2007

Adl-Tabatabai. Unlocking Concurrency: Multi-core Programming with Transactional
Memory, ACM Queue, 2006

Larus & Kozyrakis. Transactional Memory, CACM, 2008

Software Transactional Memory

Shavit & Touitou. Software Transactional Memory, PODC. 1995

Herlihy et al. Software Transactional Memory for Dynamic-sized Data Structures,
PODC, 2003

Marathe et al. Adaptive Software Transactional Memory. ISDC, 2005

Scherer & Scott. Advanced Contention Management for Dynamic Software
Transactional Memory, PODC, 205

Shavit & Dice, What Really Makes Transactions Faster. Transact, 2006

Saha et al. Implementing a high performance software transactional memory. PPoPP
2006

Adl-Tabatabai et al, Compiler and runtime support for efficient software transactional
memory. PLDI, 2006

Harris et al. Optimizing Memory Transactions. PLDI, 2006

Wang et. al. Code Generation and Optimization for Transactional Memory Constructs
in an Unmanaged Language. CGO, 2007.

81

Questions?

L

[2 PERVASIVE
2 PARALLELISM
[l LABORATORY

o |
Transactional Memory

Concepts, Implementations, &
Opportunities

Christos Kozyrakis

Pervasive Parallelism Lab

Stanford University
http://ppl.stanford.edu/~christos

83

Lecture 2 Summary

= TM implementation
= Data versioning: eager or lazy
= Conflict detection: optimistic or pessimistic
= Granularity: object, word, cache-line, ...

m Software TM systems
= Compiler adds code for versioning & conflict detection
Note: STM barrier = instrumentation code
= Design options
= Static Vs dynamic, non-blocking Vs lock-based
= Basic data-structures

Transactional descriptor per thread (status, rd/wr set, ...

= Transactional record per data (locked/version)

84

Lecture 2 Summary (cont) %

m Intel McRT STM
= Eager versioning, optimistic reads, pessimistic writes
= Read barriers check version number
= Write barrier acquire locks
= Commit validates the read-set and releases locks
= Periodic validation needed to avoid doomed transactions

= Optimizations
= Decomposed barriers to allow redundancy elimination
= No barriers for private or transaction local data
= Switch between STM algorithms
= Contention management

85

Lecture 3:
Hardware Support for TM

&

m Qutline

= Hardware-accelerated STMs
= Motivation
« HASTM
= SigTM

= Hardware-based TM (HTM)
« Basic HTM mechanism
« Example HTM system
=« HTM challenges and opportunities

86

Motivation for Hardware Support

)

3-tier Server (Vacation)
16

S 14 /
p 12 /
e 10 /; ,
8 y)
- L - = Ideal
d 6 7
4 . — S TM
u
-~
0 [|
1 2 4 8 16
Processors

= STM slowdown: 2-8x per thread overhead due to barriers
= Short term issue: demotivates parallel programming
= Long term issue: energy wasteful

= Lack of strong atomicity
= Costly to provide purely in software

87

Types of Hardware Support %

m Hardware-accelerated STM systems (HASTM, SigTM, USTM, ...)
= Start with an STM system & identify key bottlenecks
= Provide (simple) HW primitives for acceleration

= Hardware-based TM systems (TCC, LTM, VTM, LogTM, ...)
= Versioning & conflict detection directly in HW

= Hybrid TM systems (Sun Rock, ...)

= Combine an HTM with an STM by switching modes when needed
=« Based on xaction characteristics available resources, ...

HTM STM HW-STM
Write versioning HW SW SW
Conflict detection HW SW HW

88

Why is STM Slow?

m Measured single-thread STM performance

N
o

05
|

B STMwrite

o

STMread

sequential)
o o = =
o 1
| |

Execution Time
(normalized to

E STMcommit

H Busy

kmeans vacation

= 1.8x - 5.6x slowdown over sequential

= Most time goes in read barriers & validation
= Most apps read more data than they read

89

L

Hardware-accelerated STM (HASTM)

= Proposed by Intel in MICRO'06

= Hardware primitives
= Per-thread mark bits at granularity of cache lines
= Used to build fast filters to speedup read barriers

= Functionality exposed to SW
= SW can set mark bit for an address

= SW checks if mark bit was previously set
=« No other thread has touched line since marked
= Supports conflict detection and barrier filtering
= SW checks if other threads have written any marked lines

« Implements fast validation o

HASTM Hardware Implementation %

m Extend each private cache line with mark bits
= Mark bits set & read by software
= Mark bit reset by HW on eviction or coherence action
= HW instruction to query of any mark bits reset

= Potential extensions
= Separate mark bits for read & write marking
= Separate mark bits for nesting levels

= Mark bits throughout memory hierarchy
« Including main memory (encoded in ECC bits)
=« Helps support strong atomicity
=« UFO design in ISCA'08

91

HASTM Algorithm

L

m Assume the STM algorithm in Lecture 2

= HASTM read operation
= Check if mark bit already set

= If not set, mark bit and add to read set
=« Redundant barriers are filtered dynamically

= HASTM validation
= Check if any mark bits were reset
= If no, validation is complete

= If yes, run software validation (slow)
=« To separate between capacity evictions & true conflicts

92

HASTM System Issues

L

m Insufficient cache capacity
= Mark bits are only an acceleration mechanism

s Cache evictions cause mark bits to be lost
« HASTM reverts to (slow) software validation

= Mark bits can be sized just for common case

= Interrupts, context switches, page faults, ...
s Mark bits are lost
= HASTM reverts to slow software validations

= When xaction resumes, mark bits provide some help
= Filtering of redundant read barriers...

93

&

SigTM Motivation

m Accelerate STM at low hardware cost
= Similar to goals Intel HASTM

= Do not modify caches
= Complex interactions with coherence, prefetching, etc...
= Place all TM acceleration in isolated unit

= Provide strong atomicity

s Enable conflict detection between transactional and
non-transactional accesses

= Without limited by cache capacity and without adding
metadata throughout memory hierarchy

94

SigTM Hardware

)

= Each HW thread has 2 HW signatures (read & write)

= Each signature implemented by a Bloom filter
=« Fixed-size bit array with set of hash functions

= No other HW modifications (e.g., no extra cache bits)

= Operations on signature (Bloom filter): insert & lookup

hash(N) = N mod 4

insert(2) ->

0

3B

insert(6) -> aliasing

lookup(2) -> hit
lookup(3) -> miss
lookup(10) -> false hit

95

SigTM Hardware (cont) %

= How SigTM uses its signatures:
= TX read/write —insert address into read/write signature

= Coherence messages —look up address in signature
= Enabled/disabled by software

m If lookup hits in signature, either:
= Trigger SW abort handler (conflict detection)
= NACK remote request (atomicity & isolation enforcement)

= Signatures may generate false conflicts
= Performance but not correctness issue
= Reduce with longer signatures & better hash functions

= With this HW, how does the SW change?

96

L

SigTMread

SigTMread(addr) {
read sig insert(addr); // 1 instruction
return *addr;

= No need to build SW read-set
= Replaced by read signature
m Read signature provides continuous validation
= Snoops coherence messages & any hits cause abort
= Hits due to writes by non-transactional code as well
= Write barriers are similar
= No write-set, but need versioning code

97

SigTMcommit

&

SigTMcommit() {
read_sig reset();
disable read sig lookup();
write sig reset();
disable write sig lookup();

}

m Read signature eliminates need to validate read-set
= Snoops coherence messages and reports conflicts

= Write signature eliminates locks
= Snoops coherence messages and report

m Abort is more complex but also accelerated by SigTM
= Write signature used to ensure undo atomicity

98

SigTM Overhead

)

m Measured single-thread performance on STM and SigTM

:.21)
I
1.5
Fo 1,
se
‘513 0.
g =
W g O.
£ STM SigTM
kmeans

O N W H U1 O

I B=

STM SigTM

vacation

m SigTM effectively accelerates read & commit

m Write
Read
B Commit

E Busy

99

L

SigTM Scaling

m Measured speedup on 1-16 cores
“=HTM <#-SigTM -+STM

kmeans vacation

Speedup

0 10 0 10
Processor Cores Processor Cores

= SigTM faster than STM but slower than full HW system
= Roughly a 2x gap between design points

100

How Much Hardware Does it
Cost?

Normalized

m Measured performance drop as signatures get shorter
=-intruder -wkmeans vacation

1.0 - 1.00 e
0.8 D
o o g0.95
06 - T .90
© 0.4 E&
0 g9 > ¢0.85
0.0 0.80
D ™ NV o
o B S P
Rea Wirite Signature Length (bit

= Recommend 1024 bits for read sig, 128 bits for write sig

101

Signature HW Cost

m [Sanchez 07]

AMD Barcelona Sun Niagara
Cores, Quad-core, 8-core,
multithreading no MT 4-way FGMT
Technology node 65nm 90nm
Die size 291mm* 379mm*
Core size 28.7mm”* 13mm*
L1 areas (I/D) | 2.25mm? (both) | 1.12/0.64mm*
| ArcausedBy | 400 m? 0.54mm?
signatures, per core
Core size increase 0.25% 4.1%
Die size increase 0.10% 1.1%

Table 4: Area estimates in real systems

102

HASTM Vs. SigTM

m Similarities
s Acceleration for STM with cost-effective HW

m Differences
= HASTM bits limited to cache capacity
= SigTM signatures can cause false conflicts
= Signatures are compact & can manipulate in SW
« E.g., save and restore on nested xaction boundaries
= Signatures are bound to physical addresses
= Invalidated by paging events
= Signatures can provide strong atomicity
=« Through continuous lookups of coherence events
« HASTM requires metadata across memory hierarchy

103

Questions?

L

L

Hardware TM Summary

m Data versioning in caches
= Cache the write-buffer or the undo-log
= Cache metadata to track read-set and write-set
= Can do with private, shared, and multi-level caches

105

Hardware TM Summary

m Data versioning in caches
= Cache the write-buffer or the undo-log
= Cache metadata to track read-set and write-set
= Can do with private, shared, and multi-level caches

m Conflict detection through cache coherence protocol
= Coherence lookups detect conflicts between transactions
= Works with snooping & directory coherence

= Notes
= Register checkpoint must be taken at transaction begin
= Virtualization of hardware resources discussed later

= HTM support similar for TLS and speculative lock-elision
= Some hardware can support all three models actually

105

HTM Design %

m Cache lines annotated to track read-set & write set
= R bit: indicates data read by transaction; set on loads

= W bit: indicates data written by transaction; set on stores
= R/W bits can be at word or cache-line granularity

= R/W bits gang-cleared on transaction commit or abort
= For eager versioning, need a 2" cache write for undo log

VID|E Tag RIW Word1 - ¢ - RIW Word N

m Coherence requests check R/W bits to detect conflicts
= Shared request to W-word is a read-write conflict
= Exclusive request to R-word is a write-read conflict

= Exclusive request to W-word is a write-write conflict
106

Example HTM: Lazy Optimistic

)

-

CPU h
Registers ALUs
_ | TMstate |)
/ Cache \
\'"/ Tag Data

_

=/

m CPU changes

= Register checkpoint (available in many CPUs)
= TM state registers (status, pointers to handlers, ...)

107

Example HTM: Lazy Optimistic

£

?,

3
"35

-

CPU h

Registers ALUs

_ J
/ Cache \

_ =/

\'"/ Tag Data

m Cache changes
= R bit indicates membership to read-set
= W bit indicates membership to write-set

108

HTM Transaction Execution

-

CPU

Registers ALUs

N

_
/,»

Cache

w7
‘\

Y/ Tag

Data

Xbegin
Load A
Store B &5
Load C

Xcommit

109

HTM Transaction Execution

s ongy
/I AL

_

=

= Transaction begin

= Initialize CPU & cache state
= Take register checkpoint

4 CPU) Xbegin (o

Load A
Registers ALUs

Store B <5
Load C

% | TMstate | Y, _

Xcommit
//’ Cache i\\
\'"/ Tag Data

109

HTM Transaction Execution

-

CPU

Registers ALUs

N

_
/,»

Cache

w7
‘\

Y/ Tag

Data

Xbegin
Load A &
Store B &5
Load C

Xcommit

110

HTM Transaction Execution

L

-

CPU

Registers

ALUs

N

_
/

_

Cache

w7
‘\

Tag

Data

=

m Load operation
m Serve cache miss if needed

= Mark data as part of read-set

Xbegin
Load A &
Store B &5
Load C

Xcommit

110

HTM Transaction Execution

-

CPU

Registers ALUs

N

_
/,»

Cache

w7
‘\

Y/ Tag

Data

Xbegin
Load A
Store B &5
Load C

Xcommit

&

111

HTM Transaction Execution

L

4 CPU) Xbegin
Load A
Store B &5 &

Load C
% | TMstate | Y, _
Xcommit
//’ Cache i\\

\'"/ Tag Data

Registers ALUs

_ =/

m Store operation
= Serve cache miss if needed (eXclusive if not shared, Shared otherwise)
= Mark data as part of write-set

111

HTM Transaction Execution

-

CPU

Registers

ALUs

N

_
/,»

Cache

w7
‘\

Tag

Data

Xbegin
Load A
Store B &5
Load C
Xcommit <=

112

HTM Transaction Execution

L

4 CPU) Xbegin
Load A
Store B &5

 [msme | toad €
Xcommit <=
/ Cache \

\'"/ Tag Data

jj> upgradeX B

m Fast, 2-phase commit
= Validate: request exclusive access to write-set lines (if needed)

Registers ALUs

112

HTM Transaction Execution

L

-

CPU

Registers

ALUs

N

_
/

_

Cache

w7
‘\

Tag

Data

=

m Fast, 2-phase commit

= Validate: request exclusive access to write-set lines (if needed)

Xbegin
Load A
Store B &5
Load C
Xcommit <=

= Commit: gang-reset R & W bits, turns write-set data to valid (dirty) data

112

HTM Conflict Detection

-

CPU

Registers

ALUs

N

_
/,»

Cache

w7
‘\

Tag

Data

Xbegin
Load A
Store B &5
Load C ¢

Xcommit

113

HTM Conflict Detection

WY
A4

_

1 upgradeX D [V]

=

m Fast conflict detection & abort

= Check: lookup exclusive requests in the read-set and write-set

pld

4 CPU N\ Xbegin

Load A
Registers ALUs

Store B <5
Load C

% | TMstate | Y, e =

Xcommit
//’ Cache i\\
\'"/ Tag Data

113

HTM Conflict Detection

L

4 CPU) Xbegin
Load A
Registers ALUs
Store B <5
| msete koad € &

Xcommit

_ J
/ Cache \

\'"/ Tag Data

F upgradeX A 1%

_ =/

m Fast conflict detection & abort
= Check: lookup exclusive requests in the read-set and write-set
= Abort: invalidate write-set, gang-reset R and W bits, restore checkpoint

113

&

HTM Advantages

m Transparent
= No need for SW barriers, function cloning, DBT, ...

m Fast common case behavior
= Zero-overhead tracking of read-set & write-set
= Zero-overhead versioning
= Fast commit & abort without data movement
= Continuous validation of read-set

m Strong isolation
= Conflicts detected on non-xaction loads/stores as well

m Can simplify multi-core hardware [ISCA'04, Ceze’'07]
= Replace existing coherence with transactional coherence

114

L

HTM Performance Example

3-tier Server (Vacation)
16 v

—STM
- HTM

T Q0o o0oT O
o)

Processors

m 2X to 7x over STM performance
= Within 10% of sequential for one thread
= Scales efficiently with number of processors
= Uncommon cases not a performance challenge

115

HTM Challenges and
Opportunities

L

m Performance pathologies
= How to handle problematic contention caches?

= Virtualization of hardware resources
= What happens when HW resources are exhausted?

= HW/SW interface
= How does HTM support flexible SW environments?

116

HTM Performance Pathologies %

m Pathologies: contention cases that cause bottlenecks

= Understanding the cause is important in addressing the issue
= Enumerated by Bobba et al. in ISCA'07

m Optimistic conflict detection
= Default policy: committing xaction wins
« Guarantees forward progress for the overall system
= Pathologies: starving elder, restart convoy

m Pessimistic conflict detection

= Default policy: requesting xaction wins OR requesting xaction stalls
= No guarantees of forward progress
=« Need some way to detect deadlocks (conservative or accurate)

= Pathologies: friendly fire, futile stall, starving writer, dueling

upgrades
117

&

Do Pathologies Matter?

@@ Eager HTM A—d Lazy HTM I~ Eager Hybrid =@ Lazy Hybrid

@—@ Eager STM V=¥ Lazy STM

genome genome+

Speedup
O = N W P g 0w
Speedup

= In many cases, not at all
= Low contention scenarios
= All HW schemes perform similarly s

Do Pathologies Matter?

&

@@ Eager HTM A—d Lazy HTM I~ Eager Hybrid =@ Lazy Hybrid

@—@ Eager STM V=¥ Lazy STM

vacation-high

intruder

Speedup

m In other cases, it matters a lot
= HTMs slow down to STM/hybrid levels

= The exact case & system matters

119

Pathologies for Optimistic Conflict _
Detection [55

X0 X1 X2 X3

X0
X1
X2
d A M A++ A++ A++ A++
Wr J X3
e wr A

A++ A++ A++ A++

Starving elder Restart convoy

= Problem: long xaction = Problem: one xaction aborts
aborted by small xactions many dependent xactions

m Fix: after some retries, m Fix: restart after randomized

prioritize long xaction (linear) backoff

120

Pathologies for Pessimistic Conflict _
Detection %

X0

Id A X0
X2
st A A d A
<« rd st A

|d AL st A !

Friendly Fire Futile Stall

= Problem: livelock if requesting = Problem: stall due to xaction
xaction wins conflict that later aborts

= Fix: age-based conflict = Fix:?

handling (using timestamps)

121

Pathologies for Pessimistic Conflict %

Detection (cont)

X0 X1

dA s
wr A r X3

rd A

Starving Writer

= Problem: stall/abort writer
due to frequent reader

m Fix: prioritize writers over
readers based on-age

X1
X0
Id A
Id A
st A
| st A

N

Dueling upgrades

m Problem: stalls due to
concurrent read-mod-writes

= Fix: Detect read-mod-writes
and prioritize their reads

122

L

Discussion on HTM Pathologies

m Pathologies for optimistic detection
= Easy to fix with a single policy
= Restart after randomized backoff
= After N retries, use priority mechanism

m Pathologies for pessimistic detection
= Difficult to handle all in robust manner
= Complex and sometimes conflicting fixes

m In general, optimistic detection has been shown to be
more robust to contention scenarios

= For both HW and SW TM system

123

HTM Virtualization %

m Time virtualization = What if time quanta expires?

= Interrupts, paging, and context switch within xaction
= What happens to the state in caches?

m Space virtualization = What if caches overflow?
= Where is the write-buffer or log stored?
= How are R & W bits stored and checked?

m Observations: most transactions are currently small
= Small read-sets & write-sets
= Short in terms of instructions

= No guarantees that this trend will continue
« Programmer sloppiness Vs. conflicts

124

Time Virtualization %

m Idea: rethink interrupt processing/assignment for multicore

m Three-tier interrupt handling for low overhead
1. Defer interrupt until next short transaction commits
Use that processor for interrupt handling

2. If interrupt is critical, rollback youngest transaction
= Most likely, the re-execution cost is very low

3. If a transaction is repeatedly rolled back due to interrupts
Use space virtualization to swap out (typically higher overhead)
Only needed when most threads run very long transactions (rare)

m Key assumption
= Rolling back a short xaction cheaper than virtualizing it
= Eliminates most of the complexity of time virtualization

125

Space Virtualization: _
Hybrid TM Schemes %

m Idea: combine HTM + STM (Intel HYyTM, Sun PhTM, ...)
= HW provides best-effort acceleration
= SW provides virtualization in difficult cases
= (Likely) the TM implementation for the Sun Rock processor

m Operation
= Start transaction in HTM mode
= On cache overflow or interrupt, switch to STM mode

m Challenges
= Interactions between HTM and STM transactions
E Must detect conflicts correctly
= Contention management policies
g How frequently to switch to STM?
E Switch a single or all xactions to STM?

= Providing strong atomicity

- Weakest model of the two sets the semantics
126

Space Virtualization: _
Complete Schemes %

m Key idea: map TM metadata structures to virtual memory
= VM is practically unbounded
= HTM resources act as a fast cache for metadata structure

= Virtualizing data-versioning

= Eager: undo-logs need no special handling
« Per-thread logs can be mapped to VM directly
« Caches capture the working-set of undo-logs naturally
« Cost: extra cache pressure and traffic

= Lazy: write-buffers require special handling
= Option 1: unified overflow structure in VM (hash-table)
« Option 2: per-thread overflow structure in VM
« Option 3: virtualize write-buffers using per-thread log
« Challenge: knowing when to access the overflow structures

127

Space Virtualization:
Complete Schemes (cont)

&

= Virtualizing conflict detection

= Handling of read-set and write-set metadata

= Option 1: use signatures for overflown metadata
=« Very simple but provides probabilistic conflict detection
=« Can be problematic in the presence of paging

= Option 2: pervasive metadata across memory hierarchy
=« Store metadata everywhere, including DRAM
« Expensive but eliminates overflow issue

= Option 3: read-set and write-set metadata in VM
=« Shared or per-thread structures

=« Accurate conflict detection
« Use signatures to filter accesses to metadata in VM

128

Space Virtualization:
Example Implementations

L

= Intel VTM
= Maps write-buffer and TM metadata to virtual memory

= HW and firmware used to handle misses, relocation
= Cache line granularity, signatures to reduce VM lookups

m Stanford XTM
= Uses OS virtualization capabilities
= On overflow, switch to a page-based TM system
= No HW/firmware needed, transparent to SW, page-based granularity

= UCSD PTM
= Similar to XTM but hardware manages overflow metadata in VM

= Requires HW caches at memory controller but maintains fine granularity

m Wisconsin LogTM-SE
= Undo-log mapped in virtual memory to begin with
= Metadata virtualization using signatures
129

Lecture 3: Select References %

Overview

= Adl-Tabatabai. Unlocking Concurrency: Multi-core Programming with Transactional
Memory, ACM Queue, 2006

= Larus & Kozyrakis. Transactional Memory, CACM, 2008
Hardware-accelerated Transactional Memory
= Saha, et. al. Architecture Support for Software Transactional Memory Micro, 2006

= Minh et al. An Effective Hybrid Transactional Memory System with Strong Isolation
Guarantees, ISCA, 2007

= Baugh et. Al. Using Hardware Memory Protection to Build a High-Performance,
Strongly-Atomic Hybrid Transactional Memory, ISCA, 2008

Hardware Transactional Memory

= Herlihy and Moss. Transactional Memory: Architectural Support for Lock-Free Data
Structures, ISCA, 1993

= Hammond, et al. Transactional Memory Coherence and Consistency, ISCA, 2004

= Rajwar et al. Virtualizing Transactional Memory. ISCA, 2005

= McDonald et al. Characterization of TCC on Chip-Multiprocessors. PACT 2005, 2005
= Moore et al. LogTM: Log-Based Transactional Memory. HPCA, 2006

= Kumar et al. Hybrid Transactional Memory, PPoPP, 2006

130

Lecture 3: Select References %

Hardware Transactional Memory (cont)

Chung et al. The Common Case Transactional Behavior of Multithreaded Programs,
HPCA, 2006

Chung et al. Tradeoffs in Transactional Memory Virtualization, ASPLOS, 2006

Minh et al. An Effective Hybrid Transactional Memory System with Strong Isolation
Guarantees, ISCA, 2007

Chuang et al. Unbounded Page-Based Transactional Memory, ASPLOS, 2006

Bobba et al. Performance Pathologies in Hardware Transactional Memory, ISCA,
2007

Ceze et al. BulkSC: Bulk Enforcement of Sequential Consistency, ISCA, 2007
Sanchez et al. Implementing Signatures for Transactional Memory, MICRO, 2007

131

Questions?

L

%

PERVASIVE
PARALLELISM
LABORATORY

o |
Transactional Memory

Concepts, Implementations, &
Opportunities

Christos Kozyrakis

Pervasive Parallelism Lab

Stanford University
http://ppl.stanford.edu/~christos

133

Lecture 3 Summary %

= STM performance
= 2X to 8x per thread slowdown due to instrumentation
= Most time spent on read barriers & validation

= Hardware accelerated TM
= Conflict detection in HW; data versioning in SW
= HASTM: per cache-line mark bits

=« Used for filtering & acceleration
= Fall back to SW when mark cache lines evicted

= SigTM: per-thread signatures
= Conservative tracking of read-set & write-set
Continuous conflict detection, strong isolation

134

Lecture 3 Summary (cont) %

= Hardware TM
= Cache to store undo-log or write-buffer
= Per cache-line R/W bits for read/write set tracking
= Conflict detection on coherence events

= HTM challenges

= Contention pathologies
= Need robust contention management policy

« Optimistic HTM systems
= Randomized back off + prioritize after N retries

= Virtualization of HW resources
Time and space virtualization

135

Lecture 4.
Hardware Support for TM

L

m Qutline

= Hardware-based TM (cont)
« HW/SW interface
« Example uses (brief)

= Application examples (new)
« STAMP benchmarks
= Use of transactions & basic statistics

= TM uses beyond concurrency control (brief)
« Motivation and challenges
« Example uses

136

Motivation for Rich HTM Interface %

= HTM thus far has a simple SW interface
= Instructions to define start/end of transaction

= How does SW control an HTM?
= How does HTM interact with library-based SW?
= How do we handle I/O & system calls within xactions?
= How do we handle exceptions & contention within xaction?
= How do we support novel TM programming constructs?
= Retry, orelse, ...
= How do we support uses beyond concurrency control?

®= Need an expressive ISA for HTM systems

137

A Flexible HW/SW Interface for _
HTM %

m Features for flexible HTM interface
1. Architecturally visible 2-phase commit
2. Support for transactional handlers
3. Support for nested transactions
4. Instructions for private or idempotent accesses

= Implementation notes

= HW: metadata support for nested transactions
=« Need HW support and virtualization

= SW: xaction begin/end similar to function call/return

= SW: xaction handlers similar to user-level exceptions
« Virtually all complexity in software

138

Two-phase Transaction Commit %

m Conventional: monolithic commit in one step
= Finalize validation (no conflicts)
= Atomically commit the transaction write-set

= New: two-phase commit process
= xvalidate finalizes validation, xcommit commits write-set

= Other code can run in between two steps
= Code is logically part of the transaction

= Example uses
= Finalize I/O operations within transactions
= Coordinate with other SW for permission to commit
=« Correctness/security checkers, system transactions, ...

139

Transactional Handlers %

= Conventional: TM events processed by hardware
= Commit: commit write-set and proceed with following code
= Abort on conflict: rollback transaction and re-execute

= New: all TM events processed by software handlers
= Fast, user-level handlers for commit, conflict, and abort

= Software can register multiple handlers per transaction
« Stack of handlers maintained in software

= Handlers have access to all transactional state
« They decide what to commit or rollback, to re-execute or not, ...

= Example uses

= Contention managers, I/0O operations within transactions,
conditional synchronization

140

Non-Transactional Loads and _
Stores %

= Conventional: all loads/stores tracked by HTM
= Regardless of the type of data accesses

= New: instructions for non-transactional loads/stores
= Non-transactional load: not tracked in read-set
= Non-transactional store: not tracked in write
« Appropriate for local or private data
= Idempotent store: not versioned
« Appropriate for data transaction-local data

= Example uses
= Optimizations to eliminate spurious conflicts & overflow cases
= Object-based hybrid TM (track headers only)

141

Closed-nested Transactions %

xbegin
xbegin lots of work()
lots of work() xbegin
count++| — |count++|
xvalidate; xcommit xvalidate; xcommit

xvalidate; xcommit

m Closed Nesting
= Composable libraries
= Alternative control flow upon nested abort
= Performance improvement (reduce abort penalty)

142

Closed-nested Transactions

Closed-nested Semantics

xbegin

xbegin

1d A

st B
xvalidate; xcommit

xvalidate; xcommit

143

Closed-nested Transactions

T1

Closed-nested Semantics

7~ Xbegin

T2

_ xvalidate; xcommit

(xbegin
1d A
st B

_ Xvalidate; xcommit

143

Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

{...}
(xbegin

T1 1d A

T2
st B

_ Xvalidate; xcommit

_ xXvalidate; xcommit

T1’s Read-Set T1’s Write-Set

143

Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

{...}
> (xbegin

T1 1d A

T2
st B

_ Xvalidate; xcommit

_ xXvalidate; xcommit

T1’s Read-Set T1’s Write-Set

143

Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin
T1’s Read-Set T1’s Write-Set
{...} {...}
> (xbegin

T1 1d A

T2 T2’s Read-Set T2’s Write-Set
st B

_ Xvalidate; xcommit

_ xXvalidate; xcommit

143

Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin
T1's Read-Set T1’s Write-Set
{...} {...}
(xbegin
T1| B> 1d A
T2 £ B T2’s Read-Set T2’s Write-Set
S
{A}
_ Xvalidate; xcommit

_ xXvalidate; xcommit

143

Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin
T1's Read-Set T1’s Write-Set
{...} {...}
(xbegin
T1 1d A
T2 £ B T2’s Read-Set T2’s Write-Set
> S
{A} {B}
_ Xvalidate; xcommit

_ xXvalidate; xcommit

143

Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

T1’s Read-Set T1's Write-Set

{...} {...}

(xbegin
T1 l1d A
T2 £ B T2’s Read-Set T2’s Write-Set
S
{A} {B}
P> U xvalidate; xcommit

_ xXvalidate; xcommit

143

Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin
T1's Read-Set T1’s Write-Set
{...,A} { ey B }
(xbegin
T1 1d A
T2 T2's Read-Set T2’s Write-Set
st B
P> U xvalidate; xcommit

_ xXvalidate; xcommit

143

Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

{...,A}
(xbegin

T1 1d A

T2
st B

P> U xvalidate; xcommit

_ xXvalidate; xcommit

T1’s Read-Set T1’s Write-Set

{..,B}

143

Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

{...,A}
(xbegin

T1 1d A

T2
st B

_ Xvalidate; xcommit

B xvalidate; xcommit

T1’s Read-Set T1’s Write-Set
{...,B}

143

&

Open-nested Transactions

xbegin
xbegin
sbrk:

xbegin open
sbrk:

[modify free 1list]

—

[modify free list]

xvalidate; xcommit

xvalidate; xcommit

. xvalidate; xcommit
m= Open nesting uses

m Escape surrounding atomicity to update shared state
« System calls, communication between transactions/0S/scheduler/etc.
= Performance improvements
m Open nesting provides atomicity & isolation for enclosed code
= Unlike pause/escape/non-transactional regions

Open-nested Transactions

Open-nested Semantics

xbegin

xbegin_ open

1d A

st B
xvalidate; xcommit

xvalidate; xcommit

145

Open-nested Transactions

T1

Open-nested Semantics

~~ Xbegin

T2

(xbegin_ open
1d A
st B

_ Xvalidate; xcommit

_ xvalidate; xcommit

145

Open-nested Transactions

Open-nested Semantics

~~ Xbegin

{..}

(xbegin_ open

T1 1d A

T2
st B

_ Xvalidate; xcommit

_ xvalidate; xcommit

T1’s Read-Set T1’s Write-Set
{...

}

145

Open-nested Transactions

Open-nested Semantics

~~ Xbegin

{...}
> (xbegin open

T1 1d A

T2
st B

_ Xvalidate; xcommit

_ xvalidate; xcommit

T1’s Read-Set T1’s Write-Set
{...

}

145

Open-nested Transactions

T1

Open-nested Semantics

~~ Xbegin

T2

T1’s Read-Set T1’s Write-Set

{..

(xbegin_ open

1d A

}

{..

}

T2's Read-Set T2’s Write-Set

st B

_ Xvalidate; xcommit

_ xvalidate; xcommit

145

Open-nested Transactions

T1

Open-nested Semantics

~~ Xbegin

T2

_ xvalidate; xcommit

T1’s Read-Set T1’s Write-Set

{..}

(xbegin_ open

1d A

{..

}

T2's Read-Set T2’s Write-Set

B
st (A)

_ Xvalidate; xcommit

145

Open-nested Transactions

Open-nested Semantics

~~ Xbegin
T1’s Read-Set T1’s Write-Set
{...} {...}

(xbegin_ open

T1 1d A

T2 £ = T2'’s Read-Set T2’s Write-Set
> S
{A} {B}

_ Xvalidate; xcommit

_ xvalidate; xcommit

145

Open-nested Transactions

Open-nested Semantics

~~ Xbegin
T1’s Read-Set T1’s Write-Set
{...} {...}

(xbegin_ open

T1 1d A
T2 T2'’s Read-Set T2’s Write-Set

B
st (A) (B}

P> U xvalidate; xcommit

_ xvalidate; xcommit

145

Open-nested Transactions

Open-nested Semantics

~~ Xbegin

{..}

(xbegin_ open

T1 1d A

T2
st B

P> U xvalidate; xcommit

_ xvalidate; xcommit

T1’s Read-Set T1’s Write-Set
{...

}

145

Open-nested Transactions

Open-nested Semantics

~~ Xbegin

{..}

(xbegin_ open

T1 1d A

T2
st B

_ Xvalidate; xcommit

B xvalidate; xcommit

T1’s Read-Set T1’s Write-Set
{...

}

145

Implementation Overview %

m Software
= Stack to track state and handlers
« Like activation records for function calls
« Works with nested transactions, multiple handlers per transaction
= Handlers like user-level exceptions

= Hardware
= A few new instructions & registers
« Registers mostly for faster access of state logically in the stack
To provide information to handlers
= Modified cache design for nested transactions
« Independent tracking of read-set and write-set

m Key concepts
= Nested transactions supported similarly to nested function calls
= Handlers implemented as light-weight, user-level exceptions

146

Transaction Stack

s ongy
/I AL

Transaction
Stack

TCB

Frame 1

P> xbegin
xbegin
xbegin

xend
xend

xend

147

Transaction Stack

Transaction
Transaction Control Block

Stack

TCB

Frame 1

[= in cache / log

[= in registers

= in thread-private,
cachable main memory

P> xbegin
- xbegin
xbegin

xend
xend

xend

147

Transaction Stack

Transaction

Commit
Transaction Control Block Handlers
Stack Stack
TCB X1: Handler & Args
Frame 1
xbegin
> xbegin
[= in cache / log . e
[] =inregisters
d
= in thread-private, =
xend

cachable main memory a 147
Xxen

Transaction Stack

Transaction

Commit
; ntrol Block
Transaction Control Bloc Handlers
Stack Stack
TCB
Frame 2
TCB X1: Handler & Args
Frame 1
xbegin
> xbegin
[= in cache / log S
[] =inregisters
d
= in thread-private, =
xend

cachable main memory a 147
Xxen

Transaction Stack

Transaction
Transaction Control Block

Stack

TCB

Frame 2

TCB

Frame 1

[= in cache / log

[= in registers

= in thread-private,
cachable main memory

Commit
Handlers
Stack

X2: Handler & Args

X2: Handler & Args

X1: Handler & Args

xbegin
xbegin
> xbegin

xend
xend

xend

147

Transaction Stack

Transaction
Transaction Control Block

Stack

TCB
Frame 3

TCB

Frame 2

TCB

Frame 1

[= in cache / log

[= in registers

= in thread-private,
cachable main memory

Commit
Handlers
Stack

X2: Handler & Args

X2: Handler & Args

X1: Handler & Args

xbegin
xbegin
> xbegin

xend
xend

xend

147

Transaction Stack

Transaction

Commit
1 ntrol Block
Transaction Control Bloc Handlers
Stack Stack
TCB X3: Handler & Args
Frame 3
X3: Handler & Args
TCB X2: Handler & Args
Frame 2
X2: Handler & Args
TCB X1: Handler & Args
Frame 1
xbegin
xbegin
[= in cache / log S
[] =inregisters .
d
= in thread-private, =
xend

cachable main memory a 147
Xxen

Transaction Stack

Transaction

Commit
1 ntrol Block
Transaction Control Bloc Handlers
Stack Stack
X2: Handler & Args
X2: Handler & Args
TCB X2: Handler & Args
Frame 2
X2: Handler & Args
TCB X1: Handler & Args
Frame 1
xbegin
xbegin
[= in cache / log S
[] =inregisters
d
= in thread-private, =
> xend

cachable main memory a 147
Xxen

Transaction Stack

Transaction
Transaction Control Block

Stack

TCB

Frame 2

TCB

Frame 1

[= in cache / log

[= in registers

= in thread-private,
cachable main memory

Commit
Handlers
Stack

X1

: Handler & Args

X1

: Handler & Args

X1

: Handler & Args

X1

: Handler & Args

X1

: Handler & Args

xbegin

xbegin

xbegin

xend

xend

' xend 147

HW Support for Nested Read-Sets &
Write-Sets

)

MOESI NLi1 NL2 NLs NL
= % ;’J*\ N S PSR T
’V ’D.E ‘ Tag HR1 irW1 Rz{WzHRaiWal R41W4H Data

_ Lookup

/Y/ 1\ Address
M

v
Match?
(a)

uls
viD[E][Tag | N || Data
‘ L_'* Lookup
Y Address
Pf\\—//
\J
Match? Match

Level
(b)
m Two Options: multi-tracking (a) Vs. associativity-based (b)
= Differences in cost of searching, committing, and merging
= Multi-tracking best with eager versioning, associativity best with lazy
= Both schemes benefit from lazy merging on commit

= Need virtualization to handle overflow of nesting levels

148

Example Use: Transactional |/O %

xbegin
write (buf, 1len):
register violation handler to de-alloc tmpBuf
alloc tmpBuf
cpy tmpBuf <- buf

push &tmpBuf, len; commit handler stack

push writeCode; commit handler stack

xvalidate
pop _writeCode and args
run _writeCode

xcommit

149

Example Use: Performance

Tuning

L

= Single warehouse SPECjbb2000

= One transaction per task
=« Order, payment, status, ...

= Irregular code with lots of concurrency

m Speedup on an 8-way TM CMP

m Closed nesting: speedup 3.94

= Nesting around B-tree updates to
reduce conflict cost

= 2.0x over flattening
m Open nesting: speedup 4.25

= For unique order ID generation to
reduce number of violations

= 2.2x over flattening

Speedup over Flat Transactions

2.25

N
N

N
-
(&,

N
-

et
o
&

N

-
(=]
(%,

SPECjbb Closed

SPECjbb Open

150

Example Use: Conditional
Synchronization with Retry

&

m Runtime system for Atomos’ watch() and

retry() constructs

Consumer: Producer:
atomic { atomic {
regVioHandler (cancel) ; regVioHandler (cancel) ;

if (lavailable) {

if (available) {

watch (&available); watch (&available);
wait (); } wait (); }
available = false; available = true;
consume (); } produce (); }
watch(void* address) Schedulmg Queues : . Scheduler
wait and run atomic f{

watch (void* addr) {
atomic _open {

1.enqueue (tid, addr) srermewommmmmrmn, |

>

regVioHandler (schedVioHandler) ;
read (schedComm)

while (TRUE) ({

N__—1. process runand wait queues

L}

schedVioHandler

2. write schedComm to cause violation = ._ A I
b} = {
N
} l
[Scheduler Command
\ Memory Location 4

wait ()

schedComm B =

Ao o ff s o et 4
N i

welt () { { schedComn in b
S —Ope_n t / scheduler'sread -set: on §
1. move this thread from run to wait Il wodhiction . shediilbrs i

b f violation handlerisrun . }5

q

? EtScheduler Command 535

cancel ! Queue f

atomic open { ?!l . me—-u"c'

1. enqueue (tid, CANCEL)

2 . write schedComm to cause violation +

—

return () :

atomic open {

if (xvaddr == schedComm) {

= 1 dequeue (tid, COMMAND)

2a. if COMMAND is address , add address to
scheduler’s read -set
b.add (address, tid) to waiting
hashtable
3. f COMMAND is CANCEL, remove
all tid’s entries from waiting
} else {
1. tidToWake = waiting .remove (xvaddr)
2. add tidToWake tothe runqueue
}}

// return to scheduler

151

Example Use: Semantic Concurrency %

Control

Thread 1:

atomic{
lots of work();

insert (key=8, datal) ;

lots of wor

1

3

Thread 2:

atomic{
lots of work();
insert (key=9, data2);
lots gf work();

m Is there a conf

ict?

= TM: yes, W-W conflict on a memory location
= App logic: no, operation on different keys

@ Common performance loss in TM programs
= Large, compound transactions

152

Example Use: Semantic Concurrency g
Control %

m Semantic concurrency in Atomos [PLDI'06]

= From memory to semantic dependencies
= Similar to multi-level transactions from DBs

m Transactional collection classes [pPpoPP'06]
= Read ops track semantic dependencies
= Using open nested transactions
Write ops deferred until commit
Using open nested transactions
= Commit handler checks for semantic conflicts
= Commit handler performs write ops
= Commit/abort handlers clear dependencies

153

Example Use: Semantic Concurrency
Control

Lock HashMap
—TM HashMap

Semantic HashMap

m TestCompound
= Long transaction with 2 map operations

= Semantic concurrency =scalable performance
154

Questions?

L

Example Applications: STAMP

Application Domain Description

bayes Machine learning Learns structure of a Bayesian network
genome Bioinformatics Performs gene sequencing

intruder Security Detects network intrusions

kmeans Data mining Implements K-means clustering
labyrinth Engineering Routes paths in maze

ssca2 Scientific Creates efficient graph representation

vacation Online transaction Emulates travel reservation system

processing

yada Scientific Refines a Delaunay mesh

156

Kmeans Description

)

m Groups data into K clusters
Initial data Grouped data (K = 2)

")
> 0 5 : » O
B R T o L
Oy © & 07 O o S
®% 0 OF C)
8 o O OWR gy
& I~ ™
& ’ ~ g
=5 o
- P"
@
5

m Possible applications:
= Biology: plant and animal classification
= WWW: analyze web traffic for patterns

157

Kmeans Algorithm

Guess I '
Compute adjust-

ments to centers

Update centers

no

~ Converged?

yes

158

Vacation Description

= Emulates travel reservation system
= Similar to 3-tier design in SPECjbb2000

Client Tier

Client |

Client 2

Client 4

Manager Tier

Manager

Reserve
Cancel
Update

Database Tier

Customers

Hotels

Flights

Vacation Algorithm

Get task?

yes

Task kind?

Manager does Manager does Manager does
reservation cancelation update

160

STAMP Characterization

)

Per Transaction o
oy Timein

Application : _ _ :

Instructions Reads Writes Retries Transactions
bayes 60584 24 9 0.59 83%
genome 1717 32 2 0.14 97%
intruder 330 71 16 3.54 33%
kmeans 153 25 25 0.81 3%
labyrinth 219571 35 36 0.94 100%
ssca2 50 1 2 0.00 17%
vacation 3161 401 8 0.02 92%
yada 9795 256 108 251 100%

161

Questions? %

= STAMP available at http://stamp.stanford.edu
= Code for HTM/STM, datasets, configs...
= Performance results for STM, HTM, hybrids

162

;
TM Uses Beyond Concurrency Control %

= TM hardware consists of
= Memory versioning HW
= Fine-grain access tracking HW
= HW to enforcing ordering
= Fast exception handlers

= Motivation for using TM beyond concurrency control
= Amortize hardware cost
= Provide additional benefits for HW vendors and system users
= Concurrency is not the only important problem in computing
= Security, fault-tolerance, debugging, ...

m Challenges
s Potential mismatch of interfaces
m Co-existence of transactions with other uses

163

Applying TM Hardware

L

= Availability
= Global & local checkpoints (versioning, order)
m Security

= Fine-grain read/write barriers (tracking)
= [Isolated execution (versioning)
= Thread-safe dynamic binary translation (all)

= Debugging
= Deterministic replay (order)
= Parallel step-back (versioning)
= Infinite, fast watchpoints (tracking)
= Atomicity violation detectors (tracking, order)
= Performance tuning tools (tracking)
m Snapshot-based services (versioning)
= Concurrent garbage collector
= Dynamic memory profiler
= User-level copy-on-write

164

TM Vs. Other System Approaches %

m Alternative implementation techniques
= Virtual memory system: versioning & tracking at page granularity
= Dynamic binary translation (DBT): custom SW instrumentation

m Potential advantages of TM
= Finer granularity tracking (compared to page-based)
= User-level handling (compared to OS handling))
= No instrumentation overhead (compared to BDT)
= Automatic handling of interactions with other programs/tools

m Note
= Conflict detection accuracy matters for several applications

= Can combine TM with alternative implementation techniques
« HTM for common case, other techniques for virtualization or higher accuracy

165

Example Use: Memory Snapshot

Memory

166

Example Use: Memory Snapshot

Read-only

Memory gnapshot

166

Example Use: Memory Snapshot

Memory

Read-only
Snapshot

166

Example Use: Memory Snapshot

Read-only
Memory gpapshot = Snapshot _
= Read-only image

= Multiple regions
= Access by > 1 threads

166

Example Use: Memory Snapshot

Read-only
Memory 'Suasenor = Snapshot
= Read-only image
= Multiple regions
= Access by > 1 threads

m Applications

- = Service threads that
mutator .
E—— analyze memory in

parallel with app threads

= Garbage collection, heap
 collector & stack analysis, copy on
write, ...

166

TM Hardware =Snapshot %

m Feature correspondence
= TM metadata =track data written since or read from snapshot
= TM versioning =storage for progressive snapshot
« Including virtualization mechanism
= TM conflict detection =catch errors
= Writes to read-only snapshot

m Differences & additions
= Single-thread Vs. multithread versioning
= Table to describe snapshot regions

m Resulting snapshot system
= Scan (create) snapshot in O(# CPUs)
= Update (write) and read in O(1)
= Memory overhead up to O(# memory locations written)

167

GC Overhead

L

35%
30%
25%
20%
15%
10%

5%

Runtime Overhead

0%

parallel GC snapshot GC

vacation

parallel GC snapshot GC

gzip

Stop
o Mark
m Reclaim

mSnapshot
=App

m Parallel GC: stop app threads & run GC threads

= 20% to 30% overhead for memory intensive apps

m Snapshot GC =GC is essentially free
= Stop app, take snapshot, then run GC & app concurrently
= Snapshot GC =fast & simple

= +100 lines over simple sequential GC by Boehm
= Fundamentally simpler than any other concurrent GC

168

Example Use :
Dynamic Binary Translation

m DBT

= Short code sequence is translated in run-time
= PIN, Valgrind, DynamoRIO, StarDBT, etc

DBT Tool
=

DBT Framework

m DBT use cases
= Translation on new target architecture
= JIT optimizations in virtual machines
= Binary instrumentation
= Profiling, security, debugging, ...

169

DBT Use: Dynamic Information Flow g
8

Tracking (DIFT)

t = XX ; // untrusted data from network

....... t ul u2

swap t, ul;

= Untrusted data are tracked throughout execution
= A taint bit per memory byte is used to track untrusted data.
= Security policy uses the taint bit.
« E.g. untrusted data should not be used as syscall argument.

= Dynamic instrumentation to propagates and checks taint bits

170

DBT Use: Dynamic Information Flow
Tracking (DIFT) 3

t = XX ; // untrusted data from network
taint(t) = 1;

....... t ul u2
swap t, ul;

swap taint(t), taint(ul); Taint bits _
u2 =ul;

taint(u2) = taint(ul);

= Untrusted data are tracked throughout execution

= A taint bit per memory byte is used to track untrusted data.
= Security policy uses the taint bit.

« E.g. untrusted data should not be used as syscall argument.

= Dynamic instrumentation to propagates and checks taint bits

170

DBT Use: Dynamic Information Flow
Tracking (DIFT) 3

== t=XX ;// untrusted data from network
taint(t) = 1;

....... t ul u2
swap t, ul;

swap taint(t), taint(ul); Taint bits _
u2 =ul;

taint(u2) = taint(ul);

= Untrusted data are tracked throughout execution

= A taint bit per memory byte is used to track untrusted data.
= Security policy uses the taint bit.

« E.g. untrusted data should not be used as syscall argument.

= Dynamic instrumentation to propagates and checks taint bits

170

DBT Use: Dynamic Information Flow
Tracking (DIFT) 3

t = XX ; // untrusted data from network
mmp taint(t) =1;

....... t ul u2
swap t, ul;

swap taint(t), taint(ul); Taint bits _
u2 =ul;

taint(u2) = taint(ul);

= Untrusted data are tracked throughout execution

= A taint bit per memory byte is used to track untrusted data.
= Security policy uses the taint bit.

« E.g. untrusted data should not be used as syscall argument.

= Dynamic instrumentation to propagates and checks taint bits

170

DBT Use: Dynamic Information Flow
Tracking (DIFT) 3

t = XX ; // untrusted data from network
taint(t) = 1;

....... t ul u2

mm) swap t, ul;

swap taint(t), taint(ul);
u2 =ul;
taint(u2) = taint(ul);

Taint bits

= Untrusted data are tracked throughout execution

= A taint bit per memory byte is used to track untrusted data.
= Security policy uses the taint bit.

« E.g. untrusted data should not be used as syscall argument.

= Dynamic instrumentation to propagates and checks taint bits

170

DBT Use: Dynamic Information Flow
Tracking (DIFT) 3

t = XX ; // untrusted data from network
taint(t) = 1;

....... t ul u2
swap t, ul;

=m) swap taint(t), taint(ul); Taint bits _
u2 =ul;

taint(u2) = taint(ul);

= Untrusted data are tracked throughout execution

= A taint bit per memory byte is used to track untrusted data.
= Security policy uses the taint bit.

« E.g. untrusted data should not be used as syscall argument.

= Dynamic instrumentation to propagates and checks taint bits

170

DBT Use: Dynamic Information Flow
Tracking (DIFT)

&

t = XX ; // untrusted data from network
taint(t) = 1;

....... t ul u2

swap t, ul;

swap taint(t), taint(ul); Taint bits _
me) u2 =ul;

taint(u2) = taint(ul);

m Untrusted data are tracked throughout execution
= A taint bit per memory byte is used to track untrusted data.
= Security policy uses the taint bit.
« E.g. untrusted data should not be used as syscall argument.

= Dynamic instrumentation to propagates and checks taint bits

170

DBT Use: Dynamic Information Flow
Tracking (DIFT)

&

t = XX ; // untrusted data from network
taint(t) = 1;

....... t ul u2
swap t, ul;

swap taint(t), taint(ul); Taint bits _
u2 =ul;

mmp taint(u2) = taint(ul);

m Untrusted data are tracked throughout execution
= A taint bit per memory byte is used to track untrusted data.
= Security policy uses the taint bit.
« E.g. untrusted data should not be used as syscall argument.

= Dynamic instrumentation to propagates and checks taint bits

170

&

DBT & Multithreading

= DBT with multithreaded executables as input

= Challenges
= Atomicity of target instructions
« E.g. compare-and-exchange
= Atomicity of additional instrumentation
=« Races in accesses to application data & DBT metadata

= Easy but unsatisfactory solutions
= Do not allow multithreaded programs (StarDBT)
= Serialize multithreaded execution (Valgrind)

171

Example MetaData Race =Security (/]
Breach 5@

m User code uses atomic instructions
= After instrumentation, there are races on taint bits

Thread 1 Thread2
swap t, ul;
u2 = ul;
t ul u2

172

Example MetaData Race =Security
Breach

m User code uses atomic instructions
= After instrumentation, there are races on taint bits

Thread 1 Thread?2

swap t, ul;
u2 = ul;
taint(u2) = taint(ul);
swap taint(t), taint(ul);
t ul u2

172

Example MetaData Race =Security
Breach

m User code uses atomic instructions
= After instrumentation, there are races on taint bits

Thread 1 Thread?2

swap t, ul;
u2 = ul;

taint(u2) = taint(ul);

swap taint(t), taint(ul);
t ul u2

Variables

Taint bits

172

Example MetaData Race =Security
Breach

m User code uses atomic instructions
= After instrumentation, there are races on taint bits

Thread 1 Thread?2

swap t, ul;
o u2 = ul;
taint(u2) = taint(ul);
swap taint(t), taint(ul);
t ul u2

172

Example MetaData Race =Security
Breach

m User code uses atomic instructions
= After instrumentation, there are races on taint bits

Thread 1 Thread?2

swap t, ul;

u2 = ul;-
taint(u2) = taint(ul);

swap taint(t), taint(ul);
t ul u2

172

Example MetaData Race =Security
Breach

m User code uses atomic instructions
= After instrumentation, there are races on taint bits

Thread 1 Thread?2

swap t, ul;
u2 = ul;
taint(u2) = taint(uda
swap taint(t), taint(ul);
t ul u2

172

Example MetaData Race =Security
Breach

m User code uses atomic instructions
= After instrumentation, there are races on taint bits

Thread 1 Thread?2

swap t, ul;
u2 = ul;
taint(u2) = taint(ul);
mm) swap taint(t), taint(ul);
t ul u2

172

Example MetaData Race =Security
Breach

m User code uses atomic instructions
= After instrumentation, there are races on taint bits

Thread 1 Thread?2

swap t, ul;
u2 = ul;

taint(u2) = taint(ul);

mm) swap taint(t), taint(ul);
t ul u2

Variables

Taint bits

172

Can We Fix It with Locks? %

m Idea
= Enclose access to data & metadata within a locked region

= Problems

s Coarse-grained locks
=« Performance degradation

= Fine-grained locks
« Locking overhead, convoying, limited scope of DBT

optimizations

= Lock nesting between application & DBT locks

=« Potential deadlock

= Tool developers should be a feature + multithreading experts
=« Must know both security & multithreading to develop tool

173

T™ for DBT %

m Idea

= DBT instruments a transaction to enclose accesses to
(data, metadata) within the transaction boundary.

Thread 1 Thread2
swap t, ul; u2 = ul;
swap taint(t), taint(ul); taint (u2) = taint(ul) ;

= Advantages
= Atomic execution
= High performance through optimistic concurrency
= Support for nested transactions
= Hidden from the tool and application developers

174

T™ for DBT

)

m Idea

= DBT instruments a transaction to enclose accesses to

(data, metadata) within the transaction boundary.

Thread 1 Thread2

TX Begin TX Begin

swap t, ul; u2 = ul;

swap taint(t), taint(ul); taint (u2) = taint(ul) ;
TX End TX End

= Advantages

Atomic execution

High performance through optimistic concurrency
Support for nested transactions

Hidden from the tool and application developers

174

Granularity of Transaction
Instrumentation

L

m Per instruction
= High overhead of executing TX_Begin and TX_End
= Limited scope for DBT optimizations

m Per basic block
= Amortizing the TX_Begin and TX_End overhead
= Easy to match TX_Begin and TX_End

m Per trace
= Further amortization of the overhead
= Potentially high transaction conflict

= Profile-based sizing
= Optimize transaction size based on transaction abort ratio

175

Performance Overheads

60%

50%
mSTM

40% i l l l mSTM+
20% I =HTM
10%

0% » |

Barnes Equake FMM Radiosity Radix Swim Tomcatv Water Water-
s patial

Normailized Overhead (%)

= TM systems evaluated
= STM: software TM, STM+ = STM + HW checkpointing

= HyTM: hardware-accelerated TM (similar to SigTM)
= HTM: full hardware TM implementation

176

Example Use: Reliable Systems

= RPC likes operation < RPC-based approach>

= If no fault occurs, modified data

copied back to kernel space
< TM-based style >

m Kernel protection
= Faulty drivers can corrupt kernel data

m Protection through domain isolation
= Kernel data are copied to driver

m Use of TM
= Replace copying with atomic block
= If fault occurs, abort transaction

177

Example Use: Reliable Systems

m Kernel protection
= Faulty drivers can corrupt kernel data

m Protection through domain isolation

= Kernel data are copied to driver
=« RPC likes operation

= If no fault occurs, modified data
copied back to kernel space

m Useof TM
= Replace copying with atomic block
= If fault occurs, abort transaction

< RPC-based approach>

< TM-based style >

177

Example Use: Reliable Systems

m Kernel protection
= Faulty drivers can corrupt kernel data

m Protection through domain isolation

= Kernel data are copied to driver
=« RPC likes operation

= If no fault occurs, modified data
copied back to kernel space

m Useof TM
= Replace copying with atomic block
= If fault occurs, abort transaction

< RPC-based approach>

< TM-based style >

177

Example Use: Reliable Systems

m Kernel protection
= Faulty drivers can corrupt kernel data

m Protection through domain isolation

= Kernel data are copied to driver
=« RPC likes operation

= If no fault occurs, modified data
copied back to kernel space

m Useof TM
= Replace copying with atomic block
= If fault occurs, abort transaction

< RPC-based approach>

< TM-based style >

177

Example Use: Reliable Systems

m Kernel protection
= Faulty drivers can corrupt kernel data

m Protection through domain isolation

= Kernel data are copied to driver
=« RPC likes operation

= If no fault occurs, modified data
copied back to kernel space

m Useof TM
= Replace copying with atomic block
= If fault occurs, abort transaction

< RPC-based approach>

< TM-based style >

177

Example Use: Reliable Systems

m Kernel protection
= Faulty drivers can corrupt kernel data

m Protection through domain isolation

= Kernel data are copied to driver
=« RPC likes operation

= If no fault occurs, modified data
copied back to kernel space

m Useof TM
= Replace copying with atomic block
= If fault occurs, abort transaction

< RPC-based approach>

< TM-based style >

177

Exampled Use: Security

L

m Stack smashing

= Overwrite return address using a
buffer overflow

= Can jump to arbitrary code

m Protection through canary
= Place a special value next to the
return address.

= If the value is modified at the end of
function, the return address is
compromised

m Use of TM

= Use address tracking to detect
overwrites of return address

= Lower time & space overhead

STACK

178

Exampled Use: Security

)

m Stack smashing

= Overwrite return address using a
buffer overflow

= Can jump to arbitrary code

m Protection through canary
= Place a special value next to the
return address.

= If the value is modified at the end of
function, the return address is
compromised

m Use of TM

= Use address tracking to detect
overwrites of return address

= Lower time & space overhead

STACK

Stack

Growth

l

178

Exampled Use: Security %

m Stack smashing
= Overwrite return address using a STACK
buffer overflow

= Can jump to arbitrary code

Stack
Growth

m Protection through canary
= Place a special value next to the
return address.
= If the value is modified at the end of
function, the return address is
compromised

m Use of TM

= Use address tracking to detect
overwrites of return address

= Lower time & space overhead
178

Exampled Use: Security [55

m Stack smashing
= Overwrite return address using a STACK
buffer overflow

= Can jump to arbitrary code

Stack
Growth

l

m Protection through canary
= Place a special value next to the
return address.
= If the value is modified at the end of
function, the return address is
compromised

m Use of TM

= Use address tracking to detect
overwrites of return address

= Lower time & space overhead
178

Exampled Use: Security [55

m Stack smashing
= Overwrite return address using a STACK
buffer overflow

= Can jump to arbitrary code

Stack
Growth

l

m Protection through canary
= Place a special value next to the
return address.
= If the value is modified at the end of

function, the return address is
compromised Bufter
Overflow
m Useof TM

= Use address tracking to detect
overwrites of return address

= Lower time & space overhead
178

Exampled Use: Security [55

m Stack smashing
= Overwrite return address using a STACK
buffer overflow

= Can jump to arbitrary code

Stack
Growth

l

m Protection through canary
= Place a special value next to the
return address.
= If the value is modified at the end of

function, the return address is
compromised Bufter
Overflow
m Useof TM

= Use address tracking to detect
overwrites of return address

= Lower time & space overhead
178

Exampled Use: Security %

m Stack smashing
= Overwrite return address using a STACK
buffer overflow

= Can jump to arbitrary code

Stack
Growth

l

m Protection through canary
= Place a special value next to the
return address.
= If the value is modified at the end of

function, the return address is
compromised Bufter
Overflow
m Useof TM

= Use address tracking to detect
overwrites of return address

= Lower time & space overhead
178

Exampled Use: Security %

m Stack smashing
= Overwrite return address using a STACK
buffer overflow

= Can jump to arbitrary code

Stack
Growth

l

m Protection through canary
= Place a special value next to the
return address.
= If the value is modified at the end of

function, the return address is
compromised Bufter
Overflow
m Useof TM

= Use address tracking to detect
overwrites of return address

= Lower time & space overhead
178

Example Use: Debugging

)

= Data watchpoint
= Detects memory accesses
= Triggers software handler

m Current approaches
= Up to 4 HW watchpoints
= Infinite watchpoints with VM
« OS overheads
« False positivies

m Use of TM

= Use access tracking for
watchpoints

= Fine granularity
s User-level overheads

Normalized
Overhead (%)

S =N WA W

Page Fault
Exception

> (~1000s of cycles)

/I

100 500 1000 2000 4000

Number of Watchpoints per Core

179

Example Use: Debugging

)

= Data watchpoint
= Detects memory accesses
= Triggers software handler

m Current approaches
= Up to 4 HW watchpoints
= Infinite watchpoints with VM
« OS overheads
« False positivies

m Use of TM

= Use access tracking for
watchpoints

= Fine granularity
s User-level overheads

User-level

Handler
(~10s of cycles)

/I

S =N WA W

Normalized
Overhead (%)

100 500 1000 2000 4000

Number of Watchpoints per Core

179

Lecture 4: Select References (‘J

Overview

= Adl-Tabatabai. Unlocking Concurrency: Multi-core Programming with Transactional
Memory, ACM Queue, 2006

= Larus & Kozyrakis. Transactional Memory, CACM, 2008
Hardware/Software Interface
= McDonald et al. Architectural Semantics for Practical Transactional Memory, ISCA, 2006
= Carlstrom et al. The Atomos Transactional Programming Language, PLDI, 2006
= Moravan et al. Supporting Nested Transactions in LogTM, ASPLOS, 2006
= Carlstrom et al. Transactional Collection Classes, PPoPP, 2007
= Ni et al. Open Nesting in Software Transactional Memory, PPoPP, 2007

= Sriraman et al. An Integrated Hardware-Software Approach to Flexible Transactional
Memory, ISCA, 2007

= Baugh et al. An Analysis of I/O and Syscalls in Critical Sections and their Implications to
Transactional Memory, Transact 2007

= TM uses Beyond Concurrency Control

= Chung et al. Thread-safe Dynamic Binary Translation Using Transactional Memory, HPCA,
2008

= Chung, System Challenges and Opportunities for Transactional Memory, PhD Thesis, 2008

180

L

Questions?

= Thank you for your attention

m For further questions or comments contact me at
christos@ee.stanford.edu

181

