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My Background %

m Assistant Professor of EE & CS @ Stanford
= PhD from UC Berkeley, BS from U. of Crete
= Research focus: computer systems
= Architecture, design, runtimes, programming models, ...

m Active research projects
= Transactional memory (http://tcc.stanford.edu)
= Systems security (http://raksha.stanford.edu)
= Energy-efficient data-centers (http://joulesort.stanford.edu)

m Past research
= Network switches (ugrad work @ ICS-FORTH)
= Multimedia processors (grad work @ UC Berkeley)




My Experience on Transactional £
Memory %

Hardware support
= TCC architecture [ISCA’04, ASPLOS'04, PACT'05], HTM virtualization [ASPLOS'06]
= ISA for HTM systems [ISCA’06]
= SigTM hybrid system [ISCA’07]
Programming environments
= Java+TM=Atomos [SCOOL'05, PLDI'06], transctional collection classes [PPoPP'07]
= OpenMP+GCC+TM=0penTM [PACT'07, http://opentm.stanford.edu]

Applications
= Basic characterization [HPCA'05, WTW’06]
= STAMP benchmark suite [11swc'08, http://stamp.stanford.edu]
Full-system prototypes
= ATLAS FPGA-based prototype for HTM [DATE'07, FPGA'07]
TM beyond concurrency control
= Fix DBT races [HPCA'08], replay/tuning/debugging on ATLAS [ISCA’07 tutorial]
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Course Objectives

= We will
= Introduce basic TM concepts & interfaces
= Cover a wide range of implementation tradeoffs
= Discuss opportunities beyond parallelism
= Provide basis for further reading & research on TM

= Non-goals
= Discuss every paper on TM technology
Impossible for an active research field
= Conclude with a single, optimal implementation
« Although we will draw some important insights
= Go over a large number of performance graphs
« Prefer to focus on insights instead
= Discuss how TM integrates with other novel ideas for parallelism




Perspective: TM & Parallel e
Programming %

B The challenges of parallel programming
1. Finding independent tasks in the algorithm
Mapping tasks to execution units (e.g. threads)

3. Defining & implementing synchronization
T Races, deadlock avoidance, memory model issues

Composing parallel tasks
Recovering from errors

Portable & predictable performance
Scalability

Locality management

All the sequential issues as well...
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Course Outline

&

m Lecture 1
= TM introduction & programming concepts

m Lecture 2
= Introduction to TM implementation
= Software TM systems

m Lecture 3
= Hardware support for TM

m Lecture 4
= Hardware/software interface for TM
= TM uses beyond concurrency control




Course Etiquette

m Please ask questions
= Best way to set course pace & focus

= Best way to get most out of the course fee
= You could study my slides at your home

= Other students will benefit from your questions

= Keep in mind
= Must cover a decent subset of the material, so...
« May defer some questions till an appropriate slide
May defer some questions for offline
May only provide the insight & a pointer to the details

= I don’t have all the answers...




Questions?
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Lecture 1:
TM Concepts & Programming

= QOutline
= TM definition & key advantages
= TM programming constructs
= Caveats and open issues

m Disclaimer

s The exact semantics and constructs for TM in
various languages are still an open research issue

= The goal of this lecture is to introduce the
constructs & related issues in order to motivate
the implementation

Will not provide formal/strict semantics
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Motivation: The Parallel Programming @&
Crisis @

m Multi-core chips =inflection point for SW development
= Scalable performance now requires parallel programming

m Parallel programming up until now
= Limited to people with access to large parallel systems

= Using low-level concurrency features in languages
= Thin veneer over underlying hardware

= Too cumbersome for mainstream software developers
= Difficult to write, debug, maintain and even get some speedup

= We need better concurrency abstractions

= Goal = easy to use + good performance
= 90% of the speedup with 10% of the effort

11




Transactional Memory (TM) %

m Memory transaction [Lomet’77, Knight'86, Herlihy & Moss93]
= An atomic & isolated sequence of memory accesses
= Inspired by database transactions

= Atomicity (all or nothing)
= At commit, all memory writes take effect at once
= On abort, none of the writes appear to take effect
= Isolation
= No other code can observe writes before commit
m Serializability
= Transactions seem to commit in a single serial order
= The exact order is not guaranteed though

12




Programming with TM %

volid deposit (account, amount)({ volid deposit (account, amount)(
lock (account) ; atomic {
int t = bank.get (account); int t = bank.get (account);
t = t + amount; ‘ t = t + amount;
bank.put (account, t); bank.put {account, t):
unlock (account) ; }

m Declarative synchronization
= Programmers says what but not how
= No explicit declaration or management of locks

m System implements synchronization
= Typically with optimistic concurrency [Kung’81]
= Slow down only on conflicts (R-W or W-W)

13




Advantages of TM %

m Easy to use synchronization construct
= As easy to use as coarse-grain locks
s Programmer declares, system implements

m Performs as well as fine-grain locks
= Automatic read-read & fine-grain concurrency
= No tradeoff between performance & correctness

m Failure atomicity & recovery
= No lost locks when a thread fails
= Failure recovery = transaction abort + restart

= Composability
= Safe & scalable composition of software modules

14




Example: Java 1.4 HashMap %

m Fundamental data structure
= Map: Key — Value

public Object get(Object key) {
int idx = hash(key); // Compute hash
HashEntry e = buckets[idx]; // to find bucket
while (e '= null) { // Find element in bucket
if (equals(key, e.key))

return e.value;
e = e.next;

¥

return null;

¥

m Not thread safe - no lock overhead when not needed

15




Synchronized HashMap %

= Java 1.4 solution: synchronized layer
= Convert any map to thread-safe variant
= Uses explicit, coarse-grain locking specified by programmer

public Object get(Object key) {
synchronized (mutex) { // mutex guards all accesses to map m

return m.get(key);

¥
¥

m Coarse-grain synchronized HashMap
= Pros: thread-safe, easy to program

= Cons: limits concurrency, poor scalability
= Only one thread can operate on map at any time

16




Concurrent HashMap (Java 5) %

public Object get(Object key) {
int hash = hash(key);
// Try first without locking...
Entry[] tab = table;
int index = hash & (tab.length - 1);
Entry first = tab[index];
Entry e;

// Recheck under synch if key not there or interference
Segment seg = segments[hash & SEGMENT_MASK];
synchronized(seg) {
tab = table;
index = hash & (tab.length - 1);
Entry newFirst = tab[index];
if (e '=null || first != newFirst) {
for (e = newFirst; e = null; e = e.next) {
if (e.hash == hash && eq(key, e.key))
return e.value;
s
b

return null;

¥

for (e = first; e I= null; e = e.next) {
if (e.hash == hash && eq(key, e.key)) {
Object value = e.value;
if (value !'= null)
return value;
else
break;

b
b
m Fine-grain synchronized concurrent HashMap

= Pros: fine-grain parallelism, concurrent reads
= Cons: complex & error prone

17




Performance: Locks

L
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Transactional HashMap

m Simply enclose all operation in atomic block
= System ensures atomicity

public Object get(Object key) {
atomic { // System guarantees atomicity
return m.get(key);

¥

® Transactional HashMap
= Pros: thread-safe, easy to program

= Q: good performance & scalability?
Depends on the implementation, but typically yes

19




Performance: Locks Vs
Transactions

L
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Failure Atomicity: Locks

vold transfer (A, B, amount)
synchronized (bank) {

try({
withdraw (A, amount) ;

deposit (B, amount):;

}

catch (exceptionl) { /* undo code 1%*/}
catch (exception2) { /* undo code 2*/}

}

= Manually catch exceptions
= Programmer provides undo code on a case by case basis
« Complexity: what to undo and how...

= Some side-effects may become visible to other threads

« E.g., an uncaught case can deadlock the system...
21
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Failure Atomicity: Transactions

volid transfer (A, B, amount)
atomic{
withdraw (A, amount) ;
deposit (B, amount);

m System processes exceptions
= All but those explicitly managed by the programmer
= Transaction is aborted and updates are undone

= No partial updates are visible to other threads
= No locks held by a failing threads...

= Open question: how to best communicate exception info

22




Composability: Locks %

volid transfer (A, B, amount) volid transfer (B, A, amount)
synchronized (A) { = (A) synchronized (B) {
synchronized (B) { & = - synchronized (A) {
withdraw (A, amount):; withdraw (B, amount):;

deposit (B, amount); deposit (A, amount):;

s Composing lock-based code is tough
= Goal: hide intermediate state during transfer
= Need global locking methodology now...

m Between the rock & the hard place
= Fine-grain locking: can lead to deadlock

23




Composability: Locks %

void transfer (A, B, amount) @ void transfer(C, D, amount)
synchronized (bank) { @Wﬂ synchronized (bank) {
withdraw (A, amount); withdraw (C, amount) ;
deposit (B, amount); deposit (A, amount):;

= Composing lock-based code is tough
= Goal: hide intermediate state during transfer
= Need global locking methodology now...

= Between the rock & the hard place
= Fine-grain locking: can lead to deadlock
= Coarse-grain locking: no concurrency

24




Composability: Transactions %

volid transfer (A, B, amount) volid transfer (B, A, amount)
atomic{ atomic{
withdraw (A, amount) ; withdraw (B, amount) ;
deposit (B, amount) ; deposit (A, amount);
} }

m Transactions compose gracefully

= Programmer declares global intend (atomic transfer)
=« No need to know of a global implementation strategy

= Transaction in transfer subsumes those in withdraw & deposit
=« Outermost transaction defines atomicity boundary

m System manages concurrency as well as possible
= Serialization for transfer(A, B, $100) & transfer(B, A, $200)
= Concurrency for transfer(A, B, $100) & transfer(C, D, $200)

25




Programming with TM (continued) %

m Basic atomic blocks: atomic{}

m User-triggered abort: abort

m Conditional synchronization: retry
s Composing code sequences: orelse

= Integration with parallel models: OpenTM

26




User-triggered Abort

L

= Abort statement
= Undo current transaction (no visible writes)

= Jump to a specified code location
= User Vs. system initiated abort

= Abort uses
= Check high-level invariants in user code
= Error and exception handling

void transfer (A, B, amount)
atomic{
try {
work () ;
}
galeh (errorl) { Tix codel(); )
catch(error?2) { abort(); }

27




Conditional Synchronization with ¢
Retry %

Object blockingDequeue
// Block until queue is not empty
atomic{
1f (1sEmpty()) retry;
return dequeue();

}

m Retry statement
s Rolls back current transaction

= Waits for change in state accessed by the transaction
« Everything or what specified with a watch() statement

= Store by another thread implicitly signals blocked thread
= No lost wake up compared to traditional wait-notify schemes

m Alternative: conditional atomic statements
= Specify & test condition at transaction start

28




Composing Code Sequences %

atomic({

gl .blockingDequeue ()
} orelse {

g2 .blockingDequeue () ;
} orelse {

g3 -blockingDegqueue () ;

}

= Orelse statement
= Allows composition of alternative code statements

= If one clause fails due to retry, try next alternative
= Sequential order of clauses

29
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Integration with Parallel Models

= Example: OpenTM = OpenMP + TM
= OpenMP: master-slave parallel model
« Easy to specify parallel loops & tasks
= TM: atomic & isolation execution
« Easy to specify synchronization and speculation

= OpenTM features
= Transactions, transactional loops & sections
= Data directives for TM (e.g., thread private data)
= Runtime system hints for TM

m Code example
#pragma omp transfor schedule (static, chunk=42, group=6)
for (1=0p i<N; i++) {
bin[ Al i1]] = bin[ Al i]] +1;
}

30




TM Caveats and Open Issues %

m TM Vs. Locks

m I/O and unrecoverable actions

m Interaction with non-transactional code

31




Atomic() # Lock()+Unlock()

= The difference
= Atomic: high-level declaration of atomicity
« Does not specify implementation/blocking behavior
=« Does not provide a consistency model
= Lock: low-level blocking primitive
Does not provide atomicity or isolation on its own

= Keep in mind
= Locks can be used to implement atomic(), but...
= Locks can be used for purposes beyond atomicity
=« Cannot replace all lock regions with atomic regions
= Atomic eliminates many data races, but
= Atomic blocks can suffer from atomicity violations
Atomic action in algorithm split into two atomic blocks

32




Example: Lock-based Code that does

)

Not Work with Atomic
//Thread 1 //Thread 2
synchronized (lockl) { synchronized (lock2) {
flagB = true; flagA = true;
while (flagA==0); while (f£lagB==0) ;

m What is the problem with replacing synchronized with atomic?

= How can we code this pattern with atomic blocks?

33
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Example: Atomicity Violation

//Thread 1
atomic () {
Bt — B //Th?ead 2
atomic{

} ptr = NULL;

atomic () {
B = ptr—>field;
}

m What should be the transaction boundaries for the thread 1 code?

34




/O and Other Irrevocable Actions

= Challenge: difficult to undo output & redo input
= I/O devices, I/0 registers,...

= Alternative solutions (open problem)

= Buffer output & log input
« Finalize output & clear log at commit
Does not work if atomic does input after output
= Guarantee that transaction will not abort
« Abort interfering transactions or sequentialize the system
Does not work with abort(), input-after-output
= Transaction-based systems
= Multiple transactional devices (TM, log-based FS, ...)

« Manager coordinates transactions across devices
= See IBM’s Quicksilver system as a pre-TM era example
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Interactions with Non-Transactional £
Code %

m Two basic alternatives

= Weak atomicity

= Transactions are serializable only against other transations

= No guarantees about interactions with non-transactional code
= Strong atomicity

= Transactions are serializable against all memory accesses

= Non-transactional loads/stores are 1-instruction transactions

= The tradeoff
s Strong atomicity seems intuitive
= Predictable interactions for a wide range of coding patterns
= But, strong atomicity has high overheads for software TM

36




Example of Atomicity Challenges %

//Thread 1
atomic () {
tl = A;
//Thread 2
B++;
t2 = A;

= With strong atomicity
= t1==t2 always
= Thread 2 may cause thread 1 transaction to abort
= With weak atomicity
= t1 may not be equal to t2
= Depends on exact interleaving, TM implementation, ...

37




Example of Atomicity Challenges %

//Thread 1
atomic () {
At+;
//Thread 2
t=A;
At+;

= With strong atomicity

= Thread 2 reads value of A before or after transaction
= With weak atomicity

= Thread 2 may also read intermediate value

= Depends on exact interleaving, TM implementation, ...

38




An Example without Races:

)

Privatization
Thread 1 Thread 2
synchronized (list) { synchronized (list) {
if (ligh = NULkj 1 if (list != NULL) {

e = list; .

list = e.next; P = ShEE
}} p.x = 9;
rl = e.x; }
r2 = e.x;
assert(rl '= r2); list L0 ] 7211 T

= Privatization example

= Thread 1 removes first element from list
s Correctly synchronized code with locks

« Thread 1 assertion should always succeed
= What happens if we use atomic() instead?

39




Privatization on a Weakly Atomic

™

Thread 1 Thread 2
atomic| = 1 atomic{
if (list ! = NULL) { if (list!=NULL) f{
e = list; ;
list = e.next; A
. p.x = 9;
rl = e.%; }
r2 = e.x;
assert(rl != r2); list '——BLQ —"€ﬂ1

e

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns
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Privatization on a Weakly Atomic

™

Thread 1

atomic
1if (list ! = NULL)
e = list;
list = e.next;
b}
rl = e.x;
r2 = e.x;

assert(rl '= r2);

{

Thread 2

atomic{

1if (list!=NULL) {

Eb = lLists

P
p.x = 9;

list ——9|_o7\ —1>11

e

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns
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Privatization on a Weakly Atomic

™

)

Thread 1

atomic|
1if (list ! = NULL)
e = list;
list = e.next;
b}
rl = e.x;
r2 = e.x;

assert(rl '= r2);

{

Thread 2

atomic{
if (list!=NULL) {
= lLists

P
p.x = 9;

list ‘I—_ylv\ —eﬁv

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40




Privatization on a Weakly Atomic

™

)

Thread 1
atomic|
1T (list ! = NULL) {
e = list;
list = e.next;
- @D
rl = e.x;
r2 = e.x;
assert(rl '= r2);

Thread 2

atomic{
if (list!=NULL) {
= lLists

P
p.x = 9;

list _Ijlv\ —eﬁv

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns
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Privatization on a Weakly Atomic

™

)

Thread 1

atomic|
1if (list ! = NULL)
e = list;
list = e.next;
b}
rl = e.x;
r2 = e.x;

assert(rl '= r2);

{

Thread 2

atomic{
if (list!=NULL) {
= lLists

P
p.x = 9;

list _I__?P\ —eﬁv

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40




Privatization on a Weakly Atomic

™

)

Thread 1

atomic|
1if (list ! = NULL)
e = list;
list = e.next;
b}
rl = e.x; // rl =29
r2 = e.x;

assert(rl '= r2);

{

Thread 2

atomic{
if (list!=NULL) {
= lLists

P
p.x = 9;

list _I__?P\ —eﬁv

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns
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Privatization on a Weakly Atomic %

Thread 1

atomic
i1f (list ! = NULL)
e = list;
list = e.next;
ki
rl = e.x; // rl =9
r2 = e.x;

assert(rl '= r2);

{

Thread

2

atomic{

1if (list!=NULL) {

P
P.

= lLists

x = 9;

&

list

e

R

LQ7\-_

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns

40
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Privatization on a Weakly Atomic %

Thread 1

atomic|
i1f (list ! = NULL)
e = list;
list = e.next;
ki
rl = e.x; // rl =29
r2 = e.x; J/ r2 =0
assert(rl '= r2);

{

Thread 2

atomic{

1if (list!=NULL) {

= lLists

p

list |_07\ —eﬁv —

e

p

= Assuming an eager-versioning STM system
= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns
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Privatization on a Weakly Atomic %

Thread 1

atomic/

if (list ! =

e

list = e.next;

I3

rl = e.x;

r2 = @,X;

= litste

Thread 2

NULL)

// rl

atomic{

1if (list!=NULL) {

P
P.

lists

// r2

assert(rl '= r2) ;@C:

= Assuming an eager-versioning STM system

list

e

AENNES

p

= Similar issues with lazy-versioning without strong atomicity
= Similar issues with publication patterns
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Potential Solutions (Open Issue) %

m Strong atomicity using hardware support

= Full hardware TM or hardware-based conflict detection

m Optimize software overhead for strong atomicity
= Through compiler optimizations for private and non-shared data

= Possible for managed languages; difficult for unmanaged

= Programming models that explicitly segregate transactional from
non transactional data

= Allows correct handling of privatization & publication patterns

= Alternative system semantics
= Single lock atomicity, disjoint lock atomicity, ...
= Guarantees & costs in between strong and weak atomicity

= Similar to the discussion on relaxed consistency models

41
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Lecture 1: Select References "

Basics
= Herlihy & Moss. Transactional Memory: Architectural Support for Lock-Free Data Structures,
ISCA, 1993
= Kung & Robinson. On Optimistic Concurrency Control, ACM Trans. on DBs, 1981
TM Overview
= Larus & Rajwar. Transactional Memory, Morgan & Claypool Publishers, 2007
= Larus & Kozyrakis. Transactional Memory, CACM, 2008
TM Programming & Caveats
= Harris & Fraser. Language Support for Lightweight Transactions, OOPSLA, 2003
= Haris. Composable Memory Transactions, PPoPP, 2005
= Carlstrom et al. The Atomos Transactional Programming Language, PLDI, 2006

= Adl-Tabatabai et al. Compiler and runtime support for efficient software transactional
memory, PLDI, 2006

= Lu et al. AVIO: Detecting Atomicity Violation Bugs via Access Interleaving Invariants,
ASPLQOS, 2006

= Shpeisman et al. Enforcing Isolation and Ordering in STM, PLDI, 2007

= Yoo et al. Kicking the Tires of Software Transactional Memory: When the Going Gets Tough,
SPAA, 2008

= Welc et al. Irrevocable Transactions and their Applications, SPAA, 2008
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Lecture 1 Summary %

= TM = declarative synchronization
= User specifies requirement (atomicity & isolation)
= System implements in best possible way

= Motivation for TM

= Difficult for user to get explicit sync right
« Correctness Vs performance Vs complexity

= Explicit sync is difficult to scale
=« Locking scheme for 4 CPUs is not the best for 64

= Difficult to do explicit sync with composable SW
= Need a global locking strategy

= Other advantages: fault atomicity, ...
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Lecture 1 Summary (cont) %

= TM applicability
= Apps with irregular or unstructured parallelism

= Difficult to prove independence in advance
Difficult to partition data in advance

= Examples: 3-tier system, graphs apps, Al apps, ...

= A note to keep in mind

= TM does not generate new parallelism
It just helps you tap into what is there

= TM target: 90% of benefit @ 10% of work

« Given infinite time & a lock, you should always be
able to do as well as TM (roughly)

46




Lecture 2:
TM Implementation & Software TM

L

m Qutline

= Implementation requirements for TM
« Data versioning techniques
« Conflict detection techniques
=« Design space tradeoffs

= Software TM systems (STM)
=« STM data structures
« Example STM algorithm
« STM optimizations & challenges

47




TM Implementation Basics %

= TM systems must provide atomicity and isolation
= Without sacrificing concurrency

= Basic implementation requirements
= Data versioning
= Conflict detection & resolution

= Implementation options
= Hardware transactional memory (HTM)
= Software transactional memory (STM)

= Hybrid transactional memory
« Hardware accelerated STMs and dual-mode systems

48




Data Versioning %

= Manage uncommited (new) and commited (old) versions
of data for concurrent transactions

=" Eager versioning (undo-log based)
= Update memory location directly
= Maintain undo info in a log
+ Faster commit, direct reads (SW)
- Slower aborts, fault tolerance issues

=ahLazy versioning (write-buffer based)
= Buffer data until commit in a write-buffer
= Update actual memory location on commit
+ Faster abort, no fault tolerance issues
- Slower commits, indirect reads (SW)

49




Eager Versioning lllustration %

Beqgin Xaction

Thread

X: 10

|

Memory

Undo
Log

Write X<15

Thread j’
Undo
X: 10| Log

X: 15 Memory

Commit Xaction

Thread

X:15

Abort Xaction

Thread

X: 10 Memory
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Lazy Versioning lllustration

Beqgin Xaction

Write X+15
Thread Thread
|—| Write
Buffer X: 15 |Buffer
X:10 Memory X:10 | Memory
Commit Xaction Abort Xaction
Thread Thread
rite
ffer
X:10 Memory y




Conflict Detection %

m Detect and handle conflicts between transaction
= Read-Write and (often) Write-Write conflicts

s Must track the transaction’s read-set and write-set
= Read-set: addresses read within the transaction
= Write-set: addresses written within transaction

rarPessimistic detection

= Check for conflicts during loads or stores

= SW: SW barriers using locks and/or version numbers
« HW: check through coherence actions

= Use contention manager to decide to stall or abort
=« Various priority policies to handle common case fast

52




Pessimistic Detection lllustration (%7

Case 1 Case 2 Case 3 Case 4

X0 X1

dNIL

check
restart

commit

rd A

commit

| restart

Success Early Detect Abort No progress
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Conflict Detection (cont) %

2. Optimistic detection

= Detect conflicts when a transaction attempts to commit
SW: validate write/read-set using locks or version numbers

« HW: validate write-set using coherence actions
= Get exclusive access for cache lines in write-set

= On a conflict, give priority to committing transaction
=« Other transactions may abort later on

= On conflicts between committing transactions, use
contention manager to decide priority

m Note: optimistic & pessimistic schemes together

= Several STM systems use optimistic for reads and
pessimistic for writes
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Optimistic Detection lllustration [55

Case 1 Case 2 Case 3 Case 4

X0 X1 X0 X1 X0 X1

dNIL

rd A
rA
rd A
commit commit

check check
Success Abort Success Forward progresg




Conflict Detection Tradeoffs %

=" Pessimistic conflict detection (aka encounter or eager)

+ Detect conflicts early
Undo less work, turn some aborts to stalls

- No forward progress guarantees, more aborts in some cases
- Locking issues (SW), fine-grain communication (HW)

2 Optimistic conflict detection (aka commit or lazy)
+ Forward progress guarantees

+ Potentially less conflicts, shorter locking (SW), bulk
communication (HW)

- Detects conflicts late, still has fairness problems
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Conflict Detection Granularity

L

= Object granularity (SW/hybrid)

+ Reduced overhead (time/space)

+ Close to programmer’s reasoning

- False sharing on large objects (e.g. arrays)
= Word granularity

+ Minimize false sharing

- Increased overhead (time/space)
m Cache line granularity

+ Compromise between object & word

+ Works for both HW/SW

@ Mix & match = best of both words

= Word-level for arrays, object-level for other data, ...
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L

TM Implementation Space (Examples)

= Hardware TM systems
= Lazy + optimistic: Stanford TCC
= Lazy + pessimistic: MIT LTM, Intel VTM
= Eager + pessimistic: Wisconsin LogTM

m Software TM systems
= Lazy + optimistic (rd/wr): Sun TL2
= Lazy+ optimistic (rd)/pessimistic (wr): MS OSTM
= Eager + optimistic (rd)/pessimistic (wr): Intel STM
= Eager + pessimistic (rd/wr): Intel STM

= Optimal design is still an open questions
= May be different for HW, SW, and hybrid
= Will discuss further in STM and HTM sections of the course
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Questions?

L




Software Transactional Memory t%

atomic { tmTxnBegin ()
a.x = tl tmWr (&a.x, tl)
a.y = t2 tmWr (&a.y, t2)
if (a.z == 0) { » 1if (tmRd(&a.z) !'= 0) {
a.x = 0 tmWr (&a.x, 0);
a.z = t3 tmWr (&a.z, t3)
} }
} tmTxnCommit ()

m Software barriers for TM bookkeeping
= Versioning, read/write-set tracking, commit, ...
= Using locks, timestamps, data copying, ...

m Requires function cloning or dynamic translation
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STM Approaches

m Static Vs dynamic
= Static: declare in advance all data access
= Dynamic: dynamically handle accesses in program
= Nearly all recent STMs are dynamic

= Non-blocking Vs lock-based
= Non-blocking: rely on non-blocking algorithms
=« Non-blocking STMs use lazy versioning
=« Overhead of reads (indirection or search write-buffer)
= Lock-based: rely on blocking locks
=« Can implement eager versioning (fast reads)
« There are also lock-based lazy systems (e.g., TL2)

= Will focus on dynamic, lock-based STMs
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STM Runtime Data Structures %

m Transaction descriptor (per-thread)
= Used for conflict detection, commit, abort, ...
= Includes the read set, write set, undo log or write buffer

® Transaction memento (per thread)
= Used for nesting & partial rollback
= Includes checkpoints of machine and transaction descriptor

m Transaction record (per data)
= Pointer-sized record guarding shared data

= Tracks transactional state of data
= Shared: accessed by multiple readers
= Using version number or shared reader lock

= Exclusive: access by one writer
= Using writer lock that points to owner
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Mapping Data to Transaction Records

%

Every data item has an associated transaction record

Java/C#

class Foo{ [gp%=:

int X; X
inty;
) Y
Embed in

each object

hash

X

y

C/C++
struct Foo {
int x; X
inty; y
}

Hash fields or
array elements to
global table

f(obj.hash, field.index)

Address-based hash
into global table

Cache-line or word
granularity

63




Conflict Detection Granularity

= Object granularity
= Low overhead mapping operation
= Exposes optimization opportunities

= Element/field granularity
= Reduces false sharing
= Improves scalability

m Cache line granularity
= Matches hardware TM
= Reduces storage overhead of transactional records
= Hard for programmer & compiler to analyze

= Mix & match per type basis

= E.g., element-level for arrays, object-level for non-arrays
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An Example STM Algorithm

L

= Based on Intel’s McRT STM [PPoPP’06, PLDI'06, CGO’'07]
= Eager versioning, optimistic reads, pessimistic writes

= Based on timestamp for version tracking

= Global timestamp
= Incremented when an writing xaction commits

= Local timestamp per xaction
= Global timestamp value when xaction last validated

m Transaction record (32-bit)
= LS bit: O if writer-locked, 1 if not locked

= MS bits
« Timestamp of last commit if not locked
= Pointer to owner xaction if locked
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STM Operations

L

m STM read (optimistic)
= Direct read of memory location (eager)
= Validate read data
=« Check if unlocked and data version < local timestamp
« If not, validate all data in read set for consistency
= Insert in read set
= Return value

m STM write (pessimistic)
= Validate data
= Check if unlocked and data version < local timestamp
= Acquire lock
= Insert in write set
Create undo log entry
= Write data in place (eager)
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STM Operations (cont) %

= Read-set validation
= Get global timestamp
= For each item in the read set
« If locked by other or data version > local timestamp, abort
= Set local timestamp to global timestamp from initial step

m STM commit
= Atomically increment global timestamp by 2
= If old global timestamp > local timestamp, validate read-set
= For each item in the write set
= Release the lock and increment version number by 2
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STM lllustration

foo |3 S bar
hdr hdr
XxX=9 X=0
T1 y=7} =0 T2
atomic { atomic_{
£ = foo.x; tl = bar.x;
bar.x = t; t2 = bar.y;
t = foo.y; }
bar.y = t;

m T1 copies object foo into object bar
= T2 should read bar to be [0,0] or [9,9]
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STM lllustration

foo |3 S bar
hdr hdr
X=9 x=0
T1 y=7 y=0 To
t = foo.x; tl = bar.x:
bar.x = t; t2 = bar.v:
t = foo.y; }

bar.y = t;
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STM lllustration

foo |3 3 bar
hdr hdr
X=9 x=0
T1 y=7 y=0 To
atomic { atomic_{
£ = foo.x; <= tl = bar.x:
bar.x = t; t2 = bar.v:
t = foo.y; }

bar.y = t;
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STM lllustration

foo |3 S bar
hdr hdr
Xx=9 x=0
T1 y=7 y=0 To
atomic { atomic {
L = foo.x; &= tl = bar.x;
bar.x = t; t2 = bar.v:
t = foo.y; }
bar.y = t;

}

Reads <foo, 3>
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STM lllustration

foo |3 S bar
hdr hdr
Xx=9 Xx=0
T1 y=17 y=0 -
BEOITES atomic_{
t = foo.x; —_— t1 = bar.x;
bar.x = t; L5 = DoaiE
t = foo.y; }
bar.y = t;

}

Reads <foo, 3> Reads <bar, 5>




STM lllustration

&

foo |3

hdr

Xx=9
T1 y=7

< | X || On
I

o0

atomic {
t = foo.x;
bar.x = t; <=
t = foo.y;
bar.y = t;

}

Reads <foo, 3>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

&

foo |3

hdr

hdr

Xx=9
T1 y=7

<< | X
I
o0

atomic {
t = foo.x;
bar.x = t; <=
t = foo.y;
bar.y = t;

}

Reads <foo, 3>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

&

foo |3

hdr

hdr

Xx=9
T1 y=7

atomic {
t = foo.x;
bar.x = t; <=
t = foo.y;
bar.y = t;

}

Reads <foo, 3>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

Eﬁﬁg

foo

i}
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
}

Reads <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0>

3

hdr

hdr

x=9
y="7

G

bar
12
atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

Eﬁﬁg

11

atomic {

t = foo.x;

bar.x

t = foo.y;

bar.y

}
Reads <foo, 3>
Writes <bar, 5>

Undo <bar.x, 0>

3

hdr

hdr

x=9
y="7

bar
12
atomic {
Bl =
— tZ =

J

bar.x;
bar.y;

Reads <bar, 5>

69




STM lllustration

Eﬁﬁg

11

atomic {

t = foo.x;

bar.x

t = foo.y;

bar.y

}
Reads <foo, 3>
Writes <bar, 5>

Undo <bar.x, 0>

3

hdr

x=9
y="7

T1

hdr

x=9

y=0

bar

T2
atomic {
tl =

T2 waits ==>  t2 =

J

bar.x;
bar.y;

Reads <bar, 5>
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STM lllustration

&

foo

11

atomic {

t = foo.x;
bar.x = t;

3

hdr

hdr

x=9
y="7

t = foo.y,; ¢

bar.y = t;

}

Reads <foo, 3> <foo, 3>

Writes <bar, 5>
Undo <bar.x, 0>

bar

12
atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

&

foo

11

atomic {

t = foo.x;
bar.x = t;
t = foo.y;

3

hdr

hdr

x=9
y="7

bar.y = t; <=

}

Reads <foo, 3> <foo, 3>

Writes <bar, 5>
Undo <bar.x, 0>

bar

12
atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

&

foo |3

hdr

hdr

9
Z

X
T1 Yy

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t,; €=
}
Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12
atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>

69




STM lllustration

&

hdr

foo |3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
} < —

Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

&

hdr

foo |3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
} < —

Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

&

foo ~ | 3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y
}  <—

Reads <foo, <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

&

foo |3

hdr

hdr
x=9
y=17

11

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
}  <—
Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

&

hdr

foo |3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
} < —

Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

&

2

< %

ERN
~|©

foo |3
hdr
X=9
T1 y=1
atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;
} < —

Reads <foo, 3> <foo, 3>
Writes

Undo <bar.x, 0> <bar.y, 0>

bar

12

atomic {
tl = bar.x;
t2 = bar.y;

Reads <bar, 5>
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STM lllustration

foo |3 / bar
hdr hdr
Xx=9 X=9
T1 y=7] Y= T2
atomic { atomic {
£ = foo.x; tl = bar.x;
bar.x = t; t2 = bar.v:
t = foo.y; }
bar.y = t;

Reads <bar, 5>
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STM lllustration

&

foo |3

hdr

2

Xx=9
T1 y=17

< %

ERN
~|©

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

bar

12

atomic {
tl = bar.x;
- T2 = bar.y;

J

Reads <bar, 5> <bar, 7>
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STM lllustration

&

foo |3

hdr

- g
ERN
~|©

9
Z

< %

X
11 y

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

bar

12

atomic {
tl = bar.x;
t2 = bar.y;
—

Reads <bar, 5> <bar, 7>
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STM lllustration

foo |3

hdr

2

Xx=9
T1 y=17

< %

ERN

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

Reads <bar, 5> <bar, 7>
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STM lllustration

foo |3

hdr

=

Xx=9
T1 y=17

<< | X

ERN

atomic {
t = foo.x;
bar.x = t;
t = foo.y;
bar.y = t;

Reads <bar, 5> <bar, 7>
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Challenges for STM Systems

)

m Overhead of software barriers
= Function cloning
= Robust contention management

= Memory model (strong Vs. weak atomicity)
s See comments in Lecture 1
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Optimizing Software Transactions %

atomic { tmTxnBegin ()
a.x = tl tmWr (&a.x, tl)
a.y = t2 tmWr (&a.y, t2)
1if (a.z == 0) { 1f (tmRd(&a.z) !'= 0)
a.x =0 Ill'} tmWr (&a.x, 0);
a.z = t3 tmWr (&a.z, t3)
} }
} tmTxnCommit ()

= Monolithic barriers hide redundant logging & locking

{
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Optimizing Software Transactions %

atomic {
a.x = tl
a.y = t2
1f (a.z == 0) {
a.x =0 »
a.z = t3

= Decomposed barriers expose
redundancies

txnOpenForWrite (a)
txnLogObjectInt (&a.x, a)
a.x = tl
txnOpenForWrite (a)
txnLogObjectInt (&a.y, a)

a.y = t2
txnOpenForRead (a)
if(a.z !'= 0) {

txnOpenForWrite (a)
txnLogObjectInt (&a.x, a)
a.x =0
txnOpenForWrite (a)
txnLogObjectInt (&a.z, a)
a.z = t3
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Optimizing Software Transactions %

atomic {
a.x = tl
a.y = t2
1f (a.z == 0) {
a.x =0 »
a.z = t3

= Decomposed barriers expose
redundancies

txnOpenForWrite (a)
txnLogObjectInt (&a.x, a)
a.x = til

txnLogObjectInt (&a.y, a)

a.y = t2
txnOpenForRead (a)
if(a.z !'= 0) {

txnLogObjectInt (&a.x, a)

a.x =0

txnLogObjectInt (&a.z, a)
a.z = t3
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Optimizing Software Transactions %

atomic | txnOpenForWrite (a)
a = = il txnLogObjectInt (&a.x, a)
X = tl
a.y = t2 a-x
1f (a.z == 0) {
» txnLogObjectInt(&a.y, a)
a.x = 0
a.y = t2
a.z = t3
J if(a.z 1= 0) {

txnLogObjectInt (&a.x, a)

a.x =0

= Decomposed barriers expose

redundancies
txnLogObjectInt (&a.z, a)

a.z = t3
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Optimizing Software Transactions %

atomic | txnOpenForWrite (a)
a = = il txnLogObjectInt (&a.x, a)
X = tl
a.y = t2 a-%
1f (a.z == 0) {
» txnLogObjectInt(&a.y, a)
a.x = 0
a.y = t2
a.z = t3
J if(a.z 1= 0) {
}
a.x =0

= Decomposed barriers expose

redundancies
txnLogObjectInt (&a.z, a)

a.z = t3
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Optimizing Software Transactions %

txnOpenForWrite (a)

atomic { txnLogObjectInt (&a.x, a)
a.x = tl a.x = tl
a.y = t2 txnLogObjectInt (&a.y, a)
1f (a.z == 0) { » a.y = t2
a.x = 0 if (a.z !'= 0) {
a.z = t3 a.x =0
} txnLogObjectInt (&a.z, a)
} a.z = t3

= Allows compiler to optimize STM code
m Produces fewer & cheaper STM operations
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Compiler Optimizations for STM %

m Standard compiler optimizations
= CSE, PRE, dead-code elimination, ...
= Assuming IR supports TM, few compiler mods needed

m STM-specific optimizations
= Partial inlining of barrier fast paths
= Often written in optimized assembly
= No barriers for immutable and transaction local data

= Impediments to optimizations
= Support for nested transactions
= Dynamically linked STM library
= Dynamic tuning of STM algorithm
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Effect of Compiler Optimizations

)

m 1 thread overheads over thread-unsafe baseline

90%

80%

70%

o

S 60%
c

o 50%

D 40%

= N

—

g 30% |

< 20% -
10% -
0% -

HashMap TreeMap

= With compiler optimizations

asynchronized
ENo STMOpt
O+Base STM Opt
O +Immutability
B+TxnLocal

O+FastPath Inlining

= <40% over no concurrency control

= <30% over lock-based synchronization
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Function Cloning

m Problem: need two version of functions
= One with and one without STM instrumentation

®= Managed languages (Java, C#)
= On demand cloning of methods using JIT

= Unmanaged languages (C, C++)
= Allow programmer to mark TM and pure functions
= TM functions should be cloned by compiler

= Pure functions touch only transaction-local data
= No need for clones

=« All other functions handled as irrevocable actions
s Some overhead for checks and mode transitions
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Robust Contention Management

)

= How to handle pathological contention cases
without too much overhead for case of low

contention?

= Two approaches for STM systems
= Adjust STM algorithm
= Switch between versioning & detection schemes
« Adjust concurrency scale
= Use proper contention management policy
= Select conflict transactions to stall or abort
Select when transaction will restart
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Example: Intel C++ STM Execution _
Modes %

= Optimistic mode
= Optimistic conflict detection for reads
= Pessimistic 2-phase locking for writes
= Quiescence for privatization safety
m Pessimistic mode
= Pessimistic 2-phase locking for reads & writes
= Can co-exist with optimistic transactions
= Obstinate mode
= One pessimistic transaction with highest priority
= Guaranteed not to fail
= Serial mode
= One transaction at a time single global lock
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Contention Management Policies for %

STM

m Thorough study by Scherer & Scott (PODC'05)
= Nonetheless, still an active area of research

= The following actions are takes by a requesting xaction that
observes a conflict with an enemy xaction

m Policies

= Polite: stall requestor with randomized backoff
= After some retries, acquire highest priority

= Karma: xaction priority = size of read & write set
« Abort enemy if its priority is lower, otherwise stall request
= Requestor aborted when its retries exceed difference in priorities
= Priority not reset when xaction aborts

= Eruption: Karma with priority boosting
= Add the priority of a stalled xaction to that of the conflict transaction
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Contention Management Policies '/
(Cont) %

m Policies (cont)
= Kindergarten: take turns in object access
= Hit-list of xactions that have stalled/aborted this one in the past
« Hit-list determines if an xaction should stall or abort the enemy
= Timestamp: age-based using timestamps
=« Older xaction wins conflicts
= Published timestamp: avoids old zombie xactions
« If conflicting xaction is too old, abort it
« Double the threshold for “too old” on each restart
= Polka: best of Karma and Polite
« Karma priorities + randomized backoff interval

= How to evaluate CM policies
= Measure throughput and fairness
= Consider scalability

= Consider wide range of workloads
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Questions?

L




[ 2 PERVASIVE
2 PARALLELISM
[ l LABORATORY

o |
Transactional Memory

Concepts, Implementations, &
Opportunities

Christos Kozyrakis

Pervasive Parallelism Lab

Stanford University
http://ppl.stanford.edu/~christos
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Lecture 2 Summary

= TM implementation
= Data versioning: eager or lazy
= Conflict detection: optimistic or pessimistic
= Granularity: object, word, cache-line, ...

m Software TM systems
= Compiler adds code for versioning & conflict detection
Note: STM barrier = instrumentation code
= Design options
= Static Vs dynamic, non-blocking Vs lock-based
= Basic data-structures

Transactional descriptor per thread (status, rd/wr set, ...

= Transactional record per data (locked/version)
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Lecture 2 Summary (cont) %

m Intel McRT STM
= Eager versioning, optimistic reads, pessimistic writes
= Read barriers check version number
= Write barrier acquire locks
= Commit validates the read-set and releases locks
= Periodic validation needed to avoid doomed transactions

= Optimizations
= Decomposed barriers to allow redundancy elimination
= No barriers for private or transaction local data
= Switch between STM algorithms
= Contention management
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Lecture 3:
Hardware Support for TM

&

m Qutline

= Hardware-accelerated STMs
= Motivation
« HASTM
= SigTM

= Hardware-based TM (HTM)
« Basic HTM mechanism
« Example HTM system
=« HTM challenges and opportunities
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Motivation for Hardware Support

)

3-tier Server (Vacation)
16

S 14 /
p 12 /
e 10 /; ,
8 y )
- L - = Ideal
d 6 7
4 . — S TM
u
-~
0 [ |
1 2 4 8 16
Processors

= STM slowdown: 2-8x per thread overhead due to barriers
= Short term issue: demotivates parallel programming
= Long term issue: energy wasteful

= Lack of strong atomicity
= Costly to provide purely in software
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Types of Hardware Support %

m Hardware-accelerated STM systems (HASTM, SigTM, USTM, ...)
= Start with an STM system & identify key bottlenecks
= Provide (simple) HW primitives for acceleration

= Hardware-based TM systems (TCC, LTM, VTM, LogTM, ...)
= Versioning & conflict detection directly in HW

= Hybrid TM systems (Sun Rock, ...)

= Combine an HTM with an STM by switching modes when needed
=« Based on xaction characteristics available resources, ...

HTM STM HW-STM
Write versioning  HW SW SW
Conflict detection HW SW HW
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Why is STM Slow?

m Measured single-thread STM performance

N
o

05
|

B STMwrite

o

STMread

sequential)
o o = =
o 1
| |

Execution Time
(normalized to

E STMcommit

H Busy

kmeans vacation

= 1.8x - 5.6x slowdown over sequential

= Most time goes in read barriers & validation
= Most apps read more data than they read
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L

Hardware-accelerated STM (HASTM)

= Proposed by Intel in MICRO'06

= Hardware primitives
= Per-thread mark bits at granularity of cache lines
= Used to build fast filters to speedup read barriers

= Functionality exposed to SW
= SW can set mark bit for an address

= SW checks if mark bit was previously set
=« No other thread has touched line since marked
= Supports conflict detection and barrier filtering
= SW checks if other threads have written any marked lines

« Implements fast validation o




HASTM Hardware Implementation %

m Extend each private cache line with mark bits
= Mark bits set & read by software
= Mark bit reset by HW on eviction or coherence action
= HW instruction to query of any mark bits reset

= Potential extensions
= Separate mark bits for read & write marking
= Separate mark bits for nesting levels

= Mark bits throughout memory hierarchy
« Including main memory (encoded in ECC bits)
=« Helps support strong atomicity
=« UFO design in ISCA'08
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HASTM Algorithm

L

m Assume the STM algorithm in Lecture 2

= HASTM read operation
= Check if mark bit already set

= If not set, mark bit and add to read set
=« Redundant barriers are filtered dynamically

= HASTM validation
= Check if any mark bits were reset
= If no, validation is complete

= If yes, run software validation (slow)
=« To separate between capacity evictions & true conflicts
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HASTM System Issues

L

m Insufficient cache capacity
= Mark bits are only an acceleration mechanism

s Cache evictions cause mark bits to be lost
« HASTM reverts to (slow) software validation

= Mark bits can be sized just for common case

= Interrupts, context switches, page faults, ...
s Mark bits are lost
= HASTM reverts to slow software validations

= When xaction resumes, mark bits provide some help
= Filtering of redundant read barriers...
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SigTM Motivation

m Accelerate STM at low hardware cost
= Similar to goals Intel HASTM

= Do not modify caches
= Complex interactions with coherence, prefetching, etc...
= Place all TM acceleration in isolated unit

= Provide strong atomicity

s Enable conflict detection between transactional and
non-transactional accesses

= Without limited by cache capacity and without adding
metadata throughout memory hierarchy
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SigTM Hardware

)

= Each HW thread has 2 HW signatures (read & write)

= Each signature implemented by a Bloom filter
=« Fixed-size bit array with set of hash functions

= No other HW modifications (e.g., no extra cache bits)

= Operations on signature (Bloom filter): insert & lookup

hash(N) = N mod 4

insert(2) ->

0

3B

insert(6) -> aliasing

lookup(2) -> hit
lookup(3) -> miss
lookup(10) -> false hit
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SigTM Hardware (cont) %

= How SigTM uses its signatures:
= TX read/write —insert address into read/write signature

= Coherence messages —look up address in signature
= Enabled/disabled by software

m If lookup hits in signature, either:
= Trigger SW abort handler (conflict detection)
= NACK remote request (atomicity & isolation enforcement)

= Signatures may generate false conflicts
= Performance but not correctness issue
= Reduce with longer signatures & better hash functions

= With this HW, how does the SW change?
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SigTMread

SigTMread(addr) {
read sig insert(addr); // 1 instruction
return *addr;

= No need to build SW read-set
= Replaced by read signature
m Read signature provides continuous validation
= Snoops coherence messages & any hits cause abort
= Hits due to writes by non-transactional code as well
= Write barriers are similar
= No write-set, but need versioning code
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SigTMcommit

&

SigTMcommit() {
read_sig reset();
disable read sig lookup();
write sig reset();
disable write sig lookup();

}

m Read signature eliminates need to validate read-set
= Snoops coherence messages and reports conflicts

= Write signature eliminates locks
= Snoops coherence messages and report

m Abort is more complex but also accelerated by SigTM
= Write signature used to ensure undo atomicity
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SigTM Overhead

)

m Measured single-thread performance on STM and SigTM

:.21)
I
1.5
Fo 1,
se
‘513 0.
g =
W g O.
£ STM SigTM
kmeans

O N W H U1 O

I B=

STM SigTM

vacation

m SigTM effectively accelerates read & commit

m Write
Read
B Commit

E Busy
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SigTM Scaling

m Measured speedup on 1-16 cores
“=HTM <#-SigTM -+STM

kmeans vacation

Speedup

0 10 0 10
Processor Cores Processor Cores

= SigTM faster than STM but slower than full HW system
= Roughly a 2x gap between design points
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How Much Hardware Does it
Cost?

Normalized

m Measured performance drop as signatures get shorter
=-intruder -wkmeans vacation

1.0 - 1.00 e
0.8 D
o o g0.95
06 - T .90
© 0.4 E&
0 g9 > ¢0.85
0.0 0.80
D ™ NV o
o B S P
Rea Wirite Signature Length (bit

= Recommend 1024 bits for read sig, 128 bits for write sig
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Signature HW Cost

m [Sanchez 07]

AMD Barcelona Sun Niagara
Cores, Quad-core, 8-core,
multithreading no MT 4-way FGMT
Technology node 65nm 90nm
Die size 291mm* 379mm*
Core size 28.7mm”* 13mm*
L1 areas (I/D) | 2.25mm? (both) | 1.12/0.64mm*
| ArcausedBy | 400 m? 0.54mm?
signatures, per core
Core size increase 0.25% 4.1%
Die size increase 0.10% 1.1%

Table 4: Area estimates in real systems
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HASTM Vs. SigTM

m Similarities
s Acceleration for STM with cost-effective HW

m Differences
= HASTM bits limited to cache capacity
= SigTM signatures can cause false conflicts
= Signatures are compact & can manipulate in SW
« E.g., save and restore on nested xaction boundaries
= Signatures are bound to physical addresses
= Invalidated by paging events
= Signatures can provide strong atomicity
=« Through continuous lookups of coherence events
« HASTM requires metadata across memory hierarchy
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Questions?
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L

Hardware TM Summary

m Data versioning in caches
= Cache the write-buffer or the undo-log
= Cache metadata to track read-set and write-set
= Can do with private, shared, and multi-level caches
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Hardware TM Summary

m Data versioning in caches
= Cache the write-buffer or the undo-log
= Cache metadata to track read-set and write-set
= Can do with private, shared, and multi-level caches

m Conflict detection through cache coherence protocol
= Coherence lookups detect conflicts between transactions
= Works with snooping & directory coherence

= Notes
= Register checkpoint must be taken at transaction begin
= Virtualization of hardware resources discussed later

= HTM support similar for TLS and speculative lock-elision
= Some hardware can support all three models actually
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HTM Design %

m Cache lines annotated to track read-set & write set
= R bit: indicates data read by transaction; set on loads

= W bit: indicates data written by transaction; set on stores
= R/W bits can be at word or cache-line granularity

= R/W bits gang-cleared on transaction commit or abort
= For eager versioning, need a 2" cache write for undo log

VID|E Tag RIW Word1 - ¢ - RIW Word N

m Coherence requests check R/W bits to detect conflicts
= Shared request to W-word is a read-write conflict
= Exclusive request to R-word is a write-read conflict

= Exclusive request to W-word is a write-write conflict
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Example HTM: Lazy Optimistic

)

-

CPU h
Registers ALUs
\_ | TMstate | )
/ Cache \
\'"/ Tag Data

\_

=/

m CPU changes

= Register checkpoint (available in many CPUs)
= TM state registers (status, pointers to handlers, ...)
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Example HTM: Lazy Optimistic

£

?,

3
"35

-

CPU h

Registers ALUs

\_ J
/ Cache \

\_ =/

\'"/ Tag Data

m Cache changes
= R bit indicates membership to read-set
= W bit indicates membership to write-set
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HTM Transaction Execution

-

CPU

Registers ALUs

N

\_
/,»

Cache

w7
‘\

Y/ Tag

Data

Xbegin
Load A
Store B &5
Load C

Xcommit
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HTM Transaction Execution

s ongy
/I AL

\_

=

= Transaction begin

= Initialize CPU & cache state
= Take register checkpoint

4 CPU ) Xbegin (o

Load A
Registers ALUs

Store B <5
Load C

% | TMstate | Y, _

Xcommit
//’ Cache i\\
\'"/ Tag Data
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HTM Transaction Execution

-

CPU

Registers ALUs

N

\_
/,»

Cache

w7
‘\

Y/ Tag

Data

Xbegin
Load A &
Store B &5
Load C

Xcommit
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HTM Transaction Execution

L

-

CPU

Registers

ALUs

N

\_
/

\_

Cache

w7
‘\

Tag

Data

=

m Load operation
m Serve cache miss if needed

= Mark data as part of read-set

Xbegin
Load A &
Store B &5
Load C

Xcommit
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HTM Transaction Execution

-

CPU

Registers ALUs

N

\_
/,»

Cache

w7
‘\

Y/ Tag

Data

Xbegin
Load A
Store B &5
Load C

Xcommit

&
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HTM Transaction Execution

L

4 CPU ) Xbegin
Load A
Store B &5 &

Load C
% | TMstate | Y, _
Xcommit
//’ Cache i\\

\'"/ Tag Data

Registers ALUs

\_ =/

m Store operation
= Serve cache miss if needed (eXclusive if not shared, Shared otherwise)
= Mark data as part of write-set
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HTM Transaction Execution

-

CPU

Registers

ALUs

N

\_
/,»

Cache

w7
‘\

Tag

Data

Xbegin
Load A
Store B &5
Load C
Xcommit <=
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HTM Transaction Execution

L

4 CPU ) Xbegin
Load A
Store B &5

 [msme | toad €
Xcommit <=
/ Cache \

\'"/ Tag Data

jj> upgradeX B

m Fast, 2-phase commit
= Validate: request exclusive access to write-set lines (if needed)

Registers ALUs
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HTM Transaction Execution

L

-

CPU

Registers

ALUs

N

\_
/

\_

Cache

w7
‘\

Tag

Data

=

m Fast, 2-phase commit

= Validate: request exclusive access to write-set lines (if needed)

Xbegin
Load A
Store B &5
Load C
Xcommit <=

= Commit: gang-reset R & W bits, turns write-set data to valid (dirty) data
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HTM Conflict Detection

-

CPU

Registers

ALUs

N

\_
/,»

Cache

w7
‘\

Tag

Data

Xbegin
Load A
Store B &5
Load C ¢

Xcommit
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HTM Conflict Detection

WY
A4

\_

1 upgradeX D [V]

=

m Fast conflict detection & abort

= Check: lookup exclusive requests in the read-set and write-set

pld

4 CPU N\ Xbegin

Load A
Registers ALUs

Store B <5
Load C

% | TMstate | Y, e =

Xcommit
//’ Cache i\\
\'"/ Tag Data
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HTM Conflict Detection

L

4 CPU ) Xbegin
Load A
Registers ALUs
Store B <5
| msete koad € &

Xcommit

\_ J
/ Cache \

\'"/ Tag Data

F upgradeX A 1%

\_ =/

m Fast conflict detection & abort
= Check: lookup exclusive requests in the read-set and write-set
= Abort: invalidate write-set, gang-reset R and W bits, restore checkpoint
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HTM Advantages

m Transparent
= No need for SW barriers, function cloning, DBT, ...

m Fast common case behavior
= Zero-overhead tracking of read-set & write-set
= Zero-overhead versioning
= Fast commit & abort without data movement
= Continuous validation of read-set

m Strong isolation
= Conflicts detected on non-xaction loads/stores as well

m  Can simplify multi-core hardware [ISCA'04, Ceze’'07]
= Replace existing coherence with transactional coherence
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HTM Performance Example

3-tier Server (Vacation)
16 v

—STM
- HTM

T Q0o o0oT O
o)

Processors

m 2X to 7x over STM performance
= Within 10% of sequential for one thread
= Scales efficiently with number of processors
= Uncommon cases not a performance challenge
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HTM Challenges and
Opportunities

L

m Performance pathologies
= How to handle problematic contention caches?

= Virtualization of hardware resources
= What happens when HW resources are exhausted?

= HW/SW interface
= How does HTM support flexible SW environments?
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HTM Performance Pathologies %

m Pathologies: contention cases that cause bottlenecks

= Understanding the cause is important in addressing the issue
= Enumerated by Bobba et al. in ISCA'07

m Optimistic conflict detection
= Default policy: committing xaction wins
« Guarantees forward progress for the overall system
= Pathologies: starving elder, restart convoy

m Pessimistic conflict detection

= Default policy: requesting xaction wins OR requesting xaction stalls
= No guarantees of forward progress
=« Need some way to detect deadlocks (conservative or accurate)

= Pathologies: friendly fire, futile stall, starving writer, dueling

upgrades
117




&

Do Pathologies Matter?

@@ Eager HTM A—d Lazy HTM I~ Eager Hybrid =@ Lazy Hybrid

@—@ Eager STM V=¥ Lazy STM

genome genome+

Speedup
O = N W P g 0w
Speedup

= In many cases, not at all
= Low contention scenarios
= All HW schemes perform similarly s




Do Pathologies Matter?

&

@@ Eager HTM A—d Lazy HTM I~ Eager Hybrid =@ Lazy Hybrid

@—@ Eager STM V=¥ Lazy STM

vacation-high

intruder

Speedup

m In other cases, it matters a lot
= HTMs slow down to STM/hybrid levels

= The exact case & system matters
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Pathologies for Optimistic Conflict _
Detection [55

X0 X1 X2 X3

X0
X1
X2
d A M A++ A++ A++ A++
Wr J X3
e wr A

A++ A++ A++ A++

Starving elder Restart convoy

= Problem: long xaction = Problem: one xaction aborts
aborted by small xactions many dependent xactions

m Fix: after some retries, m Fix: restart after randomized

prioritize long xaction (linear) backoff
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Pathologies for Pessimistic Conflict _
Detection %

X0

Id A X0
X2
st A A d A
<« rd st A

|d AL st A !

Friendly Fire Futile Stall

= Problem: livelock if requesting = Problem: stall due to xaction
xaction wins conflict that later aborts

= Fix: age-based conflict = Fix:?

handling (using timestamps)
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Pathologies for Pessimistic Conflict %

Detection (cont)

X0 X1

dA s
wr A r X3

rd A

Starving Writer

= Problem: stall/abort writer
due to frequent reader

m Fix: prioritize writers over
readers based on-age

X1
X0
Id A
Id A
st A
| st A

N

Dueling upgrades

m Problem: stalls due to
concurrent read-mod-writes

= Fix: Detect read-mod-writes
and prioritize their reads
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Discussion on HTM Pathologies

m Pathologies for optimistic detection
= Easy to fix with a single policy
= Restart after randomized backoff
= After N retries, use priority mechanism

m Pathologies for pessimistic detection
= Difficult to handle all in robust manner
= Complex and sometimes conflicting fixes

m In general, optimistic detection has been shown to be
more robust to contention scenarios

= For both HW and SW TM system
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HTM Virtualization %

m Time virtualization = What if time quanta expires?

= Interrupts, paging, and context switch within xaction
= What happens to the state in caches?

m Space virtualization = What if caches overflow?
= Where is the write-buffer or log stored?
= How are R & W bits stored and checked?

m  Observations: most transactions are currently small
= Small read-sets & write-sets
= Short in terms of instructions

= No guarantees that this trend will continue
« Programmer sloppiness Vs. conflicts
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Time Virtualization %

m Idea: rethink interrupt processing/assignment for multicore

m  Three-tier interrupt handling for low overhead
1. Defer interrupt until next short transaction commits
Use that processor for interrupt handling

2. If interrupt is critical, rollback youngest transaction
= Most likely, the re-execution cost is very low

3. If a transaction is repeatedly rolled back due to interrupts
Use space virtualization to swap out (typically higher overhead)
Only needed when most threads run very long transactions (rare)

m  Key assumption
= Rolling back a short xaction cheaper than virtualizing it
= Eliminates most of the complexity of time virtualization
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Space Virtualization: _
Hybrid TM Schemes %

m Idea: combine HTM + STM (Intel HYyTM, Sun PhTM, ...)
= HW provides best-effort acceleration
= SW provides virtualization in difficult cases
= (Likely) the TM implementation for the Sun Rock processor

m  Operation
= Start transaction in HTM mode
= On cache overflow or interrupt, switch to STM mode

m  Challenges
= Interactions between HTM and STM transactions
E Must detect conflicts correctly
= Contention management policies
g How frequently to switch to STM?
E Switch a single or all xactions to STM?

= Providing strong atomicity

- Weakest model of the two sets the semantics
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Space Virtualization: _
Complete Schemes %

m Key idea: map TM metadata structures to virtual memory
= VM is practically unbounded
= HTM resources act as a fast cache for metadata structure

= Virtualizing data-versioning

= Eager: undo-logs need no special handling
« Per-thread logs can be mapped to VM directly
« Caches capture the working-set of undo-logs naturally
« Cost: extra cache pressure and traffic

= Lazy: write-buffers require special handling
= Option 1: unified overflow structure in VM (hash-table)
« Option 2: per-thread overflow structure in VM
« Option 3: virtualize write-buffers using per-thread log
« Challenge: knowing when to access the overflow structures
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Space Virtualization:
Complete Schemes (cont)

&

= Virtualizing conflict detection

= Handling of read-set and write-set metadata

= Option 1: use signatures for overflown metadata
=« Very simple but provides probabilistic conflict detection
=« Can be problematic in the presence of paging

= Option 2: pervasive metadata across memory hierarchy
=« Store metadata everywhere, including DRAM
« Expensive but eliminates overflow issue

= Option 3: read-set and write-set metadata in VM
=« Shared or per-thread structures

=« Accurate conflict detection
« Use signatures to filter accesses to metadata in VM
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Space Virtualization:
Example Implementations

L

= Intel VTM
= Maps write-buffer and TM metadata to virtual memory

= HW and firmware used to handle misses, relocation
= Cache line granularity, signatures to reduce VM lookups

m Stanford XTM
= Uses OS virtualization capabilities
= On overflow, switch to a page-based TM system
= No HW/firmware needed, transparent to SW, page-based granularity

= UCSD PTM
= Similar to XTM but hardware manages overflow metadata in VM

= Requires HW caches at memory controller but maintains fine granularity

m Wisconsin LogTM-SE
= Undo-log mapped in virtual memory to begin with
=  Metadata virtualization using signatures
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Lecture 3: Select References %

Hardware Transactional Memory (cont)
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Lecture 3 Summary %

= STM performance
= 2X to 8x per thread slowdown due to instrumentation
= Most time spent on read barriers & validation

= Hardware accelerated TM
= Conflict detection in HW; data versioning in SW
= HASTM: per cache-line mark bits

=« Used for filtering & acceleration
= Fall back to SW when mark cache lines evicted

= SigTM: per-thread signatures
= Conservative tracking of read-set & write-set
Continuous conflict detection, strong isolation
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Lecture 3 Summary (cont) %

= Hardware TM
= Cache to store undo-log or write-buffer
= Per cache-line R/W bits for read/write set tracking
= Conflict detection on coherence events

= HTM challenges

= Contention pathologies
= Need robust contention management policy

« Optimistic HTM systems
= Randomized back off + prioritize after N retries

= Virtualization of HW resources
Time and space virtualization
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Lecture 4.
Hardware Support for TM

L

m Qutline

= Hardware-based TM (cont)
« HW/SW interface
« Example uses (brief)

= Application examples (new)
« STAMP benchmarks
= Use of transactions & basic statistics

= TM uses beyond concurrency control (brief)
« Motivation and challenges
« Example uses
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Motivation for Rich HTM Interface %

= HTM thus far has a simple SW interface
= Instructions to define start/end of transaction

= How does SW control an HTM?
= How does HTM interact with library-based SW?
= How do we handle I/O & system calls within xactions?
= How do we handle exceptions & contention within xaction?
= How do we support novel TM programming constructs?
= Retry, orelse, ...
= How do we support uses beyond concurrency control?

®= Need an expressive ISA for HTM systems
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A Flexible HW/SW Interface for _
HTM %

m Features for flexible HTM interface
1. Architecturally visible 2-phase commit
2. Support for transactional handlers
3. Support for nested transactions
4. Instructions for private or idempotent accesses

= Implementation notes

= HW: metadata support for nested transactions
=« Need HW support and virtualization

= SW: xaction begin/end similar to function call/return

= SW: xaction handlers similar to user-level exceptions
« Virtually all complexity in software
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Two-phase Transaction Commit %

m Conventional: monolithic commit in one step
= Finalize validation (no conflicts)
= Atomically commit the transaction write-set

= New: two-phase commit process
= xvalidate finalizes validation, xcommit commits write-set

= Other code can run in between two steps
= Code is logically part of the transaction

= Example uses
= Finalize I/O operations within transactions
= Coordinate with other SW for permission to commit
=« Correctness/security checkers, system transactions, ...
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Transactional Handlers %

= Conventional: TM events processed by hardware
= Commit: commit write-set and proceed with following code
= Abort on conflict: rollback transaction and re-execute

= New: all TM events processed by software handlers
= Fast, user-level handlers for commit, conflict, and abort

= Software can register multiple handlers per transaction
« Stack of handlers maintained in software

= Handlers have access to all transactional state
« They decide what to commit or rollback, to re-execute or not, ...

= Example uses

= Contention managers, I/0O operations within transactions,
conditional synchronization
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Non-Transactional Loads and _
Stores %

= Conventional: all loads/stores tracked by HTM
= Regardless of the type of data accesses

= New: instructions for non-transactional loads/stores
= Non-transactional load: not tracked in read-set
= Non-transactional store: not tracked in write
« Appropriate for local or private data
= Idempotent store: not versioned
« Appropriate for data transaction-local data

= Example uses
= Optimizations to eliminate spurious conflicts & overflow cases
= Object-based hybrid TM (track headers only)

141




Closed-nested Transactions %

xbegin
xbegin lots of work()
lots of work() xbegin
count++| — |count++|
xvalidate; xcommit xvalidate; xcommit

xvalidate; xcommit

m Closed Nesting
= Composable libraries
= Alternative control flow upon nested abort
= Performance improvement (reduce abort penalty)
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Closed-nested Transactions

Closed-nested Semantics

xbegin

xbegin

1d A

st B
xvalidate; xcommit

xvalidate; xcommit
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Closed-nested Transactions

T1

Closed-nested Semantics

7~ Xbegin

T2

\_ xvalidate; xcommit

( xbegin
1d A
st B

\_ Xvalidate; xcommit
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Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

{...}
( xbegin

T1 1d A

T2
st B

\_ Xvalidate; xcommit

\_ xXvalidate; xcommit

T1’s Read-Set T1’s Write-Set
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Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

{...}
> ( xbegin

T1 1d A

T2
st B

\_ Xvalidate; xcommit

\_ xXvalidate; xcommit

T1’s Read-Set T1’s Write-Set
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Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin
T1’s Read-Set T1’s Write-Set
{...} {...}
> ( xbegin

T1 1d A

T2 T2’s Read-Set T2’s Write-Set
st B

\_ Xvalidate; xcommit

\_ xXvalidate; xcommit
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Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin
T1's Read-Set T1’s Write-Set
{...} {...}
( xbegin
T1| B> 1d A
T2 £ B T2’s Read-Set T2’s Write-Set
S
{A}
\_ Xvalidate; xcommit

\_ xXvalidate; xcommit
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Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin
T1's Read-Set T1’s Write-Set
{...} {...}
( xbegin
T1 1d A
T2 £ B T2’s Read-Set T2’s Write-Set
> S
{A} {B}
\_ Xvalidate; xcommit

\_ xXvalidate; xcommit
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Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

T1’s Read-Set T1's Write-Set

{...} {...}

( xbegin
T1 l1d A
T2 £ B T2’s Read-Set T2’s Write-Set
S
{A} {B}
P> U xvalidate; xcommit

\_ xXvalidate; xcommit
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Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin
T1's Read-Set T1’s Write-Set
{...,A} { ey B }
( xbegin
T1 1d A
T2 T2's Read-Set T2’s Write-Set
st B
P> U xvalidate; xcommit

\_ xXvalidate; xcommit
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Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

{...,A}
( xbegin

T1 1d A

T2
st B

P> U xvalidate; xcommit

\_ xXvalidate; xcommit

T1’s Read-Set T1’s Write-Set

{..,B}
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Closed-nested Transactions

Closed-nested Semantics

7~ Xbegin

{...,A}
( xbegin

T1 1d A

T2
st B

\_ Xvalidate; xcommit

B xvalidate; xcommit

T1’s Read-Set T1’s Write-Set
{...,B}

143




&

Open-nested Transactions

xbegin
xbegin
sbrk:

xbegin open
sbrk:

[modify free 1list]

—

[modify free list]

xvalidate; xcommit

xvalidate; xcommit

. xvalidate; xcommit
m=  Open nesting uses

m Escape surrounding atomicity to update shared state
« System calls, communication between transactions/0S/scheduler/etc.
= Performance improvements
m  Open nesting provides atomicity & isolation for enclosed code
= Unlike pause/escape/non-transactional regions




Open-nested Transactions

Open-nested Semantics

xbegin

xbegin_ open

1d A

st B
xvalidate; xcommit

xvalidate; xcommit
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Open-nested Transactions

T1

Open-nested Semantics

~~ Xbegin

T2

( xbegin_ open
1d A
st B

\_ Xvalidate; xcommit

\_ xvalidate; xcommit
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Open-nested Transactions

Open-nested Semantics

~~ Xbegin

{..}

( xbegin_ open

T1 1d A

T2
st B

\_ Xvalidate; xcommit

\_ xvalidate; xcommit
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Implementation Overview %

m Software
= Stack to track state and handlers
« Like activation records for function calls
« Works with nested transactions, multiple handlers per transaction
= Handlers like user-level exceptions

= Hardware
= A few new instructions & registers
« Registers mostly for faster access of state logically in the stack
To provide information to handlers
= Modified cache design for nested transactions
« Independent tracking of read-set and write-set

m Key concepts
= Nested transactions supported similarly to nested function calls
= Handlers implemented as light-weight, user-level exceptions
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Transaction Stack

s ongy
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Transaction
Stack

TCB

Frame 1

P> xbegin
xbegin
xbegin

xend
xend

xend
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HW Support for Nested Read-Sets &
Write-Sets

)

MOESI NLi1 NL2 NLs NL
= % ;’J\*\ N S PSR T
’V ’D.E ‘ Tag HR1 irW1 Rz{WzHRaiWal R41W4H Data

_ Lookup

/Y/ 1\ Address
M

v
Match?
(a)

uls
viD[E][  Tag | N || Data
‘ L_'* Lookup
Y Address
Pf\\—//
\J
Match? Match

Level
(b)
m Two Options: multi-tracking (a) Vs. associativity-based (b)
= Differences in cost of searching, committing, and merging
= Multi-tracking best with eager versioning, associativity best with lazy
= Both schemes benefit from lazy merging on commit

= Need virtualization to handle overflow of nesting levels
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Example Use: Transactional |/O %

xbegin
write (buf, 1len):
register violation handler to de-alloc tmpBuf
alloc tmpBuf
cpy tmpBuf <- buf

push &tmpBuf, len; commit handler stack

push writeCode; commit handler stack

xvalidate
pop _writeCode and args
run _writeCode

xcommit
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Example Use: Performance

Tuning

L

= Single warehouse SPECjbb2000

= One transaction per task
=« Order, payment, status, ...

= Irregular code with lots of concurrency

m Speedup on an 8-way TM CMP

m Closed nesting: speedup 3.94

= Nesting around B-tree updates to
reduce conflict cost

= 2.0x over flattening
m Open nesting: speedup 4.25

= For unique order ID generation to
reduce number of violations

= 2.2x over flattening

Speedup over Flat Transactions

2.25

N
N

N
-
(&,

N
-

et
o
&

N

-
(=]
(%,

SPECjbb Closed

SPECjbb Open
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Example Use: Conditional
Synchronization with Retry

&

m  Runtime system for Atomos’ watch() and

retry() constructs

Consumer: Producer:
atomic { atomic {
regVioHandler (cancel) ; regVioHandler (cancel) ;

if (lavailable ) {

if (available ) {

watch (&available ); watch (&available );
wait (); } wait (); }
available = false; available = true;
consume (); } produce (); }
watch(void* address) Schedulmg Queues : . Scheduler
wait and run atomic f{

watch (void* addr) {
atomic _open {

1.enqueue (tid, addr) srermewommmmmrmn, |

>

regVioHandler (schedVioHandler ) ;
read ( schedComm )

while (TRUE) ({

N__—1. process runand wait queues

L}

schedVioHandler

2. write schedComm to cause violation = ._ A I
b} = {
N
} l
[ Scheduler Command
\ Memory Location 4

wait ()

schedComm B =

Ao o ff s o et 4
N i

welt () { { schedComn in b
S —Ope_n t / scheduler'sread -set: on §
1. move this thread from run to wait Il wodhiction . shediilbrs i

b f violation handlerisrun . }5

q

? EtScheduler Command 535

cancel ! Queue f

atomic open { ?!l . me—-u"c'

1. enqueue (tid, CANCEL )

2 . write schedComm to cause violation +

—

return () :

atomic open {

if (xvaddr == schedComm ) {

= 1 dequeue (tid, COMMAND )

2a. if COMMAND is address , add address to
scheduler’s read -set
b.add (address, tid) to waiting
hashtable
3. f COMMAND is CANCEL, remove
all tid’s entries from waiting
} else {
1. tidToWake = waiting .remove (xvaddr)
2. add tidToWake tothe runqueue
}}

// return to scheduler
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Example Use: Semantic Concurrency %

Control

Thread 1:

atomic{
lots of work();

insert (key=8, datal) ;

lots of wor

1

3

Thread 2:

atomic{
lots of work();
insert (key=9, data2);
lots gf work();

m Is there a conf

ict?

= TM: yes, W-W conflict on a memory location
= App logic: no, operation on different keys

@ Common performance loss in TM programs
= Large, compound transactions
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Example Use: Semantic Concurrency g
Control %

m Semantic concurrency in Atomos [PLDI'06]

= From memory to semantic dependencies
= Similar to multi-level transactions from DBs

m Transactional collection classes [pPpoPP'06]
= Read ops track semantic dependencies
= Using open nested transactions
Write ops deferred until commit
Using open nested transactions
= Commit handler checks for semantic conflicts
= Commit handler performs write ops
= Commit/abort handlers clear dependencies
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Example Use: Semantic Concurrency
Control

Lock HashMap
—TM HashMap

Semantic HashMap

m TestCompound
= Long transaction with 2 map operations

= Semantic concurrency =scalable performance
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Questions?
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Example Applications: STAMP

Application Domain Description

bayes Machine learning Learns structure of a Bayesian network
genome Bioinformatics Performs gene sequencing

intruder Security Detects network intrusions

kmeans Data mining Implements K-means clustering
labyrinth Engineering Routes paths in maze

ssca2 Scientific Creates efficient graph representation

vacation Online transaction Emulates travel reservation system

processing

yada Scientific Refines a Delaunay mesh
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Kmeans Description

)

m Groups data into K clusters
Initial data Grouped data (K = 2)

" )
> 0 5 : » O
B R T o L
Oy © & 07 O o S
®% 0 OF C )
8 o O OWR gy
& I~ ™
& ’ ~ g
=5 o
- P"
@
5

m Possible applications:
= Biology: plant and animal classification
= WWW: analyze web traffic for patterns
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Kmeans Algorithm

Guess I '
Compute adjust-

ments to centers

Update centers

no

~ Converged?

yes
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Vacation Description

= Emulates travel reservation system
= Similar to 3-tier design in SPECjbb2000

Client Tier

Client |

Client 2

Client 4

Manager Tier

Manager

Reserve
Cancel
Update

Database Tier

Customers

Hotels

Flights




Vacation Algorithm

Get task?

yes

Task kind?

Manager does Manager does Manager does
reservation cancelation update
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STAMP Characterization

)

Per Transaction o
oy Timein

Application : _ _ :

Instructions Reads Writes Retries Transactions
bayes 60584 24 9 0.59 83%
genome 1717 32 2 0.14 97%
intruder 330 71 16 3.54 33%
kmeans 153 25 25 0.81 3%
labyrinth 219571 35 36 0.94 100%
ssca2 50 1 2 0.00 17%
vacation 3161 401 8 0.02 92%
yada 9795 256 108 251 100%
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Questions? %

= STAMP available at http://stamp.stanford.edu
= Code for HTM/STM, datasets, configs...
= Performance results for STM, HTM, hybrids
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;
TM Uses Beyond Concurrency Control %

= TM hardware consists of
= Memory versioning HW
= Fine-grain access tracking HW
= HW to enforcing ordering
= Fast exception handlers

= Motivation for using TM beyond concurrency control
= Amortize hardware cost
= Provide additional benefits for HW vendors and system users
= Concurrency is not the only important problem in computing
= Security, fault-tolerance, debugging, ...

m Challenges
s Potential mismatch of interfaces
m Co-existence of transactions with other uses
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Applying TM Hardware

L

= Availability
= Global & local checkpoints (versioning, order)
m  Security

= Fine-grain read/write barriers (tracking)
= [Isolated execution (versioning)
= Thread-safe dynamic binary translation (all)

= Debugging
= Deterministic replay (order)
= Parallel step-back (versioning)
= Infinite, fast watchpoints (tracking)
= Atomicity violation detectors (tracking, order)
= Performance tuning tools (tracking)
m Snapshot-based services (versioning)
= Concurrent garbage collector
= Dynamic memory profiler
= User-level copy-on-write
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TM Vs. Other System Approaches %

m Alternative implementation techniques
= Virtual memory system: versioning & tracking at page granularity
= Dynamic binary translation (DBT): custom SW instrumentation

m Potential advantages of TM
= Finer granularity tracking (compared to page-based)
= User-level handling (compared to OS handling))
= No instrumentation overhead (compared to BDT)
= Automatic handling of interactions with other programs/tools

m Note
= Conflict detection accuracy matters for several applications

= Can combine TM with alternative implementation techniques
« HTM for common case, other techniques for virtualization or higher accuracy
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Example Use: Memory Snapshot

Memory
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Example Use: Memory Snapshot

Read-only

Memory  gnapshot
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Example Use: Memory Snapshot

Memory

Read-only
Snapshot
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Example Use: Memory Snapshot

Read-only
Memory  gpapshot = Snapshot _
= Read-only image

= Multiple regions
= Access by > 1 threads
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Example Use: Memory Snapshot

Read-only
Memory 'Suasenor = Snapshot
= Read-only image
= Multiple regions
= Access by > 1 threads

m Applications

- = Service threads that
mutator .
E—— analyze memory in

parallel with app threads

= Garbage collection, heap
 collector & stack analysis, copy on
write, ...
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TM Hardware =Snapshot %

m Feature correspondence
= TM metadata =track data written since or read from snapshot
= TM versioning =storage for progressive snapshot
« Including virtualization mechanism
= TM conflict detection =catch errors
= Writes to read-only snapshot

m Differences & additions
= Single-thread Vs. multithread versioning
= Table to describe snapshot regions

m Resulting snapshot system
= Scan (create) snapshot in O(# CPUs)
= Update (write) and read in O(1)
= Memory overhead up to O(# memory locations written)
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GC Overhead

L

35%
30%
25%
20%
15%
10%

5%

Runtime Overhead

0%

parallel GC snapshot GC

vacation

parallel GC snapshot GC

gzip

Stop
o Mark
m Reclaim

mSnapshot
=App

m Parallel GC: stop app threads & run GC threads

= 20% to 30% overhead for memory intensive apps

m Snapshot GC =GC is essentially free
= Stop app, take snapshot, then run GC & app concurrently
= Snapshot GC =fast & simple

= +100 lines over simple sequential GC by Boehm
= Fundamentally simpler than any other concurrent GC

168




Example Use :
Dynamic Binary Translation

m DBT

= Short code sequence is translated in run-time
= PIN, Valgrind, DynamoRIO, StarDBT, etc

DBT Tool
=

DBT Framework

m DBT use cases
= Translation on new target architecture
= JIT optimizations in virtual machines
= Binary instrumentation
= Profiling, security, debugging, ...
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DBT Use: Dynamic Information Flow g
8

Tracking (DIFT)

t = XX ; // untrusted data from network

....... t ul u2

swap t, ul;

= Untrusted data are tracked throughout execution
= A taint bit per memory byte is used to track untrusted data.
= Security policy uses the taint bit.
« E.g. untrusted data should not be used as syscall argument.

= Dynamic instrumentation to propagates and checks taint bits
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DBT Use: Dynamic Information Flow
Tracking (DIFT) 3

t = XX ; // untrusted data from network
mmp taint(t) =1;
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= Dynamic instrumentation to propagates and checks taint bits

170




&

DBT & Multithreading

= DBT with multithreaded executables as input

= Challenges
= Atomicity of target instructions
« E.g. compare-and-exchange
= Atomicity of additional instrumentation
=« Races in accesses to application data & DBT metadata

= Easy but unsatisfactory solutions
= Do not allow multithreaded programs (StarDBT)
= Serialize multithreaded execution (Valgrind)
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Example MetaData Race =Security (/]
Breach 5@

m User code uses atomic instructions
= After instrumentation, there are races on taint bits

Thread 1 Thread2
swap t, ul;
u2 = ul;
t ul u2
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Example MetaData Race =Security
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m User code uses atomic instructions
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Can We Fix It with Locks? %

m Idea
= Enclose access to data & metadata within a locked region

= Problems

s Coarse-grained locks
=« Performance degradation

= Fine-grained locks
« Locking overhead, convoying, limited scope of DBT

optimizations

= Lock nesting between application & DBT locks

=« Potential deadlock

= Tool developers should be a feature + multithreading experts
=« Must know both security & multithreading to develop tool
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T™ for DBT %

m Idea

= DBT instruments a transaction to enclose accesses to
(data, metadata) within the transaction boundary.

Thread 1 Thread2
swap t, ul; u2 = ul;
swap taint(t), taint(ul); taint (u2) = taint(ul) ;

= Advantages
= Atomic execution
= High performance through optimistic concurrency
= Support for nested transactions
= Hidden from the tool and application developers
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T™ for DBT

)

m Idea

= DBT instruments a transaction to enclose accesses to

(data, metadata) within the transaction boundary.

Thread 1 Thread2

TX Begin TX Begin

swap t, ul; u2 = ul;

swap taint(t), taint(ul); taint (u2) = taint(ul) ;
TX End TX End

= Advantages

Atomic execution

High performance through optimistic concurrency
Support for nested transactions

Hidden from the tool and application developers
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Granularity of Transaction
Instrumentation

L

m Per instruction
= High overhead of executing TX_Begin and TX_End
= Limited scope for DBT optimizations

m Per basic block
= Amortizing the TX_Begin and TX_End overhead
= Easy to match TX_Begin and TX_End

m Per trace
= Further amortization of the overhead
= Potentially high transaction conflict

= Profile-based sizing
= Optimize transaction size based on transaction abort ratio
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Performance Overheads

60%

50%
mSTM

40% i l l l mSTM+
20% I =HTM
10%

0% » |

Barnes Equake FMM Radiosity Radix Swim Tomcatv Water Water-
s patial

Normailized Overhead (%)

= TM systems evaluated
= STM: software TM, STM+ = STM + HW checkpointing

= HyTM: hardware-accelerated TM (similar to SigTM)
= HTM: full hardware TM implementation
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Example Use: Reliable Systems

= RPC likes operation < RPC-based approach>

= If no fault occurs, modified data

copied back to kernel space
< TM-based style >

m Kernel protection
= Faulty drivers can corrupt kernel data

m Protection through domain isolation
= Kernel data are copied to driver

m Use of TM
= Replace copying with atomic block
= If fault occurs, abort transaction
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Exampled Use: Security

L

m Stack smashing

= Overwrite return address using a
buffer overflow

= Can jump to arbitrary code

m Protection through canary
= Place a special value next to the
return address.

= If the value is modified at the end of
function, the return address is
compromised

m Use of TM

= Use address tracking to detect
overwrites of return address

= Lower time & space overhead

STACK
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Example Use: Debugging

)

= Data watchpoint
= Detects memory accesses
= Triggers software handler

m Current approaches
= Up to 4 HW watchpoints
= Infinite watchpoints with VM
« OS overheads
« False positivies

m Use of TM

= Use access tracking for
watchpoints

= Fine granularity
s User-level overheads

Normalized
Overhead (%)

S =N WA W

Page Fault
Exception

> (~1000s of cycles)

/I

100 500 1000 2000 4000

Number of Watchpoints per Core
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Questions?

= Thank you for your attention

m For further questions or comments contact me at
christos@ee.stanford.edu
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