
ASeD: Availability, Security, and Debugging Support

using Transactional Memory
JaeWoong Chung, Woongki Baek, Nathan G. Bronson, Jiwon Seo, Christos Kozyrakis, Kunle Olukotun

Stanford University

Motivation

Contributions

Availability Features

Security Features

Feature Decomposition

ASeD on Transactional Memory

ASeD HTM ASeD

ASeD – HTM

Availability Experiments

Security Experiments

Debugging Experiments

OPTIONAL

LOGO HERE

•Transactional Memory (TM)

•Simplifies parallel programming using atomic blocks

•Easy to use & high performance

•TM systems should provide ACI features

•Atomicity: rollback to a safe system state

•Consistency: guarantee system-level invariants

•Isolation: limit the propagation of side-effects

•Key insights: ACI of TM can also be used for ASeD

•Availability

•Security

•Debugging

ASeD Design Philosophy

Conclusions

•Investigation of the feasibility of ASeD on HTMs

•Demonstrate the great synergy between ASeD and ACI

•Implementation of the ASeD on HTM by addressing:

•Tightly coupled ACI components in HTM

•Enhancing performance-oriented ACI in HTM for ASeD

•Simultaneous use of ACI for concurrency and ASeD

•Quantitative evaluation of the proposed HTM with ASeD

•Overall, achieving ASeD with small runtime overhead

•Tool vs. Solution

•Providing a tool with key primitives for flexibility

•Providing HW acceleration for the common case

•Integration vs. Versatility

•Proposing an integrated design instead of a collection of

separate HW extensions

•Cost-efficiency vs. Performance

•Avoiding additional HW just to accelerate a single feature

•Maximizing HW resources between ASeD & HTM

•ASeD addresses both permanent & transient faults

•Permanent: loss in cores or caches, etc.

•Transient: packet loss, logic errors, etc.

•Availability primitives

•Global ckeckpoint: system-wide state

•AI (atomic/isolated) regions: thread-specific state

•Use case

•Permanent faults

•Global checkpoints are periodically taken

•Upon faults, roll-back to the latest global checkpoint

•Transient faults

•Code fragments are enclosed by AI regions

•Upon faults, just roll-back the faulty thread

•Significantly reduced MTTR

Debugging Features
Conflict

Detection

Transaction
Logging/

Buffering

Computing Core

conflict

Register
Checkpoint

V D E Tag R1 W1 Rn Wn Data

ld/st addr ld/st data

coherence request data request/response

Data Cache

On-Chip Interconnect

Memory

Controller

Logging HW

Log Head Pointer

Log Tail Pointer

Main Memory

Shared by

ASeD and HTM

ASeD specific

Software
Handler

Chip Boundary

Availability Test

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

MP 3D RADIX TOMCATV SWIM EQUAKE GENOME KMEANS VACATION

B
A

S
E

G
C

P

G
R L
R

B
A

S
E

G
C

P

G
R

L
R

B
A

S
E

G
C

P

G
R

L
R

B
A

S
E

G
C

P

G
R

L
R

B
A

S
E

G
C

P

G
R

L
R

B
A

S
E

G
C

P

G
R

L
R

B
A

S
E

G
C

P

G
R

L
R

B
A

S
E

G
C

P

G
R

L
R

Recovery

Conflict

Commit

Barrier

Memory

Busy

Idle

Checkpoint

•Security primitives

•Fine grained read/write barriers

•Accessing a specific address is detected & notified

•Isolated execution

•Similar to the AI regions

•Use case

•Buffer overflow detection

•Mark the address of canaries with write barriers

•Overwrite to a canary is detected by the ASeD

•Significantly lower overhead than SW canaries

•Debugging primitives

•Global checkpoint

•Fine grained read/write barriers

•Use case

•Scalable watchpoints

•Provides arbitrary # of watchpoints using R/W barriers

•Negligible performance impact

•Supports coarse-grain watchpoints with the runtime

•Parallel bookmark & step-back are also supported

•Implementing the ASeD on HTM using similarity of ACI

•Reduces HW costs of ASeD support

•An integrated system of TM with the advantages of ASeD

•Except global checkpoint, all primitives are available in HTM

•AI regions atomic transactions

•Address protection conflict detection

•SW handlers SW contention manager

•Small changes in conflict detection

•Word granularity conflict detection hybrid (HW + SW)

•Coexisting Tx’s and AIs dedicated nesting level for AI

•Major difference is global checkpoint (system-wide)

•Periodic interrupts stop/complete all cores/comm’s

•Flush all dirty cache lines to memory

•HTM mechanisms are used to checkpoint reg. state

•When an error is detected

•All cores/caches are reset

•All logs are applied in reverse order

•Register checkpoint is restored and system resumes

•Normalized execution of 8 apps with 4 versions

•Base: without checkpoints & faults

•GCP: global checkpoint every 50K cycles, no faults

•GR: same as GCP with fault injection/1M cycles

•LR: same as GR with local recovery using AIs

•Summary of results

•GCP overhead : < 3.5%, GR overhead: 20-30%

•LR reduces the overhead of GR (Equake: false conflicts)

•Overhead of ASeD is significantly lower than StackGuard

•StackGuard: a number of inst’s to set/check canaries

•ASeD: only two inst’s at prologue & epilogue of functions

•A u-bench that randomly sets watchpoints

•Two cache replacement policies

•LRU: least recently used

•UPF: unprotected first

•UPF performs worse (L1 is filled watchpoints data)

•LRU overhead: overflow mechanism for L1 metadata bits

Scalable Watchpoint Test

0

5

10

15

20

Watchpoints per Core

N
o
rm

a
li

z
ed

 o
v

er
h

e
ad

 (
%

)

100 500 1000 2000 4000

UPF

LRU

•We proposed & evaluated the ASeD on top of HTM

•Availability using global & local checkpoints

•Security using R/W barriers & isolated executions

•Debugging: using global checkpoints

•Overall, enhanced HTM with ASeD with minimal HW costs

