ASeD: Availability, Security, and Debugging Support

JaeWoong Chung, Woongki Baek, Nathan G. Bronson, Jiwon Seo, Christos Kozyrakis, Kunle Olukotun

using Transactional Memory

Stanford University

sTransactional Memory (TM)
+Simplifies parallel programming using atomic blocks
*Easy to use & high performance

*TM systems should provide ACI features
+Atomicity: rollback to a safe system state
«Consistency: guarantee system-level invariants
sIsolation: limit the propagation of side-effects

+Key insights: ACI of TM can also be used for ASeD
+Availability
*Security
+Debugging

Contributions

sInvestigation of the feasibility of ASeD on HTMs
«Demonstrate the great synergy between ASeD and ACI

sImplementation of the ASeD on HTM by addressing:
«Tightly coupled ACI components in HTM
*Enhancing performance-oriented ACI in HTM for ASeD
+Simultaneous use of ACI for concurrency and ASeD

+Quantitative evaluation of the proposed HTM with ASeD
+Overall, achieving ASeD with small runtime overhead

ASeD Design Philosophy

+Tool vs. Solution
+Providing a tool with key primitives for flexibility
+Providing HW acceleration for the common case

*Integration vs. Versatility
+Proposing an integrated design instead of a collection of
separate HW extensions

+Cost-efficiency vs. Performance
+Avoiding additional HW just to accelerate a single feature
*Maximizing HW resources between ASeD & HTM

Availability Features

+*ASeD addresses both permanent & transient faults
*Permanent: loss in cores or caches, etc.
«Transient: packet loss, logic errors, etc.

+Availability primitives
«Global ckeckpoint: system-wide state
+Al (atomic/isolated) regions: thread-specific state

*Use case
*Permanent faults
«Global checkpoints are periodically taken
+Upon faults, roll-back to the latest global checkpoint
sTransient faults
«Code fragments are enclosed by Al regions
+Upon faults, just roll-back the faulty thread
«Significantly reduced MTTR

Security Features

*Security primitives
*Fine grained read/write barriers
+Accessing a specific address is detected & notified
+Isolated execution
«Similar to the Al regions

*Use case
«Buffer overflow detection
*Mark the address of canaries with write barriers
«Overwrite to a canary is detected by the ASeD
«Significantly lower overhead than SW canaries

Debugging Features

+*Debugging primitives
+Global checkpoint
*Fine grained read/write barriers

+Use case
+Scalable watchpoints
*Provides arbitrary # of watchpoints using R/W barriers
+Negligible performance impact
*Supports coarse-grain watchpoints with the runtime
+Parallel bookmark & step-back are also supported

Feature Decomposition

Primitine Venction Used for AW Baterface

Al regm

Gkl yuaem wak
checkpunt

Addrew
protect
Saftware
handler | function from HW

ASeD on Transactional Memory

sImplementing the ASeD on HTM using similarity of ACI
*Reduces HW costs of ASeD support
+An integrated system of TM with the advantages of ASeD

ASeD n HTM = ASeD
hility

ACI | ASED Component | HTM Avai
A~ | Register checkpoint/ [v
rollback/release

["Memory versioning/ |7V (per-thread)
rollback/commit

Syste

wide memory
rollback/release

"C &1 | Conflict detection 1™/ (per cache line metadata)
| Software handler | v
Inter- ; nd |V (TMbegin/end/abort)
face | A t/reset |~ {only within transactions)

*Except global checkpoint, all primitives are available in HTM
+Al regions =» atomic transactions
+Address protection =» conflict detection
*SW handlers =» SW contention manager

+*Small changes in conflict detection
*Word granularity conflict detection =» hybrid (HW + SW)
+Coexisting Tx's and Als =» dedicated nesting level for Al

) hJ
) |
! Software Ri :
egister
: Handler Computing Core e 1
) Idst addr I Id/st data |
] Data Cache |
——T) [}
] I | o [P
1 | Tag |[Re[Wi-[RalWal | Data | |
1 s e] |
) coherence request I data requestresponse)
| TELLeol T) :
LN On-Chip Interconnect))
[ENS : |
| Memory Logging HW. Chip Boundary 1
: Contolie i Sty
[Log Tail Pointer |] ASeD and HTM

gy P

ASeD specific

*Major difference is global checkpoint (system-wide)
+Periodic interrupts stop/complete all cores/comm’s
*Flush all dirty cache lines to memory
*HTM mechanisms are used to checkpoint reg. state

*When an error is detected
+All cores/caches are reset
+All logs are applied in reverse order
*Register checkpoint is restored and system resumes

Availability Experiments

Avalabity Tet

" -

T
)i

T5 28063 2865 F865 28065 280607

w10 RO ToMATY SwM couake cenowe KiEANS vACATION

*Normalized execution of 8 apps with 4 versions

+Base: without checkpoints & faults

*GCP: global checkpoint every 50K cycles, no faults

*GR: same as GCP with fault injection/IM cycles

sLR: same as GR with local recovery using Als
*Summary of results

*GCP overhead : < 3.5%, GR overhead: 20-30%

sLR reduces the overhead of GR (Equake: false conflicts)

Security Experiments

Polymorph | Ghttpd | Nullhttpd
ASeD [0.2% 0.4% 0.3% 03% |
StackGuard | 3.1% 3.6% 33% 20% |

+*Overhead of ASeD is significantly lower than StackGuard
+StackGuard: a number of inst's to set/check canaries
+*ASeD: only two inst's at prologue & epilogue of functions

Debugging Experiments

S Scalable Watchpoint Test

20 ~

g5

g_o // QurF
& LRU
ES /A_/://I/. .
20—

100 500 1000 2000 4000
Watchpoints per Core

+A u-bench that randomly sets watchpoints
+Two cache replacement policies
sLRU: least recently used
*UPF: unprotected first
*UPF performs worse (L1 is filled watchpoints data)
*LRU overhead: overflow mechanism for L1 metadata bits

Conclusions

*We proposed & evaluated the ASeD on top of HTM
+Availability using global & local checkpoints
+Security using R/W barriers & isolated executions
+Debugging: using global checkpoints

«Overall, enhanced HTM with ASeD with minimal HW costs

