
JouleSort: A Balanced Energy-Efficiency Benchmark

Suzanne Rivoire
Stanford University

Mehul A. Shah
HP Labs

Parthasarathy
Ranganathan

HP Labs

Christos
Kozyrakis

Stanford University

ABSTRACT
The energy efficiency of computer systems is an important
concern in a variety of contexts. In data centers, reducing
energy use improves operating cost, scalability, reliability,
and other factors. For mobile devices, energy consumption
directly affects functionality and usability. We propose and
motivate JouleSort, an external sort benchmark, for evaluat-
ing the energy efficiency of a wide range of computer systems
from clusters to handhelds. We list the criteria, challenges,
and pitfalls from our experience in creating a fair energy-
efficiency benchmark. Using a commercial sort, we demon-
strate a JouleSort system that is over 3.5x as energy-efficient
as last year’s estimated winner. This system is quite differ-
ent from those currently used in data centers. It consists of
a commodity mobile CPU and 13 laptop drives, connected
by server-style I/O interfaces.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Benchmark, Energy-Efficiency, Power, Servers, Sort

1. INTRODUCTION
In contexts ranging from large-scale data centers to mobile

devices, energy use in computer systems is an important
concern.

In data center environments, energy efficiency affects a
number of factors. First, power and cooling costs are signifi-
cant components of operational and up-front costs. Today, a
typical data center with 1000 racks, consuming 10MW total
power, costs $7M to power and $4-$8M to cool per year, with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07,June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

$2-$4M of up-front costs for cooling equipment [28]. These
costs vary depending upon the installation, but they are
growing rapidly and have the potential eventually to outstrip
the cost of hardware [2]. Second, energy use has implications
for density, reliability, and scalability. As data centers house
more servers and consume more energy, removing heat from
the data center becomes increasingly difficult [27]. Since
the reliability of servers and disks decreases with increased
temperature, the power consumption of servers and other
components limits the achievable density, which in turn lim-
its scalability. Third, energy use in data centers is starting
to prompt environmental concerns of pollution and excessive
load placed on local utilities [28]. Energy-related concerns
are severe enough that companies like Google are starting to
build data centers close to electric plants in cold-weather cli-
mates [24]. All these concerns have led to improvements in
cooling infrastructure and in server power consumption [28].

For mobile devices, battery capacity and energy use di-
rectly affect usability. Battery capacity determines how long
devices last, constrains form factors, and limits functional-
ity. Since battery capacity is limited and improving slowly,
device architects have concentrated on extracting greater
energy efficiency from the underlying components, such as
the processor, the display, and the wireless subsystems in
isolation [20, 29, 31].

To drive energy-efficiency improvements, we need bench-
marks to assess their effectiveness. Unfortunately, there has
been no focus on a complete benchmark, including a work-
load, metric, and guidelines, to gauge the efficacy of energy
optimizations from a whole-system perspective. Some efforts
are under way to establish benchmarks for energy efficiency
in data centers [33, 35] but are incomplete. Other work has
emphasized metrics such as the energy-delay product or per-
formance per Watt to capture energy efficiency for proces-
sors [13, 21, 27] and servers [34] without fixing a workload.
Moreover, while past emphasis on processor energy efficiency
has led to improvements in overall power consumption, there
has been little focus on the I/O subsystem, which plays a
significant role in total system power for many important
workloads and systems.

In this paper, we propose JouleSort as a holistic bench-
mark to drive the design of energy-efficient systems. Joule-
Sort uses the same workload as the other external sort bench-
marks [1, 17, 25], but its metric incorporates total energy,
which is a combination of power consumption and perfor-
mance. The benchmark can be summarized as follows:

• Sort a fixed number of randomly permuted 100-byte
records with 10-byte keys.

• The sort must start with input in a file on non-volatile
store and finish with output in a file on non-volatile
store.

• There are three scale categories for JouleSort: 108 (∼
10GB), 109 (∼ 100GB), and 1010 (∼ 1TB) records

• The winner in each category is the system with the
minimum total energy use.

We choose sort as the workload for the same basic rea-
son that the Terabyte Sort, MinuteSort, PennySort, and
Performance-price Sort benchmarks do [16, 17, 25]: it is
simple to state and balances system component use. Sort
stresses all core components of a system: memory, CPU,
and I/O. Sort also exercises the OS and filesystem. Sort is
a portable workload; it is applicable to a variety of systems
from mobile devices to large server configurations. Another
natural reason for choosing sort is that it represents sequen-
tial I/O tasks in data management workloads.

JouleSort is an I/O-centric benchmark that measures the
energy efficiency of systems at peak use. Like previous sort
benchmarks, one of its goals is to gauge the end-to-end ef-
fectiveness of improvements in system components. To do
so, JouleSort allows us to compare the energy efficiencies
of a variety of disparate system configurations. Because of
the simplicity and portability of sort, previous sort bench-
marks have been technology trend bellwethers, for example,
foreshadowing the transition from supercomputers to clus-
ters. Similarly, an important purpose of JouleSort is to chart
past trends and gain insight into future trends in energy ef-
ficiency.

Beyond the benchmark definition, our main contributions
are twofold. First, we motivate and describe pitfalls sur-
rounding the creation of a fair energy-efficiency benchmark.
We justify our fairest formulation, which includes three scale
factors that correspond naturally to the dominant classes
of systems found today: mobile, desktop, and server. Al-
though we support both Daytona (commercially supported)
and Indy (“no-holds-barred”) categories for each scale, we
concentrate on Daytona systems in this paper. Second, we
present the winning 100GB JouleSort system that is over
3.5x more efficient (∼ 11300 SortedRecs/Joule for 100GB)
than last year’s estimated winner (∼ 3200 SortedRecs/Joule
for 55GB). This system shows that a focus on energy effi-
ciency leads to a unique configuration that is hard to find
pre-assembled. Our winner balances a low-power, mobile
processor with numerous laptop disks connected via server-
class PCI-e I/O cards and uses a commercial sort, NSort [26].

The rest of the paper is organized as follows. In Section 2,
we estimate the energy efficiency of past sort benchmark
winners, which suggests that existing sort benchmarks can-
not serve as surrogates for an energy-efficiency benchmark.
Section 3 details the criteria and challenges in designing
JouleSort and lists issues and guidelines for proper energy
measurement. In Section 4, we measure the energy con-
sumption of unbalanced and balanced systems to motivate
our choices in designing our winning system. The balanced
system shows that the I/O subsystem is a significant part of
total power.

Section 5 provides an in-depth study of our 100GB Joule-
Sort system using NSort [26]. In particular, we show that
the most energy-efficient, cost-effective, and best-performing
configuration for this system is when the sort is CPU-bound.

0

500

1000

1500

2000

2500

3000

3500

1996 1998 2000 2002 2004 2006 2008
Year

So
rt

ed
R

ec
s/

Jo
ul

e

Pennysort Daytona
Pennysort Indy
MinuteSort Daytona
MinuteSort Indy
Terabyte Daytona
Terabyte Indy
Datamation

Figure 1: Estimated energy-efficiency of previous
winners of sort benchmarks.

We also find that both the choice of filesystem and in-memory
sorting algorithm affect energy efficiency. Section 6 discusses
the related work, and Section 7 presents limitations and fu-
ture directions.

2. HISTORICAL TRENDS
In this section, we seek to understand if any of the exist-

ing sort benchmarks can serve as a surrogate for an energy-
efficiency benchmark. To do so, we first estimate the Sort-
edRecs/Joule ratio, a measure of energy efficiency, of the
past decade’s sort benchmark winners. This analysis reveals
that the energy efficiency of systems designed for pure per-
formance (i.e. MinuteSort, Terabyte Sort, and Datamation
winners) has improved slowly. Moreover, systems designed
for price-performance (i.e. PennySort winners) are compar-
atively more energy-efficient, and their energy efficiency is
growing rapidly. However, since our 100GB JouleSort sys-
tem’s energy efficiency is well beyond what growth rates
would predict for this year’s PennySort winner, we conclude
that existing sort benchmarks do not inherently provide an
incentive to optimize for energy efficiency, supporting the
need for JouleSort.

2.1 Methodology
Figure 1 shows the estimated SortedRecs/Joule metric for

the past sort benchmark winners since 1997. We compute
these metrics from the published performance records and
our own estimates of power consumption since energy use
was not reported. We obtain the performance records and
hardware configuration information from the Sort Bench-
mark website and the winners’ posted reports [16].

We estimate total energy during system use with a straight-
forward approach from the power-management community.
Since CPU, memory, and disk are usually the main power-
consuming system components, we use individual estimates
of these to compute total power. For memory and disks,
we use the HP Enterprise Configurator [19] power calcu-
lator to yield a fixed power of 13W per disk and 4W per
DIMM. Some of the sort benchmark reports only mention
total memory capacity and not the number of DIMMs; in
those cases, we assume a DIMM size appropriate to the era
of the report. The maximum power specs for CPUs, usually

quoted as thermal design power (TDP), are much higher
than the peak numbers seen in common use; thus, we derate
these power ratings by a 0.7 factor. Although a bit con-
servative, this approach allows reasonable approximations
for a variety of systems. When uncertain, we assume the
newest possible generation of the reported processor as of
the sort benchmark record because a given CPU’s power
consumption improves with shrinking feature sizes. Finally,
to account for power supplies inefficiencies, which can vary
widely [3, 5], and other components, we scale total system
power derived from component-level estimates by 1.2 for
single-node systems. We use a higher factor, 1.6, for clusters
to account for additional components, such as networking,
management hardware, and redundant power supplies.

Our power estimates are intended to illuminate coarse his-
torical trends and are accurate enough to support the high-
level conclusions in this section. We experimentally vali-
dated this approach against some server and desktop-class
systems, and its accuracy was between 2% and 25%.

2.2 Analysis
Although previous sort benchmark winners were not con-

figured with power consumption in mind, they roughly re-
flect the power characteristics of desktop and higher-end sys-
tems in their day. Thus, from the data in Figure 1, we can in-
fer qualitative information about the relative improvements
in performance, price-performance, and energy efficiency in
the last decade. Figure 1 compares the energy efficiency of
previous sort winners using the SortedRecs/Joule ratio and
supports the following observations.

Systems optimized for price-performance, i.e. PennySort
winners, clearly are more energy-efficient than the other sort
benchmark winners, which were optimized for pure perfor-
mance. There are two reasons for this effect. First, the
price-performance metric motivates system designers to use
fewer components, and thus less power. Second, it provides
incentive to use cheaper, commodity components which, for
a given performance point, traditionally have used less en-
ergy than expensive, high-performance components.

The energy efficiency of cost-conscious systems has im-
proved faster than that of performance-optimized systems,
which have hardly improved. Others have also observed a
flat energy-efficiency trend for cluster hardware [2]. Much of
the growth in the PennySort curve is from the last two Indy
winners, which have made large leaps in energy efficiency.
In 2005, algorithmic improvements and a minimal hardware
configuration played a role in this improvement, but most
importantly, CPU design trends had finally swung toward
energy efficiency. The processor used in the 2005 PennySort
winner has 6x the clock frequency of its immediate prede-
cessor, while only consuming 2x the power. Overall, the
2005 sort had 3x better performance than the previous data
point, while using 2x the power. The 2006 PennySort win-
ner, GPUTeraSort, increased energy efficiency by introduc-
ing a new system component, the graphics processing unit
(GPU), and utilizing it very effectively. The chosen GPU is
inexpensive and comparable in power consumption (57W) to
the CPU (80W), but it provides better streaming memory
bandwidth than the CPU.

This latest winner, in particular, shows the danger of rely-
ing on energy benchmarks that focus only on specific hard-
ware like CPU or disks, rather than end-to-end efficiency.
Such specific benchmarks would only drive and track im-

Benchmark SRecs/sec SRecs/$ SRecs/J

PennySort 50%/yr. 57%/yr. 24%/yr.
Minute, Terabyte,
and Datamation 37%/yr. n/a 12%/yr.

Table 1: This table shows the estimated yearly
growth in pure performance, price-performance,
and energy efficiency of past winners.

provements of existing technologies and may fail to antici-
pate the use of potentially disruptive technologies.

Since price-performance winners are more energy-efficient,
we next examine whether the most cost-effective sort implies
the best achievable energy-efficient sort. To do so, we first
estimate the growth rate of sort winners along multiple di-
mensions. Table 1 shows the growth rate of past sort bench-
mark winners along three dimensions: performance (Sort-
edRecs/sec), price-performance (SortedRecs/$), and energy
efficiency (SortedRecs/Joule). We separate the growth rates
into two categories based on the benchmark’s optimization
goal: price- or pure performance, since the goal drives the
system design. For each category, we calculate the growth
rate as follows. We choose the best system (according to the
metric) in each year and fit the result with an exponential.
Table 1 shows that PennySort systems are improving al-
most at the pace of Moore’s Law along the performance and
price-performance dimensions. The pure performance sys-
tems, however, are improving much more slowly, as noted
elsewhere [16].

More importantly, our analysis shows much slower esti-
mated growth in energy efficiency than in the other two
metrics for both benchmark categories. Given last year’s
estimated PennySort winner provides ∼ 3200 SRecs/J, our
current JouleSort winner at ∼ 11300 SRecs/J is nearly 3x
the expected value of ∼ 4000 SRecs/J for this year. This
result suggests that we need a benchmark focused on en-
ergy efficiency to promote development of the most energy-
efficient sorting systems and allow for disruptive technologies
in energy efficiency irrespective of cost.

3. BENCHMARK DESIGN
In this section, we detail the criteria and challenges in de-

signing an energy-efficiency benchmark. We describe some
of the pitfalls of our initial specifications and how the bench-
mark has evolved. We also specify rules of the benchmark
with respect to both workload and energy measurement.

3.1 Criteria
Although past studies have proposed energy-efficiency met-

rics [13, 21, 34, 27] or power measurement techniques [9],
none provide a complete benchmark: a workload, a metric
of comparison, and rules for running the workload and mea-
suring energy consumption. Moreover, these studies tradi-
tionally have focused on comparing existing systems rather
than providing insight into future technology trends. We set
out to design an energy-oriented benchmark that addresses
these drawbacks with the criteria below in mind. While
achieving all these criteria simultaneously is hard, we strive
to encompass them as much as possible.

Energy-efficiency: The benchmark should measure a sys-
tem’s “bang for the buck,” where bang is work done and
the cost reflects some measure of power use, e.g. average

power, peak power, total energy, and energy-delay. To drive
practical improvements in power consumption, cost should
reflect both a system’s performance and power use. A sys-
tem that uses almost no power but takes forever to complete
a task is not practical, so average and peak power are poor
choices. Thus, there are two reasonable cost alternatives:
energy, a product of execution time and power, or energy-
delay, a product of execution time and energy. The former
weighs performance and power equally while the latter, pop-
ular in CPU-centric benchmarks, places more emphasis on
performance [13]. Since there are other sort benchmarks
that emphasize performance, we chose energy as the cost.

Peak-use: A benchmark can consider system energy in
three important modes: idle, peak-use, or a realistic combi-
nation of the two. Although minimizing idle-mode power
is useful, evaluating this mode is straightforward. Real-
world workloads are often a combination, but designing a
broad benchmark that addresses a number of scenarios is
difficult to impossible. Hence, we chose to focus our bench-
mark on an important, but simpler case: energy efficiency
during peak use. Energy efficiency at peak is the opposite
extreme from idle and gives an upper bound on work that
can be done for a given energy. This operating point influ-
ences design and provisioning constraints for data centers as
well as mobile devices. In addition, for some applications,
e.g. scientific computing, near-peak use can be the norm.

Holistic and Balanced: A single component cannot accu-
rately reflect the overall performance and power character-
istics of a system. Therefore, the workload should exercise
all core components and stress them roughly equally. The
benchmark metrics should incorporate energy used by all
core components.

Inclusive and Portable: We want to assess the energy ef-
ficiencies of a wide variety of systems: PDAs, laptops, desk-
tops, servers, clusters, etc. Thus, the benchmark should
include as many architectures as possible and be as unbi-
ased as possible. It should allow innovations in hardware
and software technology. Moreover, the workload should be
implementable and meaningful across these platforms.

History-proof: In order to track improvements over gen-
erations of systems and identify future profitable directions,
we want the benchmark specification to remain meaningful
and comparable as technology evolves.

Representative and Simple: The benchmark should be
representative of an important class of workloads on the sys-
tems tested. It should also be easy to set up, execute, and
administer.

3.2 Workload
We begin with external sort, as specified in the previous

sort benchmarks [16], as the workload because it covers most
of our criteria. The task is to sort a file containing randomly
permuted 100-byte records with 10-byte keys. The input file
must be read from, and the output file written to, a non-
volatile store, and all intermediate files must be deleted. The
output file must be newly created; it cannot overwrite the
input file.

This workload is representative because most platforms,
from large to small, must manage an ever-increasing sup-
ply of data [23]. To do so, they all perform some type of
I/O-centric tasks critical for their use. For example, large-

scale websites run parallel analyzes over voluminous log data
across thousands of machines [7]. Laptops and servers con-
tain various kinds of filesystems and databases. Cell phones,
PDAs, and cameras store, retrieve, and process multimedia
data from flash memory.

With previous sort implementations on clusters, super-
computers, SMPs, and PCs [16] as evidence, we believe sort
is portable and inclusive. It stresses I/O, memory, and the
CPU, making it holistic and balanced. Moreover, the fastest
sorts tend to run most components at near-peak utilization,
so sort is not an idle-state benchmark. Finally, this work-
load is relatively history-proof. While the parameters have
changed over time, the essential sorting task has been the
same since the original DatamationSort benchmark [1] was
proposed in 1985.

3.3 Metric
After choosing the workload, the next challenge is choos-

ing the metric by which to evaluate and compare different
systems. There are many ways to define a single metric that
takes both power and performance into account. We list
some alternatives that we rejected, describe why they are
inappropriate, and choose the one most consistent with the
criteria presented in Section 3.1.

3.3.1 Fixed energy budget
The most intuitive extension of MinuteSort and PennySort

is to fix a budget for energy consumption, and then com-
pare the number of records sorted by different systems while
staying within that energy budget. This approach has two
drawbacks. First, the power consumption of current plat-
forms varies by several orders of magnitude: less than 1W
for handhelds to over 1000W for servers, and much more
for clusters or supercomputers. If the fixed energy budget
is too small, larger configurations can only sort for a frac-
tion of a second; if the energy budget is more appropriate
to larger configurations, smaller configurations would run
out of external storage. To be fair and inclusive, we would
need multiple budgets and categories for different classes of
systems.

Second and more importantly from a practical bench-
marking perspective, finding the number of records to fit
into an energy budget is a non-trivial task due to unavoid-
able measurement error. There are inaccuracies in synchro-
nizing readings from a power meter to the actual runs and
from the power meter itself (+/- 1.5% for the one we used).
Since energy is the product of power and time, it is suscep-
tible to variation in both quantities, so this choice is not
simple.

3.3.2 Fixed time budget
Similar to the Minute- and Performance-Price sort, we can

fix a time budget, e.g. one minute, within which the goal
is to sort as many records as possible. The winners for the
Minute and Performance-Price sorts are those with the min-
imum time and maximum SortedRecs/$, respectively. Sim-
ilarly, our first proposal for JouleSort specified measuring
energy and used SortedRecs/Joule as the ratio to maximize.

There are two problems with this approach, which are
illustrated by Figure 2. This figure shows the SRecs/J ra-
tio for varying input sizes (N) with our winning JouleSort
system. We see that the ratio varies considerably with N .
There are two distinct regions: ≤ 1.5 ×107 records which

0

2

4

6

8

10

12

14

16

18

1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Records Sorted

SR
ec

s/
J

(x
10

00
)

Figure 2: This figure shows the best measured en-
ergy efficiency of our 100GB winning system at vary-
ing input sizes.

corresponds to 1-pass sorts, and > 1.5 ×107 records which
corresponds to 2-pass sorts. To get the best performance for
2-pass sorts, we stripe the input and output across 6 disks
using LVM2 and use 7 disks for temporary runs. For 1-pass
sorts, we stripe the input and output across 10 disks. (see
Section 5 for more system details). With a fixed-time budget
approach, the goals of our benchmark can be undermined in
the following ways for both one and two-pass sorts.

Sort progress incentive: First, in any time-budget ap-
proach there is no way to enforce continual progress. Sys-
tems will continue sorting only if the marginal cost of sort-
ing an additional record is lower than the cost of sleeping
for the remaining time. This tradeoff becomes problematic
when an additional record moves the sort from 1-pass to
2-pass. In the 1-pass region of Figure 2, the sort is I/O lim-
ited, so it does not run twice as fast as a 2-pass sort. It goes
fast enough, however, to provide about 40% better efficiency
than 2-pass sorts. If the system was designed to have a suf-
ficiently low sleep-state power (< 7W), then with a minute
budget, the best approach would be to sort 1.5 ×107 records,
which takes 10 sec, and sleep for the remaining 50 sec, re-
sulting in a best 11800 SRecs/J. Thus, for some systems, a
fixed time budget defaults into assessing efficiency when no
work is done, violating our criteria.

Sort complexity: Second, even in the 2-pass region, total
energy is a complex function of many performance factors
that vary with N : total I/O, memory accesses, comparisons,
CPU utilization, and effective parallelism. Figure 2 shows
that once the sort becomes CPU-bound (> 8×107 records),
the SRecs/J ratio trends slowly downward because total en-
ergy increases superlinearly with N . The ratio for the largest
sort is 9% lower than the peak. This decrease is, in part,
because sorting work grows as O(Nlg(N)) due to compar-
isons, and the O-notation hides constants and lower-order
overheads. This effect implies that the metric is biased to-
ward systems that sort fewer records in the allotted time.
That is, even if two fully-utilized systems A and B have
same true energy efficiency, and A can sort twice as many
records as B in a minute, the SortedRecs/Joule ratio will
favor B. (Note: since this effect is small, our relative com-
parisons and conclusions in Section 2 remain valid.)

3.3.3 Our choice: fixed input size
The final option that we considered and settled upon was

to fix the number of records sorted, as in the Terabyte Sort
benchmark [16], and use total energy as the metric to min-
imize. For the same fairness issues as in the fixed-energy
case, we decided to have three scales for the input size: 108,
109, and 1010 records, (similar to TPC-H) and declare win-
ners in each category. (For consistency, henceforth, we use
MB, GB, and TB for 106, 109 and 1012 bytes, respectively).
For a fixed input size, minimum energy and maximum Sorte-
dRecs/Joule are equivalent metrics. In this paper, we prefer
the latter because, like an automobile’s mileage rating, it
highlights energy efficiency more clearly.

This approach has advantages and drawbacks, but offers
the best compromise given our criteria. These scales cover a
large spectrum and naturally divide the systems into classes
we expect: laptops, desktops, and servers. Moreover, since
energy is a product of power and time, a fixed work ap-
proach is the simplest formulation that provides an incentive
to optimize power-consumption and performance. Both are
important concerns for current computer systems.

One disadvantage is that as technologies improve, scales
must be added at the higher end and may need to be dep-
recated at the lower end. For example, if the performance
of JouleSort winners improves at the rate of Moore’s Law
(1.6x/year), a system which sorts a 10GB in 100 sec. to-
day would only take 10 sec. in 5 years. Once all relevant
systems require only a few seconds for a scale, that scale
becomes obsolete. Since even the best performing sorts are
not improving with Moore’s Law, we expect these scales to
be relevant for at least 5 years. Finally, because compar-
ison across scales is misleading, our approach is not fully
history-proof.

Categories: As with the other sort benchmarks, we pro-
pose two categories for JouleSort: Daytona, for commer-
cially supported sorts, and Indy, for “no-holds-barred” im-
plementations. Since Daytona sorts are commercially sup-
ported, the hardware components must be off-the-shelf and
unmodified, and run a commercially supported OS. As with
the other sort benchmarks, we expect entrants to report the
cost of the system.

3.4 Measuring Energy
There are a number of issues surrounding the proper ac-

counting of energy-use. Specific proposals in the power-
management community for measuring energy are being de-
bated [33] and are still untested “in-the-large”. Once these
are agreed upon, we plan to adopt the relevant portions for
this benchmark. As a start, we propose guidelines for three
areas: the boundaries of the system to be measured, envi-
ronmental constraints, and energy measurement.

System boundaries: Our aim is to account for all en-
ergy consumed to power the physical system executing the
sort. All power is measured from the wall and includes any
conversion losses from power supplies for both AC and DC
systems. Power-supplies are a critical component in deliv-
ering power and, in the past, have been notoriously ineffi-
cient [3, 5]. Some DC systems, especially mobile devices,
can run from batteries, and those batteries must eventually
be recharged, which also incurs conversion loss. While the
loss from recharging may be different from the loss from

System CPU Memory Disk(s) OS, FS

S1: DL360G3 Intel Xeon 2.8 GHz 2GB DDR 2xSCSI,15000rpm,36GB Linux, XFS
S2: Blade Transmeta Efficeon 256MB SDRAM 1xIDE,5400rpm,36GB Windows 2000, NTFS

TM8000 1 GHz
S3: NC6400 Intel Core 2 Duo T7200, 2GHz 3GB DDR2 1xSATA,7200rpm,60GB Windows XP, NTFS

Table 2: The unbalanced systems measured in exploring energy-efficiency tradeoffs for sort.

the adapter that powers a device directly, for simplicity, we
allow measurements that include only adapters.

All hardware components used to sort the input records
from start to finish, idle or otherwise, must be included in
the energy measurement. If some component is unused but
cannot be powered-down or physically separated from adja-
cent participating components, then its power-use must be
included. If there is any potential energy stored within the
system, e.g. in batteries, the net change in potential energy
must be no greater than zero Joules with 95% confidence,
or it must be included within the energy measurement.

Environment: The energy costs of cooling are important,
and cooling systems are variegated and operate at many lev-
els. In a typical data center, there are air conditioners, blow-
ers and recirculators to direct and move air among aisles, and
heat sinks and fans to distribute and extract heat away from
system components. Given recent trends in energy density,
future systems may even have liquid cooling [28]. It is diffi-
cult to incorporate, anticipate, and enforce rules for all such
costs in a system-level benchmark. For simplicity, we only
include a part of this cost: one that is easily measurable and
associated with the system being measured. We specify that
a temperature between 20− 25o C should be maintained at
the system’s inlets, or within 1 foot of the system if no inlet
exists. Energy used by devices physically attached to the
sorting hardware that remove heat to maintain this temper-
ature, e.g. fans, must be included.

Energy Use: Total energy is the product of average power
over the sort’s execution and wall-clock time. As with the
other sort benchmarks, wall-clock time is measured using
an external software timer. The easiest method to measure
power for most systems will be to insert a digital power me-
ter between the system and the wall. We intend to leverage
the “minimum power-meter requirements” from the SPEC-
Power draft [33]. In particular, the meter must report real
power instead of apparent power since real power reflects
the true energy consumed and charged for by utilities [22].
While we do not penalize for poor power factors, a power
factor measured anytime during the sort run should be re-
ported. Finally, since energy measurements are often noisy,
a minimum of three consecutive energy readings must be re-
ported. These will be averaged and the system with mean
energy lower than all others (including previous years) with
95% confidence will be declared the winner.

3.5 Summary
In summary, the JouleSort benchmark is as follows:

• Sort a fixed number of randomly permuted 100-byte
records with 10-byte keys.

• The sort must start with input in a file on non-volatile
store and finish with output in a file on non-volatile
store.

• There are three scale categories for JouleSort: 108

(10GB), 109 (100GB), and 1010 (1TB) records.

• The total true energy consumed by the entire physical
system executing the sort, while maintaining an ambi-
ent temperature between 20-25oC, should be reported.

• The winner in each category is the system with the
maximum SortedRecs/Joule (i.e. minimum energy).

JouleSort is a reasonable choice among many possible
options for an energy-oriented benchmark. It is an I/O-
centric, system-level, energy-efficiency benchmark that in-
corporates performance, power, and some cooling costs. It
is balanced, portable, representative, and simple. We can
use it to compare different existing systems, to evaluate
the energy-efficiency balance of components within a given
system, and to evaluate different algorithms that use these
components. These features allow us to chart past trends
in energy efficiency, and hopefully will help predict future
trends.

4. A LOOK AT DIFFERENT SYSTEMS
In this section, we measure the energy and performance

of a sort workload on both unbalanced and balanced sort-
ing systems. We analyze a variety of systems, from laptops
to servers, that were readily available in our lab. For the
unbalanced systems, the goal of these experiments is not to
painstakingly tune these configurations. Rather, we present
results to explore the system hardware space with respect
to power-consumption and energy efficiency for sort. After
looking at unbalanced systems, we present a balanced file-
server that is our default 1TB winner. We use insights from
these experiments to justify the approach for constructing
our 100GB JouleSort winner (see Section 5).

4.1 Unbalanced Systems

Configurations: Table 2 shows the details of the “unbal-
anced” systems we evaluated, spanning a reasonable spec-
trum of power consumption in servers and personal com-
puters. We include a server (S1), an older, low-power blade
(S2), and an a modern laptop (S3). We chose the laptop be-
cause it is designed for whole-system energy-conservation,
and S1 and S2 for comparison. We turned off the laptop
display for these experiments. For S2, we only used 1 blade
in an enclosure that holds 20, and, as per our rules, report
the power of the entire system.

Sort Workload: We use Ordinal Technology’s commercial
NSort software which was the 2006 TeraByte sort Daytona
winner. It uses asynchronous I/O to overlap reading, writ-
ing, and sorting operations. It performs both one and two-
pass sorts. We tuned NSort’s parameters to get the best
performing sort for each platform. Unless otherwise stated,
we use the radix in-memory sort option.

Recs
x107

Power(W) Time (s) SRecs/J CPU
util

S1 5 139.3 ±0.1 299.4 ±2.5 1206 ±10 25%
S1 10 138.5 ±0.1 596.9 ±0.6 1203 ±1 26%
S2 5 90.0 ±1.0 1847 ±52 300 ±10 11%
S3 5 21.0 ±1.0 727.5 ±28 3270 ±120 1%
S3 10 21.7 ±1.0 1323 ±48 3479 ±131 1%

Table 3: Energy efficiency of unbalanced systems.

Power Measurement: To measure the full-system AC
power consumption, we used a digital power meter inter-
posed between the system and the wall outlet. We sampled
this power at a rate of once per second. The meter used
was Brand Electronics Model 20-1850CI which reports true
power with ±1.5% accuracy. In this paper, we always re-
port the average power over several trials and the standard
deviation in the average power.

4.1.1 Results
The JouleSort results for our unbalanced systems are shown

in Table 3. Since disk space on these systems was limited,
we chose to run the benchmark at 10GB and a smaller 5GB
dataset to allow fair comparison. We see that S1 (the server)
is the fastest, but S3 (the laptop) is most energy-efficient.
System S1 uses over 6.6x more power than S3, but only
provides 2.2x better performance. Although S1’s disks can
provide more sequential bandwidth, S1 was limited by its
SmartArray 5I I/O controller to 33 MB/s in each pass. Sys-
tem S2 (the blade) is not as bad as the results show because
blade enclosures are most efficient only when fully popu-
lated. The enclosure’s power without any blades was 66W.
When we subtract this from the S2’s total power, we get an
upper bound of 1121 ±144 SRecs/J for S2. For all these
systems, the standard deviation of total power during sort
was at most 10%. The power factor (PF) for S1, S2, and S3
were 1.0, 0.92, and 0.55 respectively.

The CPUs for all three systems were highly underutilized.
In particular, S3 attains an energy-efficiency similar to that
of last year’s estimated winner, GPUTeraSort, by barely us-
ing its cores. Since the CPU is usually the highest power
component, these results suggest that building a system with
more I/O to complement the available processing capacity
should provide better energy efficiencies.

4.2 Balanced Server
In this section, we present a balanced system that usually

functions as a fileserver in our lab. Table 4 shows the com-
ponents used during the sort and coarse breakdowns of total
system power. The main system is an HP Proliant DL360
G5 that includes a motherboard, CPU, low-power laptop
disk, and a high-throughput SAS I/O controller. For the
storage, we use two disk trays, one that holds the input and
output files and the other which holds the temp disks. Each
tray has 6 disks and can hold a maximum of 12. The disk
trays and main system all have dual power-supplies, but for
these experiments, we powered them through one each. For
all our experiments, the system has 64-bit Ubuntu Linux
2.6.17-10 and the XFS filesystem installed.

Table 4 shows that for a server of this kind, the disks and
their enclosures consume roughly the same power as the rest
of the system. When a tray is fully populated with 12 disks,

Comp Model Idle
Power

Sort
Power

CPU Intel Xeon 5130
2GHz

65 W (TDP)

Memory 2x2GB PC2-5300 7.5±0.5W (each)
OS disk Fujitsu, SATA,

5400rpm, 60GB
MHV2060BS

n/a

I/O
Ctrl

LSI Logic SAS
HBA 3801E

n/a

Mother-
board

HP Proliant
DL360G5

n/a

All of above 168±1W 181±1 W

Input /
output
tray

HP MSA60 101±1W 111±1W

6 x Seagate Bar-
racuda ES, SATA,
7200rpm, 500GB

Temp
tray

HP MSA60 (same
as above)

101±1W 113±1W

Table 4: A balanced fileserver.

the idle power is 145 W and with 6 disks the idle power
is 101 W. There clearly are inefficiencies when the tray is
under-utilized. To estimate the power of the 2GB DIMMs,
we added two 1GB DIMMs and measured the system power
with and without the 2GB DIMMs. We found that the 2GB
DIMMs use 7.5W both during sort and at idle.

For this system, we found the most energy-efficient config-
uration by experimenting with a 10GB dataset. By varying
the number of disks used, we found that, even with the inef-
ficiencies, the best performing 10GB setup uses 12 disks split
across two trays. This effect happens because the I/O con-
troller offers better bandwidth when data is shipped across
its two channels. A 10GB sort provides 313±1MB/s on av-
erage for each phase across the trays while only 212±1MB/s
when the all disks are within a tray. The average power of
the system with only one tray is 347±1W and with two trays
is 406±1W. As a result, with two trays the system attains
a best 3863±19 SRecs/J instead of 3038±22 SRecs/J with
one tray.

The 2-tray, 12-disk setup is also when the sort becomes
CPU-bound. When we reduce the system to 10 disks, the
I/O performance and CPU utilization drop, and when we
increase the system to 14 disks, the performance and uti-
lization remain the same. In both cases, total energy is
higher than the 12-disk point, so this balanced, CPU-bound
configuration is also the most energy-efficient.

Table 6 shows the performance and energy characteristics
of the 12-disk setup for 1TB sorts. This system takes nearly
3x more power than S1, but provides over 8x the through-
put. This system’s SRecs/J ratio beats the laptop and last
year’s estimated winner, even with a larger 1TB input. Ex-
periments similar to those for the 10GB dataset show that
this setup provides just enough I/O to keep the two cores
fully utilized on both passes and uses the minimum energy
for the 1TB scale. Thus, at all scales, the most energy-
efficient and best-performing configuration for this system
is when sort is CPU-bound and balanced.

Comp Model Price
($)

Power

CPU Intel Core 2 Duo
T7600

639.99 34W
(TDP)

Motherboard Asus N4L-VM DH 108.99 n/a
Case/PSU APEVIA X-

Navigator
ATXA9N-BK/500

94.99 n/a

8-disk ctrl HighPoint Rocket
RAID 2320

249.99 9.5W

4-disk ctrl HighPoint Rocket
RAID 2300

119.99 2.0W

Memory (2) Kingston 1GB
DDR2 667

63.99 1.9W
(spec)

Disk (13) Hitachi TravelStar
5K160 5400 rpm,
160 GB

119.99 A:1.8W
I:0.85W
(spec)

Adapters 130.25

Table 5: Winning 100GB system.

4.3 Summary
In conclusion, from experimenting with these systems we

learned (1) CPU is wasted in unbalanced systems (2) the
most energy-efficient server configuration is when the sys-
tem is CPU-bound (3) an unbalanced laptop is almost as
energy-efficient as a balanced server. Moreover, current lap-
top drives use 5x (2 vs. 10 W) less power than our server’s
SATA drives while offering around 0.5x (40 vs. 80 MB/s)
the bandwidth. These observations suggest a reasonable ap-
proach for building the most energy-efficient 100GB sorting
system is to use mobile-class CPUs and disks and connect
them via a high-speed I/O interconnect.

5. 100GB JOULESORT WINNER
In this section, we first describe our winning JouleSort

configuration and report its performance. We then study
this system through experiments that elucidate power and
performance characteristics of this system.

5.1 Winning Configuration
Given limited time and budget, our goal was to convinc-

ingly overtake the previous estimated winner rather than to
try numerous combinations and construct an absolute op-
timal system. As as result, we decided to build a Daytona
system and solely use NSort as the software. Our design
strategy for an energy-efficient sort was to build a balanced
sorting system out of low-power components. After esti-
mating the sorting efficiency of potential systems among a
limited combination of modern, low-power, x86 processors
and laptop disks, we assembled the configuration in Table 5.

This system uses a modern, low-power CPU with 5 fre-
quency states, and a TDP of 34W for the highest state.
We use a motherboard that supports both a mobile CPU
and multiple disk controllers to keep the cores busy. Few
such boards exist because they target a niche market; this
one includes two PCI-e slots: one 1-channel and one 16-
channel. To fill those slots, we use controllers that hold 4
and 8 SATA drives, respectively. Finally, our configuration
uses low-power, laptop drives which support the SATA in-
terface. They offer an average 11 ms seek time, and their
measured sequential bandwidth through XFS is around 45

MB/s. Hitachi’s specs list an average 1.8W for read and
write and 0.85W for active idle. We use two DIMMs whose
specs report 1.9W for each. Finally, the case comes with a
500W power supply.

Our optimal configuration uses 13 disks because the PCI-
e cards hold 12-disks maximum and the I/O performance of
the motherboard controller with more than 1 disk is poor.
The input and output files are striped across a 6-disk array
configured via LVM2, and the remaining 7 disks are inde-
pendent for the temporary runs. For all experiments, we use
Linux kernel 2.6.18 and the XFS filesystem unless otherwise
stated. In the idle state at the lowest CPU frequency, we
measured 59.0 ±1.3 W for this system.

Table 6 shows the performance of the system, which at-
tains 11300 SRecs/J when averaged over 3 consecutive runs.
The pure-performance statistics are reported by NSort. We
configure it to use radix sort as its in-memory sort algo-
rithm and use transfer sizes of 4MB for the input-output
array and 2MB for the temporary storage. Our system is
24% faster than GPUTeraSort and consumes an estimated
3x less power. The power use during sort is 69% more than
idle. In the output pass, the CPU is underutilized (see Ta-
ble 6; max 200% for 2 cores), and the bandwidth is lower
than in the input pass because the output pass requires ran-
dom I/Os. We pin the CPU to 1660 MHz, which Section 5.3
shows is the most energy-efficient frequency for the sort.

5.2 Varying System Size
In these experiments, we vary the system size (disks and

controllers) and observe our system’s pure performance, cost
efficiency, and energy efficiency. We investigate these met-
rics using a 5GB dataset. For the first two metrics, we set
the CPU to its highest frequency, and report the metrics for
the most cost-effective and best performing configurations
at each step. We start with 2 disks attached to the cheaper
4-disk controller, and at each step use the minimum-cost
hardware to support an additional disk. Thus, we switch to
the 8-disk controller for configurations with 5-8 disks, and
use both controllers combined for 9-12 disks. Finally, we
add a disk directly to the motherboard for the 13-disk con-
figuration.

Figure 3 shows the performance (records/sec) and cost
efficiency with increasing system size. The 13-disk config-
uration is both the best performing and most cost-efficient
point. Each additional disk on average increases system cost
by about 7% and improves performance by 14% on average.
These marginal changes vary; they are larger for small sys-
tem size and smaller for larger system sizes. The 5-disk
point drops in cost efficiency because it includes the expen-
sive 8-disk controller without a commensurate performance
increase. Although the motherboard and controllers limit
the system to 13 disks, we speculate that additional disks
would not help since the first pass of the sort is CPU-bound.

Next, we look at how energy efficiency varies with with
system size. At each step, we add the minimum-energy hard-
ware to support the added disk and report the most energy-
efficient setup. We set the CPU frequency to 1660MHz at
all points to get the best energy efficiency (see Section 5.3).
For convenience, we had one extra OS disk on the mother-
board from which we boot and which was unused in the sort
for all but the last point. The power measurements include
this disk, but this power is negligible at idle (< 1W).

System Recs SRecs/J Energy (kJ) Power (W) Time (sec) BW (in,out,total) (MB/s) CPU util.
(200 max)

PF

Table 5 108 11628 ±41 8.6 ±0.03 99.3 ±0.2 86.6 ±0.4 (248±3, 222±1, 115±1) 139±1%
(low-power) 109 11354 ±29 88.1 ±0.23 100.0 ±0.1 880.8 ±1.5 (238±0.1, 219±0.4, 114±0.2) 154±0% 0.65
Table 4
(server) 1010 3425 ±40 2920 ±0.34 406±1 7196 ±67 (274±0.4, 282±5, 139±1) 179±2% 0.96

Table 6: Performance of winning JouleSort systems.

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10 11 12 13
Disks Used

So
rt

ed
R

ec
s/

$
(x

 1
0E

9)

0

20

40

60

80

100

120

140

So
rt

ed
R

ec
s/

se
c

(x
 1

0E
4)

Perf-Price Perf

Figure 3: Shows how performance-price and perfor-
mance varies with system size.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Disks Used

A
vg

. P
ow

er
 (W

)

Sort Idle

Figure 4: Shows how power varies with system size.

Figure 4 shows idle power at the lowest frequency state
versus average power during sort at 1660 Mhz for the same
system configurations. With the system at idle and only the
motherboard disk installed, our measurements show that the
8-disk controller uses 9.5W and the 4-disk one uses 2.0W.
Thus, for points between 2-4 disks, we use only the 4-disk
controller, between 5-8 we use the only 8-disk controller,
and for 9 or more, we use both. Figure 4 shows jumps
at these transitions. The idle line indicates adding a disk
increases power by 0.95±0.1W. During sorting, adding a disk
increases total power on average 4.3±1.0W at sizes fewer
than 8-disks and 3.4W±1.0W on average for more than 9-
disks. These increases reflect end-to-end utilization of the
CPU, disk, controllers, etc.

Figure 5 shows the energy-efficiency with increasing num-
ber of disks used in the sort. The curve is similar to the
price-performance curve in Figure 3. The average increase

0

2000

4000

6000

8000

10000

12000

2 3 4 5 6 7 8 9 10 11 12 13

Disks Used
So

rt
ed

R
ec

s/
Jo

ul
e

0

20

40

60

80

100

120

140

So
rt

ed
R

ec
s/

se
c

(x
 1

0E
4)

SRecs/J Perf

Figure 5: Shows how energy efficiency varies with
system size.

in energy at each step is 6% while the average increase in
performance is about 14%. The 5-disk point again is a local
minimum because it incurs the power of the larger controller
without enough disks to take advantage of it. The sort is
CPU-bound in the most energy-efficient configuration.

There are two main points to take away from these exper-
iments. First, the similar shapes of these curves reflect that
the base dollar and energy costs of the system are high com-
pared to the marginal dollar and energy cost of disks. If we
used server-class disks that are similar in cost but consume
5x the power of mobile disks, we would see different cost
and energy efficiency curves. Second, for the components
we chose, the best performing, most cost-efficient, and most
energy-efficient configurations are identical modulo the CPU
frequency. Moreover, in this best configuration, the system
is balanced with just enough I/O bandwith to keep the CPU
fully utilized for the first pass.

5.3 Software Matters
Next, we vary the filesystem and in-memory sort algo-

rithm to see how they affect energy efficiency. The winning
100GB configuration uses the XFS filesystem and a radix
sort. Figure 6 examines the effect of changing the filesystem
to ReiserFS and the sort algorithm to merge sort at different
CPU frequencies for a 10GB dataset.

As expected, power consumption steadily increases with
frequency in all cases. The power consumptions of XFS
with radix sort and merge sort are similar at all frequen-
cies. ReiserFS, however, consumes less power and also is
less energy-efficient. All three configurations show improved
energy efficiency from 996 MHz to 1660 MHz, and then level
off or decrease. This result indicates that the sorts are CPU-
bound at the lower frequencies. ReiserFS shows a 26% im-
provement in performance between the lowest and highest

0

50

100

150

200

996 1328 1660 1992 2324 On
Demand

CPU Freq. (MHz)

A
vg

. P
ow

er
 (W

)

0

2000

4000

6000

8000

10000

12000

SR
ec

s/
J

XFS, radix (W) Reiser, radix (W) XFS, merge (W)
XFS, radix (SRecs/J) Reiser, radix (SRecs/J) XFS, merge (SRecs/J)

Figure 6: Shows how average power and energy ef-
ficiency vary with CPU frequency for a 10GB sort.

frequencies, while XFS radix improves only 16% and XFS
merge improves only by 20%.

ReiserFS has worse energy efficiency mainly because it
provides less sequential bandwidth, and thus worse perfor-
mance, than XFS. Although we tuned each configuration,
this result may be an artifact of our setup and not an in-
herent flaw of ReiserFS. Similarly, the merge sort also gives
worse energy efficiency than radix entirely because its per-
formance is worse.

The graph also shows the power and energy efficiency of
the Linux on-demand CPU frequency scaling policy, which
is within 10% of the lowest execution time and 15% of the
lowest power for all three configurations. For ReiserFS, the
on-demand policy offers the same efficiency as the best con-
figuration. In summary, these experiments show that the
algorithms and underlying software used for sort affect en-
ergy efficiency mainly through performance.

5.4 Approximate CPU vs. I/O Breakdown
We performed some micro-benchmarks exercising the I/O

subsystem (disks plus controllers) and the CPU subsystem
(CPU plus memory) separately to determine how much each
contributes to the increase in power during sort. The system
at the 12-disk point consumes 33.5W more during sort than
when the system is at idle with 1660 MHz CPU frequency.
This increase is nearly 35% of the total power during sort.
Our benchmarks suggest that the I/O subsystem consumes
a much greater fraction of this power increase than the CPU
subsystem.

We first performed a test to help approximate the contri-
bution from the I/O subsystem. In this test, we copied data
from a 6-disk array to another 6-disk array, which had the
same average disk bandwidth as the 12-disk sort. We found
that the system power increased by 30.5W. During this test,
the CPU utilization was 66% (out of 200% max for 2 cores).
Next, we performed an experiment to approximate the con-
tribution from the CPU subsystem. We put a small input
file on a ram-disk and repeatedly sorted it. This test pegged
the CPU to 200% utilization and the power increase was
15.7W.

Using the above values and assuming that CPU subsystem
power increases linearly with CPU utilization, we estimate
its contribution during the 12-disk sort as follows. Dur-

ing this sort, CPU utilization was an average 118% (59%
per core), so we assign 0.59 × 15.7 = 9.2W to the CPU
subsystem. Similarly, we discount the copying test for its
CPU utilization and estimate that the I/O subsystem uses
30.5 − 0.33 × 15.7 = 25.3W. These estimates combine to
34.5W and almost match (3% error) the 33.5W measured
increase due to the 12-disk sort. Thus, our tests imply that
about 75% of the power increase during sort is from the I/O
subsystem and 25% from the CPU subsystem. We found
similar proportions at smaller system sizes.

5.5 Vary DIMMs and Power Supply
Since NSort uses only a fraction of the available mem-

ory for these experiments, we ran experiments with only 1
DIMM. Power use and execution time were statistically in-
distinguishable from the 2 DIMM case during sort. Power
use is also within measurement error at idle.

We replaced the 500W power supply with a 145W one
and found that the power-consumption during sort and idle
increased by 2W. This suggests that at 68% load or less,
efficiencies of the two power-supplies are similar.

Note, the power factors for the laptops and desktop sys-
tems in this paper, including our 100GB winner, are well
below 1.0. Low power factors are problematic in data cen-
ters because power delivery mechanisms need to be over-
provisioned to carry additional current for loads with low
power factors [22]. Utilities often charge extra for this pro-
visioning. Similar to server-class systems, power supplies
will need to provide power-factor correction for systems like
our 100GB winner to become a reality in data centers.

5.6 Summary
We describe the Daytona 100GB JouleSort system that is

over 3.5x as energy efficient as last year’s PennySort win-
ner, the GPUTeraSort. For this system, we show the most
energy-efficient sorting configuration is when the sort is CPU-
bound and balanced. This configuration is also the best
performing and most cost-efficient. It will be interesting to
see how long this relationship holds. We see that filesystem
and in-memory sort choice mainly affect energy efficiency
through performance rather than power for this system.

In this paper, we focused on building a balanced system
with low-power off-the-shelf components targeted for the
100GB scale. Unfortunately, because of hardware limita-
tions and market availability, we could not easily scale this
system to the 1TB category. In the future, we expect sys-
tems in other classes to win the 10GB and 1TB categories,
but for completeness we report in Table 6 the best configu-
rations we encountered for those categories.

6. RELATED WORK
Our related work falls into three categories. We first dis-

cuss the history of sort benchmarks and large-scale sorting
techniques. Next, we cover the previous work on metrics for
evaluating energy efficiency. Finally, we briefly discuss work
on techniques for reducing energy consumption in systems.

6.1 Sort Benchmarks and Techniques
The original Datamation sort benchmark was a pure per-

formance benchmark that measured the time to sort a mil-
lion records [1]. In 1994, the developers of AlphaSort [25]
recognized that the benchmark was losing its relevance, be-
cause startup and shutdown would eventually dominate the

time to sort such a small number of records. They there-
fore proposed two variants, MinuteSort and PennySort, hop-
ing they would remain relevant as technology improved at
the pace of Moore’s Law. Recognizing that PennySort was
biased against large configurations by allowing too small a
time budget, researchers then proposed the performance/price
sort, which is tied to the MinuteSort [17] time budget. The
time budget approach undermines the goals of JouleSort.

Since the original Datamation sort benchmark, there have
been many different implementations of external sort on a
variety of platforms from desktops to supercomputers. The
Sort Benchmark website [16], maintained by Jim Gray, lists
the winners and briefly surveys past trends.

6.2 Energy Benchmarks
Several different metrics have been proposed for evalu-

ating the energy efficiency of computer systems. In 1996,
Gonzalez et al. [13] proposed the energy-delay product as
the metric of energy-efficient microprocessor design. Alter-
natively, the metric of performance per Watt is also widely
used to evaluate processors’ energy efficiency [21]. This met-
ric emphasizes performance less than the energy-delay prod-
uct, which is equivalent to performance squared per Watt.

Energy-efficiency metrics tailored to data centers have also
been proposed. Sun’s Space, Watts, and Performance metric
(SWaP) [34] considers the rack space taken up by a hardware
configuration along with its power and performance, in an
effort to promote data center compaction. Metrics based on
exergy [27], which is the energy converted into less efficient
forms such as heat, take into account every aspect of the
data center from processors to the cooling infrastructure.
However, these metrics are not applicable to the entire range
of systems we want to evaluate with JouleSort.

Comparatively little work has been done on workloads for
energy-efficiency benchmarks. In the embedded domain, the
EEMBC EnergyBench benchmarks [9] provide a physical in-
frastructure to evaluate a single processor’s energy efficiency
on any of EEMBC’s existing mobile benchmark suites. In
the enterprise domain, the SPEC Power and Performance
Committee [33] is currently developing an energy benchmark
suite for servers, and the United States Environmental Pro-
tection Agency’s EnergyStar program is developing a way
to rate the energy efficiency of servers and data centers [35].

6.3 Energy Efficiency
There is a large body of prior work on energy efficiency.

For example, at the component and system levels, many
studies have been devoted to algorithms for dynamically
exploiting different power states in processors [4, 14, 36],
memory [10], and disks [8] in order to promote energy ef-
ficiency. In clusters and data centers, research has focused
on energy-efficient workload distribution and power budget-
ing (e.g. [6, 11, 30, 32]). Other studies have focused at the
application level, including energy-aware user interfaces [31]
and fidelity-aware energy management [12].

7. CONCLUSIONS
In this section, we summarize the limitations of JouleSort,

speculate on future energy-efficient systems, and wrap up.

7.1 Limitations
JouleSort does not address all possible energy-related con-

cerns. Since JouleSort focuses on data management tasks, it

misses some important energy-relevant components for mul-
timedia applications. JouleSort omits displays, which are
an important component of total power for mobile devices.
GPUs also consume significant power and are ubiquitous in
desktop systems. Although we can use GPUs to sort, our
benchmark does not require their use. As a result, it loses
relevance for applications where these components are es-
sential.

There are other energy-related concerns in data centers
beyond system power that were difficult to incorporate. At
a high level, cooling requires (1) lowering ambient temper-
ature and (2) extracting heat away from systems. Joule-
Sort accounts only for part of the second. Delivering power
to systems incurs losses at the rack and data-center level
which are ignored in JouleSort. Moreover, many systems
are used as an ensemble [32] in data centers, with sophisti-
cated scheduling techniques to trade performance for lower
energy among systems rather than at the component level.
As a system-level benchmark, JouleSort may not identify
the benefits of such methods.

7.2 “Greener” Systems
We speculate on two emerging technologies that may im-

prove the energy efficiency of systems. For the 10GB scale,
flash memory appears to be a promising storage technology
driven by the mobile device market [18]. Per byte, it is about
4x cheaper than DRAM and provides sequential read and
write bandwidth close to that of disks. More importantly,
random read I/Os with flash are 100x faster than disk, and
flash consumes 10x less power than disks. The random-reads
allow interesting modifications to traditional 2-pass sorting
algorithms. To date, the largest cards at reasonable cost are
8GB. We anticipate a system such as a laptop or low-power
embedded device that can leverage multiple flash devices as
the next 10GB winner.

For the larger scales, an intriguing option is a hybrid sys-
tem using a low-power CPU, laptop disks, and a GPU. The
GPUTeraSort has shown that GPUs can provide much bet-
ter in-memory sorting bandwidth than CPUs [15]. Using a
motherboard that supports more I/O controllers and a GPU,
we could scale our system to use more disks. An interest-
ing question is whether these performance benefits might be
offset by the recent trend in GPUs to consume more power.

7.3 Closing
This paper proposes JouleSort, a simple, balanced energy-

efficiency benchmark. We present a complete benchmark:
a workload, metric, and guidelines, and justify our choices.
We also present a 100GB winner that is over 3.5x as efficient
as last year’s estimated winner. Today, this system is hard
to find pre-assembled. It consists of a commodity mobile-
class CPU and 13 laptop disks connected through server-
class PCI-e I/O cards.

The details of JouleSort already have undergone signifi-
cant changes since its inception. Since JouleSort has not yet
been tried “in the wild”, we fully expect further revisions
and fine-tuning to keep it fair and relevant. Nevertheless,
we look forward to its use in guiding energy-efficiency opti-
mizations in future systems.

Acknowledgments
We dedicate this work to Jim Gray. He inspired us with
his enthusiasm, support, and insightful comments regarding

benchmark design. We thank Jacob Leverich, Eric Ander-
son, Chris Nyberg, Hernan Laffitte, and Dimitris Economou
for their help in setting up, tuning, and optimizing our Joule-
Sort configurations. We thank Naga Govindaraju, Chris
Reummler, and the anonymous reviewers for their feedback
that drastically improved the quality of this work. We thank
John Sontag and Alistair Veitch for equipment and support.
We thank all those at the Berkeley RAD Lab retreat whose
suggestions helped us refine the current version of the bench-
mark.

8. REFERENCES
[1] Anonymous et al. A measure of transaction processing

performance. In Datamation, pages 112–118, Apr.
1985.

[2] L. Barroso. The price of performance. ACM Queue,
3(7), Sept. 2005.

[3] P. Bose. Keynote address: Power-efficient
microarchitectural choices at the early definition stage.
In PACS, 2003.

[4] D. Brooks and M. Martonosi. Dynamic thermal
management for high-performance microprocessors. In
HPCA, 2001.

[5] C. Calwell and T. Reeder. Power supplies: A hidden
opportunity for energy savings. Online, May 2002.
http://www.ecosconsulting.com/resources
publications.html#PowerSupply.

[6] J. Chase, D. Anderson, et al. Managing energy and
server resources in hosting centers. In SOSP, 2001.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, Dec. 2004.

[8] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the
power-hungry disk. In USENIX, 1994.

[9] Embedded Microprocessor Benchmark Consortium
(EEMBC). EnergyBench benchmark software. Online.
http://www.eembc.org/benchmark/power sl.asp.

[10] X. Fan, C. Ellis, and A. Lebeck. Memory controller
policies for DRAM power management. In Low-Power
Systems and Design (ISLPED), 2001.

[11] W. Felter, K. Rajamani, et al. A
performance-conserving approach for reducing peak
power consumption in server systems. In International
Conference on Supercomputing, 2005.

[12] J. Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In SOSP, 1999.

[13] R. Gonzalez and M. Horowitz. Energy dissipation in
general purpose microprocessors. IEEE Journal of
Solid-State Circuits, 31(9):1277–1284, 1996.

[14] K. Govil, E. Chen, and H. Wasserman. Comparing
algorithms for dynamic speed-setting of a low-power
CPU. In MobiCom, 1995.

[15] N. K. Govindaraju, J. Gray, R. Kumar, and
D. Manocha. GPUTeraSort: High performance
graphics coprocessor sorting for large database
management. In SIGMOD, June 2006.

[16] J. Gray. Sort benchmark home page, Oct. 2006.
http://research.microsoft.com/barc/SortBenchmark.

[17] J. Gray, J. Coates, and C. Nyberg. Performance /
Price Sort and PennySort. Technical Report
MS-TR-98-45, Microsoft, Aug. 1998.

[18] J. Gray and B. Fitzgerald. Flash disk opportunity for
server-applications. Online, 2007.
http://www.microsoft.com/ gray.

[19] HP enterprise configurator power calculators, Oct.
2006. http://h30099.www3.hp.com/configurator/
powercalcs.asp.

[20] C. Jones, K. Sivalingam, et al. A survey of
energy-efficient network protocols for wireless
networks. Wireless Networks, 7(4):354–358, July 2001.

[21] J. Laudon. Performance/Watt: The new server focus.
SIGARCH Computer Architecture News, 33(4):5–13,
Nov. 2005.

[22] M. R. Lindeburg. Mechanical Engineering Reference
Manual. Professional Publications, Tenth edition,
1997.

[23] P. Lyman and H. R. Varian. How much information?
Online, 2003.
http://www2.sims.berkeley.edu/research/projects/how-
much-info-2003/.

[24] J. Markoff and S. Hansell. Hiding in plain sight,
Google seeks an expansion of power. New York Times.
June 14, 2006.

[25] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and
D. Lomet. Alphasort: A cache-sensitive parallel
external sort. VLDB Journal, 4(4):603–627, 1995.

[26] C. Nyberg and C. Koester. Ordinal Technology -
NSort Home Page. Online, 2007.
http://www.ordinal.com/.

[27] C. D. Patel. A vision of energy aware computing from
chips to data centers. In Micro-Mechanical
Engineering (ISMME), Dec. 2003.

[28] C. D. Patel and P. Ranganathan. Enterprise power
and cooling. ASPLOS Tutorial, Oct. 2006.

[29] P. Pillai and K. G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In
SOSP, pages 89–102, 2001.

[30] E. Pinheiro, R. Bianchini, et al. Load balancing and
unbalancing for power and performance in
cluster-based systems. In Workshop on Compilers and
Operating Systems for Low Power (COLP), 2001.

[31] P. Ranganathan, E. Geelhoed, et al. Energy-aware
user interfaces and energy-adaptive displays. IEEE
Computer, 39(3):31–38, March 2006.

[32] P. Ranganathan, P. Leech, et al. Ensemble-level power
management for dense blade servers. In ISCA, 2006.

[33] Standard Performance Evaluation Corporation
(SPEC). SPEC power and performance committee.
Online. http://www.spec.org/specpower/.

[34] Sun Microsystems. SWaP (space, watts and
performance) metric. Online.
http://www.sun.com/servers/coolthreads/swap/.

[35] United States Environmental Protection Agency
(EPA). Enterprise server and data center efficiency
initiatives. Online.
http://www.energystar.gov/index.cfm?
c=products.pr servers datacenters.

[36] A. Weissel and F. Bellosa. Process cruise control:
event-driven clock scaling for dynamic power
management. In Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), 2002.

