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Abstract

This dissertation examines the use of a block-aware instruction set architecture (BLISS) to

address the front-end challenges of modern processors. The theme of BLISS is to allow

software to assist the front-end hardware by providing architecture support for control-flow

prediction and instruction delivery. BLISS defines basic block descriptors inaddition to and

separately from the actual instructions in each program. A descriptor describes the type of

the control-flow operation that terminates the block, its potential target, and the number of

instructions in the basic block. This information is sufficient for fast and accurate control-

flow prediction without accessing or parsing the instruction stream. The architecture also

provides a flexible mechanism for communicating compiler-generated hints at basic block

granularity.

The BLISS ISA suggests a decoupled front-end organization that fetches the descriptors

and the associated instructions in a decoupled manner. The front-end uses the information

available in descriptors to improve control-flow accuracy, implement guided instruction

prefetching, and reduce the energy used for control-flow prediction and instruction deliv-

ery. We demonstrate that the new architecture improves upon conventional superscalar

designs by 20% in performance and 16% in energy. We also show that it outperforms

hardware-only approach for decoupled front-ends by 13% and 7% for performance and en-

ergy respectively. These benefits are robust across a wide range of architectural parameters.

We also evaluate the use of BLISS for embedded processor designs. We develop a set

of code size optimizations that utilize the ISA mechanism to provide code size reduction

v



of 40% while maintaining a 10% performance and 21% energy advantages. We also de-

velop and evaluate a set of hardware and software techniques for low cost front-ends for

embedded systems. The optimization techniques target the size and power consumption

of instruction caches and predictor tables. We show that the decoupling features ofBLISS

and the ability to provide software hints allow for embedded designs that use minimally

sized, power efficient caching and predictor structures, without sacrificingperformance.

vi



Acknowledgements

The work on this thesis has been an inspiring and enjoyable journey for me. During which,

I have been accompanied and supported by many people. It is a pleasant that I have now

the opportunity to express my gratitude for all of them.

First, I wish to express my sincere gratitude to my thesis adviser, Professor Christos

Kozyrakis. I could not have imagined having a better adviser for my thesis. Without his

guidance, patience, and constant support, I would never have achieved this. I would like

also to thank my Ph.D. oral examiners and committee members Professor Kunle Olukotun,

Professor Mark Horowitz, and Professor Krishna Saraswat.

Special thanks to my friends and to my colleagues at Intel for their friendship and

support during my Ph.D. studies. I would like also to acknowledge Earl Kilian for his

valuable input. This work was partially supported by the Stanford University, Office of

Technology Licensing.

Finally, I am forever indebted to my father Darweesh and my mother Suzan for their

constant support and endless love and care. My father, who passed away almost ten years

ago, still has deep influence in every aspect of my life. I wish he were here with us cel-

ebrating this precious moment; he would be so happy and proud. No words can express

my gratitude to my mother who always believed in me. Her persistence and determination

inspire me and help me in surviving many challenges in my life. My thanks and love to her

always. I am very fortunate to have a big, wonderful family. I would like to express my

vii



deepest gratitude to my three lovely sisters Eman, Asma, and Amal and tomy two broth-

ers Misbah and Hammam for their constant support, love, and encouragement when itwas

most required.

I dedicate this thesis to the memory of my great father and to my lovely, wonderful

mother.

viii



Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Motivation 7

2.1 Front-End Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Front-End Performance Detractors . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Instruction Cache Detractors . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Branch Prediction Detractors . . . . . . . . . . . . . . . . . . . . . 15

2.3 Front-End and Energy Consumption . . . . . . . . . . . . . . . . . . . . . 17

2.4 Related Work Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Ideal Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Block-Aware Instruction Set 24

3.1 Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Basic Block Descriptors . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 BLISS Code Example . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



3.1.3 Detailed Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Software Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Potential Uses for BLISS Hints . . . . . . . . . . . . . . . . . . . 30

3.2.2 Case Study: Branch Prediction Hints . . . . . . . . . . . . . . . . 32

3.3 Tools and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 ISA-Level Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Static Code Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 ISA Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Front-End Architecture for the Block-Aware ISA 42

4.1 Block-Aware Front-End Design . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Microarchitecture and Operation . . . . . . . . . . . . . . . . . . . 43

4.1.2 Benefits of ISA Support for Basic Blocks . . . . . . . . . . . . . . 47

4.2 Hardware-only Decoupled Front-End . . . . . . . . . . . . . . . . . . . . 51

4.2.1 The FTB Front-End Design . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Hardware vs. Software Basic Blocks . . . . . . . . . . . . . . . . . 53

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Evaluation for High-End Superscalar Processors 57

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Processor Configurations . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.2 Tools and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Prediction Accuracy Analysis . . . . . . . . . . . . . . . . . . . . 63

x



5.2.3 FTB and BB-Cache Analysis . . . . . . . . . . . . . . . . . . . . . 64

5.2.4 Instruction Cache Analysis . . . . . . . . . . . . . . . . . . . . . . 65

5.2.5 L2-Cache Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.6 Instruction Prefetching Analysis . . . . . . . . . . . . . . . . . . . 68

5.3 Detailed Comparison to FTB Variants . . . . . . . . . . . . . . . . . . . . 69

5.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Sensitivity to BB-Cache and FTB Parameters . . . . . . . . . . . . 72

5.4.2 Sensitivity to Instruction Cache Size . . . . . . . . . . . . . . . . . 74

5.4.3 Sensitivity to Instruction Cache Latency . . . . . . . . . . . . . . . 75

5.4.4 4-way Processor Analysis . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Energy Optimizations 78

6.1 Reducing Wasted Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Energy Efficient Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Predictor Optimizations . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.2 Instruction Cache Optimizations . . . . . . . . . . . . . . . . . . . 81

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.1 Front-End Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.2 Total Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.3 Energy-Delay Product Comparison . . . . . . . . . . . . . . . . . 91

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 BLISS for Embedded Processors 94

7.1 Code Size Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1.1 Basic Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



7.1.2 Block Subsetting . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1.3 Block-Level Interleaving of 16/32-bit Code . . . . . . . . . . . . . 97

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1 Processor Configurations . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.2 Tools and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Evaluation for Embedded Processors . . . . . . . . . . . . . . . . . . . . . 103

7.3.1 Code Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.3 Energy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.4 Comparison to Selective Use of 16-bit Code . . . . . . . . . . . . . 108

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Low Cost Front-End Design for Embedded Processors 111

8.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2 Front-End Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2.1 Hardware Prefetching (Hardware) . . . . . . . . . . . . . . . . . . 115

8.2.2 Unified Instruction Cache and BTB (Hardware) . . . . . . . . . . . 116

8.2.3 Tagless Instruction Cache (Hardware) . . . . . . . . . . . . . . . . 117

8.2.4 Instruction Re-ordering (Software) . . . . . . . . . . . . . . . . . . 119

8.2.5 Cache Placement Hints (Software) . . . . . . . . . . . . . . . . . . 120

8.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.4.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 123

8.4.2 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.4.3 Total Energy Analysis . . . . . . . . . . . . . . . . . . . . . . . . 126

8.4.4 Comparison to Hardware-based Techniques . . . . . . . . . . . . . 127

xii



8.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 Conclusions and Future Work 132

Bibliography 136

xiii



List of Tables

3.1 Statistics for the BLISS code size. . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Static distribution of BBD types for BLISS code. . . . . . . . . . . . . . . 37

3.3 Dynamic distribution of BBD types for BLISS code. . . . . . . . . . . . . 37

3.4 Dynamic distribution of BBD lengths for BLISS code. . . . . . . . . . . . 38

3.5 Static distribution of the number of offset bits required for the BBDs in the

BLISS code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 The microarchitecture parameters used for performance evaluation of high-

end superscalar processors. The common parameters apply to all three

models (Base, FTB, BLISS). Certain parameters vary between 8-wayand

4-way processor configurations. The table shows the values for the 8-way

core with the values for the 4-way core in parenthesis. . . . . . . . . . . . 59

6.1 The microarchitecture parameters used for the energy optimization exper-

iments. The common parameters apply to all three models (base, FTB,

BLISS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Energy per access and average energy consumption for the various compo-

nents of the 4-way processor configuration. . . . . . . . . . . . . . . . . . 87

7.1 The microarchitecture parameters used for embedded processors evaluation

and code size optimization experiments. . . . . . . . . . . . . . . . . . . . 101

xiv



7.2 Statistics for the BLISS code size. The extra instructions for the 16-bit

format are due to register spilling and the short offsets for data references. 105

8.1 Normalized power dissipation, area, and access time for different instruc-

tion cache configurations over the XScale 32-KByte instruction cache con-

figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 The microarchitecture parameters for base and BLISS processor configu-

rations used for power and area optimization experiments. . . . . . . . . . 122

8.3 Normalized power dissipation, area, and access time for the small instruc-

tion cache and predictor tables over the large structures of the XScale con-

figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xv



List of Figures

2.1 A typical pipelined processor: the front-end fetches instructions from mem-

ory and the execution engine executes them. . . . . . . . . . . . . . . . . 8

2.2 A superscalar front-end processor architecture. . . . . . . . . . . . . . . . 9

2.3 The percentage of performance loss for a 4-way superscalar processor run-

ning SPEC CPU benchmarks due to instruction cache misses and access

latency. The instruction cache is 32 KBytes, 4-way set-associative with

2-cycle access time. (See 5.1 for methodology and configuration.) . . . . . 13

2.4 The percentage of performance loss for a 4-way superscalar processor run-

ning SPEC CPU benchmarks due to branch direction and target mispredic-

tions. The BTB is configured 4-way with 1K-entries. The hybrid predic-

tor has a 4K-counter selector, 4K-counter Gshare, and 1K-entry L1, 1K-

counter L2 PAg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 The percentage of total energy increase for a 4-way superscalar proces-

sor running SPEC CPU benchmarks due to instruction cache misses and

access latency. The instruction cache is configured as 32 KByte, 4-way

set-associative with 2-cycle access time. . . . . . . . . . . . . . . . . .. . 18

xvi



2.6 The percentage of total energy increase for a 4-way superscalar processor

running SPEC CPU benchmarks due to branch direction and target mis-

predictions. The BTB is configured 4-way with 1K entries. The hybrid

predictor has a 4K-counter selector, 4K-counter Gshare, and 1K-entry L1,

1K-counter L2 PAg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 A comparison of energy consumption for an ideal instruction cache, pre-

dictor, and BTB for a 4-way superscalar processor running SPEC CPU

benchmarks over conventional base design. The simulated processor is

configured with a 32 KByte, 4-way, 2-cycle access instruction cache, 4-

way, 1K-entry BTB, and a 4K-counter selector, 4K-counter Gshare, 1K-

entry L1, 1K-counter L2 PAg hybrid predictor. . . . . . . . . . . . . . . . . 20

2.8 The percentage of performance and energy improvements for a 4-way su-

perscalar processor running SPEC CPU benchmarks with a front-end that

suffers no detractors and has optimal, energy-efficiency structures. . . . . .22

3.1 The 32-bit basic block descriptor format in BLISS. . . . . . . . . . . . . . 26

3.2 Example program in (a) C source code, (b) MIPS assembly, and (c) BLISS

assembly. In (b) and (c), the instructions in each basic block are identi-

fied with dotted-line boxes. Registerr3 contains the address for the first

instruction (b) or first basic block descriptor (c) of functionfoo. For il-

lustration purposes, the instruction pointers in basic block descriptors are

represented with arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Flow diagram for the BLISS static binary translator. . . . . . . . . . . . . 34

3.4 Static code size increase for BLISS over the MIPS-32 ISA. Positive in-

crease means that the BLISS executables are larger. . . . . . . . . . . . . .35

4.1 A simplified view of the BLISS decoupled processor. . . . . . . . . . . . . 43

4.2 A decoupled front-end for a superscalar processor based on the BLISS ISA. 44

xvii



4.3 The basic block descriptors cache (BB-cache) and the cache line format. . . 46

4.4 The block diagram and operation of the TLB for descriptor accesses. . . . . 47

4.5 The prefetcher in the BLISS-based front-end. . . . . . . . . . . . . . . . . 50

4.6 The FTB architecture for a decoupled, block-based front-end. . . . . . . . . 52

5.1 Performance comparison for the 8-way processor configuration with the

Base, FTB, and BLISS front-ends. The top graph presents raw IPC and the

bottom one shows the percentage of IPC improvement over the Base for

FTB and BLISS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Fetch and commit IPC for the 8-way processor configuration with the FTB

and BLISS front-ends. We present data for a representative subset of bench-

marks, but the average refers to all benchmarks in this study. For BLISS,

we present the data for the case without static branch hints. . . . . . . . . . 62

5.3 Normalized number of pipeline flushes due to direction and target mispre-

dictions for the 8-way processor configuration with the Base, FTB, BLISS,

and BLISS-HINTS front-ends. We present data for a representative subset

of benchmarks, but the average refers to all benchmarks in this study. . . . 63

5.4 FTB and BB-cache hit rates for the 8-way processor configuration. We

present data for a representative subset of benchmarks, but the average

refers to all benchmarks in this study. . . . . . . . . . . . . . . . . . . . . 65

5.5 Instruction cache comparison for the 8-way processor configuration with

the Base, FTB, BLISS, and BLISS-HINTS front-ends. The top graph com-

pares the normalized number of instruction cache accesses and the bottom

one shows the normalized number of instruction cache misses. We present

data for a representative subset of benchmarks, but the average refers to all

benchmarks in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xviii



5.6 L2-cache comparison for the 8-way processor configuration with the Base,

FTB, BLISS, and BLISS-HINTS front-ends. The top graph compares the

normalized number of L2-cache accesses and the bottom one shows the

normalized number of L2-cache misses. We present data for a representa-

tive subset of benchmarks, but the average refers to all benchmarks in this

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Impact of instruction prefetching for the 8-way processor configuration

with the BLISS front-end. The top graph presents the normalized IPC with

no prefetching. The bottom graph presents the normalized number of cy-

cles the instruction fetch unit is idle due to instruction cache misses with

no prefetching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Normalized IPC for the FTB-simple and FTB-smart designs over the orig-

inal FTB design for the 8-way processor configuration. . . . . . . . . . . . 70

5.9 Normalized number of mispredictions for the FTB-simple and FTB-smart

designs over the original FTB design for the 8-way processor configuration. 71

5.10 Normalized number of misfetches for the FTB-simple and FTB-smart de-

signs over the original FTB design for the 8-way processor configuration. . 71

5.11 Average IPC for the 8-way processor configuration with the FTB and BLISS

front-ends as we scale the size and associativity of the FTB and BB-cache

structures. For the BLISS front-end, we assume that static prediction hints

are not available in this case. . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.12 Average percentage of IPC improvement with the FTB and BLISS front-

ends over the base design as we vary the size and associativity of the in-

struction cache. We simulate an 8-way execution core, 2-cycle instruction

cache latency, and 2K entries in the BTB, FTB, and BB-cache respectively. 74

xix



5.13 Average IPC with the Base, FTB, and BLISS front-ends as we vary the

latency of the instruction cache from 1 to 4 cycles. We simulate an 8-way

execution core, 32 KByte pipelined instruction cache, and 2K entries in the

BTB, FTB, and BB-cache respectively. . . . . . . . . . . . . . . . . . . . . 75

5.14 Performance comparison for the 4-way processor configuration with the

Base, FTB, and BLISS front-ends. The top graph presents raw IPC and the

bottom one shows the percentage of IPC improvement over the Base for

FTB and BLISS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 An example to illustrate selective word access with BLISS. . . . .. . . . . 82

6.2 An illustration of the serial access to the tag and data arrays for the instruc-

tion cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Front-end energy saving comparison for the 4-way processor configuration

for the BLISS and FTB front-ends. . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Normalized prediction energy consumption for the 4-way processor config-

uration for the FTB and BLISS front-ends over the base design. We present

data for a representative subset of benchmarks, but the average refers to all

benchmarks in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Normalized instruction cache energy consumption for the 4-way proces-

sor configuration for the FTB and BLISS front-ends over the base design.

We present data for a representative subset of benchmarks, but the average

refers to all benchmarks in this study. . . . . . . . . . . . . . . . . . . . . 89

6.6 Total energy saving comparison for the 4-way processor configuration for

the BLISS and FTB front-ends. . . . . . . . . . . . . . . . . . . . . . . . . 90

xx



6.7 Normalized energy consumption for the various components of the 4-way

processor for the BLISS design without static branch hints over the base

design. We present data for a representative subset of benchmarks, but the

average refers to all benchmarks in this study. . . . . . . . . . . . . . . . . 91

6.8 Energy-delay-squared product (ED2P) improvements comparison for the

4-way processor configuration for the BLISS and FTB front-ends. . . . . . 92

7.1 Example to illustrate the block-subsetting code optimization. (a) Original

BLISS code. (b) BLISS code with the block-subsetting optimization. For

illustration purposes, the instruction pointers in basic block descriptors are

represented with arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Code size, execution time, and total energy consumption for 32-bit, 16-

bit, and selective 16-bit executables for a processor similar to Intel’s XS-

cale PXA270 processor running the MediaBench benchmarks. Lower bars

present better results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 The basic block descriptor format with the size flag that indicates if the

actual instructions in the block use 16-bit or 32-bit encoding. . . . . . . . 99

7.4 Compression ratio achieved for the different BLISS executables over the

baseline 32-bit MIPS code. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5 Percentage of IPC improvement for the different BLISS binaries over the

base design. The top graph is for the XScale processor configuration. The

bottom one is for the PowerPC configuration. . . . . . . . . . . . . . . . . 106

7.6 Percentage of total energy savings for the different BLISS binaries over the

base design. The top graph is for the XScale processor configuration. The

bottom one is for the PowerPC configuration. . . . . . . . . . . . . . . . . 107

xxi



7.7 Average Code size, execution time, and total energy consumption for se-

lective 16-bit and BLISS (with block-subset and 32/16 blocks) executables

for the XScale processor configuration over the base. Lower bars present

better results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 Normalized execution time, total power, and total energy consumption for

the base design (32-KByte I-cache, 64-entry BTB), the base design with

optimal I-cache and BTB, and the base design with small front-end ar-

rays (2-KByte I-cache, 16-entry BTB). The processor core is similar to

Intel’s XScale PXA270 and is running benchmarks from the MediaBench

and SPEC CPU2000 suites. Lower bars present better results. . . . . . . . 113

8.2 The organization of the tagless instruction cache with BLISS. . . . . . . . . 118

8.3 Normalized IPC for BLISS with the different front-end optimizations over

the base. The BLISS design uses the small I-cache and BB-cache. The

base design uses the regular I-cache and BTB. The 1.0 line presents the

base design. Higher bars present better performance. . . . . . . . . . . . . 123

8.4 Normalized number of instruction cache misses for BLISS with the differ-

ent front-end optimizations over the base. The BLISS design uses the small

I-cache and BB-cache. The base design uses the small I-cache and BTB.

Lower bars present better results. . . . . . . . . . . . . . . . . . . . . . . . 125

8.5 Normalized total energy comparison for BLISS with the different front-end

optimizations over the base. The BLISS design uses the small I-cache and

BB-cache. The base design uses the regular I-cache and BTB. The 1.0 line

presents the base design. Lower bars present better results. . . . . . . . . . 126

xxii



8.6 Average execution time, total power, and total energy consumption for base

design (with large caches), base design (with optimal caches), base de-

sign (with Filter cache and a combination of front-end optimizations), and

BLISS (with small caches and a combination of front-end optimizations).

Lower bars present better results. . . . . . . . . . . . . . . . . . . . . . . . 127

xxiii



xxiv



Chapter 1

Introduction

Effective instruction delivery is vital for superscalar processors operating at high clock fre-

quencies [79, 93]. The rate and accuracy at which instructions enter the processor pipeline

set an upper limit to sustained performance. Consequently, modern processor designs place

increased demands on thefront-end, the engine responsible for control-flow prediction and

instruction fetching. Conservative instruction delivery can severely limit the performance

potential of the processor by unnecessarily gating instruction level parallelism. On the other

hand, overly aggressive instruction delivery wastes energy on the executionof misspecu-

lated instructions (over-speculation). Aggressive speculation can alsoreduce performance

by frequently causing expensive pipeline flushes on mispredicted branches.

In addition to high application performance, energy efficiency, code size, power con-

sumption, and die area are also critical design metrics. Energy efficiency is essential for

both high-end and embedded processors. High energy consumption can severely limit the

server scalability, its operational cost, and its reliability [28]. Energy consumption dictates

if an embedded processor can be used in portable or deeply embedded systems for which

battery size and lifetime are vital parameters. Code size determinesthe amount and cost

of on-chip or off-chip memory necessary for program storage. For embedded applications,

1
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instruction memory is often as expensive as the processor itself. Finally,power consump-

tion and die area determine the cost to manufacture, package, and cool the chip. For most

modern processors, the front-end design must strike a balance between multipleof these

efficiency metrics. However, improving one metric often comes at the expense of another

as they introduce conflicting tradeoffs.

In its effort to provide a balance between the efficiency metrics, the front-end must

mitigate three basic detractors: instruction cache misses that cause longinstruction delivery

stalls; target and direction mispredictions for control-flow instructions that send erroneous

instructions to the execution core and expose the pipeline depth; and multi-cycle instruction

cache accesses in high-frequency designs that introduce additional uncertainty about the

existence and direction of branches within the instruction stream. Conventional approaches

to attack the front-end detractors typically rely on hardware-only techniquesworking below

the ISA level.

The theme of this work is to allow software to assist the hardware in dealing with

the front-end challenges by providing architecture support for control-flow predictionand

instruction delivery. The new architecture provides efficient ISA-levelsupport for front-

end optimizations that target all of the processor efficiency metrics (performance, energy,

power, code size, and die area). The architecture also provides a flexible communication

mechanism that software can use to provide hardware with critical information about in-

struction fetching and control-flow.

Specifically, this dissertation examines the use of a block-aware instruction set ar-

chitecture (BLISS) to address the front-end challenges. BLISS defines basicblock de-

scriptors in addition to and separately from the actual instructions in eachprogram. A

descriptor provides sufficient information for fast and accurate control-flow prediction

without accessing or parsing the conventional instruction stream. It describes the type

of the control-flow operation that terminates the basic block, its potential target, and the
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number of instructions it contains. The architecturally visible basic block descriptors en-

able a wide-range of performance and energy optimizations and provide a flexible mecha-

nism for communicating compiler-generated hints at the granularity of basic blockswith-

out modifying the conventional instruction stream or affecting its instruction code foot-

print. BLISS allows for significant reorganization of the front-end for both high-endand

embedded processors. Unlike techniques that rely on hardware-only or software-only

features and typically improve one metric at the cost of another, BLISS strikes a bal-

ance between hardware and software features to provide benefits across all important met-

rics.

1.1 Research Contribution

The primary contributions of this dissertation are:� We define the block-aware ISA that provides basic block descriptors in addition to

and separately from the actual instructions in each program. The BLISS provides

accurate information for control-flow prediction and instruction prefetching without

fetching and parsing the actual instruction stream. BLISS also provides a versatile

mechanism for conveying compiler-generated hints at basic block granularity with-

out modifying the conventional instruction stream or affecting its instruction code

footprint.� We propose a decoupled front-end organization based on the BLISS ISA. The new

front-end replaces the BTB with a descriptor’s cache. It uses the information avail-

able in descriptors to improve control-flow accuracy, implement guided instruction

prefetching, and reduce the energy used for control-flow prediction and instruction

delivery. We demonstrate that the new architecture improves upon conventionalsu-

perscalar designs by 20% in performance and 16% in energy. We also show that it
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outperforms hardware-only approach for decoupled front-ends by 13% and 7% for

performance and energy respectively. These benefits are robust across a widerange

of architectural parameters.� We evaluate the use of BLISS for embedded processor designs. We develop a set

of code size optimizations that utilize the ISA mechanism to provide code size re-

duction of 40%. Unlike alternative proposals that tradeoff performance or energy

consumption for code density, we show that BLISS-based embedded designs pro-

vide 10% performance and 21% energy advantages in addition to the improved code

size.� We develop and evaluate a set of hardware and software techniques for low cost

front-ends for embedded systems. The optimization techniques target the size and

power consumption of instruction caches and predictor tables. We show that the

decoupling features of BLISS and the ability to provide software hints allow for

embedded designs that use minimally sized, power efficient caching and predictor

structures, without sacrificing performance.

The results in this thesis have been presented in several conference and journal publi-

cations [115, 116, 117, 118].

1.2 Organization of this Dissertation

The outline of the rest of this thesis is as follows.

Chapter 2 provides an overview of the front-end operation and discusses the major chal-

lenges to sustain high instruction bandwidth in an energy efficient manner. It also presents

the motivation for this thesis by summarizing the potential gains in overall performance

and energy consumption that can be achieved by improving the processor front-end.
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In Chapter 3, we introduce the block-aware instruction set (BLISS) that providesaddi-

tional information about the control-flow of the program at the granularity of basic blocks.

We explain the descriptor format, provide an example, discuss the benefits of the ISA, and

explain the software hints mechanism and their possible usages. The chapter alsoprovides

an ISA-level characterization of BLISS using applications from the SPECbenchmark suite.

Chapter 4 describes the decoupled front-end that exploits the basic block information

available in the BLISS ISA. The chapter describes the architecture and operation of the

BLISS-based front-end. It also describes and compares to BLISS a similar decoupled front-

end design that forms extended basic blocks using hardware-only techniques.

A comprehensive evaluation of the performance advantage of BLISS for high-end su-

perscalar processors is presented in Chapter 5. We compare the BLISS design to both a

conventional front-end processor and a decoupled front-end processor with no software

support. We also present a detailed performance analysis when key architectural parame-

ters of the front-end are varied.

Chapter 6 focuses on the energy efficiency of the BLISS-based front-end. It explains

how the BLISS front-end reduces the energy wasted by mispredicted instructionsand re-

duces the energy used for control-flow prediction and instruction delivery. Similar to per-

formance, we also perform a comprehensive evaluation for the BLISS energy efficiency.

In Chapter 7, we evaluate the use of BLISS for embedded designs. We explain the code

size optimizations enabled with the BLISS ISA and analyze their effect on performance

and energy efficiency. We also compare BLISS with the code optimizations to alternative

approaches that build similar optimizations on top of conventional ISAs.

In Chapter 8, we show that the flexible semantics of BLISS allow us to implement a

wide range of software and hardware optimizations without modifying the software model.

We explain each optimization and evaluate its effect on performance, power, and energy

efficiency. We also evaluate combinations of these optimizations for embedded processors.
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Finally, the dissertation concludes in Chapter 9 which provides a summary and high-

lights future work.



Chapter 2

Background and Motivation

The front-end portion of the processor is responsible for predicting the next set of instruc-

tions, fetching them from memory, and delivering them to the back-end for execution.

Since the back-end cannot execute instructions faster than they are being delivered, the in-

struction bandwidth sustained by the front-end sets an upper limit to the overall processor

performance.

In this chapter, we provide an overview of the front-end operation and discuss the major

challenges to sustain high instruction bandwidth in an energy efficient manner. Section 2.1

provides an overview of the front-end in a modern processor. In Section 2.2, we discuss

the key front-end detractors and their impact on performance. In Section 2.3, weanalyze

the impact of the front-end challenges on the processor energy consumption. Section 2.4

summarizes the related work in front-end architecture and design. Section2.5 provides the

motivation for this thesis by summarizing the potential gains in overall performance and

energy consumption that can be achieved by improving the processor front-end.

7
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Front-End Execution Engine

Instruction 

Queue

Branch/Jump Outcome

Figure 2.1: A typical pipelined processor: the front-end fetches instructions from memory
and the execution engine executes them.

2.1 Front-End Overview

A processor mainly consists of a front-end and an execution engine. Figure 2.1 shows a

typical pipelined processor which consists of a front-end that fetches instructions and an

execution core that consumes the instructions and provides feedback to the front-end.The

two components are separated by an instruction queue for decoupling purposes. In order

to maintain high bandwidth, the front-end must be able to predict the execution order of

instructions in the program. To accomplish this task, the front-end speculatively follows

the execution path independently of the execution core and places the instructions inthe

queue. The execution engine reads the instructions from the buffer, generates the execution

results, and provides feedback to the front-end regarding the actual outcome of the branch

instructions. In case of a mismatch between the speculative and the actualexecution paths,

the misspeculated instructions are flushed from the processor pipeline and the front-end

starts fetching at the correct address of the first mispredicted branch.

Instruction fetch is a critical component for the processor with respect to performance,

energy consumption, power, and complexity [93]. The front-end sets an upper limit on

performance as the execution core cannot execute instructions faster than theyare being

delivered. Conservative instruction delivery can severely limit theperformance potential
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Figure 2.2: A superscalar front-end processor architecture.

of the processor. On the other hand, overly aggressive instruction delivery canreduce per-

formance because of the overhead of frequent misspeculations. The front-end alsoinflu-

ences the energy consumption of the processor as it determines how often the processoris

executing useful instructions, mispredicted instructions, or no instructions atall. The pro-

cessor wastes energy when it is executing mispredicted instructions or whenthe pipeline is

empty.

Figure 2.2 presents the basic components in a typical front-end for a superscalar pro-

cessor. The program counter (PC) points to the address of a set of sequential instructions

that need to be fetched from the main memory. The instruction cache is a smaller, faster

memory that buffers frequently used instructions to reduce the average time to access the

main memory. The instruction cache is able to provide a set of sequential instructions each

cycle. The branch predictor is a tagless array of counters that predict if a sequential set of

instructions contains a taken branch or jump instruction. The branch target buffer(BTB)
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is a tagged array that predicts the target of a taken control-flow instructionbefore it is exe-

cuted. The return address stack (RAS) is a small memory structure that predicts the return

address for functions by matching returns with corresponding calls. The branch predictor,

BTB, and RAS allow the front-end of the processor to fetch instructions without waiting

for the instructions to be decoded or the branches to be resolved.

A conventional front-end operates in the following manner. On every cycle, thein-

struction cache, predictor, and BTB are accessed using the PC. When the instructions are

not available in the instruction cache, the cache generates a miss and the front-end stalls

until the missing instructions are retrieved from lower memory hierarchy(L2-cache and

main memory). On a cache hit, when the instructions are available in the cache, they are

fetched and pushed into the instruction queue. The predictor and BTB outcomes are used

for determining the next PC. If the predictor predicts a taken branch within the current set

of fetched instructions, the next PC would be the outcome of the BTB or RAS. Otherwise,

the next sequential address is used for accessing the instruction cache in the following

cycle. The branch prediction is verified once the instructions are decoded (existence of

control-flow instruction verified) and after the branches are executed (direction and target

of control-flow instruction verified). In a case of a mismatch, the mispredicted instructions

are flushed from the pipeline and fetching starts at the correct address.

With the increasing frequency gap between the processor and main memory, the per-

formance of the instruction cache is critical to sustain high instruction fetch bandwidth. As

a result, an increasing amount of resources are used to improve instruction cache perfor-

mance. It is typical for advanced microprocessors today to use an instruction cache size

of 16 to 64 KBytes with two- to three-cycle access time [93]. Today’s modern processors

are also designed with deep pipelines as a result of increased frequency. Although deep

pipelines improve overall performance by allowing aggressive clock rates, they also lead

to increasing misprediction penalties. Therefore, accurate branch prediction is crucial to
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sustain high instruction fetch bandwidth. Modern processors typically use advanced hy-

brid branch predictors with a 512 to 4K-entries BTB to better predict the correct execution

path.

The challenge with the front-end is to achieve high instruction fetch bandwidth in an

energy-effective manner. Increasing the front-end resources and using advanced specula-

tion techniques usually come at a cost of increased power, energy consumption, and com-

plexity. In addition, the front-end itself consumes a significant percentage of the processor

energy as it contains large memory arrays that are accessed nearly everycycle. On average,

13% of the total energy is consumed in the front-end itself alone for a 4-way superscalar

processor [115].

2.2 Front-End Performance Detractors

In its effort to provide high instruction fetch bandwidth, the front-end engine must handle

several detractors: instruction cache misses that cause instruction delivery stalls; multi-

cycle instruction cache accesses that cause uncertainty about the existence and direction of

branches within the instruction stream; and target and direction mispredictions for branches

that send erroneous instructions to the execution core. These problems have a negative

impact on both performance and energy consumption. For a 4-way superscalar processor

running the SPEC benchmark, the cost is up to 33% in performance and 22% in energy

consumption. In this section, we will look at each of these problems and its impacton

performance in more details. The next section focuses on their energy impact.

2.2.1 Instruction Cache Detractors

The instruction cache introduces two challenges to instruction delivery: cachemisses that

interrupt instruction delivery and multi-cycle cache hits that introduce uncertainty about

the existence of branches in the instruction stream.
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Instruction Cache Misses

An instruction cache miss refers to a failed attempt to read the neededinstructions from

the instruction cache, which results in a long latency access to lower levels of the memory

hierarchy. Instruction cache misses cause the front-end to stall until the missing instructions

are available, leading to significant performance loss and energy waste due toleakage.

The design of the cache largely affects the number of misses. For example, larger

cache size or higher cache associativity results in a reduction in the number of capacity

and conflict misses. Nevertheless, this is not always desirable as it increases the cache

access time. Fast cache access is important because it often determines the processor clock

rate and the number of pipeline stages necessary for instruction access. Anothereffective

technique to reduce the number of cache misses is to prefetch the instructions and bring

them into the cache before they are even needed. The scheme used to predict the prefetch

address is usually a challenge. The commonly used scheme is a sequential or stream-based

prefetcher where one or more sequential cache lines that follow the current fetched line

are prefetched [103, 77]. Ideally, we would like to prefetch instructions onthe path of

execution regardless of the code layout and the existence of taken branches.

Figure 2.3 quantifies the performance penalty due to instruction cache misses for a typ-

ical 4-way superscalar processor with a 32 KByte, 4-way set-associative instruction cache

running the SPEC CPU benchmarks. The results are compared to similarly configured pro-

cessor with a perfect instruction cache that does not suffer from any misses. The figure

shows the loss for the benchmark with the maximum loss from the integer (INT) applica-

tions and the benchmark with the maximum loss from the floating-point (FP) applications

(vortex andapsi). It also reports the average loss for INT applications and FP applica-

tions. Instruction cache misses alone cost 13% in performance for INT applications because

they tend to have large instruction footprints and somewhat irregular code access patterns.
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Figure 2.3: The percentage of performance loss for a 4-way superscalar processor running
SPEC CPU benchmarks due to instruction cache misses and access latency. Theinstruction
cache is 32 KBytes, 4-way set-associative with 2-cycle access time.(See 5.1 for method-
ology and configuration.)

On the other hand, the average loss for FP applications is 3% as these benchmarks are dom-

inated by tight code loops with high temporal locality. Losses will be even more dramatic

if we use a smaller cache size or a lower associativity because of the additional misses.

Multi-Cycle Instruction Cache Access

As processor frequencies get higher and the code footprint of important applications gets

larger, it becomes difficult to access a large enough instruction cache withina single cycle

[1]. It is common for modern processors to have instruction caches that need twoto three

cycles to access. This implies that the front-end cannot detect if there is any branch or jump

in the current set of instructions to determine the program counter (PC) to use in the fol-

lowing cycle. To avoid a reduction in effective instruction bandwidth, modernsuperscalar

processors use predictors and branch-target-buffers (BTB) to determine control-flow in a

single cycle without knowing the exact control-flow instructions being fetched by pending

instruction cache accesses [71]. Once the cache access completes in a later pipeline stage,

the fetch unit verifies if the prediction it made earlier is appropriate given the type of the

identified control-flow instruction.
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The problem with this approach is that the prediction in the first pipeline stage lacks

crucial information. First, it is not certain if the PC used to access thepredictors points at

or close enough to a control-flow instruction. As a result, the predictor is often accessed

and updated with PCs that do not correspond to control-flow operations, which leads to

reduced prediction accuracy due to interference. Second, until the instruction cache access

completes, we cannot use the type of the control-flow operation in order to select between

the outputs of different predictors in an accurate manner (e.g. BTB vs. RAS). As aresult,

even when accessing predictors in parallel with the instruction cache, the cache access

latency must be relatively short in order to maintain high prediction accuracy.

Ideally, the fetch unit would first identify the control-flow operation that potentially

terminates the current block and then predict the next basic block in execution order. In

other words, the fetch unit would wait for the instruction cache access to complete and then

use parsing and alignment logic to detect the first control-flow operation within the group of

fetched instructions (if any). Given the type of the control-flow instruction andthe outputs

of various prediction structures (predictors, BTB, RAS), the fetch unit wouldmake a very

accurate prediction about the program counter (PC) to use in the following cycle. In cases

where multiple branches exist within the set of fetched instructions, the front-end ideally

needs to find the first taken branch ignoring any non-taken branches in front of the taken

branch.

Figure 2.3 also reports the performance penalty due to instruction cache multi-cycle

accesses for a 4-way superscalar processor with a 32 KByte, 4-way set-associative, 2-cycle

access instruction cache and a hybrid predictor (4K-counter selector, 4K-counterGshare,

and 1K-entry L1, 1K-counter L2 PAg) running the SPEC CPU benchmarks. The results

are compared to a similarly configured processor with a single-cycle access instruction

cache. Multi-cycle instruction cache accesses cost 7% and 5% in performancefor INT and

FP applications respectively. For processors with higher instruction cache latency or with

smaller predictor tables, the penalty would be even higher.



2.2. FRONT-END PERFORMANCE DETRACTORS 15

2.2.2 Branch Prediction Detractors

Independently of the instruction cache, branch prediction introduces two important detrac-

tors: branch direction mispredictions and branch target mispredictions.

Branch Direction Mispredictions

The direction predictor notifies the front-end if there is a control-flow change in the pro-

gram or not. If not, the front-end will continue fetching using the next sequential address.

As explained in Section 2.2.1, the direction predictor is accessed simultaneously with the

instruction cache. Therefore, it lacks information about the instructions that are being

fetched. This means that the predictor needs to be trained for instructions (programcounter

values) that do not correspond to control-flow operations and for unconditional control-

flow instructions. This leads to loss in prediction accuracy due to slower training and more

interference on the limited entries in the table. The predictor is also accessed using the PC

which points to the block address of the current fetched instructions instead of the branch

address itself. This negatively affects the predictor accuracy. For example, if a biased non-

taken branch in the middle of the fetched block changes behavior, the predictor entry that

is used for the control-flow operation that terminates the original block is now used for

the biased branch. This could be avoided if the exact branch address is used to access the

predictor instead of the current PC address.

Figure 2.4 quantifies the performance penalty due to branch direction mispredictions

for a 4-way superscalar processor running the SPEC CPU benchmarks. The branch predic-

tor is configured as a hybrid predictor with a two-level, correlating predictor with global

history (Gshare) and a two-level, correlating predictor with per-addresshistory (PAg). The

results are compared to a similarly configured processor with a perfect direction predictor

that always predicts the correct branch direction. Branch direction mispredictions alone
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Figure 2.4: The percentage of performance loss for a 4-way superscalar processor running
SPEC CPU benchmarks due to branch direction and target mispredictions. The BTB is
configured 4-way with 1K-entries. The hybrid predictor has a 4K-counter selector, 4K-
counter Gshare, and 1K-entry L1, 1K-counter L2 PAg.

cost 19% in performance for INT applications and 9% for FP applications. FP applica-

tions are affected less as they have larger basic blocks than INT applications (fewer predic-

tions/executed instructions) and a smaller number of static branches (feweraddresses used

to train/access predictor).

Branch Target Misprediction

The branch target buffer (BTB) stores the target addresses for previously executed taken

branches and jumps. Once the direction predictor guesses a change in control-flow, the

BTB provides the target address of the control-flow operation. The front-end uses this

address to fetch instructions in the following cycle. If no entry is found for thecontrol-

flow operation in the BTB, the front-end stalls until the control-flow instruction is decoded

(for direct branches) or executed (for indirect branches). Such misses occur the first time a

taken branch is encountered. The BTB also suffers from misses due to its finite capacity. In

some cases, the entries in the BTB are evicted to make room for new data. Unfortunately,

once an entry is evicted from the BTB, the information it contains is lost and needs to be

recreated from scratch if needed. Indirect branches with multi-branch targets also cause
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BTB misses whenever their target address change as each BTB entry only holds a single

target address.

Figure 2.4 quantifies the performance penalty due to branch target mispredictions for

a 4-way superscalar processor running the SPEC CPU benchmarks. The BTB is 4-way

configured with 1K entries. The results are compared to a similarly configuredprocessor

with a perfect target predictor that always predicts the correct branch target. The cost of

branch target mispredictions for INT applications is 3%. For FP applications, thecost is

negligible. For most applications in the SPEC benchmarks suite, the size of the BTBsimu-

lated is large enough to hold most of the taken branches. Combined, the branch prediction

detractors cost 22% and 9% in performance for INT and FP applications respectively.

2.3 Front-End and Energy Consumption

Energy efficiency is a critical design concern for modern processors as it dictates if the

processor can be used in portable or deeply embedded systems for which battery size and

lifetime are vital parameters. Energy efficiency is also essentialfor dense server systems

(e.g. blades), where thousands of processors may be packed in a single colocation site.

High energy consumption can severely limit the server scalability, itsoperational cost, and

its reliability [28].

Instruction cache misses have a negative effect on the processor energy efficiency. First,

the front-end and possibly the pipeline are idle wasting energy due to leakage during an

instruction cache miss. Second, serving a cache miss requires access to large structures

at the lower levels of the hierarchy with high dynamic energy consumption. Multi-cycle

instruction cache accesses also have a negative effect on the processor energy efficiency

as executing mispredicted instructions wastes energy. Figure 2.5 presents thetotal energy

increase due to instruction cache misses and multi-cycle instruction cacheaccesses. The

reportedTotal Energyincludes all of the processor components (front-end, execution core,
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Figure 2.5: The percentage of total energy increase for a 4-way superscalar processor run-
ning SPEC CPU benchmarks due to instruction cache misses and access latency.The in-
struction cache is configured as 32 KByte, 4-way set-associative with 2-cycle access time.

and all caches). For INT applications, 12% of the processor total energy is wasted due to

instruction cache misses and multi-cycle access time. For FP applications, 6% is wasted

due to the instruction cache detractors.

Prediction accuracy also affects the processor energy efficiency. Anytime the front-end

misspeculates, energy is wasted by fetching and executing erroneous instruction from the

wrong execution path. Moreover, recovering from a branch misprediction is acostly oper-

ation in terms of energy, as the erroneous instruction must be removed from the pipeline.

Figure 2.6 presents the energy wasted due to branch direction and target mispredictions.

On average, 14% and 7% of the processor total energy are wasted by branch directionand

target mispredictions for INT and FP applications respectively.

The front-end itself consumes a significant percentage of the processor total energy

as it contains large memory arrays (instruction cache, predictor, BTB) thatare accessed

nearly every cycle. On average, 13% of the total energy is consumed in the front-end

itself alone for a 4-way superscalar processor [115]. The front-end arrays aretypically

designed for high performance, which may not be very energy efficient. As an example,

all of the components of the hybrid predictor are accessed in parallel to achievea single
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Figure 2.6: The percentage of total energy increase for a 4-way superscalar processor run-
ning SPEC CPU benchmarks due to branch direction and target mispredictions. The BTB
is configured 4-way with 1K entries. The hybrid predictor has a 4K-counter selector,4K-
counter Gshare, and 1K-entry L1, 1K-counter L2 PAg.

cycle prediction time. This is not efficient as only one component of the predictor has the

required data (e.g., the Gshare predictor for global correlating type of branches). Similarly,

for a set-associative instruction cache, all of the data arrays are accessed in parallel to

reduce the cache access time. Ideally, only the data array for the way that hits is needed to

get the required data. Additionally, reading the complete cache line is not energy efficient

as only a subset of the instructions in the line are typically used (e.g. 4 out of 16). A jump

or a taken branch in the middle of the cache line would possibly force the front-end tostart

fetching from a different cache line. Instructions in the early part of a cacheline, right

before the target of a taken branch, are also less likely to be required. Significant energy

could be saved if we only read the required words from the cache line.

Figure 2.7 compares the energy of ideal instruction cache, predictor, and BTB to the

conventional structures. For the ideal instruction cache, only the required instructions are

read from the cache line and only the data array for the way that hits is accessed. Similarly,

for the ideal branch direction predictor, only one of the hybrid predictor components is

accessed and trained. The ideal BTB is only accessed and trained for taken control-flow

instructions. The instruction cache is configured as a 32 KByte, 4-way set associative,
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Figure 2.7: A comparison of energy consumption for an ideal instruction cache, predictor,
and BTB for a 4-way superscalar processor running SPEC CPU benchmarks over conven-
tional base design. The simulated processor is configured with a 32 KByte, 4-way, 2-cycle
access instruction cache, 4-way, 1K-entry BTB, and a 4K-counter selector,4K-counter
Gshare, 1K-entry L1, 1K-counter L2 PAg hybrid predictor.

2-cycle access, 32 Byte line cache. The hybrid predictor has a 4K-counter selector, 4K-

counter Gshare, and 1K-entry L1, 1K-counter L2 PAg. 4-way, 1K-entry BTB is alsoused.

On average, 63% of the 4-way set-associative instruction cache energy can besaved using

an efficient instruction cache. Similarly, 46% and 55% of the BTB and the predictor energy

respectively could be saved if we access them ideally. The potentials of energy savings are

significant; however, the challenge is to achieve energy efficiency without any compromise

to neither complexity nor performance.

2.4 Related Work Overview

Given the effect of instruction delivery on the overall processor performance and energy

consumption, there has been a significant volume of research targeting front-end detractors.

Several researchers have targeted reducing the number of instruction cache misses

through either cache layout optimizations or prefetching. Cache optimizations include
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mapping code into different cache areas to reduce conflict misses [11], code reordering

and alignment to increase cache utilization [68], preventing infrequent executed code from

polluting the instruction cache [35], using reconfigurable caches [24], and using software-

assisted cache replacements techniques [46]. Many prefetching techniques have also been

suggested to hide the latency of cache misses. They typically differ in the scheme used

to predict prefetch addresses. Some of the techniques include sequential prefetching [103,

77], history-based schemes [104, 39, 48], wrong path prefetching [82], software coopera-

tive approaches [61], and execution-based schemes [89, 21].

Moreover, many techniques have been proposed to reduce the branch misprediction

penalty and improve the prediction accuracy. They include delayed branches [33],branch

bypassing and multiple branch prefetching [92], branch folding [25], early resolution of

branch decision [3], using multiple independent instruction streams in a shared pipeline

[101], and the prepare-to-branch instruction [109]. Some of the techniques that targetim-

proving branch prediction accuracy include branch alignment optimizations [18], branch

classification [19], and minimizing aliasing in predictors [72]. Of course,there is also

significant research on using advanced dynamic predictors [98, 47].

There are also techniques that improve the front-end efficiency by predicting and fetch-

ing multiple basic blocks in a single cycle. Some of the techniques include block-based

front-end engines [111], decoupled front-ends [88, 89], multi-block prediction [100, 99],

control-flow prediction [83, 26], and parallel fetching of no contiguous instruction streams

[74, 95]. Significant amount of front-end research has also focused on trace caches [94, 29],

trace predictors [45], and trace construction [78].

Finally, there is also research that focuses on improving the front-end energy efficiency.

Some techniques target improving the instruction cache energy consumption by way pre-

diction [84], selective cache way access [2], sub-banking [30], tag comparison elimination

[75, 114], and reconfigurable caches [87, 113]. Other techniques target improving the en-

ergy efficiency of the predictors using sub-banking [76], front-end gating [64], eliminating
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Figure 2.8: The percentage of performance and energy improvements for a 4-way super-
scalar processor running SPEC CPU benchmarks with a front-end that suffers no detractors
and has optimal, energy-efficiency structures.

predictor and BTB accesses for non-branch instructions [76], using profile data to elimi-

nate meta predictor [27] or to switch off part of the predictor [20], and selective predictor

accesses to avoid using the predictor for well-behaved branches [8].

2.5 Ideal Front-End

While most of the techniques that are presented in Section 2.4 improve the front-end effi-

ciency in some way or another, they typically provide partial solutions as each only tackles

a single front-end issue. The goal of this work is to develop a unified framework that pro-

vides a complete solution to the front-end challenges and allows the front-end to achieve

close to the optimal results for all of the efficiency metrics (performance, energy, power,

code size, and die area). The differentiating factor of our approach is that we use an in-

tegrated, balanced software-hardware approach that provides capability to deal with all of

the front-end challenges at once. Our approach builds upon previous research but intro-

duces a novel instruction set architecture that allows software to providehardware with
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the information necessary for front-end optimizations. In the following chapters, we doc-

ument this approach and demonstrate its significant advantages over the hardware-only or

software-only approaches listed in Section 2.4.

Figure 2.8 quantifies the maximum performance and energy improvements we can

achieve in a 4-way superscalar processor by providing an ideal front-end without any de-

tractors. Up to 47% in performance improvement and 28% in energy saving could be

achieved for INT applications. Even for FP applications, which are less susceptible to

front-end detractors, 16% performance and 14% total energy could be improved. Simi-

lar gains can be also achieved by the front-end in other processor configurations suchas

narrow, in-order designs that are typically used in embedded systems. Of course, it is not

possible to fully eliminate all of the front-end challenges. Nevertheless,we will demon-

strate that a significant percentage of the ideal front-end benefits can be achieved by using

software support to target multiple detractors.



Chapter 3

Block-Aware Instruction Set

Conventional ISAs provide no information to assist with the front-end challenges presented

in the previous chapter. The ISA is structured to describe what needs to take place in the

back-end only. Hence, the front-end hardware has to detect basic block boundaries, de-

termine branch directions and targets, discover patterns (potentially repeatedly), and figure

out how to balance over- and under-speculation.

The thesis of this work is to allow the software to assist the hardware in dealing with

the front-end challenges. We modify the conventional instruction set architecture to pro-

vide additional information about the control-flow of the program at the granularity of basic

blocks. The block-aware instruction set architecture (BLISS) defines basic block descrip-

tors in addition to and separately from the actual instructions in each program. A descriptor

provides sufficient information for fast and accurate control-flow prediction without access-

ing or parsing the instruction stream. It describes the type of the control-flow operation that

terminates the block, its potential target, and the number of instructions in the basic block.

This information is sufficient to tolerate the latency of instruction accesses, regulate the use

of prediction structures, and direct instruction prefetching. Block descriptors also provide

a general mechanism for compilers for passing software hints that can assistwith a wide

range of challenges at the hardware level.

24
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Section 3.1 presents the block-aware instruction set architecture. In Section 3.2, we

discuss the software hints and their possible usages. Section 3.3 overviews the tools and the

experimental methodology. Section 3.4 provides an ISA-level characterization of BLISS

using applications from the SPEC benchmark suite. In Section 3.5, we discuss the related

research that this work is based on.

3.1 Instruction Set Architecture

The instruction set architecture (ISA) specifies the processor functionality and serves as

the interface between hardware and software. A typical ISA defines the machine state

(registers and memory) and a series of instructions that can operate on it. Theblock-aware

instruction set architecture extends conventional ISAs with additional information about

the program control-flow. The control-flow information is specified at the granularity of

basic block (BB), which is a sequence of instructions starting at the target or fall-through

of a control-flow instruction and ending with the next control-flow instruction or before the

next potential branch target.

3.1.1 Basic Block Descriptors

BLISS stores the definitions for basic blocks in addition to and separately from the ordinary

instructions they include. The code segment for a program is divided in two distinct sec-

tions. The first section contains descriptors that define the type and boundaries of blocks,

while the second section lists the actual instructions in each block.

Figure 3.1 presents the format of a basic block descriptor (BBD). Each BBD defines the

type of the control-flow operation that terminates the block such as a conditional branch

or an unconditional jump. For fall-through basic blocks, we use theFT type. TheLOOP

type is a zero-overhead loop construct similar to that in the PowerPC ISA [67]. The BBD
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Hints
3

Length
4

Offset
8

Type
4

Instruction Pointer
13

     Type: basic block type (type of terminating branch)
- fall-through (FT)
- backward conditional branch (BR_B)
- forward conditional branch (BR_F)
- jump (J)
- jump-and-link (JAL)
- jump register (JR)
- jump-and-link register (JALR)
- call return (RET)
- zero overhead loop (LOOP)

Offset: displacement for PC-relative branches and jumps

Length: number of instruction in the basic block (0..15)

Instruction pointer :
     address of the 1st instruction in the block (bits [14:2])
     bits [31:15] are stored in the TLB

Hints: optional compiler-generated hints
           used for static branch hints in this study

Figure 3.1: The 32-bit basic block descriptor format in BLISS.

also includes an offset field to be used for blocks ending with a branch or a jump with PC-

relative addressing. The actual instructions in the basic block are identifiedby the pointer

to the first instruction and the length field. Each BBD can point to up to 15 instructions

at most. Basic blocks that are larger than 15 instructions use multiple BLISS descriptors.

FT blocks can be larger than 15 instructions as their offset field is not required and is used

to extend the length field instead. The BBD only provides the lower bits [14:2] of the

instruction pointer, bits [31:15] are stored in the TLB. Section 4.1.1 explains in details the

organization and operation of the TLB. The last BBD field contains optional compiler-

generated hints. We discuss hints in details in Section 3.2. The overall BBD length is 32

bits.

With the BLISS ISA, there is only a single program counter (PC) that only points within

the code segment for basic block descriptors. The PC does not point to the instructions

themselves at any time. Every cycle, the PC is used to fetch basic block descriptors. The

instruction pointer and the length fields available in the fetched descriptor are used to fetch

the associated instructions in the next cycle. When all of the associated instructions are

fetched, the BBD for the next basic block in the program order (PC+4 or PC+offset) is

used for instruction fetching.
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BB descriptors

BBD1: FT,   __,   1,  

BBD2: BR_F, BBD4, 2,

BBD3: J,    BBD5, 1,  

BBD4: JALR, __,   1, 

BBD5: BR_B, BBD2, 2,  

Instructions

addu  r4, r0, r0

lw  r6, 0(r1)

bneqz  r6

addui  r4, r4, 1

jalr  r3

addui  r1, r1, 4

bneq  r1, r2

numeqz=0;

for (i=0; i<N; i++) 

if (a[i]==0) numeqz++;

else foo();

MIPS code

    addu   r4, r0, r0

L1: lw     r6, 0(r1)

    bneqz  r6, L2

    addui  r4, r4,  1

    j      L3

L2: jalr   r3

L3: addui  r1, r1,  4

    bneq   r1, r2, L1

BLISS code

(b) (c)

(a)

Figure 3.2: Example program in (a) C source code, (b) MIPS assembly, and (c) BLISS
assembly. In (b) and (c), the instructions in each basic block are identifiedwith dotted-
line boxes. Registerr3 contains the address for the first instruction (b) or first basic block
descriptor (c) of functionfoo. For illustration purposes, the instruction pointers in basic
block descriptors are represented with arrows.

3.1.2 BLISS Code Example

To better understand how BLISS operates, we study the example program in Figure 3.2 that

presents an example program that counts the number of zeros in arraya and callsfoo() for

each non-zero element. With a RISC ISA like MIPS, the program requires 8 instructions

(Figure 3.2.b). The 4 control-flow operations define 5 basic blocks. All branch conditions

and targets are defined by the branch and jump instructions. With the BLISS equivalent of

MIPS (Figure 3.2.c), the program requires 5 basic block descriptors and 7 instructions. All

PC-relative offsets for branch and jump operations are available in BBDs. Compared to the

original code, we have eliminated thej instruction. The corresponding descriptor (BBD3)

defines both the control-flow type (J) and the offset; hence, the jump instruction itself is

redundant. However, we cannot eliminate either of the two conditional branches (bneqz,
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bne). The corresponding BBDs provide the offsets but not the branch conditions, which

are still specified by the regular instructions. However, the regular branchinstructions no

longer need an offset field, which frees a large number of instruction bits. Similarly, we

have preserved thejalr instruction because it allows reading the jump target from register

r3 and writing the return address in registerr31.

3.1.3 Detailed Issues

The redistribution of control-flow information in BLISS between basic block descriptors

and regular instructions does not change which programming constructs can be imple-

mented with this ISA. Function pointers, virtual methods, jump tables, and dynamic link-

ing are implemented in BLISS using jump-register BBDs and instructions in an identical

manner to how they are implemented with conventional instruction sets. For example, the

target register (r3) for thejr instruction in Figure 3.2 could be the destination register of a

previous load instruction.

BLISS compresses the control-flow address space for programs as each BBD corre-

sponds to 4 to 8 instructions on average. This implies that the BBD offset field requires

fewer bits compared to the regular ISA. For cases where the offset field isnot enough to

encode the PC-relative address, an extra BBD is required to extend the address (see Table

3.5). The dense PCs used for branches (BBDs) in BLISS also lead to different interference

patterns in the predictors than what we see with the PCs in the original ISA. For the bench-

marks and processors studied, a 1% improvement in prediction accuracy is achieved with

BLISS compared to the regular ISA due to the dense PCs.

Similar to the block-structured ISA [37, 70], BLISS treats each basic blockas an atomic

unit of execution. When a basic block is executed, either every instruction in the block is

retired or none of the instructions in the block is retired. After any misprediction, the

processor resumes execution at a basic block boundary and there is no need to handle
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partially committed basic blocks. Atomic execution is not a fundamental requirement, but

it leads to several software and hardware simplifications. For instance,it allows for a single

program counter that only points within the code segment for basic block descriptors. The

execution of all the instructions associated with each descriptor updates thePC so that it

points to the descriptor for the next basic block in the program order (PC+4 or PC+offset).

The PC does not point to the instructions themselves at any time.

Atomic basic block execution requires that the processor has sufficient physical regis-

ters for a whole basic block (15 in this case). For architectures with software handling of

TLB misses, the associativity of the data TLB must be at least as high as themaximum

number of loads or stores allowed per block. For the applications studied in Chapter 5, a

limit of 8 load/stores per block does not cause a noticeable change in code size or perfor-

mance. To handle precise exceptions, up to 16 additional physical registers and an 8-entry

store buffer are required to allow register and memory writes to by undone ifnecessary in

a case of an exception [70]. The cost of this backup hardware is minimal in many cases be-

cause these mechanisms are already present to support out-of-order, speculative execution.

3.2 Software Hints

The use of compiler-generated hints is a popular method for overcoming bottlenecks with

modern processors [96]. The hope is that, given the higher level of understanding of pro-

gram behavior or profiling information, the compiler can help the processor with selecting

the optimal policies and with using the minimal amount of hardware in order to achieve

the highest possible performance at the lowest power consumption or implementationcost.

A compiler could attach hints to executable code at various levels of granularity: with

every instruction, basic block, loop, function call, etc. Specifying hints at the basic block

granularity allows for fine-grain information without increasing the length of all instruction

encodings.
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3.2.1 Potential Uses for BLISS Hints

BLISS provides a flexible mechanism for communicating compiler-generated hintsat the

basic block granularity using the last field in each basic block descriptor in Figure 3.1.

Since descriptors are fetched early in the processor pipeline, the hints can beuseful with

tasks and decisions at any part of the processor (control-flow prediction, instruction fetch,

instruction scheduling, etc.). The following is a non-exhaustive list of potential uses of the

hints mechanism.� Code density: The hints field can be used to aggressively interleave 16-bit and 32-bit

instructions at basic block granularity without the overhead of additional instructions

for switching between 16-bit and 32-bit modes [36]. The block descriptor identi-

fies if the associated instructions use the short or long instruction format. No new

instructions are required to specify the switch between the 16-bit and 32-bit modes.

Hence, frequent switches between the two modes incur no additional runtime penalty.

Since interleaving is supported at basic block granularity, any infrequently used ba-

sic block within a function or loop can use the short encoding without negative side

effects. Chapter 7 evaluates using this type of hints for embedded processors.� Power savings: The hints field specifies if the instructions for the basic block use

a hardware resource such as the floating-point unit. This allows early detectionof

the processor components necessary to execute a code segment. Clock and power

distribution can be regulated aggressively without suffering stalls during reactiva-

tion.� VLIW issue: The hints field is used as a bit mask that identifies the existence of

dependencies between consecutive instructions in the basic block. This allows for

simpler logic for dependence checks within each basic block and instruction schedul-

ing.
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by the instructions in the basic block. This allows for a large number of predicate

registers in the ISA without expanding every single instruction by 4 to 5 bits.� Simpler renaming: The hints field specifies the live-in, live-out, and temporary reg-

isters for the instructions in the basic block. This allows for simpler renaming within

and across basic blocks [70].� Cluster selection: For a clustered processor, the hints field specifies how to dis-

tribute the instructions in this basic block across clusters given the dependencies they

exhibit. Alternatively, the hints field can specify if this basic block marks the begin-

ning of a new iteration of a parallel loop, so that a new cluster assignment can be

initiated [73].� Selective pipeline flushing: The hints can specify reconvergence points for if-then-

else and switch statements so that the hardware can apply selective pipeline flushing

on branch mispredictions.

Some of the examples above require a hints field that is longer than the 3 bits allocated

in the format in Figure 3.1. Hence, there can be a tradeoff between the benefits from using

the hints and the drawbacks from increasing the BBD length. For the hints usage studies in

this thesis (prediction hints and code density hints), 3-bit fields were sufficient.

It is interesting to note that attaching hints to BBDs has no effect on the structure and

code density of the instruction section of each program and its footprint and miss rate in

the instruction cache. One could even distribute executable code with multiple versions

of hints. The different versions can either represent different uses of the mechanism or

hints specialized to the characteristics of a specific microarchitecture. Merging the proper

version of hints with the block descriptors can be done at load time or dynamically,as

pages of descriptors are brought into main memory.



32 CHAPTER 3. BLOCK-AWARE INSTRUCTION SET

3.2.2 Case Study: Branch Prediction Hints

To illustrate the usefulness of the hints mechanism, we use it to implement software hints

for branch prediction [85]. The compiler uses 3 bits to provide a static or profile-based

indication on the predictability of the control-flow operation at the end of the basicblock.

Two bits select one of the four predictability patterns:� Statically predictable: fall-through basic blocks, unconditional jumps, or branches

that are rarely executed or highly biased. For such descriptors, static prediction is as

good as dynamic.� Dynamically predictable: conditional branches that require dynamic prediction but

do not benefit from correlation. A simple bimodal predictor is sufficient.� Locally predictable: conditional branches that exhibit local correlation. A two-

level, correlating predictor with per-address history is most appropriate for such

branches (e.g. PAg [112]).� Globally predictable: branches that exhibit global correlation. A two-level, correlat-

ing predictor with global history is most appropriate for such branches (e.g. Gshare

or GAg [69, 112]).

We use the third bit to provide a default taken or not-taken static prediction outcome.

With non-statically predictable descriptors, the static outcome can only be useful with es-

timating confidence or initializing the predictor. For statically predictable basic blocks, the

hints allow us for accurate prediction without accessing prediction tables. Hence, there

is reduced energy consumption and less interference. For dynamically predictable basic

blocks, the hints allow us to use a subset of the hybrid predictor and calculate confidence.
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3.3 Tools and Methodology

To experiment with the BLISS ISA, we developed a set of tools to generate the binary

programs and simulate their execution on modern processors. This section reviews the tools

necessary for the ISA-level characterization of BLISS. We discuss tools for performance

and energy analysis in Section 5.1.2.

We generate BLISS executables using a static binary translator, which can handle arbi-

trary programs from high-level languages like C or Fortran. Figure 3.3 presents the flow

diagram for the translator. The translator consists of three passes. The firstpass parses the

binary executable for the MIPS architecture, finds all symbols and relocations,identifies

all basic blocks, and creates the initial basic block descriptors (type field only). The second

pass optimizes the code by removing redundant jump instructions, transforming loops to

use the LOOP construct, and eliminating redundant branch instructions that perform asim-

ple test (equal/not equal to zero) to a register value produced within the same basic block by

a simple arithmetic or logical operation. This pass also implements the code optimizations

for code density which are presented in Chapter 7. The final pass assigns the length, target,

IP, and hints to descriptors, fixes relocations, generates the new binary and section headers,

and finally outputs the new BLISS executable. The generation of BLISS executablecould

also be done using a transparent, dynamic compilation framework [6].

Our simulation framework is based on the Simplescalar/PISA 3.0 toolset [16]which

we modified for the BLISS ISA. For ISA evaluation, we study benchmarks from the SPEC

CPU2000 suite using their reference datasets [38]. For benchmarks with multipledatasets,

we run all of them and calculate the average. The benchmarks are compiled withgcc at the

-O3 optimization level. With all benchmarks, we skip the first billion instructions in each

dataset and simulate another billion instructions for detailed analysis.
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Read Binary 

Header

Find Symbols and 

Relocations

Create Descriptors

(Type)

PASS 2

Code Optimizations

Fix Descriptors

(Offset, Length, IP, Hints)

PASS 3

Dump New Binary

Fix Binary Header 

& Section Headers

Fix Relocations

MIPS32 Binary

BLISS Binary

PASS 1

Find Basic-Blocks

Figure 3.3: Flow diagram for the BLISS static binary translator.
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Figure 3.4: Static code size increase for BLISS over the MIPS-32 ISA. Positive increase
means that the BLISS executables are larger.

3.4 ISA-Level Characterization

In this section, we present an ISA-level evaluation for BLISS. We study first the effect of

the additional descriptors on the static code size. We also present statistics about the static

and dynamic distribution of descriptor types and lengths.

3.4.1 Static Code Size

Figure 3.4 presents the percentage of code size increase for BLISS over the MIPSISA that

it is based on. Direct translation (Näıvebar) of MIPS code introduces one basic block de-

scriptor every four instructions and leads to an average code size increase of25%. Basic

optimization (BasicOptbar) reduces the average code size increase to 14%. The basic op-

timization targets the removal of redundant jump instructions (see example inFigure 3.2).

TheBranchRemovebar in Figure 3.4 shows that the BLISS handicap can be reduced

to 6.5% by removing conditional branch instructions that perform a simple test (equal/not

equal to zero) to a register value produced within the same basic block by a simple arith-

metic or logical operation. An extra bit is required for annotating the instructionproducing

the required register. This extra bit is readily available in most of the MIPS instructions

using the register format. For instructions using the immediate format, additional opcodes

are used for few of the most commonly used instructions.
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MIPS-32 Number of Number of Jump Branch
Code Size Basic Blocks Descriptors Instructions Instructions
(KBytes) Removed Removed

gzip 100 6478 6630 2704 2197
gcc 1229 91716 93053 42400 27196
crafty 217 12849 13404 5484 3842
gap 485 33754 34287 14286 10616
vortex 484 28388 29507 13472 7515
twolf 214 12941 13401 5236 4141

wupwise 100 6337 6577 2736 1949
applu 116 6277 6795 2743 2020
mesa 512 27705 29518 12912 7830
art 59 4043 4117 1519 1405
equake 61 3848 3982 1531 1275
apsi 188 8632 9657 4190 2593

Table 3.1: Statistics for the BLISS code size.

Table 3.1 presents additional statistics about the size, number of basic blocks, numberof

BBDs, number of jump instructions removed, and number of branch instructions eliminated

for the studied applications. All applications require more BBDs than the number of basic

blocks they have. On average, 4% more BBDs are used than the number of basic blocks.

This is due to two main reasons. First, basic blocks with 16 instructions or morein the

original MIPS code use multiple BLISS descriptors because each BBD can point toup to

15 instructions. Second, any BBD requiring more than eight bits for its offset field needs

an extra BBD to extend its offset field (see Table 3.5).

Finally, BLISS facilitates two more optimizations that allow the BLISS code size to be

even smaller than the original MIPS code. We study them in details in Chapter7.

3.4.2 ISA Statistics

Table 3.2 presents the static distribution of descriptor types and Table 3.3 presents the

dynamic distribution of descriptor types for BLISS. Most programs include a significant
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FT BR F BR B J-JR RET JAL-JALR LOOP
gzip 20.5% 39.3% 6.1% 13.0% 3.7% 15.2% 2.2%
gcc 13.3% 42.0% 4.0% 12.0% 2.4% 25.2% 1.1%
crafty 18.7% 39.6% 5.3% 11.6% 2.0% 21.4% 1.5%
gap 20.2% 39.4% 4.3% 14.4% 2.9% 16.8% 1.9%
vortex 14.3% 40.4% 1.5% 9.3% 3.7% 30.5% 0.3%
twolf 21.8% 38.7% 7.0% 10.6% 2.3% 17.6% 2.1%

wupwise 20.4% 36.8% 5.7% 14.8% 3.8% 17.4% 1.3%
applu 21.4% 36.0% 6.6% 14.2% 3.6% 16.2% 2.1%
mesa 19.1% 38.1% 2.3% 20.8% 4.1% 13.2% 2.4%
art 22.0% 40.2% 5.9% 13.0% 3.4% 13.0% 2.5%
equake 21.7% 38.6% 5.9% 12.6% 3.4% 15.5% 2.3%
apsi 21.7% 31.5% 5.2% 11.3% 3.5% 24.4% 2.4%

Average 19.6% 38.4% 5.0% 13.1% 3.2% 18.9% 1.8%

Table 3.2: Static distribution of BBD types for BLISS code.

FT BR F BR B J-JR RET JAL-JALR LOOP
gzip 19.8% 45.5% 5.0% 5.8% 4.4% 4.4% 15.1%
gcc 54.9% 21.3% 11.3% 3.1% 2.3% 2.3% 4.9%
crafty 8.2% 25.0% 2.0% 2.9% 4.4% 4.4% 53.1%
gap 29.1% 34.0% 5.8% 4.4% 4.2% 4.2% 18.3%
vortex 18.9% 54.3% 0.5% 1.7% 10.3% 10.3% 3.8%
twolf 14.7% 41.5% 15.4% 2.0% 7.1% 7.1% 12.1%

wupwise 22.2% 38.1% 5.3% 3.9% 13.2% 13.2% 4.2%
applu 30.7% 8.6% 14.5% 0.0% 0.0% 0.0% 46.1%
mesa 21.4% 46.5% 2.1% 5.9% 8.1% 8.1% 7.9%
art 8.8% 33.8% 2.0% 0.0% 0.0% 0.0% 55.4%
equake 20.0% 23.7% 20.5% 4.2% 1.1% 1.1% 29.3%
apsi 22.8% 31.4% 5.3% 3.8% 6.1% 6.1% 24.5%

Average 22.6% 33.6% 7.5% 3.1% 5.1% 5.1% 22.9%

Table 3.3: Dynamic distribution of BBD types for BLISS code.
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0-3 4-7 8-11 12-15
gzip 58.3% 25.6% 12.2% 3.8%
gcc 74.2% 17.0% 6.9% 1.9%
crafty 29.7% 62.0% 3.8% 4.5%
gap 52.7% 21.3% 4.1% 21.9%
vortex 63.7% 11.8% 14.2% 10.3%
twolf 59.3% 19.9% 18.3% 2.6%

wupwise 63.2% 11.0% 6.2% 19.6%
applu 23.2% 18.6% 11.3% 46.9%
mesa 54.9% 23.7% 7.3% 14.1%
art 52.4% 20.7% 2.7% 24.2%
equake 30.0% 40.9% 18.2% 10.9%
apsi 46.5% 28.4% 8.9% 16.2%

Average (INT) 56.3% 26.3% 9.9% 7.5%
Average (FP) 45.0% 23.9% 9.1% 22.0%
Average 50.7% 25.1% 9.5% 14.7%

Table 3.4: Dynamic distribution of BBD lengths for BLISS code.

number of fall-through descriptors. For integer applications, this is mostly due to the large

number of labels in the original MIPS code (potential targets of control-flow operations).

For floating-point applications, this is mostly due to the many basic blocks with 16 instruc-

tions or more in the original MIPS code. Such basic blocks use multiple BLISS descriptors

because each BBD can point to up to 15 instructions. On average, 1.9% and 2.8% of the

static basic blocks contain more than 15 instructions for INT applications and FP applica-

tions respectively. Even though 1.8% of static BBDs on average use the LOOP construct,

they account for almost 23.0% of executed BBDs.

Table 3.4 shows the dynamic distribution of descriptor lengths. It is interesting to notice

that, even for INT applications, an average of 40% of the executed basic blocks include

more than 4 instructions. This implies that making one prediction for every 4 instructions

fetched from the instruction cache is often wasteful. On average, 94% of the executed

basic blocks contain 15 instructions or less. Therefore, restricting the BBD length to 15
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0-2 3-5 6-8 9-11 11 or more
gzip 72.9% 11.4% 5.7% 10.0% 0.0%
gcc 56.7% 15.1% 6.1% 5.4% 16.6%
crafty 63.5% 12.4% 4.5% 16.9% 2.7%
gap 74.9% 10.7% 3.5% 3.5% 7.5%
vortex 57.7% 11.7% 2.9% 7.8% 20.0%
twolf 70.5% 11.0% 4.3% 7.4% 6.8%

wupwise 72.3% 12.7% 6.0% 9.0% 0.0%
applu 75.4% 11.0% 4.3% 9.2% 0.0%
mesa 69.5% 11.8% 9.2% 2.9% 6.6%
art 74.2% 11.2% 7.5% 7.1% 0.0%
apsi 69.3% 9.2% 3.7% 16.9% 0.9%

Average 68.8% 11.6% 5.2% 8.7% 5.6%

Table 3.5: Static distribution of the number of offset bits required for the BBDs inthe
BLISS code.

instructions is a good compromise between the descriptor length and the basic block length.

Overall, the average dynamic basic block length is 7.7 instructions (5.8 for integer, 9.7 for

floating-point), while the static average length is 3.7 instructions (3.5 for integer, 3.9 for

floating-point).

Table 3.5 shows the number of offset bits required for BBDs. On average, 80% of BBDs

require less than 3 bits (FT BBDs require 0 bits). BBDs that require offsetfield larger than 8

bits can be converted to use indirect addressing mode or extra BBDs are used toextend the

address. As discussed in the previous section, this partially explains the difference between

the number of basic blocks and the number BBDs for the applications shown in Table 3.1.

3.5 Related Work

Many researchers have observed that conditional branches and other control-flow opera-

tions serve multiple functions. They define basic block boundaries, provide the target ad-

dress, and compute the branch condition. Several instruction sets defineprepare-to-branch
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instructions that define the first two functions and can be scheduled early in the instruc-

tion stream [51, 96]. The basic block descriptors in BLISS are basically prepare-to-branch

instructions moved into a separate memory region. Hence, there is no need to access the

instruction cache and parse the instruction stream in order to locate them.

The Block-structured ISA (BSA) [37, 70] defines basic blocks as atomic execution units

but leaves their definitions within the regular instruction stream as well.BSA exploits

atomic BB execution in order to reverse the ordering of instructions within each BB to

simplify renaming.

The decoupled control-execute (DCE) architectures use a separate instruction set with

distinct architectural state for control-flow calculation [107, 65]. DCE instruction sets al-

low the front-end to become an independent processor that can resolve control-flow and

prefetch instructions tens to hundreds of cycles ahead of the execution core. However,

DCE architectures are susceptible to deadlocks and have complicated exception handling.

The basic block descriptors in BLISS are not a stand-alone ISA and do not define or modify

any architectural state, hence eliminating the deadlock scenarios with decoupled control-

execute ISAs. While most DCE ISAs have been developed for and evaluated with single-

issue, in-order processors, BLISS works also for wide-issue speculative designs.

Several instruction sets allow for compiler-generated hints with individual branch and

load/store instructions [96]. BLISS, on the other hand, provides a general mechanismfor

software hints at basic block granularity. The mechanism can support a varietyof uses as

explained in Section 3.2.

3.6 Summary

In this chapter, we presented the block-aware instruction set architecturethat defines basic

block descriptors in addition to and separately from the actual instructions ineach program.

A descriptor provides sufficient information for fast and accurate control-flowprediction
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without accessing or parsing the instruction stream. It describes the type of thecontrol-flow

operation that terminates the block, its potential target, and the number of instructions in

the basic block. This information is sufficient to tolerate the latency of instruction accesses,

regulate the use of prediction structures, and direct instruction prefetching. Finally, block

descriptors also provide a general mechanism for compilers for passing software hints that

can assist with a wide range of challenges at the hardware level.

The instruction set level analysis demonstrated that basic block descriptorscould be

provided at a minimal impact to application code density (approximately 5%). Theaverage

basic block describes 5.8 to 9.7 instructions, which shows that limiting the lengthof basic

blocks to 15 instructions provides a good compromise between the descriptor overhead and

the block length. It also verifies that making prediction for every 4 instructions fetched with

conventional ISAs is often wasteful.

In the following chapter, we will discuss the processor microarchitecture that imple-

ments the BLISS ISA. In Chapter 5, we will quantify the performance benefit of theBLISS

ISA and microarchitecture.



Chapter 4

Front-End Architecture for the

Block-Aware ISA

The BLISS instruction set allows the processor front-end to decouple branch prediction

from instruction fetching. The software-defined basic block descriptors provide sufficient

information for fast and accurate control-flow prediction without accessing orparsing the

instruction stream. Decoupling allows us to remove the instruction cache access from the

critical path of accurate prediction. Hence, instruction cache latency no longer affects the

prediction accuracy. The descriptors also provide an early, yet accurate view into the in-

struction address stream and can be used for instruction prefetching to reducethe impact of

instruction cache misses. Furthermore, the control-flow information available in descrip-

tors allows for judicious use of branch predictors, which reduces interference and training

time and improves overall prediction accuracy.

This chapter presents the decoupled front-end for the BLISS ISA and its benefits over

a conventional processor front-end. Section 4.1 describes the architecture and operation of

the BLISS-based front-end. Certainly, a decoupled front-end can be implemented without

the ISA support provided by BLISS. Section 4.2 describes a state-of-the-art decoupled

front-end without the software support and explains the advantages that BLISS introduces

42
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Figure 4.1: A simplified view of the BLISS decoupled processor.

over such designs. Section 4.3 discusses related work. While the chapter primarily focuses

on architectural details and issues, Chapter 5 provides the evaluation results that clearly

demonstrate the advantages of BLISS over both a conventional front-end and a state-of-

the-art decoupled front-end without the ISA support.

4.1 Block-Aware Front-End Design

The BLISS ISA suggests a superscalar front-end that fetches the basic block descriptors

(BBDs) and the associated instructions in a decoupled manner. The basic block queue

(BBQ) in Figure 4.1 decouples control-flow predictions from instruction cache accesses.

Each cycle, a BBD is fetched from the descriptor cache and pushed into the BBQ.The

fetched BBD provides sufficient information to accurately predict the next BBD to be

fetched in the following cycle. The content of the BBQ is used to fetch the required in-

structions form the instruction cache and deliver them to the back-end of the processor for

execution.

4.1.1 Microarchitecture and Operation

Figure 4.2 presents the microarchitecture of a BLISS-based decoupled front-end. Com-

pared to a conventional front-end, we replace the branch target buffer (BTB) with a BB-

cachethat caches the block descriptors in programs. The basic block descriptors fetched

from the BB-cache provide the front-end with the architectural information necessary for
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Figure 4.2: A decoupled front-end for a superscalar processor based on the BLISS ISA.

control-flow prediction in a compressed and accurate manner. Since descriptors are stored

separately from ordinary instructions, their information is available for front-end tasks be-

fore instructions are fetched and decoded. The sequential target of a basic block isalways

at address PC+4, regardless of the number of instructions in the block. The non-sequential

target (PC+offset) is also available through the offset field for all blocksterminating with

PC-relative control-flow instructions. For register-based jumps, the non-sequential target is

provided by the last regular instruction in the basic block through a register specifier. Basic

block descriptors provide the branch condition when it is statically determined(all jumps,

return, and fall-through blocks). For conditional branches, the descriptor provides type in-

formation (forward, backward, loop) and hints which can assist with dynamic prediction.

The actual branch conditional is provided by the last regular instruction in the basic block.

The BLISS front-end operation is simple. On every cycle, the BB-cache is accessed

using the PC. On a miss, the front-end stalls until the missing descriptor is retrieved from

the memory hierarchy (L2-cache). On a hit, the BBD and its predicted direction/target are

pushed in thebasic block queue (BBQ). The predicted PC is used to access the BB-cache in

the following cycle. Instruction cache accesses use the instruction pointer and length fields

in the descriptors available in the BBQ.
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Figure 4.3 shows the BLISS descriptor cache. The offset field in each descriptor is

stored in the BB-cache in an expanded form that identifies the full target of the terminating

branch. For PC-relative branches and jumps, the expansion takes place on BB-cache refills

from lower levels of the memory hierarchy, which eliminates target mispredictions even for

the first time the branch is executed. For register-based jumps, the offset field is available

after the first execution of the basic block. The BB-cache also integrates a simple bimodal

predictor. The predictor provides a quick direction prediction along with the target predic-

tion. The simple prediction is verified one cycle later by a large, tagless, hybrid predictor.

In the case of a mismatch, the front-end experiences a one cycle stall.

The BB-cache stores multiple sequential BBDs. Long BB-cache lines exploit spatial

locality in descriptor accesses and reduce the storage overhead for tags. For our experi-

ments, each BB-cache line stores eight sequential BBDs. This provides a balance between

spatial locality and the tag overhead. With the BTB, on the other hand, each cache line

describes a single target address (one tag per one BTB entry) for greater flexibility with

replacement. The increased overhead for tag storage in BTB balances out thefact that the

BB-cache entries are larger due to the instruction pointer field. For the same number of

entries, the BTB and BB-cache implementations require the same number of SRAMbits.

Same number of entries means that the number of branches that BTB can store is equal to

the number of basic block descriptors the BB-cache can store.

Figure 4.4 shows the organization and operation of the translation look-aside buffer

(TLB ) used for caching virtual to physical address mappings for BLISS descriptors. We

show a fully associative TLB as an example. However, just like any other TLB, it can

have other associativities. The TLB operates in the following manner. The BBD virtual

page frame address is compared with all of the tags. In case of a match, the BBD page

offset is concatenated with the physical page frame address from the TLB to form the BBD

physical address. The TLB also includes the higher bits [31:15] of the instruction pointer.

Those bits are concatenated with the lower bits [14:2] available in the BBD to from the full
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instruction pointer address. Figure 4.4 only shows a single IP[31:15] field for each TLB

entry which implies that instructions for all BBDs within a page must be withinthe same

32-KByte instruction frame. Alternatively, we can have multiple IP[31:15]fields within a

TLB entry to support more flexibility.

4.1.2 Benefits of ISA Support for Basic Blocks

The BLISS front-end alleviates all of the shortcomings of a conventional front-end.The

BLISS front-end improves the accuracy of branch direction and target prediction, removes

the instruction cache access from the critical path of prediction, and minimizes the number
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of instruction cache misses. Moreover, it allows energy-efficient accesses to the instruction

cache and predictors.

Branch Prediction

The BLISS front-end minimizes the number of branch direction mispredictions. ThePC

in the BLISS ISA always points to basic block descriptors (i.e. control-flow instructions);

the hybrid predictor is only used and trained for PCs that correspond to branches. With a

conventional front-end, on the other hand, the PC may often point to non control-flow in-

structions which causes additional interference and slower training for the hybrid predictor.

In addition, the exact address of the descriptor is used to access the predictor. This is not

the case with a conventional front-end where the address of the first instructionin the fetch

block is used to access the predictor instead.

The type of the BBD also allows us to selectively use the predictor in an accurate

manner. For BBDs that correspond to blocks terminating with an unconditional control-

flow instruction (J, JAL, etc), the hybrid predictor is not used nor trained. This reduces

interference and saves energy in the predictor. Finally, the static prediction hints in basic

block descriptors allow for judicious use of the hybrid predictor. Strongly biased branches

do not use the predictor and branches that exhibit strong local or global correlation patterns

use only one of its components. This further improves the prediction accuracy and leads to

additional energy savings.

The BLISS front-end also minimizes the number of branch target mispredictions.The

BB-cache stores the full address for PC-relative branches and jumps. The expansion takes

place on BB-cache refills from lower levels of the memory hierarchy, which eliminates

target mispredictions even for the first time the branch is executed. Unlikethe BTB, when

a BB-cache entry is evicted, the data is still available in lower memory hierarchy.
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The BBQ decouples control-flow prediction from instruction fetching. Multi-cyclela-

tency for large instruction cache no longer affects prediction accuracy, as the vital informa-

tion for speculation is included in basic block descriptors available through the BB-cache

(block type, target offset). Hence, the predictor can run ahead, even when the instruction

cache experiences temporary stalls. Compared to the pipeline for a conventional ISA, the

BLISS-based microarchitecture adds one pipeline stage for fetching basic blockdescrip-

tors. The additional stage increases the misprediction penalty. This disadvantage of BLISS

is more than compensated for by improvements in prediction accuracy due to reduced in-

terference at the predictor.

Instruction Cache

The contents of the BLISS BBQ provide an early, yet accurate view into the instruction

address stream and can be used for instruction prefetching to hide instruction cache misses.

Figure 4.5 presents the prefetching scheme used with BLISS. The instruction cache is

a non-blocking cache that can handle up to four misses concurrently. The instruction

cache has a single read port that can be used by either the instruction fetch unit orthe

prefetcher. When the instruction cache is serving a miss or when the instruction queue

is full, the port can be used by the prefetcher to lookup further instructions in the cache

based on the content of the BBQ. If the instructions are not available in the instruction

cache, the instructions are prefetched from lower memory hierarchy. The prefetched cache

lines are brought into a separate buffer to prevent instruction cache pollution. Once the

prefetched cache line is accessed by the instruction fetch unit, it is moved into the instruc-

tion cache.

Many prefetching techniques have been widely used with conventional instruction sets

to hide the latency of cache misses. The simplest technique is the sequential prefetching

[103, 77]. In this scheme, one or more sequential cache lines that follow the current fetched

line are prefetched. Stream prefetching only helps with misses on sequentialinstructions.
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Figure 4.5: The prefetcher in the BLISS-based front-end.

With BLISS, the prefetcher initiates prefetches for cache lines on the predicted path of

execution using the BBQ content. The advantage of such a scheme is that it can prefetch

potentially useful instructions even for non-sequential access patterns as long as branch

prediction is sufficiently accurate and requires no training. BLISS prefetching is similar to

history-based schemes [104, 39, 48] that use the patterns of previous accesses to initiate

the new prefetches. The difference is that we require no additional history tables as the

BB-cache and the predictors act as an accurate history mechanism.

Energy Efficiency

BLISS allows us to achieve high energy efficiency in two ways: it reduces the wasted

energy in the overall design and reduces the front-end energy. BLISS reduces theenergy

wasted on fetching and executing mispredicted instructions as a result of theimproved

prediction accuracy. By reducing execution time, the BLISS-based design also saves on

the energy consumed by the clock tree and the processor resources even when they are

stalling or idling.
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The availability of basic block descriptors allows for energy optimizations that reduce

the front-end energy consumption. Each basic block defines exactly the number of instruc-

tions needed from the instruction cache. Using segmented word lines [30] for the data

portion of the instruction cache, we can fetch the necessary words while activating only the

necessary sense-amplifiers in each case. As front-end decoupling tolerates higher instruc-

tion cache latency without loss in speculation accuracy, we can access first the tags for a

set associative instruction cache, and in subsequent cycles, access the data only in the way

that hits [91]. Furthermore, we can save decoding and tag access energy in theinstruction

cache by merging instruction cache accesses for sequential blocks in the BBQ that hit in the

same instruction cache line. Finally, the front-end can avoid the access to some or all pre-

diction tables for descriptors that are not conditional branches or for descriptors identified

as statically predictable by branch hints. Chapter 6 discusses these optimization techniques

in more details and evaluates them.

4.2 Hardware-only Decoupled Front-End

A decoupled front-end similar to the one in Figure 4.2 can be implemented without the

ISA support provided by BLISS. The FTB design proposed by Reinman et. al. [89, 90]

describes the latest of such design. In this section, we briefly describe theirdesign and

compare it to the BLISS-based front-end design.

4.2.1 The FTB Front-End Design

Figure 4.6 depicts the FTB front-end by Reinman et. al. [89, 90], which represents a

comprehensive, high-performance architecture for a decoupled, block-based front-end.The

design uses afetch target buffer (FTB)as an enhanced basic block BTB [111]. Each FTB

entry describes afetch block, a set of sequential instructions starting at a branch target and

ending with a strongly biased, taken branch or an unbiased branch [88]. A fetch blockmay
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Figure 4.6: The FTB architecture for a decoupled, block-based front-end.

include several strongly biased, not-taken branches. Therefore, a fetch blockmay include

several basic blocks. Apart from a tag that identifies the address of the first instruction in

the fetch block, the FTB entry contains the length of the block, the type of the terminating

branch or jump, its predicted target, and its predicted direction. Fetch blocksare created

in hardware by dynamically parsing the stream of executed instructions and observing the

behavior of control-flow instructions.

Each cycle, the FTB is accessed using the program counter. On an FTB hit, the starting

address of the block (PC), its length, and the predicted direction and target arepushed in the

fetch target queue (FTQ). Similar to the BBQ, the FTQ decouples control-flow prediction

from instruction cache accesses. On an FTB miss, the front-end injects into the FTQ max-

imum length (15 instructions), fall-through fetch blocks starting at the miss address, until

an FTB hit occurs or the back-end of the processor signals amisfetchor amisprediction.

A misfetch occurs when the decoding logic detects a jump in the middle of a fetch block.

In this case, the pipeline stages behind decoding are flushed including the FTQ and the IQ,
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a new FTB entry is allocated for the fetch block terminating at the jump, and execution

restarts at the jump target. A misprediction occurs when the execution coreretires a taken

branch in the middle of a fetch block or when the control-flow prediction for the terminat-

ing branch (target or direction) proves to be incorrect. In either case, the whole pipeline is

flushed and restarted at the branch target. If the fetch block was read fromthe FTB, the FTB

entry is updated to indicate the shorter fetch block or the change in target/direction predic-

tion. Otherwise, a new FTB entry is allocated for the block terminating at the mispredicted

branch. Even though both misfetches and mispredictions lead to creation of new fetch

blocks, no FTB entries are allocated for fall-through fetch blocks because sequential blocks

are automatically fetched in the case of a FTB miss. Next section willreview qualitatively

the advantages and the disadvantages of the FTB design compared to the BLISS design.

4.2.2 Hardware vs. Software Basic Blocks

The FTB design encapsulates all the advantages of a decoupled, block-based front-end.

Nevertheless, the performance of the FTB-based design is limited by inaccuracies intro-

duced during fetch block creation and by the finite capacity of the FTB. When a jump

instruction is first encountered, a misfetch event will flush the pipeline front-end in order to

create the proper fetch block. When a taken branch is first encountered, a full pipeline flush

is necessary to generate the proper FTB entry. This is also the case when a branch switches

behavior from biased not-taken to unbiased or taken, in which case we need to shorten the

existing fetch block. In addition, we lose accuracy at the predictor tables as the entry that

was used for the branch at the end of the old block, will now be used for the branch that

switched behavior. A fetch block is identified by the address of its first instruction and not

by the address of the terminating branch or jump. Hence, as the length of a fetch block

changes, the branch identified by its address also changes. The branch terminatingthe old

block will need to train new predictor entries.
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Moreover, the frequency of such problematic events can be significant due to the finite

capacity of the FTB. As new FTB entries are created, older yet useful entries may be evicted

due to capacity or conflict misses. When an evicted block is needed again, the FTB entry

must be recreated from scratch leading to the misfetches, mispredictions, and slow predic-

tor training highlighted above. In other words, an FTB miss can cost tens of cycles, the

time necessary to refill the pipeline of a wide processor after one or more mispredictions.

Finally, any erroneous instructions executed for the large, fall-through fetch blocks injected

in the pipeline on FTB misses lead to wasted energy consumption. Using a smaller fetch

block length may reduce the number of erroneous instructions executed; however, this will

lead to the creation of smaller fetch-blocks that will negatively affect performance. The

FTB design is incapable of merging smaller blocks into a single larger block.

The BLISS front-end alleviates the basic problems of the FTB-based design. First, the

BLISS basic blocks are software defined. They are never split or recreated byhardware as

jumps are decoded or branches change their behavior. In other words, the BLISS front-end

does not suffer from misfetches or mispredictions due to block creation. Of course,BLISS

still has mispredictions due to incorrect prediction of the direction or target ofthe branch

terminating a basic block, but there are no mispredictions due to discovering or splitting

fetch blocks. In addition, the PC used to index prediction tables for a branch is always the

address of the corresponding BBD. This address never changes regardless of the behavior

of other branches in the program, which leads to fast predictor training. Second, whennew

descriptors are allocated in the BB-cache, the old descriptors are not destroyed. As part of

the program code, they exist in main memory and in other levels of the memory hierarchy

(e.g. L2-cache). On a BB-cache miss, the BLISS front-end retrieves missing descriptors

from the L2-cache in order of ten cycles in most cases. Given a reasonable occupancy in

the BBQ, the latency of the L2-cache access does not drain the pipeline from instructions.

Hence, the BLISS front-end can avoid the mispredictions and the energy penalty associated

with recreating fetch blocks on an FTB miss.
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The potential drawbacks of the BLISS front-end are the length of the basic blocks

and the utilization of the BB-cache capacity. FTB fetch blocks can be longer than BLISS

basic blocks as they can include one or more biased not-taken branches. Longer blocks

allow the FTB front-end to fetch more instructions per control-flow prediction.However,

the BLISS front-end actually fetches moreusefulinstructions per control-flow prediction.

Although the BLISS blocks are smaller, they are accurately defined by software. For FTB,

the long, fall-through fetch blocks introduced on FTB misses contain large numbers of

erroneous instructions that lead to misfetches, mispredictions, and slow predictor training.

In addition, the IPC is typically constrained by the commit width of the back-end. TheIPC

for imbalanced back-ends are further constrained by instruction dependencies. Therefore,

having larger fetch blocks may not improve performance. The BLISS front-end mayalso

underutilize the capacity of the BB-cache by storing descriptors for fall-throughblocks or

blocks terminating with biased not-taken branches. This can lead to higher miss rates for

the BB-cache compared to the FTB. In Chapter 5, we will show that the BB-cache achieves

good hit rates for a variety of sizes and consistently outperforms an equally sized FTB.

4.3 Related Work

Block-based front-end engines were introduced by Yeh and Patt to improve prediction

accuracy [111], with basic block descriptors formed by hardware without any additional

ISA support. Decoupled front-end techniques have been explored by [17] and [105].

Reinman et al. combined the two techniques in the FTB decoupled front-end design

[88, 89, 90]. Ramirez et al. applied an FTB-like approach to long sequential instruction

streams created with code layout optimizations and achieved 4% performance improvement

[86].

Significant amount of front-end research has also focused on trace caches [94, 29],

trace predictors [45], and trace construction [78]. Trace caches have been shown to work
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well with basic blocks defined by hardware [14, 49]. One can form traces on top of the

basic blocks in the BLISS ISA. BLISS provides two degrees of freedom for code lay-

out optimizations (blocks and instructions), which could be useful for trace formation and

compaction.

Other research in front-end architectures has focused on multi-block prediction [100,

99], control-flow prediction [83, 26], and parallel fetching of no contiguous instruction

streams [74, 95]. Such techniques are rather orthogonal to the block-aware ISA and can be

used with a BLISS-based front-end engine.

4.4 Summary

This chapter presented the BLISS-based front-end that fetches the basic blockdescriptors

and the associated instructions in a decoupled manner. The BLISS-based front-end replaces

the branch target buffer with a BB-cache that caches the block descriptors inprograms. The

descriptors provide the front-end with the architectural information necessary for control-

flow prediction in a compressed and accurate manner. This allows the decoupledfront-end

to improve prediction accuracy by judicious use and training of branch predictors,remove

the instruction cache latency from the prediction critical path, and accurately prefetch in-

structions to hide instruction cache misses.

A decoupled front-end with similar advantages can be implemented without the ISA

support provided by BLISS [88, 89]. However, its performance is limited by inaccuracies

introduced during fetch block creation and by the finite capacity of the fetch-blocksstorage.

With BLISS, on the other hand, the software defined basic blocks allow the decoupled

front-end to avoid the inaccuracies of hardware creation of fetch blocks and tostore fetch

block information at any level of the memory hierarchy.



Chapter 5

Evaluation for High-End Superscalar

Processors

The BLISS ISA provides architectural support for control-flow prediction and instruction

delivery. The basic block descriptors convey the software information necessary for ac-

curate branch prediction and guided instruction prefetching. In the previous chapter,we

introduced a processor front-end that decouples control-flow speculation from instruction

cache accesses. While instruction fetching requires the information in theBBDs, instruc-

tion decoding is no longer in the critical path for accurate prediction.

This chapter presents a quantitative evaluation of BLISS for high-end superscalar pro-

cessors. Section 5.1 presents the methodology and tools. In Section 5.2, we discuss in

details the evaluation results for the BLISS-based front-end and compare itto both a con-

ventional front-end design and a hardware-only, decoupled design (FTB). Section 5.3pro-

vides further insights by comparing the BLISS front-end to specific variants of theFTB

design. In Section 5.4, we explore the design space for the BLISS front-end by varying key

architectural parameters. While this chapter primarily focuses on the performance evalua-

tion for high-end processor cores, Chapter 6 presents the energy evaluation and Chapter 7

evaluates BLISS for embedded processor designs.

57
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5.1 Methodology

5.1.1 Processor Configurations

Our evaluation covers three processor models. The ”Base” model reflects a superscalar

processor that uses a RISC ISA. Its front-end relies on a conventional BTB anddoes not

decouple control-flow predictions from instruction fetching. The FTB model uses a decou-

pled front-end with hardware-only techniques to form extended fetch blocks. It follows the

organization discussed in Section 4.2.1. The BLISS model uses a decoupled front-end that

utilizes the basic block descriptors in the BLISS ISA. It follows the organization described

in Section 4.1.1. We assume that the three models operate at the same clock frequency. For

performance, we report instructions committed per cycle (IPC) to focus on architectural

differences rather than circuit differences.

Table 5.1 presents the microarchitecture parameters used in the evaluationof the three

processor models. We simulate both 8-way and 4-way execution cores with all three mod-

els. The 8-way execution core is generously configured to reduce back-end stalls so that any

front-end performance differences are obvious. The 4-way execution core is loosely mod-

eled after the Alpha 21264 processor [52] and represents a more practical implementation.

The three models differ only in the front-end. All of the other parameters are identical. The

pipeline of the base model consists of six stages: fetch, decode, issue, execute,writeback,

and commit stage. Both of the BLISS and FTB designs have an additional pipe stage. The

extra stage in the BLISS design is for fetching BBDs and in the FTB design is for accessing

the FTB and pushing fetch-blocks into the FTQ.

In all comparisons, the number of blocks (entries) stored in BTB, FTB, and BB-cache is

the same so no architecture has an unfair advantage. Actually, all three structures take ap-

proximately the same number of SRAM bits to implement for the same number of entries.

The BTB/FTB/BB-cache is always accessed in one cycle. The latency of theother caches

in clock cycles is set properly based on its relative size compared to BTB/FTB/BB-cache.
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Front-End Parameters
Base FTB BLISS

Fetch Width 8 instructions/cycle (4) 1 fetch block/cycle 1 basic block/cycle
Target BTB: 2K entries FTB: 2K entries BB-cache: 2K entries
Predictor 4-way, 1-cycle access4-way, 1-cycle access 4-way, 1-cycle access

8 entries per cache line
Decoupling Queue – FTQ: 4 entries BBQ: 4 entries
Prefetching – Based on FTQ Based on BBQ

Common Processor Parameters
Prediction 1 prediction per cycle
Hybrid gshare: 4K counters
Predictor PAg L1: 1K entries, PAg L2: 1K counters

selector: 4K counters
RAS 32 entries with shadow copy
Instruction cache 32 KBytes, 4-way, 64B blocks, 1 port, 2-cycle access pipelined
Issue/Commit Width 8 instructions/cycle (4)
IQ/RUU/LSQ Size 64/128/128 entries (32/64/64)
FUs 12 INT & 6 FP (6, 3)
Data cache 64 KBytes, 4-way, 64B blocks, 2 ports, 2-cycle access pipelined
L2 cache 1 MByte, 8-way, 128B blocks, 1 port, 12-cycle access, 4-cycle repeat rate
Main memory 100-cycle access

Table 5.1: The microarchitecture parameters used for performance evaluationof high-end
superscalar processors. The common parameters apply to all three models (Base, FTB,
BLISS). Certain parameters vary between 8-way and 4-way processor configurations. The
table shows the values for the 8-way core with the values for the 4-way core in parenthesis.

The same instruction cache and predictors are used in all three models. Both ofthe FTB

and BLISS include an extra queue for decoupling. The size of the BTB/FTB/BB-cache

should be approximately 1/4 to 1/8 the size of the instruction cache as each basic block

corresponds to 4 to 8 instructions on average (see Section 3.4.2).

For the FTB and BLISS front-ends, we implement instruction prefetching based onthe

contents of the FTQ and BBQ buffers described in Section 4.1.2. When the instruction

cache is stalled due to a miss or because the IQ is full, the contents of FTQ/BBQ entries are

used to look up further instructions in the instruction cache. Prefetches are initiated when a
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potential miss is identified. The prefetched data goes to a separate prefetchbuffer to avoid

instruction cache pollution. The simulation results account for contention for the L2-cache

bandwidth between prefetches and regular cache misses.

For the case of BLISS, we present results with (BLISS-Hints) and without (BLISS) the

static prediction hints in each basic block descriptor. When available, static hints allow for

judicious use of the hybrid predictor. Strongly biased branches do not use the predictor

and branches that exhibit strong local or global correlation patterns use only one of its

components.

5.1.2 Tools and Benchmarks

Our simulation framework is based on the Simplescalar/PISA 3.0 toolset [16], which we

modified to add the FTB and BLISS front-end models. For energy measurements, we

use the Wattch framework with the cc3 power model [15]. In this non-ideal, aggressive

conditional clocking model, power is scaled linearly with port or unit usage, exceptthat

unused units dissipate 10% of their maximum power, rather than drawing zero power.En-

ergy consumption was calculated for a 0.10µm process with a 1.1V power supply. The

reportedTotal Energyincludes all the processor components (front-end, execution core,

and all caches). Access times for cache structures were calculated using Cacti v3.2 [102].

For our experimental evaluation, we study 12 benchmarks from the SPEC CPU2000

suite using their reference datasets [38]. The selected benchmarks have varying require-

ments on the front-end. The rest of the benchmarks in the SPEC CPU2000 suite perform

similar and their results are not shown for brevity. For benchmarks with multiple datasets,

we run all of them and calculate the average. The benchmarks are compiled withgcc at

the -O3 optimization level. With all benchmarks and all front-ends, we skip the first billion

instructions in each dataset and simulate another billion instructions for detailed analysis.

The BLISS code is generated using the process explained in Section 3.3.
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Figure 5.1: Performance comparison for the 8-way processor configuration with the Base,
FTB, and BLISS front-ends. The top graph presents raw IPC and the bottom one shows the
percentage of IPC improvement over the Base for FTB and BLISS.

5.2 Evaluation

This section presents the performance comparison between the base, FTB, and BLISS

models. To illustrate the source of the performance differences, we also study in details

prediction accuracy issues and the behavior of target prediction tables, instruction cache,

L2-cache, and instruction prefetcher for each model.

5.2.1 Performance Evaluation

Figure 5.1 compares the IPC achieved for the 8-way superscalar processor configuration

with the three front-ends. The graphs present both raw IPC and percentage of IPC improve-

ment over the base front-end. The FTB design provides a 7% average IPC improvement

over the base, while the BLISS front-end allows for 20% and 24% improvement over the
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Figure 5.2: Fetch and commit IPC for the 8-way processor configuration with the FTB
and BLISS front-ends. We present data for a representative subset of benchmarks,but the
average refers to all benchmarks in this study. For BLISS, we present the data for the case
without static branch hints.

base without and with branch hints respectively. The FTB front-end provides IPCimprove-

ments over the base for 7 out of 12 benchmarks, while for the remaining benchmarks there

is either no benefit or a small slowdown. On the other hand, the BLISS front-end improve-

ment over the base is consistent across all benchmarks. Even without static hints, BLISS

outperforms FTB for all benchmarks exceptvortex. For vortex, the FTB front-end is

capable of forming long fetch blocks which helps in achieving a higher FTB hit rate (see

Figure 5.4). With hints, BLISS achieves even higher IPC improvements. This is mainly

due to the improved prediction accuracy, as we will see in Section 5.2.2.

Both FTB and BLISS have fundamental advantages over the base due to their decoupled

front-end (see Section 4.1.1 and 4.2.1). The FTB design is more aggressive than BLISS

in terms of instruction fetching. Nevertheless, overly aggressive instruction fetch may hurt

overall performance due to the cost of misfetches and mispredictions. To illustrate this

issue, Figure 5.2 compares the fetch and commit IPC for the FTB and BLISS front-ends.

The fetch IPC is defined as the average number of instructions described by the blocks

inserted in the FTQ/BBQ in each cycle. Looking at fetch IPC, the FTB design fetches more

instructions per cycle than BLISS (3.6 versus 2.8 on the average). The FTB advantage is

due to the larger blocks and because the front-end generates fall-through blocks on FTB

misses, while the BLISS front-end stalls on BB-cache misses and retrieves the descriptors
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Figure 5.3: Normalized number of pipeline flushes due to direction and target mispredic-
tions for the 8-way processor configuration with the Base, FTB, BLISS, and BLISS-HINTS
front-ends. We present data for a representative subset of benchmarks, but the average
refers to all benchmarks in this study.

from the L2-cache. Nevertheless, in terms of commit IPC (instructions retired per cycle),

the BLISS front-end has an advantage (1.9 versus 2.1). In other words, a higher ratio of

instructions predicted by the BLISS front-end turn out to be useful. The long, fall-through

fetch blocks introduced on FTB misses contain large numbers of erroneous instructions

that lead to misfetches, mispredictions, and slow predictor training. On the other hand, the

BB-cache in BLISS always retrieves an accurate descriptor from the L2-cache. In other

words, BLISS uses the information available through the instruction set to strike a balance

between over and under-speculation.

5.2.2 Prediction Accuracy Analysis

To understand the performance difference between the FTB and BLISS designs, weare

going to look first at the prediction accuracy and in the following sections at theinstruction

cache, L2-cache, and the FTB/BB-cache behaviors.

Figure 5.3 quantifies the differences in prediction accuracy for the three designs by

comparing the number of full pipeline flushes. A full pipeline flush occurs when a branch

is executed and either its target or direction is mispredicted. In such a case, all of the

instructions following the branch are removed from the pipeline and fetching starts at the
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correct address. These flushes have a severe performance impact as they empty the full

processor pipeline. Compared to the base, BLISS reduces by 41% the number of pipeline

flushes due to target and direction mispredictions. Flushes in BLISS are slightly more

expensive than in the base design due to the longer pipeline, but they are less frequent. The

BLISS advantage is due to the availability of control-flow information from theBB-cache

regardless of instruction cache latency and the accurate indexing and judicious useof the

hybrid predictor. When static branch hints are in use (BLISS-Hints), the branch prediction

accuracy is improved by an average of 1.2% from 93.4% without hints to 94.6% with hints.

The improved prediction accuracy results in an additional 10% reduction in the number of

pipeline flushes.

The FTB front-end also reduces by 17% the number of pipeline flushes due to target and

direction mispredictions. However, it has significantly higher number of pipelineflushes

compared to the BLISS front-end as dynamic block recreation affects the prediction accu-

racy of the hybrid predictor due to longer training and increased interference. TheFTB

design also suffers from partial (front-end) pipeline flushes due to misfetcheswhen the de-

coding logic detects a jump in the middle of a fetch block. The number of misfetches can

be used to quantify the effectiveness of FTB in delivering fetch blocks. In the next section,

we will discuss this in more details.

5.2.3 FTB and BB-Cache Analysis

Figure 5.4 evaluates the effectiveness of the BB-cache in delivering BBDsand the FTB

in forming fetch blocks by comparing their hit rates. Since the FTB returns a fall-through

block address even when it misses to avoid storing the fall-through blocks, we define the

FTB miss rate as the number of misfetches divided over the number of FTB accesses. A

misfetch occurs when the decoding logic detects a jump in the middle of a fetch block. At

the same storage capacity, the BLISS BB-cache achieves a 2% to 3% higher hit rate than the
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Figure 5.4: FTB and BB-cache hit rates for the 8-way processor configuration. We present
data for a representative subset of benchmarks, but the average refers to allbenchmarks in
this study.

FTB as the BB-cache avoids block splitting and recreation that occur when branches change

behavior or when the cache capacity cannot capture the working set of the benchmark.

The FTB has an advantage for programs likevortex that stress the capacity of the target

cache and include large fetch blocks. Forvortex, the FTB packs 9.5 instructions per entry

(multiple basic blocks), while the BB-cache packs 5.5 instructions per entry (single basic

block). Even though BLISS may not be able to merge basic blocks on biased branches,

its fetch rate is higher than the consumption rate of the back-end. As long as this isthe

case, being more aggressive in creating large fetch blocks does not improve performance.

It may even hurt performance due to frequent misspeculations (see Figure 5.2). It is also

interesting to note that the BB-cache miss rates for BLISS with and withouthints are almost

identical. A BB-cache hit or miss is independent from whether the prediction provided is

accurate. The small difference between the two is due to the slightly different control-flow

paths followed by the two due to differences in prediction.

5.2.4 Instruction Cache Analysis

Figure 5.5 compares the normalized number of instruction cache accesses and misses for

the FTB and BLISS front-ends over the base design. Although both of the FTB and BLISS
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Figure 5.5: Instruction cache comparison for the 8-way processor configuration with the
Base, FTB, BLISS, and BLISS-HINTS front-ends. The top graph compares the normalized
number of instruction cache accesses and the bottom one shows the normalized number of
instruction cache misses. We present data for a representative subset of benchmarks, but
the average refers to all benchmarks in this study.

designs enable prefetching based on the contents of the decoupling queue, the BLISS de-

sign has fewer instruction cache misses and accesses. The BLISS advantage is due to the

more accurate prediction as shown in Figure 5.3 and the reduced number of instructionsby

the basic optimizations. The BLISS front-end has 12% fewer instruction cache accesses

and 27% fewer misses compared to the base design. Even with prefetching and accurate

prediction, the FTB front-end has 10% higher number of instruction cache accesses and

6% higher number of misses compared to the base design. The increase is a result of the

maximum length fetch blocks that are inserted in the FTQ after an FTB miss. This dif-

ference would even be higher for a front-end with smaller instruction cache. Note that a

higher number of instruction cache accesses or misses also has direct impact onthe energy

consumption of the front-end.
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Figure 5.6: L2-cache comparison for the 8-way processor configuration with the Base,
FTB, BLISS, and BLISS-HINTS front-ends. The top graph compares the normalized num-
ber of L2-cache accesses and the bottom one shows the normalized number of L2-cache
misses. We present data for a representative subset of benchmarks, but the average refers
to all benchmarks in this study.

5.2.5 L2-Cache Analysis

Figure 5.6 compares the normalized number of the L2-cache accesses and misses forthe

FTB and BLISS front-ends. The total number of L2-cache accesses includes accesses from

the instruction cache and data cache. For BLISS, it also includes accessesfrom the BB-

cache and the prefetcher. As expected, both of the FTB and BLISS front-ends have a higher

number of L2-cache accesses due to prefetching. Although the BLISS L2-cache serves the

BB-cache misses in addition to the instruction cache and data cache misses, the number

of L2-cache accesses and misses are slightly better than the numbers for the FTB design.

The BLISS design has a 10% higher average number of L2-cache accesses than the base

design, while the FTB design has a 12% higher average. FTB also exhibits a 10% higher

L2-cache misses; this is due to the large number of erroneous instructions that are fetched
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Figure 5.7: Impact of instruction prefetching for the 8-way processor configuration with
the BLISS front-end. The top graph presents the normalized IPC with no prefetching. The
bottom graph presents the normalized number of cycles the instruction fetch unit is idle due
to instruction cache misses with no prefetching.

by the FTB front-end while it is forming the fetch blocks dynamically. BLISS isslightly

better than the base design with a 3% fewer L2-cache misses. The BLISS advantage is

mainly due to the better and accurate prediction as shown in Figure 5.3.

5.2.6 Instruction Prefetching Analysis

Figure 5.7 quantifies the performance impact when prefetching is not enabled for the BLISS

front-end. The top graph in Figure 5.7 presents the normalized IPC for BLISS with no

prefetching. On average, performance degrades by 2.5% when prefetching is not enabled.

Most of the loss is from INT benchmarks as they tend to have large instruction footprints

and somewhat irregular code access patterns. For FP benchmarks, the IPC degradation is

negligible as those applications are typically dominated by tight code loops with high tem-

poral locality. The bottom graph in Figure 5.7 compares the normalized number of cycles
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the instruction fetch unit is idle due to instruction cache misses for the BLISS front-end

when prefetching is not enabled. On average, prefetching reduces by 10% the number of

cycles the instruction fetch unit is stalling due to instruction cache misses while instructions

are being retrieved from lower memory hierarchy. This number would even be higher for a

front-end with smaller instruction cache.

5.3 Detailed Comparison to FTB Variants

In Section 5.2, we demonstrated that a BLISS-based front-end outperforms the hardware-

based FTB design described in Section 4.2.1. To further understand the differencesbetween

hardware-only and software-assisted basic block formation, this section compares BLISS

to two FTB variants that attempt to reduce its sensitivity to over-speculation in block for-

mation.

In the first design, biased not-taken branches are not embedded in fetch blocks. There-

fore, any branch in the middle of a fetch block terminates the block and leads toa misfetch

when first decoded. This design is essentially BLISS implemented fully in hardware with

no software support and no block coalescing. We refer to this less aggressive FTB design as

FTB-simple. This design fixes couple of the problems with the original FTB design. First,

the branch predictor is accurately trained as fetch blocks are consistent over time and are not

shortened when branches change behavior. Second, all branches are predicted by the hybrid

predictor, eliminating the implicit not-taken prediction for the branches embedded in the

middle of the fetch blocks. This eliminates mispredictions and pipeline flushes associated

with those embedded branches when there is a conflict with the branch predictor itself.

Nevertheless, the advantages of FTB-simple come at an additional cost. First, the in-

creased number of misfetches caused by detecting biased not-taken branches in the middle

of fetch blocks may have a negative impact on performance. In addition, the formedfetch

blocks are smaller than the blocks created in the original FTB design as biasednot-taken
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Figure 5.8: Normalized IPC for the FTB-simple and FTB-smart designs over theoriginal
FTB design for the 8-way processor configuration.

branches are no longer embedded in the fetch blocks. This increases the contention forthe

finite capacity of the FTB and reduces the fetch bandwidth. Finally, the hybrid predictor is

now also used for the biased not-taken branches which may lead to different interference

patterns with other branches.

The second FTB design allows for embedded branches in the middle of fetch blocks

only if their prediction is not-taken. If a branch in the middle of the block is predicted taken,

the decode stage will issue a misfetch. In this case, the pipeline stages behinddecoding are

flushed and fetching restarts at the branch target. We refer to this design as FTB-smart. The

advantage of this design over the original FTB design is that some possible mispredictions

caused by the default not-taken policy on an FTB miss are converted to misfetches which

are resolved in the decode stage. Compared to BLISS, the FTB-smart designallows for

block coalescing on biased not-taken branches. The disadvantage of this design is that

it relies on the predictor to form the fetch blocks. If the prediction is not accurate, then

additional misfetches will occur and extra fetch blocks may increase the contention for the

finite capacity of the FTB.

Figure 5.8 compares the normalized IPC for the FTB-simple and FTB-smart over the

original FTB design. For FTB-simple, we present data with different fetch-block lengths:

4, 8, and 16 instructions. The FTB-smart design uses a fetch-block length of 16 instruc-

tions similar to the original FTB design. Figure 5.9 compares the normalized number of
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Figure 5.9: Normalized number of mispredictions for the FTB-simple and FTB-smart de-
signs over the original FTB design for the 8-way processor configuration.
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Figure 5.10: Normalized number of misfetches for the FTB-simple and FTB-smartdesigns
over the original FTB design for the 8-way processor configuration.

mispredictions and Figure 5.10 compares the normalized number of misfetches for the

FTB-simple and FTB-smart designs over the original FTB design.

For all of the FTB-simple configurations, we see consistent performance degradation.

This is mainly due to the significant increase in the number of misfetches for FTB-simple

compared to the original design. The small improvement in the prediction accuracy is not

enough to compensate the significant increase in the number of misfetches. Even though

the number of misfetches slightly decreases with smaller fetch-blocks, theperformance

degrades as the average length of fetch-blocks committed decreases from 8.3 instructions

in the original FTB design to 7.5, 5.4, and 3.4 for FTB-simple-16, FTB-simple-8, and FTB-

simple-4 respectively. Note that programs likevortex which benefits the most from block

coalescing are the worst performer with the FTB-simple design.
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For FTB-smart, we get also a consistent increase in the number of misfetches. However,

the increase is less dramatic compared to the FTB-simple design. In terms of IPC and

number of mispredictions, we see a slight change with averages close to the original FTB

design. The average fetch-block length for FTB-smart also slightly decreases from 8.3 in

the original FTB design to 8.2 instructions per fetched blocks.

Overall, the original FTB design outperforms all of the other FTB configurations. The

BLISS-based design outperforms the original FTB design as it balances over- and under-

speculation with better utilization of the BB-cache capacity. BLISS attempts to strike a

balance between hardware and software features that optimize the critical metric for front-

end engines: useful instructions predicted per cycle.

5.4 Sensitivity Analysis

Our analysis thus far has used a single configuration for both the front-end and the back-end

of the processor. In this section, we validate our conclusions by examining the sensitivity

of the BLISS and FTB models to key architectural parameters such as the target prediction

tables, instruction cache, and issue width. In all configurations, the FTB and theBB-cache

are always accessed in one cycle. The latency of the instruction cache in clock cycles is set

properly based on its relative size compared to the FTB or BB-cache.

5.4.1 Sensitivity to BB-Cache and FTB Parameters

The performance with both decoupled front-ends depends heavily on the miss rate of the

FTB and BB-cache respectively. As we showed in Figure 5.4, the high BB-cachemiss

rate forvortex leads to a performance advantage for the FTB design which is able to

pack more instructions per FTB entry for this benchmark. Figure 5.11 presents the average

IPC across all benchmarks for the 8-way processor configuration with the FTB and BLISS
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Figure 5.11: Average IPC for the 8-way processor configuration with the FTB and BLISS
front-ends as we scale the size and associativity of the FTB and BB-cache structures. For
the BLISS front-end, we assume that static prediction hints are not availablein this case.

front-ends as we scale the size (number of entries) and associativity of the FTB and BB-

cache structures. The BB-cache is organized with 8 entries per cache linesin all cases.

Figure 5.11 shows that for all sizes and associativities the BLISS front-end outperforms

FTB. The performance for both front-ends improves with larger sizes up until 2K entries

which are sufficient to capture the working set of basic blocks or fetch blocks for most

programs. The performance difference does not change significantly across differentsizes.

The increasing number of entries eliminates stalls due to BB-cache missesfor BLISS and

reduces the inaccuracies introduced by fetch block recreation due to FTB misses in the

FTB design. Associativity is less critical for both front-ends. With 512 or 1K entries,

4-way associativity is preferred but with a larger FTB or BB-cache, 2-way is sufficient.

Note that with 256 entries, the FTB is more sensitive to the associativitythan the BLISS

front-end.
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Figure 5.12: Average percentage of IPC improvement with the FTB and BLISS front-ends
over the base design as we vary the size and associativity of the instructioncache. We
simulate an 8-way execution core, 2-cycle instruction cache latency, and 2Kentries in the
BTB, FTB, and BB-cache respectively.

5.4.2 Sensitivity to Instruction Cache Size

The use of a small instruction cache was one of the motivations for the FTB and the BLISS

front-ends. The reason is that smaller instruction caches have lower access latency and

lower power and energy consumption. The instruction prefetching enabled by the FTQ and

BBQ can compensate for the increased miss rate of a small instruction cache.

Figure 5.12 shows the IPC improvement with the FTB and BLISS front-ends over the

base design as we vary the size and associativity of the instruction cache inthe 8-way

processor configuration. Note that the instruction cache size of the base design is varied

along with the size used for the FTB and BLISS designs. Both decoupled front-ends pro-

vide IPC advantages over the baseline for all instruction cache sizes. However, the IPC

improvement drops as the instruction cache size grows to 32 KBytes (from 12% to 7%for

FTB, from 24% to 20% for BLISS). With a larger cache size, the instruction cache incurs

less number of misses and thus the benefit of prefetching is less significant. The BLISS

front-end maintains a 13% IPC lead over the FTB design for all instruction cache sizes and

associativities.
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Figure 5.13: Average IPC with the Base, FTB, and BLISS front-ends as we vary the latency
of the instruction cache from 1 to 4 cycles. We simulate an 8-way execution core, 32 KByte
pipelined instruction cache, and 2K entries in the BTB, FTB, and BB-cache respectively.

5.4.3 Sensitivity to Instruction Cache Latency

Another advantage of a decoupled front-end is the ability to tolerate higher instruction

cache latencies. The information in the FTB and the BB-cache allow for one control-flow

prediction per cycle even if it takes several cycles to fetch and decode the corresponding

instructions in order to locate the actual control-flow instructions in the stream. Tolerance

to high instruction cache latencies can be useful with decreasing the instruction cache area

and power for a fixed capacity or with allowing for a larger instruction cache within a

certain area, power budget, and clock frequency. Larger instruction cachesare desirable

for enterprise applications that tend to have larger instruction footprints [9].

Figure 5.13 presents the average IPC for the 8-way processor configuration with the

base, FTB, and BLISS front-ends as we scale the instruction cache latency from 1 to 4

cycles. For the base design, IPC decreases 13% as we scale the instruction cache latency

from 1 to 4 cycles. With both the FTB and BLISS front-ends, IPC decreases approximately

5% between the two end points, which shows good tolerance to instruction cache latency.

The performance loss is mainly due to the higher cost of recovery from mispredictions and
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Figure 5.14: Performance comparison for the 4-way processor configuration with the Base,
FTB, and BLISS front-ends. The top graph presents raw IPC and the bottom one shows the
percentage of IPC improvement over the Base for FTB and BLISS.

misfetches. The actual number of mispredictions and misfetches does not scale upsignifi-

cantly, which validates the decoupled front-end approach. BLISS outperforms FTBacross

all latency values, which validates that architectural support for basic block descriptors is

superior to hardware-based block creation on top of a conventional instruction set.

5.4.4 4-way Processor Analysis

The 8-way processor configuration analyzed in Section 5.2 represents an aggressive design

point, where the execution core is designed for minimum number of back-end stalls. Figure

5.14 shows the impact of the front-end selection on the 4-way execution core configuration

described in Table 5.1, which represents a practical commercial implementation.

Figure 5.14 shows that the performance comparison with the 4-way execution core is

nearly identical to that with the 8-way core. FTB provides a 6% performance advantage
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over the base design, while BLISS allows for 14% or 17% IPC improvements without and

with the static hints respectively. The absolute values for the improvements are lower than

with the 8-way core due to the additional stalls in the execution core that maskperformance

challenges in the front-end.

In Chapter 7, we are going also to provide additional evidence that demonstrates the

advantage of the BLISS design by evaluating it for embedded processor designs.

5.5 Summary

In this chapter, we performed a detailed evaluation of BLISS for high-end superscalar pro-

cessors. Compared to conventional superscalar processors, BLISS allowsfor highly accu-

rate control-flow speculation and instruction delivery which leads to 20% IPCadvantage.

We illustrated the usefulness of the hints mechanism in BLISS by using it to implement

branch prediction hints and showed that it further improves the performance by 4%.We

also compared BLISS to a comprehensive decoupled front-end that dynamically builds

fetch blocks in hardware and demonstrated that the BLISS-based front-end achieves 13%

performance improvement over it. Unlike techniques that rely solely on larger and more

complex hardware structures, our proposal attempts to strike a balance between hardware

and software features that optimize the critical metric for front-end engines: useful instruc-

tions predicted per cycle. Finally, we showed that the BLISS benefits are robust across a

wide range of architectural parameters for superscalar processors.

While this chapter focused primarily on performance, next chapter evaluates BLISS

from the energy perspective and demonstrates that the BLISS based front-end improves

energy on top of the performance benefits.



Chapter 6

Energy Optimizations

Modern high-end processors must provide high application performance in an energy ef-

fective manner. Energy efficiency is essential for dense server systems(e.g. blades), where

thousands of processors may be packed in a single colocation site. High energy consump-

tion can severely limit the server scalability, its operational cost, and its reliability [28].

Furthermore, an energy-efficient high performance design allows semiconductor vendors

to use the same processor core in chips for both server and notebook applications. For

notebooks, energy consumption is directly related to battery life.

The instruction fetch mechanism largely influences the energy behavior for superscalar

processors [93]. The front-end determines how often the processor is executing useful in-

structions, mispredicted instructions, or no instructions at all. After an instruction cache

miss, the front-end stalls and wastes leakage energy until the required instructions are re-

trieved from lower memory hierarchy. Similarly, when the front-end misspeculates, energy

is wasted by fetching and executing erroneous instructions from the wrong execution path.

The front-end itself also consumes a significant percentage of the processor totalenergy as

it contains large memory arrays (instruction cache, predictor, BTB) that are accessed nearly

every cycle. On average, 13% of the total energy is consumed in the front-end itself alone

for a 4-way superscalar processor [115].

78
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This chapter presents and evaluates the energy optimizations with the BLISS-based

front-end. Section 6.1 explains how the BLISS front-end reduces the wasted energy in the

overall design (front-end and back-end). In Section 6.2, we discuss the optimizations that

reduce the energy consumption in the front-end. Section 6.3 explains the methodology

used for evaluation. In Section 6.4, we present and analyze the evaluation results. Section

6.5 highlights related work.

6.1 Reducing Wasted Energy

In Section 2.3, we reviewed how the front-end detractors affect energy consumption. We

showed that 14% and 7% of the processor total energy are wasted by branch direction and

target mispredictions for INT and FP applications respectively. We also showed that an

additional 12% and 6% of the total energy are wasted on instruction cache detractorsfor

INT and FP applications respectively.

The performance enhancements by BLISS address the sources of wasted energy as

well. We demonstrated in Figure 5.2 that BLISS better utilizes the processorresources by

sustaining high instruction throughput as a result of guided prefetching and accurate branch

prediction. This eliminates cycles where the back-end is idle wasting leakageenergy. We

also demonstrated in Figure 5.3 that BLISS improves prediction accuracy andsignificantly

reduces the number of expensive pipeline flushes. This allows BLISS to reduce the energy

wasted on fetching and executing mispredicted instructions. It also eliminates the overhead

of recovering the pipeline from branch mispredictions when the erroneous instructions are

removed from the pipeline. By reducing execution time, the BLISS-based design also saves

on the energy consumed by the clock tree and the processor resources even when they are

stalling or idling. Overall, the performance benefits of BLISS translates directly to energy

benefits as well as it avoids paying leakage energy wasted on idle resources and reduces

dynamic energy wasted on fetching and executing mispredicted instructions.
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The FTB design also reduces overall wasted energy as it improves instruction band-

width and reduces the number of pipeline flushes. However, as we saw in Figure 5.2 and

Figure 5.3, BLISS achieves higher instruction throughput and has fewer pipeline flushes

compared to the FTB design. This allows BLISS to compare favorably to the FTB design

in terms of energy efficiency in addition to performance.

6.2 Energy Efficient Front-End

In this section, we show how the BLISS-based front-end facilitates several energy optimiza-

tions in the predictor and instruction cache. The optimizations target both the frequency of

accesses to each front-end resource and the energy consumed per access for each resource.

6.2.1 Predictor Optimizations

BLISS reduces significantly the number of accesses to the branch predictors. Compared

to the conventional design, BLISS reduces by 61% (54% for INT and 71% for FP appli-

cations) the number of accesses to the predictor tables. This is mainly due to two reasons.

First, the basic block decoupling queue (BBQ) allows for control-flow predictions at the

rate of one block per cycle. As we demonstrated in Section 3.4, the SPEC CPU bench-

marks have an average of 7.7 instructions per executed basic block (5.8 for integer,9.7

for floating-point). With more than 50% of the executed basic blocks have more than

4 instructions, making one prediction for every 4 instructions fetched from the instruc-

tion cache is wasteful. With BLISS, only one prediction is required for eachbasic block.

This saves energy in accessing and training the predictors. Note that the average reduc-

tion in the number of accesses to the prediction tables for the FP applications ishigher

than the average for the INT applications as FP applications have longer basic blocksizes.

Second, the type of the BBD allows us to selectively access and train the predictor in an

accurate manner. For BBDs that correspond to fall-through blocks or blocks terminating
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with an unconditional control-flow instruction (J, JAL, etc), the predictor is notused nor

trained.

BLISS also reduces the average energy consumed per predictor access. Decoupling

allows for the direction prediction to be verified with a large, tagless,hybrid predictor,

while the fetch block is waiting in the BBQ [105]. Relaxing the predictor access time

allows the design of the predictor to be optimized for energy efficiency. Moreover, the

static hints when available, allow for judicious use of the hybrid predictor. Oncethe hints

are available for a BBD, the front-end can determine which is the best predictor to consult

and update for the associated control-flow instruction without accessing or training the

selector. Strongly biased branches do not use the predictor table at all and branchesthat

exhibit strong local or global correlation patterns use only one of its components. This

saves 48% of the energy consumed in the hybrid predictor.

6.2.2 Instruction Cache Optimizations

BLISS reduces the number of accesses to the instruction cache. We can merge the instruc-

tion accesses for sequential blocks in the BBQ that hit in the same cache line,in order

to save decoding and tag access energy. Moreover, BLISS reduces the energy consumed

per instruction cache access as it facilitates energy optimizations in the instruction cache

through selective way/word access and serial access to data and tags without sacrificing

performance.

Reading the complete cache line on instruction fetch is not energy efficient as only a

subset of the instructions in the line are typically used (e.g. 4 out of 16). A jump or a taken

branch in the middle of the cache line would possibly force the front-end to start fetching

from a different cache line. Instructions in the early part of a cache line, right before the

target of a taken branch, are also less likely to be required. With BLISS, each basic block

descriptor defines exactly the number of instructions needed from the instruction cache and
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Figure 6.1: An example to illustrate selective word access with BLISS.
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their position within the cache line. Using segmented word lines for the data portion of the

instruction cache, we can fetch the necessary instruction words while activating only the

necessary sense-amplifiers in each case.

Similar to the bit line segmentation approach proposed in [30], the internal organization

of each raw in the data array is modified into segments. Each word line is split into indepen-

dent segments. An additional common word line runs across the segments. The word line

within each segment can be connected or isolated from the common line. The lengthof the

basic block and the instruction pointer available in the BBD can be used to isolate all but

the targeted segments from the common word line. The prechargers and sense-amplifiers

of the bit lines for the isolated segments are disabled saving their energy. The effective ca-

pacitive loading on the common line also decreases. The reduction is somewhat offset by

the common line that spans a single segment and the diffusion capacitances of the isolating

switches. Figure 6.1 illustrates this optimization by comparing an instruction cache access

for a conventional cache to the BLISS selective word approach. The selective word access

of the instruction cache with a configuration similar to the instruction cache in Table 6.1

saves 20% of the energy consumed per instruction cache access.

Instruction access latency is often on the critical path for the overallprocessor clock cy-

cle. In a conventional set-associative cache design, the tag and data arrays are accessed in

parallel to reduce latency. This approach wastes energy in the bit lines and sense-amplifiers

of the cache as it must drive all associative ways of the data component. Front-enddecou-

pling can tolerate higher instruction cache latency with minimal impact tothe performance.

Hence, we can access first the tags for a set-associative instruction cache, and in subsequent

cycles, access the data only in the way that hits [91]. A serial cache design breaks up the in-

struction cache lookup into two components: the tag comparison and the data lookup. The

tag array is accessed first. In the next cycle, we access the data array for only the way that

hits avoiding unnecessarily driving the bit lines of other ways of the cache and decreasing

the number of necessary sense-amplifiers. In Figure 6.2, we illustrate this optimization by
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Figure 6.2: An illustration of the serial access to the tag and data arrays forthe instruction
cache.
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Front-End Parameters
Base FTB BLISS

Fetch Width 4 Instructions/cycle1 Fetch Block/cycle 1 Basic Block/cycle
Target BTB: FTB: BB-cache:
Predictor 1K entries, 4-way 1K entries, 4-way 1K entries, 4-way

1-cycle access 1-cycle access 1-cycle access
8 entries/line

Decoupling Queue – FTQ: 8 entries BBQ: 8 entries
I-cache Latency 2-cycle pipelined 3-cycle pipelined

Common Processor Parameters
Hybrid gshare: 4K counters
Predictor PAg L1: 1K entries, PAg L2: 1K counters

selector: 4K counters
RAS 32 entries with shadow copy
I-cache 16 KBytes, 4-way, 64B blocks, 1 port
Issue/Commit 4 instructions/cycle
IQ/RUU/LSQ 32/64/64 entries
FUs 6 INT & 3 FP
Data cache 32 KBytes, 4-way, 64B blocks, 2 ports, 2-cycle access pipelined
L2 cache 1 MByte, 8-way, 128B blocks, 1 port, 12-cycle access, 4-cycle repeat rate
Main memory 100-cycle access

Table 6.1: The microarchitecture parameters used for the energy optimization experiments.
The common parameters apply to all three models (base, FTB, BLISS).

comparing the conventional parallel access approach of the instruction cache tothe BLISS

serial access. The BLISS serial access of the 4-way set-associative cache configuration

listed in Table 6.1 saves on average 58% of the energy consumed per instruction cache

access.

6.3 Methodology

For energy evaluation, we use a similar methodology and tools to what we used for per-

formance evaluation discussed in Section 5.1. We simulate a 4-way superscalar processor

to evaluate energy of the BLISS-based front-end and compare it to the conventional (base)
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and the FTB-based front-ends. The 4-way configuration presents a practical commercial

implementation for high-end processors in 2007. Table 6.1 summarizes the key architec-

tural parameters, which are very similar to the 4-way parameters listed in Table 5.1 except

for the modestly sized instruction cache and data cache. The instruction cachelatency for

both the BLISS-based and FTB-based designs is set to 3 cycles to support the serial access.

We also study the same 12 SPEC CPU2000 benchmarks using their reference datasets

compiled at the -O3 optimization level. For energy measurements, we use theWattch

framework with the cc3 power model [15]. In this non-ideal, aggressive conditional clock-

ing model, power is scaled linearly with port or unit usage, except that unused unitsdissi-

pate 10% of their maximum power, rather than drawing zero power. Energy consumption

was calculated for a 0.10µm process with a 1.1V power supply. In the following results, the

reportedFront-end Energyincludes instruction cache, predictors, and BTB, FTB-cache, or

BB-cache.Total Energyincludes all the processor components (front-end, execution core,

and all caches).

Table 6.2 presents the normalized energy consumed per access and the normalized aver-

age energy consumption for the various components of the 4-way processor configuration

in Table 6.1. The branch predictor alone consumes 5.6% of the total energy per access. The

instruction cache alone consumes 6.9% of the total energy per access. The average energy

consumptions for both the branch predictor and the instruction cache are higher (9.9% and

13.6% respectively) because they are accessed nearly every cycle. This isnot the case for

other structures (L2-cache, FP-ALU, etc) as they are idle for several cycles wasting only

leakage energy (10% for the Wattch cc3 model). FP-ALU, for example, is only accessed

for programs that have FP instructions.
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Component Energy Per Access Average Energy Consumption
Branch Predictor 5.6% 9.9%
Instruction Cache 6.9% 13.6%
Rename Logic 0.9% 1.4%
Instruction Window 9.3% 16.2%
Load/Store Queue 6.4% 4.5%
Arch. Register File 5.9% 3.8%
Result Bus 6.0% 8.8%
INT ALU 9.1% 7.3%
FP ALU 14.0% 11.2%
Data Cache 16.7% 16.3%
Level 2 Cache 19.1% 7.0%

Table 6.2: Energy per access and average energy consumption for the various components
of the 4-way processor configuration.

6.4 Evaluation

In this section, we present the energy evaluation for BLISS. First, we evaluate the energy

consumed by the front-end alone and then we consider the overall energy consumption for

the processor. Finally, we consider energy-delay-squared product (ED2P) as a metric that

combines performance and energy for high-end processors.

6.4.1 Front-End Energy

Figure 6.3 compares the front-end energy saving achieved for the 4-way processor con-

figuration with the three front-ends. On average, 13% of the total processor energy is

consumed in the front-end engine itself as it contains a number of large SRAM struc-

tures (cache, BTB, predictors). The FTB design saves 52% of the front-end energycon-

sumed by a conventional front-end design. The BLISS design achieves even higher im-

provement and saves 65% of the front-end energy consumed by a conventional front-

end.
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Figure 6.3: Front-end energy saving comparison for the 4-way processor configuration for
the BLISS and FTB front-ends.

To understand the sources of energy savings, we look at the energy consumption for

prediction and instruction cache accesses. Figure 6.4 compares the normalizedenergy con-

sumed on prediction for the FTB and BLISS designs over the base design. The prediction

energy for the base design includes energy consumed in accessing and training the BTB and

the predictor tables. For the FTB design, prediction energy includes the energy consumed

in accessing the FTB and the predictors. For BLISS, it includes the energy consumption

for the BB-cache and the predictors. Both of the FTB and the BLISS designs significantly

reduce the prediction energy consumption by only accessing and training the predictor

once per block. The BLISS design reduces by 63% the energy consumed for prediction.

The FTB design only reduces by 42% the energy consumption for prediction, as dynamic

block recreation affects the prediction accuracy of the hybrid predictor and results in longer

training and increased interference. When static branch hints are in use (BLISS-Hints), an

additional 8% saving is achieved as hints allow the front-end to determine whichcompo-

nent of the hybrid predictor is the best to consult and update for the associated control-flow

instruction without accessing or training the selector.

Figure 6.5 presents the normalized energy consumption for accessing the instruction

cache for the FTB and BLISS front-ends over the base design. Both of the FTB and BLISS

front-ends reduce significantly the energy consumption in the instruction cache through

selective word accesses and serial tag/data accesses in the instruction cache. The BLISS
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Figure 6.4: Normalized prediction energy consumption for the 4-way processor config-
uration for the FTB and BLISS front-ends over the base design. We present data for a
representative subset of benchmarks, but the average refers to all benchmarksin this study.
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Figure 6.5: Normalized instruction cache energy consumption for the 4-way processor
configuration for the FTB and BLISS front-ends over the base design. We present data
for a representative subset of benchmarks, but the average refers to all benchmarks in this
study.

energy saving in accessing the instruction cache is 7% better than the FTB design. This

is mainly because BLISS reduces by 12% the number of accesses to the instruction cache

compared to the base, while for the FTB design, the number of instruction cache accesses is

12% higher than the base design due to the maximum length fetch blocks that are inserted

in the FTQ after an FTB miss. Note that BLISS achieves similar savingswith and without

the static prediction hints. The small difference between the two is due to the slightly

different control-flow paths followed by the two due to differences in prediction.
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Figure 6.6: Total energy saving comparison for the 4-way processor configuration for the
BLISS and FTB front-ends.

6.4.2 Total Energy

Figure 6.6 compares the saving in total energy consumption achieved for the 4-way pro-

cessor configuration with the three front-ends. The reported total energy includes all the

processor components (front-end, execution core, and all caches). BLISS offers16% and

18% total energy advantages over the base design with and without the static prediction

hints respectively. BLISS-based design actually achieves 75% of the totalenergy improve-

ment suggested in Figure 2.8. BLISS also provides 7% total energy advantage over FTB

as dynamic fetch block creation in the FTB front-end leads to execution of misspeculated

instructions that waste energy.

Figure 6.7 presents the normalized energy consumption for the various components

of the 4-way processor for the BLISS design without static branch hints over the base

design. The significant reduction in energy consumption in the BLISS front-end accounts

for almost half of the total energy savings (7.9%). We also see a consistent 7% to 8%

reduction in the energy consumption for all of the processor components as BLISS limits

the leakage energy wasted by idle resources and reduces the dynamic energy wastedon

fetching and executing erroneous misspeculated instructions in the whole pipeline.
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Figure 6.7: Normalized energy consumption for the various components of the 4-way pro-
cessor for the BLISS design without static branch hints over the base design. We present
data for a representative subset of benchmarks, but the average refers to allbenchmarks in
this study.

6.4.3 Energy-Delay Product Comparison

Energy-delay products are important metrics in microarchitecture design as they indicate

how efficient the processor is at converting energy into speed of operation. They capture

the energy usage per operation. A lower value indicates that energy is more efficiently

translated into the speed of operation. The energy-delay product (EDP) represents an equal

tradeoff between energy and delay [31]. The energy-delay-squared product (ED2P) places

more emphasis on deliverable performance over energy consumption [66], which is more

appropriate for high-performance, energy-efficient processors. The ED2P implies that a

1% reduction in circuit delay is worth paying a 2% increase in energy usage.

Figure 6.8 compares the Energy-delay-squared product (ED2P) improvement achieved

for the 4-way processor configuration with the three front-ends. The BLISS design achieves

an 83% improvement in ED2P, while the FTB design has only 35% overall ED2P improve-

ment over the base.
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Figure 6.8: Energy-delay-squared product (ED2P) improvements comparison for the 4-way
processor configuration for the BLISS and FTB front-ends.

6.5 Related Work

Significant research has focused on reducing power and energy consumption in or through

the front-end. Most techniques trade off a small performance degradation for significant en-

ergy savings. Some techniques target improving the instruction cache energy consumption

by way prediction [84], selective cache way access [2], sub-banking [30], tag comparison

elimination [75, 114], and reconfigurable caches [87, 113]. Other techniques target improv-

ing the energy efficiency of the predictors using sub-banking [76], front-end gating [64],

selective prediction [7], eliminating predictor and BTB accesses for non-branch instruc-

tions [76], using profile data to eliminate meta predictor [27] or to switch off part of the

predictor [20], and selective predictor accesses to avoid using predictor forwell-behaved

branches [8].

Other techniques focused on controlling over-speculation in the pipeline for branches

with low prediction confidence to limit energy wasted on misspeculated instructions. A

confidence estimator is used to assess the quality of branch predictions [34, 44]. Pipeline

gating [64] uses confidence information to stop wrong-path instructions from entering the

pipeline. Selective throttling [4] applies different gating techniques depending onthe confi-

dence estimation, with the goal of obtaining an optimal tradeoff between power andperfor-

mance. There are also techniques that focus on tuning the resources of the processor to the
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needs of the program by monitoring its performance to reduce energy [5, 43]. Such tech-

niques are rather orthogonal to the block-aware ISA and can be used with a BLISS-based

front-end engine.

6.6 Summary

In this chapter, we demonstrated that BLISS reduces the processor overall energy con-

sumption as it minimizes leakage energy wasted by idle resources and reduces dynamic

energy wasted on fetching and executing erroneous misspeculated instructions.We also

showed that BLISS significantly reduces the front-end energy consumption by reducing

the number of accesses to the front-end structures and reducing the average energycon-

sumed per access for each structure. Through detailed simulation, we have shown that the

BLISS-based design allows for 63% front-end energy, 16% total energy, and 83% ED2P

improvements over a conventional superscalar design. The ISA-supported front-end also

outperforms (21% front-end energy, 7% total energy, and 48% ED2P) advanced decoupled

front-ends that dynamically build fetch blocks in hardware. This significant energy im-

provement is achieved in addition to the performance advantages demonstratedin Chapter

5. Overall, this work establishes the potential of using expressive ISAs to address difficult

hardware problems in modern processors in ways that benefitboth performance and energy

consumption.



Chapter 7

BLISS for Embedded Processors

Our analysis so far primarily focused on the performance and energy evaluationof BLISS

for high-end processors. This chapter shifts the focus to embedded processors, whichare

a key component in most consumer, communications, industrial, and office automation

products. Similarly to high-end, performance and energy efficiency are critical design met-

rics for embedded processors. Good performance is important for embedded processors

in order to meet the increasing requirements of demanding applications such as image,

voice, and video processing. Energy consumption dictates if the processor can be usedin

portable or deeply embedded systems for which battery size and lifetime are vital param-

eters. In previous chapters, we showed that BLISS improves both metrics for high-end

processors, but we must also validate that this result holds for lower-end, embedded de-

signs.

In addition to performance and energy efficiency, code size is a critical design metric

for embedded processors. Code size determines the amount and cost of on-chip or off-chip

memory necessary for program storage. Instruction memory is often as expensive as the

processor itself. Even though it seems counter-intuitive, the use of additional block descrip-

tors in BLISS leads to significant reductions in the code size. The descriptors enable code

size optimizations by removing redundant sequences of instructions across basic blocks

94
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and by allowing a fine-grain interleaving of 16-bit and 32-bit instructions without overhead

instructions.

In this chapter, we examine the use of BLISS toimprove all three efficiency metrics

for embedded processors at the same time: smaller code sizeand better performanceand

lower energy consumption. Improving the three metrics simultaneously is traditionally

difficult to achieve as they introduce conflicting tradeoffs. Most known techniquesimprove

one or two metrics, but not all the three at the same time. In Section 7.1, we present the code

size optimizations enabled with BLISS. Section 7.2 explains the tools and methodology. In

Section 7.3, we present and analyze the evaluation results. Section 7.4 highlights related

research.

7.1 Code Size Optimizations

Naı̈ve translation of a RISC binary such as MIPS-32 to the corresponding BLISS exe-

cutable leads to larger code size due to the addition of block descriptors. With five in-

structions per block on the average, the code size increase is 20%. Nevertheless, BLISS

allows for three types of code size optimizations that eliminate this handicap and lead to

significant code size savings over the original.

7.1.1 Basic Optimizations

Basic code size optimizations target redundant jump and branch instructions. Theseopti-

mizations are unique to BLISS. All jump instructions can be removed as they are redundant;

the BBD defines both the control-flow type and the offset. Moreover, certain conditional

branch instructions can be eliminated if they perform a simple test (equal/notequal to zero)

on a register value produced within the same basic block. We encode the simple condition

test in the opcode of the producing instruction which is typically a simple integer arithmetic

operation (add or sub). Note that the branch target is provided by the BBD and does not
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BB descriptors

BBD1: BR_F, BBD3, ,

BBD2: J   , BBD4, 2,

BBD3: JAL,  foo,  3,

BBD4:

BLISS code

(a)

beq r8, r1

add r3, r2, r8

addiu r17, r0, 1

lw r6,1492(r30)

addu r4, 0, r2

add r3, r2, r8

addiu r17, r0, 1

Optimized BLISS code

BB descriptors

BBD1: BR_F, BBD3, ,

BBD2: J   , BBD4, 2,

BBD3: JAL,  foo,  3,

BBD4:

(b)

beq r8, r1

lw r6,1492(r30)

addu r4, 0, r2

add r3, r2, r8

addiu r17, r0, 1

Figure 7.1: Example to illustrate the block-subsetting code optimization. (a) Original
BLISS code. (b) BLISS code with the block-subsetting optimization. For illustration pur-
poses, the instruction pointers in basic block descriptors are represented with arrows.

need to be provided by any regular instruction, which frees a large number of instruction

bits.

7.1.2 Block Subsetting

BLISS facilitates the removal of repeated sequences of instructions [22].All instructions

in a basic block can be eliminated, if the exact sequence of the instructions can befound

elsewhere in the binary. The matching sequence does not have to be an identical basic

block, just an identical sequence of instructions. We maintain the separate descriptor for

the block but change its instruction pointer to point to the unique location in the binary

for that instruction sequence. We refer to this optimization asBlock Subsetting. Figure

7.1 presents an example to illustrate this optimization. The two instructions in the second

basic block in the original code appear in the exact order towards the end of the instruction

section. Therefore, they can be removed as long as the instruction pointer for BBD2 is

updated.

Block subsetting leads to significant code size improvements because programs fre-

quently include repeated code patterns. Moreover, the compiler generates repeated patterns

for tasks like function setup, stack handling, and loop setup. By removing jump and branch
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instructions, the basic code size optimizations expose more repeated instructionsequences

that block subsetting can eliminate. In Figure 7.1, the removal of the JAL instruction, which

would otherwise terminate the third basic block, enables the elimination of the instructions

in the second basic block. Instruction similarity is also improved becauseBLISS stores

branch offsets in the BBDs and not in regular instructions.

In theory, we can improve similarity further if we look at data-flow graphsabstract-

ing out the specific registers used instead of looking at specific code sequences. However,

encoding such similarity can be expensive. Alternatively, more repeatedinstruction se-

quences can be exposed if we consider instruction reordering. In this study, we do not

evaluate such techniques.

Block subsetting can affect performance both ways by interfering with the instruction

cache hit rate. It can reduce the hit rate as it decreases spatial locality in instruction

references. Two sequential basic blocks may now point to instruction sequences in non-

sequential locations. However, the BLISS front-end can tolerate higher instruction cache

miss rates as it allows for effective prefetching using information inthe basic block de-

scriptors. Block subsetting can also improve cache performance as it reduces the cache

capacity wasted on repeated sequences. A comprehensive evaluation of this optimization

is presented in Section 7.3.

7.1.3 Block-Level Interleaving of 16/32-bit Code

An effective technique for code size reduction is to extend the instruction setto support

two instruction lengths, with the processor capable of executing both of them. The long

instructions are the instructions of the original ISA. The short instructions are a subset

of the long instructions and encode the most commonly used instructions using a short

encoding format. MIPS-16 and Thumb-2 [54, 108] are examples of such instruction sets.

They provide 16-bit extensions to the 32-bit ISAs. A section of code that completely uses
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Figure 7.2: Code size, execution time, and total energy consumption for 32-bit, 16-bit, and
selective 16-bit executables for a processor similar to Intel’s XScalePXA270 processor
running the MediaBench benchmarks. Lower bars present better results.

the 16-bit instructions can potentially save 50% of the size of a similar code that uses

the 32-bit instructions. However, the short instruction format implies access to a limited

set of registers, limited number of opcodes, and a very short immediate and offset field.

These challenges limit the potential saving and lead to an increased number of dynamic

instructions that result in significant performance losses.

The granularity of interleaving 16-bit and 32-bit code can have a significant impact

on the performance overhead of 16-bit instructions. Interleaving can be done at different

levels. MIPS-16 [54] allows mixing of 16-bit and 32-bit instructions at the function-level

granularity. A specialJALX instruction is used to switch between functions with 16-bit and

32-bit instructions. However, function-level granularity is restrictiveas many functions

contain both performance critical and non-critical code. Alternatively, onecan interleave

16-bit and 32-bit code at instruction granularity [36, 55, 81]. Special instructions are still

necessary to switch between the 16 and 32-bit sections, hence there is an overhead for each

switch.

Figure 7.2 shows the impact of using a 16-bit ISA on the average code size, execution

time, and energy consumption for a simple embedded processor like the XScale PXA270
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Figure 7.3: The basic block descriptor format with the size flag that indicates ifthe actual
instructions in the block use 16-bit or 32-bit encoding.

running the MediaBench applications. The 16-bit instructions lead to 41% code size sav-

ings at the cost of 11% and 13% higher execution time and energy consumption. It is

possible to recover the performance and energy overhead by selectively using 16-bit in-

structions only for non-critical sections of the code using a few overhead instructions to

specify switches between the two formats [36, 55]. As shown in Figure 7.2, selective use

of short instructions maintains the code size savings and restores the performance and en-

ergy consumption of the original, 32-bit code.

BLISS provides a flexible mechanism for interleaving 16-bit and 32-bit code at the

granularity of basic blocks. This is significantly better than the function-levelgranularity

in MIPS-16. It is also as flexible as the instruction-level granularity because either all

instructions in a basic block are frequently executed (performance critical) or none of them

is. A single bit in the hints field of the basic block descriptor shown in Figure 7.3 provides

a flag to specify if the block contains 16-bit or 32-bit instructions. No new instructions

are required to specify the switch between the 16-bit and 32-bit modes. Hence, frequent

switches between the two modes incur no additional runtime penalty. We can aggressively

interleave 16-bit and 32-bit instructions in the code. The only restriction is thata set of

16-bit instructions must start at a 32-bit alignment point. 16-bit NOP instructions areused

for alignment when required.

All descriptors are 32-bit even for blocks that contain 16-bit instructions. This isa

small overhead as instructions on average have five to eight times the sizeof descriptors.
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In addition, as we discussed in the previous section, the availability of descriptors enables

removing redundant sequences of instructions across basic blocks. The resulting reduction

in code size significantly exceeds the small overhead of having 32-bit descriptorsfor blocks

with 16-bit instructions. As descriptors are fetched early in the processor pipeline, we

know the mode for each set of instructions before they are even fetched. This allows us to

dynamically expand the 16-bit instructions into their corresponding 32-bit instructions at

fetch stage with no performance overhead. With conventional processors, thetranslation

usually occurs during the decode stage.

7.2 Methodology

7.2.1 Processor Configurations

To demonstrate the wide applicability of the BLISS ISA across the spectrum of embedded

computing, we simulate two processor configurations. The first one is modeled after the

Intel XScale PXA270 processor [42] as an example of a low-power embedded CPU for

hand-held and portable applications. The second configuration is comparable to the IBM

PowerPC 750GX processor [40] as a high-end embedded core for networking systems.

Table 7.1 summarizes the key architectural parameters used for the two configurations. For

BLISS, we split the baseline instruction cache resources between regular instructions (3/4

for BLISS instruction cache) and block descriptors (1/4 for BB-cache) as each basic block

corresponds to 4 to 8 instructions on average. The smaller BLISS instruction cache does

not incur more misses as 17% of the original MIPS instructions are eliminated fromthe

BLISS code by the simple code size optimizations. The BLISS design no longer requires

the BTB, therefore that area can be used for the BBQ. We fully model all contention for the

L2-cache bandwidth between BB-cache misses and instruction cache or D-cachemisses.
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Front-End Parameters
XScale PXA270 PowerPC 750GX

Base BLISS Base BLISS
Fetch Width 1 inst/cycle 1 BB/cycle 4 inst/cycle 1 BB/cycle
BTB 32-entry 4-way – 64-entry 4-way –
BB-cache 8 KBytes 4-way 8 KBytes 4-way

– 32B Blocks – 32B Blocks
1-cycle access 1-cycle access

I-cache 32 KBytes 4-way24 KBytes 3-way32 KBytes 8-way24 KBytes 6-way
32B Blocks 32B Blocks 32B Blocks 32B Blocks

2-cycle access 2-cycle access 1-cycle access 1-cycle access
Decoupling Queue – 4 entries – 4 entries

Common Processor Parameters
XScale PXA270 PowerPC 750GX

Execution in-order out-of-order
Predictor Bimod 256-entries Bimod 512-entries
RAS 8 entries 16 entries
Issue/Commit Width 1 instructions/cycle 4 instructions/cycle
IQ/RUU/LSQ Size 16/32/32 entries 32/64/64 entries
FUs 1 INT & 1 FP 2 INT & 1 FP
D-cache 32 KBytes, 4-way, 32B blocks 32 KBytes, 8-way, 32B blocks

1 port, 2-cycle access 1 port, 1-cycle access
L2 cache 256 KBytes, 4-way, 64B blocks 1 MByte, 8-way, 128B blocks

1 port, 5-cycle access 1 port, 5-cycle access
Main memory 30-cycle access 45-cycle access

Table 7.1: The microarchitecture parameters used for embedded processors evaluation and
code size optimization experiments.

The operation of the front-end with BLISS for embedded processors is similar tothe op-

eration for the high-end processors. The front-end resources for the two evaluated embed-

ded processors in Table 7.1 are sized differently from the high-end processor in Table 5.1.

The back-ends for the two embedded designs also have fewer resources with the XScale

design consuming instructions in an in-order manner at lower throughput. Nevertheless,

the front-end behavior for the two embedded designs is the same as the high-end.
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7.2.2 Tools and Benchmarks

Similarly to the case of high-end processors, our simulation framework for embedded sys-

tems is based on the Simplescalar tool set. We also used the same methodology in Section

6.3 for energy evaluation. We assume a 0.10µm process with a 1.1V power supply.

Instead of the SPEC benchmarks, we study 10 applications from the MediaBench suite

[57]. The MediaBench programs are more appropriate for the evaluation of embedded

processors as they include common embedded applications such as communication and

multimedia processing. The benchmarks are compiled at the -O2 optimization level using

gcc and simulated to completion. The -O2 level includes optimizations that improve per-

formance significantly but do not increase the code size. The compiler does not perform

loop unrolling or function inlining when this option is specified. Hence, the density of the

initial code is quite good.

Block subsetting is performed in the code optimization step during the BLISS codegen-

eration process (see Figure 3.3). If all of the instructions of a basic block appear elsewhere

in the code stream, the instructions are eliminated and the descriptor pointer is updated.

Although instruction rescheduling and register re-allocation might help in identifying addi-

tional repetitions [22], they are not considered in this study. We allow splitting a large basic

block into two sequential basic blocks to further reduce the static code size. Basic block

splitting requires adding extra BBDs, however, a net reduction in the code sizecan be still

achieved if the instructions from one or both of the new blocks can be eliminated. Block

splitting is only performed when the net results is a reduction in the static code size and

only for large blocks (more than 6) to avoid negatively affecting the BB-cache performance.

To determine which basic blocks will use 16-bit encoding for their instructions, we em-

ploy the static profitability-based heuristic proposed in [36]. Converting a block to use the

short instruction format impacts both the code size and the performance of the program.

Instructions in 16-bit format can only access 8 registers and may lead to performance loss
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Figure 7.4: Compression ratio achieved for the different BLISS executables over the base-
line 32-bit MIPS code.

due to register spilling. In their technique, the impact is estimated using a profitability anal-

ysis (PA) function. The PA function estimates the difference in code size and performance

if the block were to be implemented in the short format compared to normal encoding.

These estimates can be used to tradeoff between performance and code size benefits for the

program. The heuristic tries to achieve similar code size reduction to whatis possible with

exclusive use of 16-bit instructions without impacting performance.

7.3 Evaluation for Embedded Processors

This section presents the code size, performance, and energy evaluation of BLISS for the

two embedded processors.

7.3.1 Code Size

Figure 7.4 presents the compression ratio achieved for the different BLISS executables

compared to the MIPS-32 code size. Compression ratio is defined as the percentage of the

compressed code size over the original code size. This means that lower compression ratios

are better.

Direct translation with basic-optimizations (Basic-Optimizationsbar) of MIPS-32 code

leads to an increase in code size with a 106% average compression ratio. Thisis 6% worse



104 CHAPTER 7. BLISS FOR EMBEDDED PROCESSORS

than the original MIPS-32 code. Block subsetting (Block-Subsetbar) yields an average

compression ratio of 77%. Mixing 16- and 32-bit instruction sets makes the BLISS exe-

cutables 29% less than the MIPS-32 code (71% compression ratio). Combining the two

optimizations leads to 61% compression ratio. Note that when the two optimizations are

enabled, the individual reductions in code size do not add up. This is due to two reasons.

First, block subsetting is only performed within blocks of the same instruction size: 16-bit

instruction blocks can only be considered for block subsetting with other 16-bit blocks and

the same applies to 32-bit blocks. Hence, the opportunity for removing repeated sequences

is less. Second, the saving from eliminating 16-bit instructions is half the savingfrom

eliminating 32-bit instructions.

Table 7.2 presents additional detailed statistics on the code size optimizations stud-

ied. Extra instructions are required when interleaving 16 and 32-bit blocks due to register

spilling as instructions in 16-bit format can only access 8 registers. It isinteresting to note

that 95% of the code is none performance critical and can be converted to 16-bit encoding.

7.3.2 Performance Analysis

Figure 7.5 compares the percentage of IPC improvement achieved for the differentBLISS

executables for the XScale and the PowerPC processor configurations over the base design.

The original BLISS with basic optimizations provides an 11% average IPC improvement

for the XScale configuration and a 9% average improvement for the PowerPC configuration

over the base design. The BLISS advantage is mostly due to the elimination of a significant

number of pipeline flushes as a result of more accurate prediction (see Section 5.2.2).Note

that the performance advantage for the PowerPC configuration is slightly lower than the

advantage for the XScale. As we explained in Section 4.1.2, BLISS tolerates higher in-

struction cache access time. The instruction cache access time for the XScale is two cycles,

while the access time for the PowerPC is only one cycle. This implies that theperformance
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BLISS Block-Subset Block-Subset Interleaving
Benchmark MIPS-32 Basic without with 16/32

Optimization BB-splitting BB-splitting Blocks
Code J/B No. of No. of Extra No. of % of Inst. Extra
Size Inst. BBs Inst. BBDs Inst. Using Inst.

(KByte) Removed Eliminated Added Eliminated 16-bit Added

adpcm 37 1626 2593 2014 534 3054 94% 730
epic 69 2841 4561 3777 1058 6036 96% 816
g721 43 1884 2961 2391 637 3659 93% 664
gsm 70 2805 4397 3405 1178 5649 94% 948
jpeg 112 4391 6567 5744 2115 10109 96% 1286
mesa 453 16811 24673 25183 10529 47825 95% 6224
mpeg2.dec 79 3413 5124 3887 1224 6391 96% 1242
mpeg2.enc 106 4241 6490 4980 1758 8637 95% 1820
pegwit 82 2959 4476 3775 1436 7369 95% 1746
pgp 206 10353 14296 11425 3319 18231 96% 1242
rasta 232 10559 13776 11647 5426 24861 96% 980

Table 7.2: Statistics for the BLISS code size. The extra instructions for the 16-bit format
are due to register spilling and the short offsets for data references.

benefit of BLISS for the XScale is going to be higher as BLISS will tolerate itsinstruction

cache latency.

BLISS provides very similar IPC improvements even with block subsetting. The addi-

tional instruction cache misses due to reduced instruction locality are well tolerated through

prefetching using the contents of the BBQ. The elimination of repeated instruction se-

quences allows for more unique instructions to fit in the instruction cache at any point in

time. Hence, certain applications observe an overall higher instruction cache hit rate.

With interleaved 16-bit and 32-bit code, BLISS achieves a 10% average IPC improve-

ment over the base for XScale and an 8% average improvement for PowerPC. Two factors

contribute to the change in performance gains. With 16-bit encoding, twice as many in-

structions can fit in the instruction cache, which leads to lower miss rate. However, 16-bit

encoding introduces additional dynamic instructions to handle register spilling and long
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Figure 7.5: Percentage of IPC improvement for the different BLISS binaries over the base
design. The top graph is for the XScale processor configuration. The bottom one is for the
PowerPC configuration.

offsets for load and store instructions. On average, 1% more instructions are executed com-

pared to the original code. The net effect is a small degradation in average performance

compared to the original BLISS. Nevertheless, for benchmarks likemesa, which stresses

the instruction cache capacity, the net effect is a small performance improvement. Us-

ing block subsetting in addition to interleaved 16-bit/32-bit instructions results in a similar

performance as the one observed when the optimization is enabled on the original BLISS

code.

7.3.3 Energy Analysis

Figure 7.6 compares the percentage of total energy improvement achieved using the dif-

ferent BLISS executables for the XScale and PowerPC processor configurationsover the

base design. BLISS offers a 23% total energy advantage for the XScale configuration and a
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Figure 7.6: Percentage of total energy savings for the different BLISS binaries over the
base design. The top graph is for the XScale processor configuration. The bottom one is
for the PowerPC configuration.

12% advantage for the PowerPC configuration over the base design. The BLISS advantage

is due to a number of factors: reduced energy spent on mispredicted instructions, selective

word access in the instruction cache, merging of instruction cache accesses for sequential

blocks, and judicious access to the branch predictor.Adpcm is the benchmark for which

BLISS achieves the lowest energy-savings.Adpcm frequently executes short basic blocks

(2.5 instructions per block) and requires frequent accesses to the BB-cache. The other

benchmarks include 5 instructions or more per basic block.

The energy savings for XScale are higher than the savings for PowerPC. The XScale

instruction cache access time is two cycles which places additional pressure on accurate

control-flow prediction. Moreover, since XScale uses a single-issue pipeline, its BTB and

the predictor are accessed for every instruction in the base design. With BLISS, they are

accessed once per basic block. For PowerPC, the BTB and predictor are accessed once per

4 instructions, hence the energy saved in the front-end with BLISS is lower.
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Figure 7.7: Average Code size, execution time, and total energy consumption for selec-
tive 16-bit and BLISS (with block-subset and 32/16 blocks) executables for the XScale
processor configuration over the base. Lower bars present better results.

Block subsetting leads to slightly lower energy savings. When blocks are split to en-

hance subsetting, additional accesses to the BB-cache are introduced. Similarly, 16-bit

encodings introduce some energy consumption due to the additional instructions. Never-

theless, BLISS with mixed instruction widths and subsetting provides a 21% total energy

advantage for XScale and a 10% advantage for PowerPC over the base design.

7.3.4 Comparison to Selective Use of 16-bit Code

So far, we have compared BLISS to the base design running conventional RISC MIPS-32

code. In this section, we compare BLISS with code size optimization to the base running

code optimized with selective use of 16 bit-instructions. Figure 7.7 compares BLISS with

block subsetting and selective use of 16-bit blocks to selective use of 16-bit instructions

with a conventional ISA like Thumb-2 and rISA (Sel16) [81, 36, 55]. Note that the same

profitability heuristic is used with both ISAs to select which instructionsor blocks to encode

with 16 bits. The base XScale configuration with the full-sized instruction cache is used

for Sel16.
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By interleaving 16-bit and 32-bit encodings at instruction granularity, Sel16 achieves a

39% code size reduction. Nevertheless, the extra dynamic instructions for switching lead

to a small performance and energy degradation. On the other hand, BLISS provides sim-

ilar code size reduction and at the same time achieves 10% performance and 21% total

energy advantages. BLISS overcomes the code size handicap of the extra block descrip-

tors by allowing an additional code size optimization over Sel16 (block subsetting). Its

performance and energy advantages are due to the microarchitecture optimization enabled

with the BLISS decoupled front-end and the lack of special instructions for switching be-

tween 16-bit and 32-bit code. Overall, BLISS improves upon Sel16 by offering similar

code density at superior performance and energy consumption.

7.4 Related Work

Many code size reduction techniques have been proposed and widely used in embedded

systems [12]. Most techniques store the compressed program code in memory and decom-

pression happens on instruction cache misses [110, 60, 50] or inside the processor [59, 23].

Compression is typically dictionary based. Such techniques reduce memory footprintand

the off-chip bandwidth requirements for instruction accesses. When decompression occurs

in the core, additional latency is introduced for instruction execution. When decompres-

sion occurs on cache refills, additional pressure is placed on the instruction cache capac-

ity. BLISS reduces code size, places no additional pressure on instruction cache capacity,

and improves on execution time. BLISS can be combined with a dictionary compression

scheme behind the instruction cache for further code size improvements.

Cooper proposed a compiler framework for discovering and eliminating repeatedin-

struction sequences [22]. The echo instruction has been proposed to facilitateelimination

of such redundancies [56]. An echo instruction is used in the place of repeated sequences
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and points back to the unique location for that code. Using echo instructions, 84% com-

pression ratio is reported in [56]. BLISS facilitates redundancy elimination with block

subsetting, which on its own leads to a 77% compression ratio. Moreover, BLISS allows

for significant performance improvements in addition to code compression, which is not

the case with previous proposals.

7.5 Summary

This chapter evaluated the use of the block-aware instruction set (BLISS) toachieve code

size, performance, and energy improvements for embedded processors. BLISS achieves

significant improvements in all three metrics, which is traditionally achallenge to accom-

plish. The software-defined basic block descriptors in BLISS facilitate code size optimiza-

tions by removing redundant sequences of instructions across basic blocks and by allowing

a fine-grain interleaving of 16-bit and 32-bit instructions without overhead instructions. We

showed that BLISS allows for 40% code size reduction over a conventional RISCISA and

simultaneously achieves 10% performance and 21% total energy improvements. Hence,

BLISS improves concurrently the performance and cost of embedded systems.

Overall, the block-aware instruction set compares favorably to previous code density

or performance enhancement techniques as it allows concurrent improvements in all three

efficiency metrics. Therefore, it can be a significant design option for embedded systems.



Chapter 8

Low Cost Front-End Design for

Embedded Processors

Apart from performance, energy, and code size, cost is an important concern for embed-

ded processors. Managing the cost of an embedded system determines its success as profit

margin for such systems is typically low. Even a small increase in device cost leads to sig-

nificant increase in overall production cost for high volume manufacturing. Die area and

power consumption are directly related to the cost of embedded processors. Diearea deter-

mines the cost to manufacture the chip. Power consumption determines the cost to package

and cool the chip. The challenge with embedded processors is that area and power effi-

ciency must be achieved without compromising performance and energy efficiency.While

energy and power are directly related, optimizing one of them does not necessarily trans-

lates to improvement in the other one. Power refers to the activity level at any given point

while energy refers to the total amount of activities during program execution. Itis possible

that two program profiles have same energy usage with different peak power dissipations.

This chapter presents a number of design optimizations that target the power consump-

tion and area of the front-end for embedded processors. Primarily, the goal is touse smaller

front-end memory structures that consume less static and dynamic power and take up less

111
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area. The challenge is to avoid performance loss due to the reduced capacity. We ex-

plore these optimization techniques using the block-aware instruction set (BLISS) archi-

tecture. The software-defined basic block descriptors provide a flexible substrate to im-

plement these optimizations efficiently because the descriptors are directly visible to soft-

ware, provide accurate information for prefetching, and can carry softwarehints. These

optimizations balance out the performance loss of smaller instruction cache or prediction

arrays. Hence, BLISS allows significant reorganization of the front-end without affecting

performance, all within the same software model (ISA).

The remainder of this chapter is organized as follows. In Section 8.1, we discussthe

background and motivation for this work. Section 8.2 presents the front-end hardware and

software optimizations. In Section 8.3, we explain the methodology and tools used for

evaluation. In Section 8.4, we present and analyze the evaluation results. Finally, Section

8.5 highlights related work.

8.1 Background and Motivation

Embedded processors consume a large fraction of their power budget in the front-end of

their pipeline. The front-end contains several large SRAM structures such asthe instruction

cache, the branch target buffer (BTB), and the branch predictor, that are accessed on nearly

every clock cycle. Such memory arrays are sized to hold a large amount of datain order to

obtain good overall performance. For example, the Intel XScale PXA270 processoruses

a 32-KByte instruction cache and a 128-entry BTB [42]. Combined, the two structures

consume 22% of the processor total power budget.

Nevertheless, different programs exhibit different locality and memory access patterns

and even a single program may not need all the available storage at all times.If the pro-

cessor is executing a tight loop, for example, most of the instruction cache is underutilized
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Figure 8.1: Normalized execution time, total power, and total energy consumptionfor the
base design (32-KByte I-cache, 64-entry BTB), the base design with optimal I-cache and
BTB, and the base design with small front-end arrays (2-KByte I-cache, 16-entry BTB).
The processor core is similar to Intel’s XScale PXA270 and is running benchmarksfrom
the MediaBench and SPEC CPU2000 suites. Lower bars present better results.

as smaller cache could provide the same performance but with lower area, power, and en-

ergy requirements. Figure 8.1 quantifies the total energy and power wasted in the PXA270

processor due to sub-optimal instruction cache and BTB sizing for MediaBench and SPEC

CPU2000 applications. The optimal configuration is found using a method similar to [97]

where a continuum of cache sizes and configurations are simulated. During each cycle, the

cache with the lowest power from among those that hit is selected. On average, 16% total

power and 17% total energy are wasted if the processor uses larger than needed instruction

cache and BTB.

Reducing the instruction cache and BTB capacity of embedded processors by a factorof

4 or 8 leads to direct die area and power savings. Table 8.1 presents the normalized power

dissipation, area, and access time for different smaller instruction cache configurations over

the 32-KByte instruction cache of the PXA270 processor using Cacti [102]. A 2-KByte in-

struction cache dissipates only 8.4% of the power dissipated by the 32-KByte cache and

uses only 4.6% of its area. While the use of smaller arrays reduces die area and power

dissipation, several applications will now experience additional instruction cache and BTB
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Configuration Power Area Access Time
2 KByte, 2 way associative 8.4% 4.6% 50.7%
4 KByte, 4 way associative 14.6% 9.2% 53.0%
8 KByte, 8 way associative 26.9% 18.0% 58.8%
16 KByte, 16 way associative 51.3% 42.8% 71.5%

Table 8.1: Normalized power dissipation, area, and access time for different instruction
cache configurations over the XScale 32-KByte instruction cache configuration.

misses that will degrade performance and increase energy consumption. Figure 8.1 quan-

tifies the performance penalty with the smaller instruction cache and BTB sizes (13% on

average). Furthermore, the energy savings from accessing smaller arrays are nearly can-

celed from the cost of operating the processor longer due to the performance degradation.

8.2 Front-End Optimization

This section presents both hardware and software techniques that can reduce the perfor-

mance degradation of the small front-end structures. The hardware-based techniques in-

clude instruction prefetching, unified instruction cache and BTB structures, and tagless

instruction caches. Software-based techniques includeinstruction re-orderingand various

forms ofsoftware hints. Instruction prefetching hides the latency of extra cache misses by

fetching instructions ahead of time. Unifying the instruction cache and the BTB allows a

program to flexibly use the available storage as needed without the limitations of afixed

partitioning. Alternatively, the BTB and the instruction cache could be organized in such

away that the instruction cache tags are no longer required; hence, their area andpower

overhead can be saved. Instruction re-ordering attempts to densely pack frequently used

instruction sequences in order to improve the locality in instruction cache and BTB ac-

cesses. Finally, compiler-generated hints can improve the instruction cache performance

by guiding the hardware to wisely use the limited resources.
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8.2.1 Hardware Prefetching (Hardware)

Instruction cache misses have a severe impact on the processor performance and energy

efficiency as they cause the front-end to stall until the missing instructionsare available.

If an instruction cache is smaller than the working set, misses are inversely proportional

to the cache size. Hence, a smaller instruction cache will typically cause additional per-

formance loss. Instruction prefetching can reduce the performance impact of these misses.

Instruction prefetching speculatively initiates a memory access for aninstruction cache

line, bringing the line into the cache (or a prefetching buffer) before the processorrequests

the instructions. Prefetching from the second level cache or even the main memory can hide

the instruction cache miss penalties, but only if initiated sufficiently far ahead in advance

of the current program counter.

Most modern processors only support very basic hardware sequential prefetchers. With

a sequential or stream-based prefetcher, one or more sequential cache lines after the cur-

rently requested one are prefetched [103, 77]. Stream prefetching only helps withmisses

on sequential instructions. An alternative approach is to initiate prefetches for cache lines

on the predicted path of execution [21]. The advantage of such a scheme is that it can

prefetch potentially useful instructions even for non-sequential access patterns as long as

branch prediction is sufficiently accurate.

As discussed in Section 4.1.2, BLISS supports efficient execution-based prefetching

using the contents of the BBQ. The BBQ decouples basic block descriptor accesses from

fetching the associated instructions. The predictor typically runs ahead, evenwhen the in-

struction cache experiences temporary stalls due to a cache miss or when the instruction

queue is full. The contents of the BBQ provide an early, yet accurate view into the instruc-

tion address stream and are used to lookup further instructions in the instructioncache.

Prefetches are initiated when a potential miss is identified. BLISS also improves prediction

accuracy (see Section 5.2.2), which makes the execution-based prefetching scheme even
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more effective. Prefetching, if not accurate, leads to additional L2-cacheaccesses that can

increase the L2-cache power dissipation.

8.2.2 Unified Instruction Cache and BTB (Hardware)

Programs exhibit different behaviors with respect to the instruction cache and BTB uti-

lization. While some programs stress the instruction cache and are susceptible to its size

(e.g.,rasta from MediaBench), other programs depend more on the BTB capacity (e.g.,

adpcm from MediaBench). Even in a single program, different phases may exhibit differ-

ent instruction cache and BTB access patterns. Being able to flexibly share the instruction

cache and BTB resources could be valuable for those types of programs, especially when

the hardware resources are limited.

The BLISS front-end can be configured with a unified instruction cache and BB-cache

storage as both instructions and descriptors are part of the architecturally-visible binary

code. Each line in the unified cache holds either a few basic block descriptors or a few

regular instructions. The unified cache can be accessed by both the descriptor fetch and

the instruction fetch units using a single access port. Instruction fetch returns multiple

instructions per access (up to a full basic block) to the back-end pipeline and does not need

to happen on every cycle. It only needs to occur when the IQ is not full and the BBQ is

not empty. On the remaining cycles, we perform descriptor fetches using predicted BBD

addresses. For the embedded processors we studied, sharing a single port for instruction

and descriptor fetches had a negligible impact on performance.

On a conventional architecture, storing BTB and instruction cache entries in a single

structure is more challenging as the same program counter is used to access both structures.

This implies that extra information is required to be stored in the unified cache to differ-

entiate between BTB and instruction entries. In addition, the two entries map to the same

cache set, causing more conflicts. The BTB and instruction cache are also accessed more
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frequently as basic block boundaries are not known until instruction decoding. Hence,

sharing a single port is difficult.

8.2.3 Tagless Instruction Cache (Hardware)

In Section 6.2.2, we showed that we could eliminate the data access for all but the way that

hits. Now we will focus on eliminating the instruction cache tags altogether (storage and

access). BLISS provides an efficient way to build an instruction cache with no tag accesses

by exploiting the tags checks performed on descriptor accesses. This improves instruction

cache access time, reduces its energy consumption significantly, and eliminates the area

overhead of tags. The new tagless instruction cache is organized as a direct mapped cache,

with only the data component. Figure 8.2 illustrates the organization of this cache. For each

basic block descriptor in the BB-cache, there is only one entry in the tagless instruction

cache which can hold a certain number of instructions, 4 in our experiments. A flagbit is

used in each descriptor in the BB-cache entry to indicate if the corresponding entry in the

tagless instruction cache has valid instructions or not. This flag is initialized during BB-

cache refill from L2-cache and is set after the instructions are fetched from the L2-cache

and placed in the tagless instruction cache. Moreover, the flag that indicates if the entry in

the tagless cache is valid or not can be used by the prefetching logic. This eliminates the

need to probe the cache and improves the overall performance of the prefetcher.

The operation of the BLISS front-end with the tagless cache is very similarto what we

explained in Section 4.1.1 except the way the instruction cache is accessed. On aBB-cache

miss, the missing descriptors are retrieved from the L2-cache. At that stage, the instruction

valid bits (IV ) are initialized for those descriptors indicating that their associated instruction

cache entries are invalid. The instruction fetch unit uses the valid bit todetermine how to

access the instruction cache. If the instruction valid bit is not set, the instructions are

retrieved from the L2-cache using the instruction pointer available from the descriptor.
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Figure 8.2: The organization of the tagless instruction cache with BLISS.
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Once the instructions are retrieved and placed in the instruction cache, thevalid bit for

the corresponding descriptor is set. If the instruction valid bit is set, the instructions are

retrieved from the instruction cache using the index field of the PC and the index ofthe

matching BB-cache way. For basic blocks larger than 4 instructions, only the first four

instructions are stored in the instruction cache. In the applications studied, 68%of the

executed basic blocks include 4 instructions or less. Similar to the victim cache, we use

a 4-entry fully associative cache to store the remaining instructions. Thisvictim cache

is accessed in a subsequent cycle and is tagged using the PC. In a case of a miss, the

instructions are brought from the L2-cache.

Nevertheless, the tagless instruction cache has two limitations. First, once a BB-cache

entry is evicted, the corresponding instruction cache entries become invalid. In addition,

the virtual associativity and size of the instruction cache are now linked with that of the BB-

cache and cannot be independently set. We can use an alternative approach for indexing

the tagless cache to solve this limitation. We can determine the location in the instruction

cache independently by an additional pointer field in the BB-cache format. This is sim-

ilar to having a fully associative instruction cache, but with additional complexity in its

management (keep track of LRU, etc).

8.2.4 Instruction Re-ordering (Software)

Code re-ordering at the basic block level is a mature method that tunes a binary toa spe-

cific instruction cache organization and improves hit rate and utilization. Re-ordering uses

profiling information to guide placement of basic blocks within the code. The goal is to

arrange closely executed blocks into chains that are laid out sequentially, hence increasing

the number of instructions executed per cache line. The improved spatial locality reduces

the miss rate for the instruction cache of a specific size. This implies thatwe can afford

using a smaller cache without negatively impacting the performance.
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Pettis and Hansen suggested a bottom-up block-level positioning algorithm [80]. In

their approach, they split each procedure into two procedures, one with the commonly used

basic blocks and one with the rarely used basic blocks (”fluff”). The infrequently executed

code is replaced with a jump to the relocated code. Additionally, a jump is inserted at the

end of the relocated code to transfer control back to the commonly executed code. Within

each of the two procedures, a control-flow graph is used to from chains of basic blocks

based on usage counts. The chains are then placed making fall through the likely case after

a branch.

Basic block re-ordering is easily supported by BLISS using the explicit block descrip-

tors. Blocks of instructions can be freely re-ordered in the code segment in anydesired

way as long as we update the instruction pointers in the corresponding block descriptors.

Compared to re-ordering with conventional architectures, this provides twomajor benefits.

First, there is no need to split the procedure or introduce additional jump instructions for

control transfers between the commonly and the less commonly used code (fewer static and

dynamic instructions). The pointers in the block descriptors handle control transfersauto-

matically. Second, re-ordering basic blocks does not affect branch prediction accuracy for

BLISS, as the vital information for speculation is included in the basic block descriptors

available through the BB-cache (block type, target offset). On a conventional architec-

ture, re-ordering blocks may change the number of BTB entries needed and the conflicts

observed on BTB accesses.

8.2.5 Cache Placement Hints (Software)

Conventional caches are designed to be managed purely by hardware. Hardware must

decide where to place the data and which data to evict during cache replacement.A conse-

quence is that the cache resources may not be optimally utilized for a specific benchmark,

leading to poor cache hit rate. Compilers and profile-based tools can help the processor
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with selecting the optimal policies in order to achieve the highest possible performance

using the minimal amount of hardware. Hints can indicate at which cache levelsit is prof-

itable to retain data based on their access frequency, excluding infrequent data from the first

level cache. Hints can also guide the hardware placing data in the cache to avoid conflicts,

or improve the cache replacement decisions by keeping data with higher chance of reuse.

A compiler can attach hints to executable code at various granularities, with every in-

struction, basic block, loop, function call, etc. BLISS provides a flexible mechanism for

passing compiler-generated hints at the granularity of basic blocks. The last field of the

basic block descriptor contains optional compiler-generated hints. Specifying hintsat the

basic block granularity allows for fine-grain information without increasing the length of

all instruction encodings or requiring additional, out-of-band, instructions that carrythe

hints. Hence, hints can be communicated without modifying the conventional instruction

stream or affecting static or dynamic instruction counts. Furthermore, sincedescriptors

are fetched early in the pipeline, the hints can be useful with decisions withmost pipeline

stages, even before instructions are decoded.

We evaluate two types of software hints for the L1 instruction cache management. The

first type indicates if a basic block should be excluded from the L1 instruction cache. We

rely on prefetching, if enabled, to bring excluded blocks from the L2-cache when needed.

Note that the hints are visible to the prefetcher, therefore, cache probing is not required for

those blocks. A very simple heuristic based on profiling information is used to select which

cache lines are cache-able. We exclude blocks with infrequently executed code and blocks

that exhibit high miss rates. The second type of hints redistributes the cache accesses over

the cache sets to minimize conflict misses. The hints are used as part of the address that

indexes the cache. The 3 hint bits are concatenated with the index field of the address to

form the new cache index field.
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Front-End Parameters
XScale PXA270

Base BLISS
Fetch Width 1 inst/cycle 1 BB/cycle
I-cache

Regular 32 KBytes, 32-way, 32B Blocks, 2-cycle access
Small 2 KBytes, 2-way, 32B Blocks, 2-cycle access

BTB/BB-cache
Regular 64-entry, 4-way 64-set, 4-way
Small 16-entry, 2-way 16-set, 2-way

BBQ – 4 entries

Common Processor Parameters
XScale PXA270

Execution single-issue, in-order with 1 INT & 1 FP unit
Predictor 256-entry bimod with 8 entry RAS
D-cache 32 KBytes, 4-way, 32B blocks, 1 port, 2-cycle access
L2-cache 128 KBytes, 4-way, 64B blocks, 1 port, 5-cycle access
Main memory 30-cycle access

Table 8.2: The microarchitecture parameters for base and BLISS processor configurations
used for power and area optimization experiments.

8.3 Methodology

Table 8.2 summarizes the key architectural parameters for the base and BLISS processor

configurations. Both are modeled after the Intel XScale PXA270 [42]. For fair energy

comparisons, the base design uses serial instruction tag and data accesses.We have also

performed experiments with a high-end embedded core comparable to the IBM PowerPC

750GX [40] and the achieved results are consistent.

For performance evaluation, we used similar tools to what we discussed in Section

5.1.2. We also used the same tools presented in Section 6.3 for energy evaluation. For

performance, we report IPC, ignoring the fact that processors with smaller caches may

be able to run at higher clock frequencies than processors with larger caches. We study

10 benchmarks form MediaBench suite and SPEC CPU2000 suite compiled at the -O2
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Figure 8.3: Normalized IPC for BLISS with the different front-end optimizations over the
base. The BLISS design uses the small I-cache and BB-cache. The base design uses the
regular I-cache and BTB. The 1.0 line presents the base design. Higher bars present better
performance.

optimization level using gcc. The selected benchmarks have relatively highinstruction

cache or BTB miss rates.

8.4 Evaluation

This section presents the performance, cost, and energy evaluation analysis ofBLISS using

the different optimization techniques.

8.4.1 Performance Analysis

Figure 8.3 compares the IPC of BLISS with small caches and the various optimizations to

that of the base design with large caches (IPC of 1.0). We only present a single combination

of optimizations, the best performing one (prefetching + instruction re-ordering +unified

cache + redistribute cache hints). For reference, the average normalizedIPC for various

other configurations is: 0.87 for the base design with small caches,0.91for the base design
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with small caches and prefetching, and0.99for BLISS with small caches and no prefetch-

ing. It is important to notice that for all but one benchmark (gcc), all optimizations allow

BLISS with small caches to reach the IPC of the base design with large caches. The design

with the combined optimizations consistently outperforms the base with an average IPC

improvement of 9%.

The analysis for the individual optimizations is the following. The advantages of in-

struction prefetching and re-ordering are consistent across all benchmarks. When com-

bined, re-ordering reduces significantly the prefetching traffic. The unified cache is most

beneficial for benchmarks that put pressure on the BTB (e.g.,jpeg), but may also lead

to additional conflicts (e.g.,crafty). With the tagless cache, the performance greatly

depends on the size of the basic blocks executed. For large basic blocks (vortex and

apsi), performance degrades as the instruction cache cannot fit all the instructions in

the block (limit of 4). Similarly, for programs with many small blocks (2 or less in-

structions as in g721), the instruction cache capacity is underutilized. The tagless cache

performs best for programs with basic blocks of size 4 instructions likepegwit. It is

also best to combine the tagless instruction cache with prefetching to deal with conflict

misses. Software hints tend to provide a consistent improvement for all of thebenchmarks.

The redistribute cache hints achieve slightly better performance than the exclude cache

hints.

To understand the effectiveness of each technique in reducing the performance impact

of the small instruction cache, we look at the instruction cache miss rates for the differ-

ent optimizations. Figure 8.4 presents the normalized number of instruction cache misses

for BLISS with the different front-end optimizations over the base design with the small

instruction cache. The reduction in instruction cache misses with prefetching, instruction

re-ordering, and unified cache is consistent across most benchmarks with a 20% average.

For the tagless instruction cache + prefetching, the decrease varies and largely depends on

the basic block average size. Both of the software cache placement hints withprefetching
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Figure 8.4: Normalized number of instruction cache misses for BLISS with the different
front-end optimizations over the base. The BLISS design uses the small I-cache and BB-
cache. The base design uses the small I-cache and BTB. Lower bars present better results.

Power Area Access Time
Instruction Cache 8.4% 4.6% 50.7%
Predictor Tables 75.4% 47.5% 94.7%

Table 8.3: Normalized power dissipation, area, and access time for the small instruction
cache and predictor tables over the large structures of the XScale configuration.

significantly reduce the number of cache misses with an average of 58%. Finally,the best

combination of the optimizations (prefetching + instruction re-ordering + unified cache +

redistribute cache hints) achieves 66% reduction.

8.4.2 Cost Analysis

Power and die area determine the cost to manufacture and package the chip. Table 8.3

summarizes the normalized power and area of the small front-end structuresover the large

structures for the XScale configuration. We also report the normalized accesstimes for

the small front-end structures. However, we ignore the fact that the processor with the

small caches can run at higher clock frequency. The small instruction cache only dissipates

8.4% of the power dissipated by the large cache and uses only 4.6% of its area. The small
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Figure 8.5: Normalized total energy comparison for BLISS with the different front-end
optimizations over the base. The BLISS design uses the small I-cache and BB-cache. The
base design uses the regular I-cache and BTB. The 1.0 line presents the base design. Lower
bars present better results.

predictor tables dissipate 75.4% of the power dissipated by the larger structures and use

only 47.5% of the area. The small instruction cache access time is also half of the access

time for the large cache.

8.4.3 Total Energy Analysis

Figure 8.5 compares the total energy of BLISS with small caches and the various optimiza-

tions to that of the base design with large caches (energy of 1.0). Lower energy is better.

For reference, the average total energy for other configurations is: 0.95 for the base design

with small caches,0.93for the base design with small caches and prefetching, and0.88for

BLISS with large caches.

With all optimizations, BLISS with small caches consumes less energy than the base

with small or large caches. The combined optimizations lead to an energy consumption

of 81%. The tagless instruction cache configuration provides significant energy benefits

for several benchmarks (adpcm, jpeg, mesa, pegwit) as it eliminates redundant tag ac-

cesses. However, forvortex, the tagless instruction cache has the highest energy con-

sumption. This is due to the fact thatvortex has large basic blocks that will require to be



8.4. EVALUATION 127

75%

85%

95%

105%

Execution Time Total Power Total Energy

Base with regular I-Cache and BTB Base with optimal I-Cache and BTB

Base with Filter Cache and optimizations BLISS with small caches and optimizations

Figure 8.6: Average execution time, total power, and total energy consumption for base
design (with large caches), base design (with optimal caches), base design(with Filter
cache and a combination of front-end optimizations), and BLISS (with small caches and a
combination of front-end optimizations). Lower bars present better results.

prefetched and placed in the small victim cache. For the remaining optimizations, energy

consumption tracks the IPC behavior.

8.4.4 Comparison to Hardware-based Techniques

Many techniques have been proposed to save the front-end power without the need for a

new ISA. One such example is the Filter cache design proposed by Kin et al. [53]. AFilter

cache is a tiny cache introduced as the first level of memory in the instruction memory

hierarchy.

Many of the front-end optimizations that are presented in Section 8.2 can alsobe imple-

mented with a conventional instruction set using the Filter cache. Figure 8.6 summarizes

the comparison between BLISS with the combined optimizations (unified cache + prefetch-

ing + instruction re-ordering + redistribute hints) to the base design with (Filter cache +

prefetching + instruction re-ordering + selective caching hints). Note thatsimilar front-end

optimizations and cache sizes are used with both designs. The base XScale configuration

with the full-sized instruction cache and BTB is shown as a reference. We also show the

results for the base design with optimally-sized caches. We use a method similar to [97]
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to quantify the amount of energy wasted due to sub-optimal cache sizes. A continuum of

cache sizes and configurations are simulated. During each cycle, the cache with the lowest

power from among those that hit is selected.

BLISS with the front-end optimizations provides similar total power reduction to the

base design with Filter cache and the optimally-sized design (14% savings). Italso pro-

vides similar total energy savings to the optimally-sized design (19% reduction).The small

advantage is due to the more efficient access of instruction cache in the BLISSbase model

(see Chapter 6). More important, the power and energy savings do not lead to performance

losses as it is the case for the base design with the Filter cache. BLISS provides a 9%

performance improvement over the base design with large caches and a 12% performance

improvement over the base design with Filter cache and the combined front-endoptimiza-

tions. The performance advantage is due to two reasons. First, the efficient implementation

of front-end optimizations mitigates the negative effects of the small instruction cache and

BTB. Second, the block-aware architecture allows for higher prediction accuracy that pro-

vides the additional performance gains (see Chapter 5). In addition, BLISS provides 7%

energy improvement over the base design with Filter cache and the combined front-end

optimizations. Overall, BLISS with small caches and front-end optimizations improves

upon the Filter cache with comparable front-end optimizations by offering similar power

reduction at superior performance and energy consumption (12% performance and 7% total

energy improvements).

We only report IPC for the BLISS and the Filter cache designs, ignoring the opportunity

for performance gains if we exploit the faster access time of the small caches. By reducing

the clock period, the BLISS and Filter cache designs can run at higher clock frequencies

than processors with larger caches which will result in additional performance and energy

improvements.



8.5. RELATED WORK 129

8.5 Related Work

Significant amount of front-end research focused on instruction cache optimizations of

microprocessor-based systems because of the cache’s high impact on system performance,

cost, and power. The use of a tiny (Filter) cache to reduce power dissipationwas proposed

by Kin et al. [53]. Bellas et al. [10] proposed using a profile-aware compiler tomap

frequent loops into the Filter cache to reduce the performance overhead. BLISS provides

similar power reduction as the Filter cache design and at the same time improves perfor-

mance and energy consumption. Lee et al. [58] suggested using a tiny tagless loop cache

with a controller that dynamically detect loops and fill the cache. The loop cache is an

alternative to the first level of memory which is only accessed when a hitis guaranteed.

Since the loop cache is not replacing the instruction cache, their approach improves the

energy consumption with small performance, area, and total power overhead. Rose et al.

[32] evaluated different small cache designs.

Many techniques have been proposed to reduce the instruction cache energy. Some of

the techniques include way prediction [84], selective cache way access [2], sub-banking

[30], and tag comparison elimination [75, 114], Other research has focused on reconfig-

urable caches [87, 113] where a subset of the ways in a set-associative cache or a subset

of the cache banks are disabled during periods of modest cache activity to reduce power.

Using a unified reconfigurable cache has also shown to be effective in providing greater

levels of hardware flexibility [63]. Even though reconfigurable caches are effective in re-

ducing energy consumption, they have negligible effect on reducing the peak power or the

processor die area.

Many prefetching techniques have been suggested to hide the latency of cache misses.

The simplest technique is the sequential prefetching [103, 77]. In this scheme, one or more

sequential cache lines that follow the current fetched line are prefetched. History-based

schemes [104, 39, 48] use the patterns of previous accesses to initiate the new prefetches.
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The execution-based scheme has been proposed as an alternative approach [89, 21]. In this

scheme, the prefetcher uses the predicted execution path to initiate accesses. Other types of

prefetching schemes include the wrong path prefetching [82] and the software cooperative

approach [61]. In the later one, the compiler inserts software prefetches for non-sequential

misses. BLISS enables highly accurate execution-based prefetching using thecontents of

the BBQ.

Much research exists at exploring the benefit of code re-ordering [106]. Most of the

techniques use a variation of the code positioning algorithm suggested by Pettis and Hansen

[80]. Several researchers have also worked on using software-generatedhints to improve

the performance and power of caches [46, 68, 13, 41]. BLISS efficiently enables instruction

re-ordering with no extra overhead and no impact on speculation accuracy. Moreover, the

architecturally visible basic block descriptors allow communicating software hints without

modifying the conventional instruction stream or affecting its instruction codefootprint.

8.6 Summary

This chapter evaluated several front-end optimizations that improve the performance of em-

bedded processors with small front-end caches. Small caches allow for an area and power

efficient design but typically lead to performance challenges. The optimizations included

instruction prefetching and re-ordering, selective caching, tagless instruction cache, and

unified instruction and branch target caches. We built these techniques on top of theblock-

aware instruction set (BLISS) architecture that provides a flexible platform for both soft-

ware and hardware front-end optimizations. The best performing combined optimizations

(prefetching + unified cache + redistribute cache hints) allow an embedded processor with

small front-end caches to be 9% faster and consume 14% less power and 19% less energy

than a similar pipeline with large front-end structures. While some of the optimizations
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can also be implemented with a conventional instruction set, they lead tolower perfor-

mance benefits and are typically more complex. Overall, BLISS allows for low power and

low cost embedded designs in addition to performance, energy, and code size advantages.

Therefore, it can be a significant design option for embedded systems.
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Conclusions and Future Work

This dissertation examined the use of a block-aware instruction set architecture (BLISS)

to address the front-end challenges. The theme of this expressive ISA is to allow soft-

ware to assist the front-end hardware by providing architecture support for control-flow

prediction and instruction delivery. BLISS defines basic block descriptors inaddition to

and separately from the actual instructions in each program. A descriptor describes the

type of the control-flow operation that terminates the block, its potential target,and the

number of instructions in the basic block. This information is sufficient to tolerate the

latency of instruction accesses, regulate the use of prediction structures,and direct instruc-

tion prefetching. The architecture also provides a flexible communication mechanism that

software can use to provide hardware with critical information about instruction fetching

and control-flow.

We evaluated the BLISS ISA across a wide spectrum of processors and demonstrated

that BLISS provides efficient ISA-level support for front-end optimizations that target all

of the processor efficiency metrics. We showed that BLISS significantly improves both the

performance and the energy consumption of high-end superscalar processors. For embed-

ded processors where code size and cost are of greater concern, BLISS allows significant

reduction in the code size, total power, and die area in addition to the performance and

132
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energy gains. BLISS also compares favorably to hardware-only techniques builton top of

conventional ISAs with no software-support.

Overall, this work demonstrated the potential of delegating hardware functions in su-

perscalar processors to software using an expressive instruction set. Theresult is a proces-

sor with simpler hardware structures that performs better and consumes lessenergy than

aggressive hardware designs that operate on conventional instruction sets.

The primary contributions of this dissertation are:� We defined the block-aware ISA that provides basic block descriptors in addition to

and separately from the actual instructions in each program. The BLISS provides

accurate information for control-flow prediction and instruction prefetching without

fetching and parsing the actual instruction stream. BLISS also provides a versatile

mechanism for conveying compiler-generated hints at basic block granularity with-

out modifying the conventional instruction stream or affecting its instruction code

footprint.� We proposed a decoupled front-end organization based on the BLISS ISA. The new

front-end replaces the BTB with a descriptor’s cache. It uses the information avail-

able in descriptors to improve control-flow accuracy, implement guided instruction

prefetching, and reduce the energy used for control-flow prediction and instruction

delivery. We demonstrated that the new architecture improves upon conventional su-

perscalar designs by 20% in performance and 16% in energy. We also showed that

it outperforms hardware-only approach for decoupled front-ends by 13% and 7% for

performance and energy respectively. These benefits are robust across a widerange

of architectural parameters.� We evaluated the use of BLISS for embedded processor designs. We developed a

set of code size optimizations that utilize the ISA mechanism to provide code size

reduction of 40%. Unlike alternative proposals that tradeoff performance or energy
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consumption for code density, we showed that BLISS-based embedded designs pro-

vide 10% performance and 21% energy advantages in addition to the improved code

size.� We developed and evaluated a set of hardware and software techniques for low cost

front-ends for embedded systems. The optimization techniques target the size and

power consumption of instruction caches and predictor tables. We showed that the

decoupling features of BLISS and the ability to provide software hints allow for

embedded designs that use minimally sized, power efficient caching and predictor

structures, without sacrificing performance.

Future Work

We have made a great progress in evaluating and exploring the benefits of using the BLISS

ISA to assist the hardware in dealing with the front-end challenges. However, there are

still opportunities and challenges to follow up with. In the future, we intend to explore the

potentials of the BLISS ISA in several ways:� We would like to examine the use of the BLISS ISA with a variety of hardware

and software optimization techniques such as trace caches [94], hyperblocks [62],

and multiple-branch predictors [100]. Those techniques are rather orthogonal to the

BLISS ISA as one can form streams or traces on top of the basic blocks in BLISS.

BLISS simplifies the hardware for all of them as it eliminates the need to detect basic

blocks on the fly.� We showed that BLISS provides a very flexible mechanism to communicate software

hints. We evaluated two different usages to improve code density and prediction

accuracy. In the future, we would like to explore some of the other uses that we

presented in Section 3.2. In particular, we are interested in using the hintsto scale
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the processor resources based on the program needs to save energy and power at the

back-end of the processor.� With the recent shift to multi-threaded and multi-core architectures, we would like

to explore the use of BLISS for such designs. Exploiting the BBDs for those designs

will facilitate fine-grain parallelism, allow better management forshared caches and

resources, and help in tightly coupled multi-core/multi-thread synchronization.

The philosophy of the BLISS ISA is to allow the software to assist the hardwarein

dealing with difficult challenges. While BLISS mainly focuses on the front-endpart of

the processor, it would be interesting to try to use the same philosophy to deal with the

problems at the back-end of the processor.
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