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Abstract

This dissertation examines the use of a block-aware instruction set atahat@8LISS) to
address the front-end challenges of modern processors. The theme of BLISS|@svto al
software to assist the front-end hardware by providing architecture suppootrfwokflow
prediction and instruction delivery. BLISS defines basic block descript@ddition to and
separately from the actual instructions in each program. A descriptor blescthe type of
the control-flow operation that terminates the block, its potential target henaumber of
instructions in the basic block. This information is sufficient for fast and atewontrol-
flow prediction without accessing or parsing the instruction stream. Thetectine also
provides a flexible mechanism for communicating compiler-generated hints atdback
granularity.

The BLISS ISA suggests a decoupled front-end organization that fetches thettescri
and the associated instructions in a decoupled manner. The front-end uses thatioform
available in descriptors to improve control-flow accuracy, implement guidstruction
prefetching, and reduce the energy used for control-flow prediction and instruction de
ery. We demonstrate that the new architecture improves upon conventionalcslgrers
designs by 20% in performance and 16% in energy. We also show that it outperforms
hardware-only approach for decoupled front-ends by 13% and 7% for performance and en-
ergy respectively. These benefits are robust across a wide range of duchltearameters.

We also evaluate the use of BLISS for embedded processor designs. We deveélop a se

of code size optimizations that utilize the ISA mechanism to provide code simetren

\



of 40% while maintaining a 10% performance and 21% energy advantages. We also de-
velop and evaluate a set of hardware and software techniques for low cosgffidstor
embedded systems. The optimization techniques target the size and power comsumpti
of instruction caches and predictor tables. We show that the decoupling featiBekSer

and the ability to provide software hints allow for embedded designs that use atijnim

sized, power efficient caching and predictor structures, without sacrifpg@rfgrmance.
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Chapter 1

Introduction

Effective instruction delivery is vital for superscalar processors dperat high clock fre-
guencies [79, 93]. The rate and accuracy at which instructions enter the procestioepi
set an upper limit to sustained performance. Consequently, modern procesgnos (ideste
increased demands on tlient-end the engine responsible for control-flow prediction and
instruction fetching. Conservative instruction delivery can sevenglif the performance
potential of the processor by unnecessarily gating instruction level pasaileldn the other
hand, overly aggressive instruction delivery wastes energy on the exeotitimisspecu-
lated instructions (over-speculation). Aggressive speculation cameadsce performance

by frequently causing expensive pipeline flushes on mispredicted branches.

In addition to high application performance, energy efficiency, code size,rpmme
sumption, and die area are also critical design metrics. Energy efficiemssential for
both high-end and embedded processors. High energy consumption can severehelimit t
server scalability, its operational cost, and its reliability [28]. ilggeconsumption dictates
if an embedded processor can be used in portable or deeply embedded systems for which
battery size and lifetime are vital parameters. Code size deterriaesmount and cost

of on-chip or off-chip memory necessary for program storage. For embedded appbgati

1



2 CHAPTER 1. INTRODUCTION

instruction memory is often as expensive as the processor itself. Fipa¥ier consump-
tion and die area determine the cost to manufacture, package, and cool the chimsEor m
modern processors, the front-end design must strike a balance between nofiltise
efficiency metrics. However, improving one metric often comes at thernsepef another

as they introduce conflicting tradeoffs.

In its effort to provide a balance between the efficiency metrics, the-&ndtmust
mitigate three basic detractors: instruction cache misses that causedbomgtion delivery
stalls; target and direction mispredictions for control-flow instructionsdbad erroneous
instructions to the execution core and expose the pipeline depth; and multi-cyaletiost
cache accesses in high-frequency designs that introduce additional uncertaintyhabout t
existence and direction of branches within the instruction stream. Convdrdppraaches
to attack the front-end detractors typically rely on hardware-only technigogsng below
the ISA level.

The theme of this work is to allow software to assist the hardware inrdgalith
the front-end challenges by providing architecture support for control-flow predigtidn
instruction delivery. The new architecture provides efficient ISA-lesegdport for front-
end optimizations that target all of the processor efficiency metrics (peafoce, energy,
power, code size, and die area). The architecture also provides a flexibheurocation
mechanism that software can use to provide hardware with critical infmmabout in-

struction fetching and control-flow.

Specifically, this dissertation examines the use of a block-aware instnusét ar-
chitecture (BLISS) to address the front-end challenges. BLISS defines lilaslc de-
scriptors in addition to and separately from the actual instructions in paxgram. A
descriptor provides sufficient information for fast and accurate control-fledigtion
without accessing or parsing the conventional instruction stream. It desdhibetype

of the control-flow operation that terminates the basic block, its potentialttaagd the
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number of instructions it contains. The architecturally visible basic block ighsrs en-
able a wide-range of performance and energy optimizations and provide a flexible-mecha
nism for communicating compiler-generated hints at the granularity of basic biotks
out modifying the conventional instruction stream or affecting its instructmedoot-
print. BLISS allows for significant reorganization of the front-end for both high-zmal
embedded processors. Unlike techniques that rely on hardware-only or softwgare-onl
features and typically improve one metric at the cost of another, BLISkesta bal-
ance between hardware and software features to provide benefits acrogsoalaint met-

rics.

1.1 Research Contribution

The primary contributions of this dissertation are:

e We define the block-aware ISA that provides basic block descriptors in addition to
and separately from the actual instructions in each program. The BLISS psovide
accurate information for control-flow prediction and instruction prefetchiiigout
fetching and parsing the actual instruction stream. BLISS also providessatite
mechanism for conveying compiler-generated hints at basic block granulatiity wi
out modifying the conventional instruction stream or affecting its instructadec

footprint.

e \We propose a decoupled front-end organization based on the BLISS ISA. The new
front-end replaces the BTB with a descriptor’s cache. It uses the infamaiail-
able in descriptors to improve control-flow accuracy, implement guideduictsin
prefetching, and reduce the energy used for control-flow prediction and instruction
delivery. We demonstrate that the new architecture improves upon converginnal

perscalar designs by 20% in performance and 16% in energy. We also show that it
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outperforms hardware-only approach for decoupled front-ends by 13% and 7% for
performance and energy respectively. These benefits are robust acrossrangele

of architectural parameters.

e We evaluate the use of BLISS for embedded processor designs. We develop a set
of code size optimizations that utilize the ISA mechanism to provide code size re
duction of 40%. Unlike alternative proposals that tradeoff performance or energy
consumption for code density, we show that BLISS-based embedded designs pro-
vide 10% performance and 21% energy advantages in addition to the improved code

size.

e We develop and evaluate a set of hardware and software techniques for low cost
front-ends for embedded systems. The optimization techniques target the size and
power consumption of instruction caches and predictor tables. We show that the
decoupling features of BLISS and the ability to provide software hints allow for
embedded designs that use minimally sized, power efficient caching and predictor

structures, without sacrificing performance.

The results in this thesis have been presented in several conference anad paundi-
cations [115, 116, 117, 118].

1.2 Organization of this Dissertation

The outline of the rest of this thesis is as follows.

Chapter 2 provides an overview of the front-end operation and discusses the na&jor c
lenges to sustain high instruction bandwidth in an energy efficient mannesolpedsents
the motivation for this thesis by summarizing the potential gains in overdibpeance

and energy consumption that can be achieved by improving the processor front-end.
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In Chapter 3, we introduce the block-aware instruction set (BLISS) that proactés
tional information about the control-flow of the program at the granularity of basic hlocks
We explain the descriptor format, provide an example, discuss the benefits oAthenkb
explain the software hints mechanism and their possible usages. The chappzoeides

an ISA-level characterization of BLISS using applications from the SB&€hmark suite.

Chapter 4 describes the decoupled front-end that exploits the basic block information
available in the BLISS ISA. The chapter describes the architecture andtigpeof the
BLISS-based front-end. It also describes and compares to BLISS arsiedaupled front-

end design that forms extended basic blocks using hardware-only techniques.

A comprehensive evaluation of the performance advantage of BLISS for high-end su-
perscalar processors is presented in Chapter 5. We compare the BLISS ddsogh &
conventional front-end processor and a decoupled front-end processor with no softwar
support. We also present a detailed performance analysis when key atrhitparame-

ters of the front-end are varied.

Chapter 6 focuses on the energy efficiency of the BLISS-based front-end. Itrexplai
how the BLISS front-end reduces the energy wasted by mispredicted instruatidne-
duces the energy used for control-flow prediction and instruction deliveryleBitoiper-

formance, we also perform a comprehensive evaluation for the BLISS en&icigredy.

In Chapter 7, we evaluate the use of BLISS for embedded designs. We explain the code
size optimizations enabled with the BLISS ISA and analyze their effect dorpgance
and energy efficiency. We also compare BLISS with the code optimizationetoative

approaches that build similar optimizations on top of conventional ISAs.

In Chapter 8, we show that the flexible semantics of BLISS allow us to impieme
wide range of software and hardware optimizations without modifying the softwarel mode
We explain each optimization and evaluate its effect on performance,rpang energy

efficiency. We also evaluate combinations of these optimizations for embedu=sspors.
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Finally, the dissertation concludes in Chapter 9 which provides a summary gimd hi

lights future work.



Chapter 2

Background and Motivation

The front-end portion of the processor is responsible for predicting the next set otinstr
tions, fetching them from memory, and delivering them to the back-end for esecut
Since the back-end cannot execute instructions faster than they are beingedelire in-
struction bandwidth sustained by the front-end sets an upper limit to the lqweredssor

performance.

In this chapter, we provide an overview of the front-end operation and discusgjbe m
challenges to sustain high instruction bandwidth in an energy efficient marewtiors2.1
provides an overview of the front-end in a modern processor. In Section 2.2, wesslisc
the key front-end detractors and their impact on performance. In Section 2a8)alyze
the impact of the front-end challenges on the processor energy consumption. Section 2.4
summarizes the related work in front-end architecture and design. S2dipnovides the
motivation for this thesis by summarizing the potential gains in overalbpedince and

energy consumption that can be achieved by improving the processor front-end.

7
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Branch/Jump Outcome———

Instruction
Queue

Front-End

i‘> Execution Engine

Figure 2.1: A typical pipelined processor: the front-end fetches instructions framonye
and the execution engine executes them.

2.1 Front-End Overview

A processor mainly consists of a front-end and an execution engine. Figure 2.1 shows a
typical pipelined processor which consists of a front-end that fetches instieand an
execution core that consumes the instructions and provides feedback to the fromtiend.

two components are separated by an instruction queue for decoupling purposes. In order
to maintain high bandwidth, the front-end must be able to predict the execution order of
instructions in the program. To accomplish this task, the front-end speclydliews

the execution path independently of the execution core and places the instructibas in
gueue. The execution engine reads the instructions from the buffer, generatesciléoex
results, and provides feedback to the front-end regarding the actual outcome adribk br
instructions. In case of a mismatch between the speculative and theaataation paths,

the misspeculated instructions are flushed from the processor pipeline and thenidont

starts fetching at the correct address of the first mispredicted branch.

Instruction fetch is a critical component for the processor with respectrforpgance,
energy consumption, power, and complexity [93]. The front-end sets an upper limit on
performance as the execution core cannot execute instructions faster thameh®sing

delivered. Conservative instruction delivery can severely limitgagormance potential
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Figure 2.2: A superscalar front-end processor architecture.

of the processor. On the other hand, overly aggressive instruction delivergdace per-
formance because of the overhead of frequent misspeculations. The front-emtflaiso
ences the energy consumption of the processor as it determines how often the priecessor
executing useful instructions, mispredicted instructions, or no instructicads dthe pro-
cessor wastes energy when it is executing mispredicted instructions ottiénpipeline is

empty.

Figure 2.2 presents the basic components in a typical front-end for a superscalar pro-
cessor. The program countét@) points to the address of a set of sequential instructions
that need to be fetched from the main memory. The instruction cache is esrfadter
memory that buffers frequently used instructions to reduce the averageotiacedss the
main memory. The instruction cache is able to provide a set of sequentiakitistis each
cycle. The branch predictor is a tagless array of counters that predict if antiedjget of

instructions contains a taken branch or jump instruction. The branch target (RifiBj
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is a tagged array that predicts the target of a taken control-flow instrumtimne it is exe-
cuted. The return address sta8S) is a small memory structure that predicts the return
address for functions by matching returns with corresponding calls. The branchtpredic
BTB, and RAS allow the front-end of the processor to fetch instructions withaittng

for the instructions to be decoded or the branches to be resolved.

A conventional front-end operates in the following manner. On every cycleinthe

struction cache, predictor, and BTB are accessed using the PC. When thetioss are

not available in the instruction cache, the cache generates a miss and thentlasttlls

until the missing instructions are retrieved from lower memory hieraftRycache and
main memory). On a cache hit, when the instructions are available in the,ctey are
fetched and pushed into the instruction queue. The predictor and BTB outcomes are used
for determining the next PC. If the predictor predicts a taken branch withinutnerd set

of fetched instructions, the next PC would be the outcome of the BTB or RAS. Otherwise
the next sequential address is used for accessing the instruction cache inawnipl
cycle. The branch prediction is verified once the instructions are decodede(edsbf
control-flow instruction verified) and after the branches are executec{idineand target

of control-flow instruction verified). In a case of a mismatch, the misptedimstructions

are flushed from the pipeline and fetching starts at the correct address.

With the increasing frequency gap between the processor and main memoryi-the pe
formance of the instruction cache is critical to sustain high instructimh fieandwidth. As
a result, an increasing amount of resources are used to improve instruatios gerfor-
mance. It is typical for advanced microprocessors today to use an instruatibe size
of 16 to 64 KBytes with two- to three-cycle access time [93]. Today’s moderrepsars
are also designed with deep pipelines as a result of increased frequeticyugkl deep
pipelines improve overall performance by allowing aggressive clock rétey also lead

to increasing misprediction penalties. Therefore, accurate branch gwadg crucial to
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sustain high instruction fetch bandwidth. Modern processors typically use advhpce
brid branch predictors with a 512 to 4K-entries BTB to better predict the ciogsecution
path.

The challenge with the front-end is to achieve high instruction fetch bandwickin i
energy-effective manner. Increasing the front-end resources and using atigpecela-
tion techniques usually come at a cost of increased power, energy consumption, and com
plexity. In addition, the front-end itself consumes a significant percentage ofdbegsor
energy as it contains large memory arrays that are accessed nearlgyleryOn average,
13% of the total energy is consumed in the front-end itself alone for a 4-way sulaersca

processor [115].

2.2 Front-End Performance Detractors

In its effort to provide high instruction fetch bandwidth, the front-end engine munstlea
several detractors: instruction cache misses that cause instructieergaitalls; multi-

cycle instruction cache accesses that cause uncertainty about the existbdoeetion of
branches within the instruction stream; and target and direction mispoediéor branches

that send erroneous instructions to the execution core. These problems have \enegati
impact on both performance and energy consumption. For a 4-way superscalar processor
running the SPEC benchmark, the cost is up to 33% in performance and 22% in energy
consumption. In this section, we will look at each of these problems and its impact

performance in more details. The next section focuses on their energy impact.

2.2.1 Instruction Cache Detractors

The instruction cache introduces two challenges to instruction delivery: casises that
interrupt instruction delivery and multi-cycle cache hits that introduce uaiogytabout

the existence of branches in the instruction stream.
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Instruction Cache Misses

An instruction cache miss refers to a failed attempt to read the neegidctions from
the instruction cache, which results in a long latency access to lowaslef the memory
hierarchy. Instruction cache misses cause the front-end to stall untiiskegninstructions

are available, leading to significant performance loss and energy waste lda&dge.

The design of the cache largely affects the number of misses. For example, large

cache size or higher cache associativity results in a reduction in the numbapaity

and conflict misses. Nevertheless, this is not always desirable aseases the cache
access time. Fast cache access is important because it often desdimeipeocessor clock
rate and the number of pipeline stages necessary for instruction access. Asffeittare
technique to reduce the number of cache misses is to prefetch the instructionsngnd br
them into the cache before they are even needed. The scheme used to predidetble pre
address is usually a challenge. The commonly used scheme is a sequentiaho#sisea
prefetcher where one or more sequential cache lines that follow the curredmddine

are prefetched [103, 77]. Ideally, we would like to prefetch instructionshenpath of

execution regardless of the code layout and the existence of taken branches.

Figure 2.3 quantifies the performance penalty due to instruction cache missegdor a t
ical 4-way superscalar processor with a 32 KByte, 4-way set-ass@ciasitruction cache
running the SPEC CPU benchmarks. The results are compared to similarly cathfigore
cessor with a perfect instruction cache that does not suffer from any misbesfigure
shows the loss for the benchmark with the maximum loss from the integer (INTtappli
tions and the benchmark with the maximum loss from the floating-point (FP) applications
(vortex andapsi ). It also reports the average loss for INT applications and FP applica-
tions. Instruction cache misses alone cost 13% in performance for INT appliséecause

they tend to have large instruction footprints and somewhat irregular codes guatésns.
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Figure 2.3: The percentage of performance loss for a 4-way superscalar processor running
SPEC CPU benchmarks due to instruction cache misses and access latencgtrilibgon

cache is 32 KBytes, 4-way set-associative with 2-cycle access (Bee 5.1 for method-

ology and configuration.)

On the other hand, the average loss for FP applications is 3% as these benchmarks are dom
inated by tight code loops with high temporal locality. Losses will be even mamaalic

if we use a smaller cache size or a lower associativity because of theadtmisses.

Multi-Cycle Instruction Cache Access

As processor frequencies get higher and the code footprint of important applications gets
larger, it becomes difficult to access a large enough instruction cache wisingle cycle

[1]. It is common for modern processors to have instruction caches that need tiaree
cycles to access. This implies that the front-end cannot detect if tharg Banch or jump

in the current set of instructions to determine the program counter (PC) to use fiol+
lowing cycle. To avoid a reduction in effective instruction bandwidth, modegerscalar
processors use predictors and branch-target-buffers (BTB) to determineldtovrin a

single cycle without knowing the exact control-flow instructions being fetched by pending
instruction cache accesses [71]. Once the cache access completegirpgpkline stage,

the fetch unit verifies if the prediction it made earlier is appropriatergite type of the

identified control-flow instruction.
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The problem with this approach is that the prediction in the first pipeline stage la
crucial information. First, it is not certain if the PC used to accesptéadictors points at
or close enough to a control-flow instruction. As a result, the predictor is ofteessed
and updated with PCs that do not correspond to control-flow operations, which leads to
reduced prediction accuracy due to interference. Second, until the instruatioa access
completes, we cannot use the type of the control-flow operation in order to seleeebet
the outputs of different predictors in an accurate manner (e.g. BTB vs. RAS)resul,
even when accessing predictors in parallel with the instruction cabkegache access

latency must be relatively short in order to maintain high prediction acgura

Ideally, the fetch unit would first identify the control-flow operation that posdiyt
terminates the current block and then predict the next basic block in executian brde
other words, the fetch unit would wait for the instruction cache access to canapid then
use parsing and alignment logic to detect the first control-flow operation witbigroup of
fetched instructions (if any). Given the type of the control-flow instructiontaecutputs
of various prediction structures (predictors, BTB, RAS), the fetch unit wmd#e a very
accurate prediction about the program counter (PC) to use in the following cpadasés
where multiple branches exist within the set of fetched instructions, the érahideally
needs to find the first taken branch ignoring any non-taken branches in front of éme tak

branch.

Figure 2.3 also reports the performance penalty due to instruction cache migti-cyc
accesses for a 4-way superscalar processor with a 32 KByte, 4-wayssetadise, 2-cycle
access instruction cache and a hybrid predictor (4K-counter selector, 4K-c@sitare,
and 1K-entry L1, 1K-counter L2 PAQ) running the SPEC CPU benchmarks. The results
are compared to a similarly configured processor with a single-cycle saatstsuction
cache. Multi-cycle instruction cache accesses cost 7% and 5% in perforfoaidé and
FP applications respectively. For processors with higher instruction catdrey or with

smaller predictor tables, the penalty would be even higher.
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2.2.2 Branch Prediction Detractors

Independently of the instruction cache, branch prediction introduces two importeat-det

tors: branch direction mispredictions and branch target mispredictions.

Branch Direction Mispredictions

The direction predictor notifies the front-end if there is a control-flow change&arpto-
gram or not. If not, the front-end will continue fetching using the next sequential address
As explained in Section 2.2.1, the direction predictor is accessed simultayeotisthe
instruction cache. Therefore, it lacks information about the instructions teabeing
fetched. This means that the predictor needs to be trained for instructions (promratar
values) that do not correspond to control-flow operations and for unconditional control-
flow instructions. This leads to loss in prediction accuracy due to sloasirig and more
interference on the limited entries in the table. The predictor is alsesaed using the PC
which points to the block address of the current fetched instructions instead ofinehbr
address itself. This negatively affects the predictor accuracy. Formgarha biased non-
taken branch in the middle of the fetched block changes behavior, the predictortettry t
is used for the control-flow operation that terminates the original block is nod fase

the biased branch. This could be avoided if the exact branch address is useds#thece

predictor instead of the current PC address.

Figure 2.4 quantifies the performance penalty due to branch direction mispredictions
for a 4-way superscalar processor running the SPEC CPU benchmarks. The branch predic
tor is configured as a hybrid predictor with a two-level, correlating predicttr global
history (Gshare) and a two-level, correlating predictor with per-addisssry (PAQ). The
results are compared to a similarly configured processor with a perfectidin predictor

that always predicts the correct branch direction. Branch direction mispicet alone
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Figure 2.4: The percentage of performance loss for a 4-way superscalar processor running
SPEC CPU benchmarks due to branch direction and target mispredictions. ThesBTB i
configured 4-way with 1K-entries. The hybrid predictor has a 4K-counter selecter, 4K
counter Gshare, and 1K-entry L1, 1K-counter L2 PAg.

cost 19% in performance for INT applications and 9% for FP applications. FP applica-
tions are affected less as they have larger basic blocks than INT appiséfiewer predic-
tions/executed instructions) and a smaller number of static branches dddmsses used

to train/access predictor).

Branch Target Misprediction

The branch target buffer (BTB) stores the target addresses for previousiyteddaken
branches and jumps. Once the direction predictor guesses a change in control-flow, the
BTB provides the target address of the control-flow operation. The front-end uses this
address to fetch instructions in the following cycle. If no entry is found forcibretrol-

flow operation in the BTB, the front-end stalls until the control-flow instutis decoded

(for direct branches) or executed (for indirect branches). Such misses bedust time a

taken branch is encountered. The BTB also suffers from misses due to ésapgcity. In

some cases, the entries in the BTB are evicted to make room for new datatudately,

once an entry is evicted from the BTB, the information it contains is lost andsneebe

recreated from scratch if needed. Indirect branches with multi-bramgbtsaalso cause
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BTB misses whenever their target address change as each BTB entry only himidkea s
target address.

Figure 2.4 quantifies the performance penalty due to branch target mispredictions for
a 4-way superscalar processor running the SPEC CPU benchmarks. The BTB is 4-way
configured with 1K entries. The results are compared to a similarly configuoessor
with a perfect target predictor that always predicts the correct brangéttarhe cost of
branch target mispredictions for INT applications is 3%. For FP applicationgottas
negligible. For most applications in the SPEC benchmarks suite, the size of theiBTUB
lated is large enough to hold most of the taken branches. Combined, the branchgmedicti

detractors cost 22% and 9% in performance for INT and FP applications respective

2.3 Front-End and Energy Consumption

Energy efficiency is a critical design concern for modern processors adatefidf the
processor can be used in portable or deeply embedded systems for which ba¢tenydsiz
lifetime are vital parameters. Energy efficiency is also essefatialense server systems
(e.g. blades), where thousands of processors may be packed in a single colocation sit
High energy consumption can severely limit the server scalabilitgpésational cost, and
its reliability [28].

Instruction cache misses have a negative effect on the processor energg@ffi€irst,
the front-end and possibly the pipeline are idle wasting energy due to leakage during an
instruction cache miss. Second, serving a cache miss requires accegg tstlactures
at the lower levels of the hierarchy with high dynamic energy consumption. Mudtec
instruction cache accesses also have a negative effect on the procesgyredim@ency
as executing mispredicted instructions wastes energy. Figure 2.5 presetaistiemergy
increase due to instruction cache misses and multi-cycle instruction eachsses. The

reportedTotal Energyincludes all of the processor components (front-end, execution core,
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Figure 2.5: The percentage of total energy increase for a 4-way superscalar progess
ning SPEC CPU benchmarks due to instruction cache misses and access [ateniry-
struction cache is configured as 32 KByte, 4-way set-associative withl@-agcess time.

and all caches). For INT applications, 12% of the processor total energy isowhsteo
instruction cache misses and multi-cycle access time. For FP apmtisa8% is wasted

due to the instruction cache detractors.

Prediction accuracy also affects the processor energy efficiency.nrAaytie front-end
misspeculates, energy is wasted by fetching and executing erroneous iostfrarnh the
wrong execution path. Moreover, recovering from a branch mispredictionastéy oper-
ation in terms of energy, as the erroneous instruction must be removed fronpétiei
Figure 2.6 presents the energy wasted due to branch direction and target mispredic
On average, 14% and 7% of the processor total energy are wasted by branch daedtion

target mispredictions for INT and FP applications respectively.

The front-end itself consumes a significant percentage of the processor total energy
as it contains large memory arrays (instruction cache, predictor, BTBhthatccessed
nearly every cycle. On average, 13% of the total energy is consumed in thesfront-
itself alone for a 4-way superscalar processor [115]. The front-end arraygpacally
designed for high performance, which may not be very energy efficient. As an exampl

all of the components of the hybrid predictor are accessed in parallel to achswugle
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Figure 2.6: The percentage of total energy increase for a 4-way superscalar progess
ning SPEC CPU benchmarks due to branch direction and target mispredictions. Bhe BT
is configured 4-way with 1K entries. The hybrid predictor has a 4K-counter seldé&tor,
counter Gshare, and 1K-entry L1, 1K-counter L2 PAg.

cycle prediction time. This is not efficient as only one component of the predictor has the
required data (e.qg., the Gshare predictor for global correlating type of branchedarlyi

for a set-associative instruction cache, all of the data arrays aresactén parallel to
reduce the cache access time. Ideally, only the data array for the waytthiatineeded to

get the required data. Additionally, reading the complete cache line is not erfBoggné

as only a subset of the instructions in the line are typically used (e.g. 4 out of 16). A jum
or a taken branch in the middle of the cache line would possibly force the front-etarto
fetching from a different cache line. Instructions in the early part of a cénberight
before the target of a taken branch, are also less likely to be requiredfi&ghenergy

could be saved if we only read the required words from the cache line.

Figure 2.7 compares the energy of ideal instruction cache, predictor, and BTB to the
conventional structures. For the ideal instruction cache, only the requiredadtishs are
read from the cache line and only the data array for the way that hits is adc&milarly,
for the ideal branch direction predictor, only one of the hybrid predictor components is
accessed and trained. The ideal BTB is only accessed and trained forctakteol-flow

instructions. The instruction cache is configured as a 32 KByte, 4-way set @ssaci



20 CHAPTER 2. BACKGROUND AND MOTIVATION

‘ B Conventional W Ideal ‘

100%

80%

60% -

% Energy

40% -

20%

0%
Instruction Cache BTB Predictor

Figure 2.7: A comparison of energy consumption for an ideal instruction cache, predictor
and BTB for a 4-way superscalar processor running SPEC CPU benchmarks over-conve
tional base design. The simulated processor is configured with a 32 KByte, 4-wagle2-
access instruction cache, 4-way, 1K-entry BTB, and a 4K-counter seldéterpunter

Gshare, 1K-entry L1, 1K-counter L2 PAg hybrid predictor.

2-cycle access, 32 Byte line cache. The hybrid predictor has a 4K-counter seléGtor
counter Gshare, and 1K-entry L1, 1K-counter L2 PAg. 4-way, 1K-entry BTB iswded.
On average, 63% of the 4-way set-associative instruction cache energy saveldeusing
an efficient instruction cache. Similarly, 46% and 55% of the BTB and the poedinergy
respectively could be saved if we access them ideally. The potentiateafyesavings are
significant; however, the challenge is to achieve energy efficiency withguta@anpromise

to neither complexity nor performance.

2.4 Related Work Overview

Given the effect of instruction delivery on the overall processor perfoo@and energy
consumption, there has been a significant volume of research targeting front-eatiotet
Several researchers have targeted reducing the number of instruction cesles m

through either cache layout optimizations or prefetching. Cache optimizations include
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mapping code into different cache areas to reduce conflict misses [11], coderireprde
and alignment to increase cache utilization [68], preventing infrequentissécode from
polluting the instruction cache [35], using reconfigurable caches [24], and using msoftwa
assisted cache replacements techniques [46]. Many prefetching technigaeddualveen
suggested to hide the latency of cache misses. They typically differ in leenscused

to predict prefetch addresses. Some of the techniques include sequentiahprgfgtt63,

77], history-based schemes [104, 39, 48], wrong path prefetching [82], software @ooper

tive approaches [61], and execution-based schemes [89, 21].

Moreover, many techniques have been proposed to reduce the branch misprediction
penalty and improve the prediction accuracy. They include delayed branchebrg@dih
bypassing and multiple branch prefetching [92], branch folding [25], early resolofi
branch decision [3], using multiple independent instruction streams in a sharetei
[101], and the prepare-to-branch instruction [109]. Some of the techniques thatinarget
proving branch prediction accuracy include branch alignment optimizations [18],tbranc
classification [19], and minimizing aliasing in predictors [72]. Of couttbere is also

significant research on using advanced dynamic predictors [98, 47].

There are also techniques that improve the front-end efficiency by predicihigih-
ing multiple basic blocks in a single cycle. Some of the techniques include block-based
front-end engines [111], decoupled front-ends [88, 89], multi-block prediction [100, 99],
control-flow prediction [83, 26], and parallel fetching of no contiguous instructi@asts
[74, 95]. Significant amount of front-end research has also focused on trace {2¢}9],

trace predictors [45], and trace construction [78].

Finally, there is also research that focuses on improving the front-engyee#éiciency.
Some techniques target improving the instruction cache energy consumption by way pre-
diction [84], selective cache way access [2], sub-banking [30], tag coropagisnination
[75, 114], and reconfigurable caches [87, 113]. Other techniques target improving the en-
ergy efficiency of the predictors using sub-banking [76], front-end gating [64], eltimma
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Figure 2.8: The percentage of performance and energy improvements for a 4-way super-
scalar processor running SPEC CPU benchmarks with a front-end that suffersaubaist
and has optimal, energy-efficiency structures.

predictor and BTB accesses for non-branch instructions [76], using profile datiante el
nate meta predictor [27] or to switch off part of the predictor [20], and sekegtiedictor

accesses to avoid using the predictor for well-behaved branches [8].

2.5 ldeal Front-End

While most of the techniques that are presented in Section 2.4 improve the fficbeffe

ciency in some way or another, they typically provide partial solutions as eaghaahkles

a single front-end issue. The goal of this work is to develop a unified framewarka

vides a complete solution to the front-end challenges and allows the front-ectitve

close to the optimal results for all of the efficiency metrics (performaanergy, power,

code size, and die area). The differentiating factor of our approach is thaterenus-
tegrated, balanced software-hardware approach that provides capabilip/ teittheall of

the front-end challenges at once. Our approach builds upon previous research but intro-

duces a novel instruction set architecture that allows software to provadivare with
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the information necessary for front-end optimizations. In the following clapiee doc-
ument this approach and demonstrate its significant advantages over the haydlyane-
software-only approaches listed in Section 2.4.

Figure 2.8 quantifies the maximum performance and energy improvements we can
achieve in a 4-way superscalar processor by providing an ideal front-end withodea
tractors. Up to 47% in performance improvement and 28% in energy saving could be
achieved for INT applications. Even for FP applications, which are lesseptible to
front-end detractors, 16% performance and 14% total energy could be improved. Simi-
lar gains can be also achieved by the front-end in other processor configuratioresssuch
narrow, in-order designs that are typically used in embedded systems. Of,doig st
possible to fully eliminate all of the front-end challenges. Neverthelgesyill demon-
strate that a significant percentage of the ideal front-end benefits can beeaichyensing

software support to target multiple detractors.



Chapter 3

Block-Aware Instruction Set

Conventional ISAs provide no information to assist with the front-end chaltepigesented
in the previous chapter. The ISA is structured to describe what needs to takemplhe
back-end only. Hence, the front-end hardware has to detect basic block boundaries, de-
termine branch directions and targets, discover patterns (potentialpteeihd, and figure
out how to balance over- and under-speculation.

The thesis of this work is to allow the software to assist the hardwareailindewith
the front-end challenges. We modify the conventional instruction set araheict pro-
vide additional information about the control-flow of the program at the granularity af basi
blocks. The block-aware instruction set architect@el§S) defines basic block descrip-
tors in addition to and separately from the actual instructions in each proérdescriptor
provides sufficient information for fast and accurate control-flow predictidimout access-
ing or parsing the instruction stream. It describes the type of the control-flowtopethat
terminates the block, its potential target, and the number of instructions in tioebback.
This information is sufficient to tolerate the latency of instruction asegsregulate the use
of prediction structures, and direct instruction prefetching. Block descsijgisp provide
a general mechanism for compilers for passing software hints that canwasisiat wide

range of challenges at the hardware level.

24



3.1. INSTRUCTION SET ARCHITECTURE 25

Section 3.1 presents the block-aware instruction set architecture. liors58c2, we
discuss the software hints and their possible usages. Section 3.3 overviesdslant the
experimental methodology. Section 3.4 provides an ISA-level charactenzatiBLISS
using applications from the SPEC benchmark suite. In Section 3.5, we discuskatbd re

research that this work is based on.

3.1 Instruction Set Architecture

The instruction set architecture (ISA) specifies the processor functip@ald serves as
the interface between hardware and software. A typical ISA defines the meastate
(registers and memory) and a series of instructions that can operate on litloCkeaware
instruction set architecture extends conventional ISAs with additional irsom about

the program control-flow. The control-flow information is specified at the graitylaf
basic block BB), which is a sequence of instructions starting at the target or fall-through
of a control-flow instruction and ending with the next control-flow instruction or lectioe

next potential branch target.

3.1.1 Basic Block Descriptors

BLISS stores the definitions for basic blocks in addition to and separately fr@ordinary
instructions they include. The code segment for a program is divided in two distoict se
tions. The first section contains descriptors that define the type and boundaries of blocks,
while the second section lists the actual instructions in each block.

Figure 3.1 presents the format of a basic block descri@BbD(). Each BBD defines the
type of the control-flow operation that terminates the block such as a conditionahbranc
or an unconditional jump. For fall-through basic blocks, we useFthéype. ThelLOOP

type is a zero-overhead loop construct similar to that in the PowerPC8%A The BBD
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4 8 4 13 3
Type Offset Length Instruction Pointer Hints
Type : basic block type (type of terminating branch) Offset: displacement for PC-relative branches and jumps
- fall-through (FT)
- backward conditional branch (BR_B) Length: number of instruction in the basic block (0..15)
- forward conditional branch (BR_F)
- jump (J) Instruction pointer :
- jump-and-link (JAL) address of the 1st instruction in the block (bits [14:2])
- jump register (JR) bits [31:15] are stored in the TLB
- jump-and-link register (JALR)
- call return (RET) Hints: optional compiler-generated hints
- zero overhead loop (LOOP) used for static branch hints in this study

Figure 3.1: The 32-bit basic block descriptor format in BLISS.

also includes an offset field to be used for blocks ending with a branch or a julmpP @it
relative addressing. The actual instructions in the basic block are identyfitee pointer

to the first instruction and the length field. Each BBD can point to up to 15 inginsc

at most. Basic blocks that are larger than 15 instructions use multiple BLISSijpters.

FT blocks can be larger than 15 instructions as their offset field is not required ased

to extend the length field instead. The BBD only provides the lower bits [14:2] of the
instruction pointer, bits [31:15] are stored in the TLB. Section 4.1.1 explains @ilsléte
organization and operation of the TLB. The last BBD field contains optional compiler
generated hints. We discuss hints in details in Section 3.2. The overall 88 is 32
bits.

With the BLISS ISA, there is only a single program counfC] that only points within
the code segment for basic block descriptors. The PC does not point to the instructions
themselves at any time. Every cycle, the PC is used to fetch basi téscriptors. The
instruction pointer and the length fields available in the fetched descrigarsad to fetch
the associated instructions in the next cycle. When all of the associatedcirmts are
fetched, the BBD for the next basic block in the program order (PC+4 or PC+oféset) i

used for instruction fetching.
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numeqz=0;
for (i=0; i<N; i++)

if (a[i]==0) numeqgz++;
else foo();
(a)
MIPS code BLISS code
addu >£4, ‘fO,‘ 0 - BB descriptors Instructions
Ll lw r6, 0(rl) | BBDI: FT, _, 1,e— 3 2ddu 4, £0, £0 -
: bneqz r6, L2 BBD2: BR F, BBD4, 2,.___>f 1\‘Nv "'r'6', ‘O(r‘lﬁ ‘
addui r4, r4, 1 BBD3: J, BBD5, 1, Ebneqz ré6 :
L O mmpn e e st et e 1

‘L2: jalr 3 : BBD5: BR_B, BBD2, zr\ﬁjalr r3

(b) (c)

Figure 3.2: Example program in (a) C source code, (b) MIPS assembly, and (c) BLISS
assembly. In (b) and (c), the instructions in each basic block are identiftacdotted-

line boxes. Registar3 contains the address for the first instruction (b) or first basic block
descriptor (c) of functiori 0o. For illustration purposes, the instruction pointers in basic
block descriptors are represented with arrows.

3.1.2 BLISS Code Example

To better understand how BLISS operates, we study the example program in Figunat 3.2 t
presents an example program that counts the number of zeros iraamalycalls oo() for

each non-zero element. With a RISC ISA like MIPS, the program requirastgictions
(Figure 3.2.b). The 4 control-flow operations define 5 basic blocks. All branch conditions
and targets are defined by the branch and jump instructions. With the BLISS lequivg
MIPS (Figure 3.2.c), the program requires 5 basic block descriptors and 7 instruétibns
PC-relative offsets for branch and jump operations are available in BBDspared to the
original code, we have eliminated thenstruction. The corresponding descriptor (BBD3)
defines both the control-flow typg) and the offset; hence, the jump instruction itself is

redundant. However, we cannot eliminate either of the two conditional branimiess (
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bne). The corresponding BBDs provide the offsets but not the branch conditions, which
are still specified by the regular instructions. However, the regular briastiuctions no
longer need an offset field, which frees a large number of instruction bits.la8ynwe

have preserved thal r instruction because it allows reading the jump target from register

r 3 and writing the return address in registé.

3.1.3 Detailed Issues

The redistribution of control-flow information in BLISS between basic blocgcdgtors

and regular instructions does not change which programming constructs can be imple-
mented with this ISA. Function pointers, virtual methods, jump tables, and dgrienki

ing are implemented in BLISS using jump-register BBDs and instructions identical
manner to how they are implemented with conventional instruction sets x&orme, the
target registerr(3) for thej r instruction in Figure 3.2 could be the destination register of a
previous load instruction.

BLISS compresses the control-flow address space for programs as each BBD corr
sponds to 4 to 8 instructions on average. This implies that the BBD offset &qgldres
fewer bits compared to the regular ISA. For cases where the offset fialat snough to
encode the PC-relative address, an extra BBD is required to extend thesa@dreJable
3.5). The dense PCs used for branches (BBDs) in BLISS also lead to diffeterierence
patterns in the predictors than what we see with the PCs in the original (8Ah&bench-
marks and processors studied, a 1% improvement in prediction accuracy igegcvieh
BLISS compared to the regular ISA due to the dense PCs.

Similar to the block-structured ISA [37, 70], BLISS treats each basic dscln atomic
unit of execution. When a basic block is executed, either every instructidreiblock is
retired or none of the instructions in the block is retired. After any misptiedicthe

processor resumes execution at a basic block boundary and there is no need to handle
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partially committed basic blocks. Atomic execution is not a fundamental rexaeint, but
it leads to several software and hardware simplifications. For insteaadlews for a single
program counter that only points within the code segment for basic block descriptors. The
execution of all the instructions associated with each descriptor updatectise that it
points to the descriptor for the next basic block in the program order (PC+4 or PG}.offse
The PC does not point to the instructions themselves at any time.

Atomic basic block execution requires that the processor has sufficient physjcal r
ters for a whole basic block (15 in this case). For architectures with amdtivandling of
TLB misses, the associativity of the data TLB must be at least as high asakienum
number of loads or stores allowed per block. For the applications studied in Chapter 5, a
limit of 8 load/stores per block does not cause a noticeable change in code size or perfor
mance. To handle precise exceptions, up to 16 additional physical registers armahtan 8-
store buffer are required to allow register and memory writes to by undareeéssary in
a case of an exception [70]. The cost of this backup hardware is minimal in msey loa-

cause these mechanisms are already present to support out-of-order, speexéatidion.

3.2 Software Hints

The use of compiler-generated hints is a popular method for overcoming bottlendiaks wi
modern processors [96]. The hope is that, given the higher level of understanding of pro-
gram behavior or profiling information, the compiler can help the processor witttisgje

the optimal policies and with using the minimal amount of hardware in order toechie
the highest possible performance at the lowest power consumption or implemeotation

A compiler could attach hints to executable code at various levels of gragulavith

every instruction, basic block, loop, function call, etc. Specifying hints at tee tdock
granularity allows for fine-grain information without increasing the lengtHlahatruction

encodings.
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3.2.1 Potential Uses for BLISS Hints

BLISS provides a flexible mechanism for communicating compiler-generateddtitiie
basic block granularity using the last field in each basic block descriptorgure-3.1.
Since descriptors are fetched early in the processor pipeline, the hints cesefoéwith
tasks and decisions at any part of the processor (control-flow prediction, inmtréetich,
instruction scheduling, etc.). The following is a non-exhaustive list of potenti akthe

hints mechanism.

e Code density The hints field can be used to aggressively interleave 16-bit and 32-bit
instructions at basic block granularity without the overhead of additional insinsct
for switching between 16-bit and 32-bit modes [36]. The block descriptor identi-
fies if the associated instructions use the short or long instruction format. Wo ne
instructions are required to specify the switch between the 16-bit and 32-bismode
Hence, frequent switches between the two modes incur no additional runtime penalty
Since interleaving is supported at basic block granularity, any infrequenttiyhsse
sic block within a function or loop can use the short encoding without negative side

effects. Chapter 7 evaluates using this type of hints for embedded processors.

e Power savings The hints field specifies if the instructions for the basic block use
a hardware resource such as the floating-point unit. This allows early dete€tion
the processor components necessary to execute a code segment. Clock and power
distribution can be regulated aggressively without suffering stalls dugagtiva-

tion.

e VLIW issue: The hints field is used as a bit mask that identifies the existence of
dependencies between consecutive instructions in the basic block. This allows for

simpler logic for dependence checks within each basic block and instruction schedul-

ing.
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e Extensive predication The hints field specifies one or two predicate registers used
by the instructions in the basic block. This allows for a large number of predicate

registers in the ISA without expanding every single instruction by 4 to 5 bits.

e Simpler renaming: The hints field specifies the live-in, live-out, and temporary reg-
isters for the instructions in the basic block. This allows for simpler rengmithin

and across basic blocks [70].

e Cluster selection For a clustered processor, the hints field specifies how to dis-
tribute the instructions in this basic block across clusters given the depeesiémey
exhibit. Alternatively, the hints field can specify if this basic block ksathe begin-
ning of a new iteration of a parallel loop, so that a new cluster assignment can be

initiated [73].

e Selective pipeline flushing The hints can specify reconvergence points for if-then-
else and switch statements so that the hardware can apply selectimespilpshing

on branch mispredictions.

Some of the examples above require a hints field that is longer than the 3 bit$eadloca
in the format in Figure 3.1. Hence, there can be a tradeoff between the bemefitasing
the hints and the drawbacks from increasing the BBD length. For the hints usage studies i
this thesis (prediction hints and code density hints), 3-bit fields were sufficient

It is interesting to note that attaching hints to BBDs has no effect on thetste and
code density of the instruction section of each program and its footprint and rtess ra
the instruction cache. One could even distribute executable code with rawlgpions
of hints. The different versions can either represent different uses of thieamem or
hints specialized to the characteristics of a specific microarchitecMerging the proper
version of hints with the block descriptors can be done at load time or dynamiaally,

pages of descriptors are brought into main memory.
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3.2.2 Case Study: Branch Prediction Hints

To illustrate the usefulness of the hints mechanism, we use it to impleméwasethints
for branch prediction [85]. The compiler uses 3 bits to provide a static or profdeeba
indication on the predictability of the control-flow operation at the end of the lidsak.

Two bits select one of the four predictability patterns:

Statically predictable: fall-through basic blocks, unconditional jumps, or branches
that are rarely executed or highly biased. For such descriptors, statictpyads as

good as dynamic.

e Dynamically predictable: conditional branches that require dynamic prediction but

do not benefit from correlation. A simple bimodal predictor is sufficient.

e Locally predictable: conditional branches that exhibit local correlation. A two-
level, correlating predictor with per-address history is most approprateuch
branches (e.g. PAg [112]).

e Globally predictable: branches that exhibit global correlation. A two-level, correlat-
ing predictor with global history is most appropriate for such branches (e.g. Gshare
or GAg [69, 112)).

We use the third bit to provide a default taken or not-taken static predicti@oimet
With non-statically predictable descriptors, the static outcome can onlydiel wath es-
timating confidence or initializing the predictor. For statically predicddasic blocks, the
hints allow us for accurate prediction without accessing prediction tablesicdy there
is reduced energy consumption and less interference. For dynamically preslicteit

blocks, the hints allow us to use a subset of the hybrid predictor and calculate confidence
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3.3 Tools and Methodology

To experiment with the BLISS ISA, we developed a set of tools to generate nieybi
programs and simulate their execution on modern processors. This sectiovsringe¢ools
necessary for the ISA-level characterization of BLISS. We discuss foolperformance

and energy analysis in Section 5.1.2.

We generate BLISS executables using a static binary translator, whidiacale arbi-
trary programs from high-level languages like C or Fortran. Figure 3.3 presents\he fl
diagram for the translator. The translator consists of three passes. Tipassgparses the
binary executable for the MIPS architecture, finds all symbols and relocaidsrgifies
all basic blocks, and creates the initial basic block descriptors (type fighl dile second
pass optimizes the code by removing redundant jump instructions, transforming loops to
use the LOOP construct, and eliminating redundant branch instructions that pesorm a
ple test (equal/not equal to zero) to a register value produced within the sainéloak by
a simple arithmetic or logical operation. This pass also implements the codezgitons
for code density which are presented in Chapter 7. The final pass assigns the &mgeth, t
IP, and hints to descriptors, fixes relocations, generates the new binaryctiod eaders,
and finally outputs the new BLISS executable. The generation of BLISS executalite

also be done using a transparent, dynamic compilation framework [6].

Our simulation framework is based on the Simplescalar/PISA 3.0 toolseiiigh
we modified for the BLISS ISA. For ISA evaluation, we study benchmarks from tB&CSP
CPU2000 suite using their reference datasets [38]. For benchmarks with mdttpkets,
we run all of them and calculate the average. The benchmarks are compilegtwahthe
-O3 optimization level. With all benchmarks, we skip the first billion fastions in each

dataset and simulate another billion instructions for detailed analysis.
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Figure 3.3: Flow diagram for the BLISS static binary translator.
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3.4 |ISA-Level Characterization

In this section, we present an ISA-level evaluation for BLISS. We studi/thie effect of
the additional descriptors on the static code size. We also present c$adisbiut the static

and dynamic distribution of descriptor types and lengths.

3.4.1 Static Code Size

Figure 3.4 presents the percentage of code size increase for BLISS over théSV Bat

it is based on. Direct translatioNéive bar) of MIPS code introduces one basic block de-
scriptor every four instructions and leads to an average code size incre28%oBasic
optimization BasicOptbar) reduces the average code size increase to 14%. The basic op-
timization targets the removal of redundant jump instructions (see examipigure 3.2).

The BranchRemoveéar in Figure 3.4 shows that the BLISS handicap can be reduced
to 6.5% by removing conditional branch instructions that perform a simple test (egual/
equal to zero) to a register value produced within the same basic block by a sntht
metic or logical operation. An extra bit is required for annotating the instrugtioducing
the required register. This extra bit is readily available in most of the3/ihstructions
using the register format. For instructions using the immediate format, aaalitbpcodes

are used for few of the most commonly used instructions.
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MIPS-32 | Number of | Number of Jump Branch
Code Size| Basic Blocks| Descriptors | Instructions | Instructions
(KBytes) Removed Removed
gzip 100 6478 6630 2704 2197
gcc 1229 91716 93053 42400 27196
crafty 217 12849 13404 5484 3842
gap 485 33754 34287 14286 10616
vortex 484 28388 29507 13472 7515
twolf 214 12941 13401 5236 4141
wupwise 100 6337 6577 2736 1949
applu 116 6277 6795 2743 2020
mesa 512 27705 29518 12912 7830
art 59 4043 4117 1519 1405
equake 61 3848 3982 1531 1275
apsi 188 8632 9657 4190 2593

Table 3.1: Statistics for the BLISS code size.

Table 3.1 presents additional statistics about the size, number of basic blocks, nfimber
BBDs, number of jump instructions removed, and number of branch instructions dkaiina
for the studied applications. All applications require more BBDs than the numbesiaf ba
blocks they have. On average, 4% more BBDs are used than the number of basic blocks.
This is due to two main reasons. First, basic blocks with 16 instructions or imohe
original MIPS code use multiple BLISS descriptors because each BBD can paipttto
15 instructions. Second, any BBD requiring more than eight bits for its offsdtrietds
an extra BBD to extend its offset field (see Table 3.5).

Finally, BLISS facilitates two more optimizations that allow the BH code size to be

even smaller than the original MIPS code. We study them in details in Chapter

3.4.2 |SA Statistics

Table 3.2 presents the static distribution of descriptor types and Table 3.3 présent

dynamic distribution of descriptor types for BLISS. Most programs include a sigmifica
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| [ FT| BRF[BRB]| JJR|RET | JAL-JALR | LOOP |

gzip 20.5%] 39.3%]| 6.1%] 13.0%] 3.7% 15.2%] 2.2%
gce 13.3%| 42.0%| 4.0%| 12.0%| 2.4% 252%| 1.1%
crafty | 18.7%]| 39.6%| 5.3% 11.6%]| 2.0% 21.4%| 15%
gap 20.2%] 39.4%| 4.3%| 14.4%] 2.9% 16.8%| 1.9%
vortex | 14.3%| 40.4%| 15%| 9.3%| 3.7% 30.5%| 0.3%
twolf | 21.8%| 38.7%| 7.0%| 10.6%| 2.3% 17.6%| 2.1%
wupwise | 20.4%]| 36.8%]| 5.7%] 14.8%| 3.8% 17.4%] 1.3%
applu | 21.4%]| 36.0%| 6.6%| 14.2%| 3.6% 16.2%| 2.1%
mesa || 19.1%]| 38.1%]| 2.3%] 20.8%] 4.1% 13.2%]| 2.4%
art 22.0%] 40.2%]| 5.9%| 13.0%] 3.4% 13.0%| 2.5%
equake | 21.7%| 38.6%| 5.9%| 12.6%| 3.4% 155%| 2.3%
apsi 21.7%]| 31.5%| 5.2% 11.3%]| 3.5% 24.4%| 2.4%
[ Average | 19.6%] 38.4%]| 5.0%] 13.1%] 3.2%|  18.9%]| 1.8%|

Table 3.2: Static distribution of BBD types for BLISS code.

| [ FT [ BRF[BRB][JJR| RET|JAL-JALR | LOOP |

gzip 19.8%] 45.5%| 5.0%] 5.8%]| 4.4% 4.4%] 15.1%
gce 54.9%| 21.3%| 11.3%] 3.1%| 2.3% 2.3%| 4.9%
crafty 8.2%| 25.0%| 2.0%| 2.9%| 4.4% 4.4%| 53.1%
gap 29.1%| 34.0%| 5.8%| 4.4%| 4.2% 4.2%| 18.3%
vortex || 18.9%] 54.3%| 0.5%| 1.7%| 10.3% 10.3%| 3.8%
twolf | 14.7%| 41.5%| 15.4%] 2.0%| 7.1% 7.1%] 12.1%
wupwise | 22.2%] 38.1%]| 5.3%] 3.9%] 13.2% 13.2%| 4.2%
applu__ | 30.7%| 8.6%| 14.5%]| 0.0%]| 0.0% 0.0%| 46.1%
mesa | 21.4%| 46.5%| 2.1%]| 5.9%| 8.1% 8.1%| 7.9%
art 8.8%| 33.8%| 2.0%]| 0.0%| 0.0% 0.0%]| 55.4%
equake | 20.0%| 23.7%| 20.5%| 4.2%| 1.1% 1.1%] 29.3%
apsi 22.8%| 31.4%| 5.3%] 3.8%| 6.1% 6.1% | 24.5%
[ Average | 22.6%] 33.6%]| 7.5%] 3.1%]| 5.1%)| 5.1%] 22.9%|

Table 3.3: Dynamic distribution of BBD types for BLISS code.
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‘ H 0-3‘ 4-7‘ 8-11‘ 12-15‘

9zip 58.3%]| 25.6%| 12.2%] 3.8%
gce 74.2%]| 17.0%| 6.9%| 1.9%
crafty 29.7%)| 62.0%| 3.8%| 4.5%
gap 52.7%)] 21.3%| 4.1%| 21.9%
vortex 63.7%)| 11.8%| 14.2%| 10.3%
twolf 59.3%| 19.9%| 18.3%]| 2.6%
wupwise 63.2%]| 11.0%| 6.2%] 19.6%
applu 23.2%]| 18.6%| 11.3%| 46.9%
mesa 54.9%)| 23.7%| 7.3%| 14.1%
art 52.4%)] 20.7%| 2.7% | 24.2%
equake 30.0%)| 40.9%| 18.2%| 10.9%
apsi 46.5%| 28.4%| 8.9% 16.2%
Average (INT) || 56.3%)] 26.3%]| 9.9%| 7.5%
Average (FP) || 45.0%] 23.9%| 9.1%]| 22.0%
Average 50.7%)] 25.1%]| 9.5%| 14.7%

Table 3.4: Dynamic distribution of BBD lengths for BLISS code.

number of fall-through descriptors. For integer applications, this is mostly dine tarige
number of labels in the original MIPS code (potential targets of control-flow opesti

For floating-point applications, this is mostly due to the many basic blocks with frf6icrs

tions or more in the original MIPS code. Such basic blocks use multiple BLISS gessri
because each BBD can point to up to 15 instructions. On average, 1.9% and 2.8% of the
static basic blocks contain more than 15 instructions for INT applications angtiea

tions respectively. Even though 1.8% of static BBDs on average use the LOORuctnst

they account for almost 23.0% of executed BBDs.

Table 3.4 shows the dynamic distribution of descriptor lengths. It is interestimgtice
that, even for INT applications, an average of 40% of the executed basic blotkdenc
more than 4 instructions. This implies that making one prediction for every Auoigins
fetched from the instruction cache is often wasteful. On average, 94% okéuoeited

basic blocks contain 15 instructions or less. Therefore, restricting the BBfiH to 15
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| | 0-2] 35| 6-8] 9-11]11ormore|

9zip 72.9%)| 11.4%)] 5.7% | 10.0% 0.0%
gce 56.7%)| 15.1%| 6.1%| 5.4% 16.6%
crafty || 63.5%]| 12.4%)] 4.5% | 16.9% 2.7%
gap 74.9%] 10.7%] 3.5%| 3.5% 7.5%
vortex || 57.7%| 11.7%)] 2.9% | 7.8% 20.0%
twolf 70.5%| 11.0%| 4.3% | 7.4% 6.8%
wupwise || 72.3%] 12.7%] 6.0%] 9.0% 0.0%
applu || 75.4%]| 11.0%] 4.3%| 9.2% 0.0%
mesa || 69.5%] 11.8%| 9.2%| 2.9% 6.6%
art 74.2%]| 11.2%| 7.5%| 7.1% 0.0%
apsi 69.3%| 9.2%] 3.7%| 16.9% 0.9%
[Average | 68.8%] 11.6%] 5.2%] 8.7%] 5.6%

Table 3.5: Static distribution of the number of offset bits required for the BBDthen
BLISS code.

instructions is a good compromise between the descriptor length and the basic biibk le
Overall, the average dynamic basic block length is 7.7 instructions (5.8 for infegdor
floating-point), while the static average length is 3.7 instructions (3.5 for int&8g&ifor
floating-point).

Table 3.5 shows the number of offset bits required for BBDs. On average, 80% of BBDs
require less than 3 bits (FT BBDs require 0 bits). BBDs that require ditddtlarger than 8
bits can be converted to use indirect addressing mode or extra BBDs are eséehit the
address. As discussed in the previous section, this partially explains threxdéebetween

the number of basic blocks and the number BBDs for the applications shown in Table 3.1.

3.5 Related Work

Many researchers have observed that conditional branches and other control-ftaw ope
tions serve multiple functions. They define basic block boundaries, provide the tdrget a

dress, and compute the branch condition. Several instruction sets plefpage-to-branch
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instructions that define the first two functions and can be scheduled early in thecins
tion stream [51, 96]. The basic block descriptors in BLISS are basicalpapeeto-branch
instructions moved into a separate memory region. Hence, there is no nezxkss &he
instruction cache and parse the instruction stream in order to locate them.

The Block-structured ISARSA [37, 70] defines basic blocks as atomic execution units
but leaves their definitions within the regular instruction stream as WBBA exploits
atomic BB execution in order to reverse the ordering of instructions withith &8 to
simplify renaming.

The decoupled control-execute (DCE) architectures use a separate instagttivith
distinct architectural state for control-flow calculation [107, 65]. DCErington sets al-
low the front-end to become an independent processor that can resolve controhflow a
prefetch instructions tens to hundreds of cycles ahead of the execution core.vedfdowe
DCE architectures are susceptible to deadlocks and have complicated exdeptdling.
The basic block descriptors in BLISS are not a stand-alone ISA and do not define or modify
any architectural state, hence eliminating the deadlock scenarios weitlugled control-
execute ISAs. While most DCE ISAs have been developed for and evaluatedingle-
issue, in-order processors, BLISS works also for wide-issue speculatigasles

Several instruction sets allow for compiler-generated hints with individzanch and
load/store instructions [96]. BLISS, on the other hand, provides a general mecHanism
software hints at basic block granularity. The mechanism can support a \airigses as

explained in Section 3.2.

3.6 Summary

In this chapter, we presented the block-aware instruction set architélcair@efines basic
block descriptors in addition to and separately from the actual instructi@acmprogram.

A descriptor provides sufficient information for fast and accurate control{iediction
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without accessing or parsing the instruction stream. It describes the typeooirttiel-flow
operation that terminates the block, its potential target, and the number of tistsum
the basic block. This information is sufficient to tolerate the latency ofunttin accesses,
regulate the use of prediction structures, and direct instruction prefetchimajlyF-block
descriptors also provide a general mechanism for compilers for passing softints that
can assist with a wide range of challenges at the hardware level.

The instruction set level analysis demonstrated that basic block descipidds be
provided at a minimal impact to application code density (approximately 5%)avédrage
basic block describes 5.8 to 9.7 instructions, which shows that limiting the lehdtusic
blocks to 15 instructions provides a good compromise between the descriptor overtiead a
the block length. It also verifies that making prediction for every 4 instuastfetched with
conventional ISAs is often wasteful.

In the following chapter, we will discuss the processor microarchitechaeimple-
ments the BLISS ISA. In Chapter 5, we will quantify the performance benefit @th8S

ISA and microarchitecture.



Chapter 4

Front-End Architecture for the

Block-Aware ISA

The BLISS instruction set allows the processor front-end to decouple brancletedi
from instruction fetching. The software-defined basic block descriptors prouftieient
information for fast and accurate control-flow prediction without accessinga®ing the
instruction stream. Decoupling allows us to remove the instruction cadess from the
critical path of accurate prediction. Hence, instruction cache latencgnget affects the
prediction accuracy. The descriptors also provide an early, yet accuestanto the in-
struction address stream and can be used for instruction prefetching to tiee urogact of
instruction cache misses. Furthermore, the control-flow informationadlaiin descrip-
tors allows for judicious use of branch predictors, which reduces interferectaning
time and improves overall prediction accuracy.
This chapter presents the decoupled front-end for the BLISS ISA and its benefits ov

a conventional processor front-end. Section 4.1 describes the architecture aatcapdr
the BLISS-based front-end. Certainly, a decoupled front-end can be implemeitheut
the ISA support provided by BLISS. Section 4.2 describes a state-of-the-amtipled

front-end without the software support and explains the advantages that BLISS ingoduce

42
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Branch/Jump Outcome———

BB Descriptor Instruction
Queue Queue
Descriptor N Instruction |\ J\ Execution
Fetch /) Fetch /] /|  Engine

Figure 4.1: A simplified view of the BLISS decoupled processor.

over such designs. Section 4.3 discusses related work. While the chapteilpriotases
on architectural details and issues, Chapter 5 provides the evaluatiots tbsulclearly
demonstrate the advantages of BLISS over both a conventional front-end and-afstat

the-art decoupled front-end without the ISA support.

4.1 Block-Aware Front-End Design

The BLISS ISA suggests a superscalar front-end that fetches the basic blociptdes
(BBDs) and the associated instructions in a decoupled manner. The basic block queue
(BBQ) in Figure 4.1 decouples control-flow predictions from instruction cache accesses
Each cycle, a BBD is fetched from the descriptor cache and pushed into the BRQ.
fetched BBD provides sufficient information to accurately predict the nexb B& be
fetched in the following cycle. The content of the BBQ is used to fetch the medjun-
structions form the instruction cache and deliver them to the back-end of the grotes

execution.

4.1.1 Microarchitecture and Operation

Figure 4.2 presents the microarchitecture of a BLISS-based decoupled front-end. C
pared to a conventional front-end, we replace the branch target buffer (BiflB p\BB-
cachethat caches the block descriptors in programs. The basic block descriptorgfetche

from the BB-cache provide the front-end with the architectural informatioessary for
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Figure 4.2: A decoupled front-end for a superscalar processor based on the BLISS ISA.

control-flow prediction in a compressed and accurate manner. Since descapgatored
separately from ordinary instructions, their information is availableramttend tasks be-

fore instructions are fetched and decoded. The sequential target of a basic ldbeayis

at address PC+4, regardless of the number of instructions in the block. The non-sequential
target (PC+offset) is also available through the offset field for all bléekminating with
PC-relative control-flow instructions. For register-based jumps, the nqureséial target is
provided by the last regular instruction in the basic block through a registefispeBasic

block descriptors provide the branch condition when it is statically deternfaigjdimps,

return, and fall-through blocks). For conditional branches, the descriptor providesitype i
formation (forward, backward, loop) and hints which can assist with dynamicqbieali

The actual branch conditional is provided by the last regular instruction in the lbask.

The BLISS front-end operation is simple. On every cycle, the BB-cachecissaed
using the PC. On a miss, the front-end stalls until the missing descriptetrisved from
the memory hierarchy (L2-cache). On a hit, the BBD and its predicted airgtzrget are
pushed in thdasic block queue (BBQJ he predicted PC is used to access the BB-cache in
the following cycle. Instruction cache accesses use the instruction panutézragth fields

in the descriptors available in the BBQ.
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Figure 4.3 shows the BLISS descriptor cache. The offset field in each desaspt
stored in the BB-cache in an expanded form that identifies the full target cétitméniating
branch. For PC-relative branches and jumps, the expansion takes place onteBefdls
from lower levels of the memory hierarchy, which eliminates targeprewictions even for
the first time the branch is executed. For register-based jumps, the c#fdasfavailable
after the first execution of the basic block. The BB-cache also integrategoéesimodal
predictor. The predictor provides a quick direction prediction along with thettprgdic-
tion. The simple prediction is verified one cycle later by a large, taglessichytedictor.

In the case of a mismatch, the front-end experiences a one cycle stall.

The BB-cache stores multiple sequential BBDs. Long BB-cache lines explaialspa
locality in descriptor accesses and reduce the storage overhead for tagsurfexperi-
ments, each BB-cache line stores eight sequential BBDs. This providesadaktween
spatial locality and the tag overhead. With the BTB, on the other hand, eabbk Gae
describes a single target address (one tag per one BTB entry) for greater fiexviith
replacement. The increased overhead for tag storage in BTB balances fadt ttat the
BB-cache entries are larger due to the instruction pointer field. For the samzenoim
entries, the BTB and BB-cache implementations require the same number of SRAM
Same number of entries means that the number of branches that BTB can store ie equal t

the number of basic block descriptors the BB-cache can store.

Figure 4.4 shows the organization and operation of the translation look-aside buffer
(TLB) used for caching virtual to physical address mappings for BLISS descriptors. We
show a fully associative TLB as an example. However, just like anyrofh®&, it can
have other associativities. The TLB operates in the following manner. ThH2 BBual
page frame address is compared with all of the tags. In case of a match, &R
offset is concatenated with the physical page frame address from the TLBrtaHferBBD
physical address. The TLB also includes the higher bits [31:15] of the instruction pointer

Those bits are concatenated with the lower bits [14:2] available in the BBiDm the full
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PC Tag Index Offset
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Tag Valid Data Tag Valid Data
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Hit BBD

BB-cache Entry Format

type target length| instr. pointer | hints bimod
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Figure 4.3: The basic block descriptors cache (BB-cache) and the cache line format
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Figure 4.4: The block diagram and operation of the TLB for descriptor accesses.

instruction pointer address. Figure 4.4 only shows a single IP[31:15] field for eaBh TL
entry which implies that instructions for all BBDs within a page must be withensame
32-KByte instruction frame. Alternatively, we can have multiple IP[31fi&fs within a

TLB entry to support more flexibility.

4.1.2 Benefits of ISA Support for Basic Blocks

The BLISS front-end alleviates all of the shortcomings of a conventional front-€hd.
BLISS front-end improves the accuracy of branch direction and target poedioctmoves

the instruction cache access from the critical path of prediction, and nziegntihe number
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of instruction cache misses. Moreover, it allows energy-efficientsseseto the instruction

cache and predictors.

Branch Prediction

The BLISS front-end minimizes the number of branch direction mispredictions.PThe

in the BLISS ISA always points to basic block descriptors (i.e. control-flotuetions);

the hybrid predictor is only used and trained for PCs that correspond to branchesa Wit
conventional front-end, on the other hand, the PC may often point to non control-flow in-
structions which causes additional interference and slower training for thiglpybdictor.

In addition, the exact address of the descriptor is used to access the preditsas fiot

the case with a conventional front-end where the address of the first instrurctienfetch

block is used to access the predictor instead.

The type of the BBD also allows us to selectively use the predictor in anraec
manner. For BBDs that correspond to blocks terminating with an unconditional control-
flow instruction (J, JAL, etc), the hybrid predictor is not used nor trained. Tédsiaes
interference and saves energy in the predictor. Finally, the static poedignts in basic
block descriptors allow for judicious use of the hybrid predictor. Strongly biased lxeanc
do not use the predictor and branches that exhibit strong local or global correlationpatte
use only one of its components. This further improves the prediction accuracy dsddea

additional energy savings.

The BLISS front-end also minimizes the number of branch target misprediciitwes.
BB-cache stores the full address for PC-relative branches and jumps. Theiergdakes
place on BB-cache refills from lower levels of the memory hierarchy, wieianinates
target mispredictions even for the first time the branch is executed. UhkEkBTB, when

a BB-cache entry is evicted, the data is still available in lower mgrhmrarchy.



4.1. BLOCK-AWARE FRONT-END DESIGN 49

The BBQ decouples control-flow prediction from instruction fetching. Multi-cyate
tency for large instruction cache no longer affects prediction accuradye astal informa-
tion for speculation is included in basic block descriptors available throughBheaBhe
(block type, target offset). Hence, the predictor can run ahead, even wharstheiion
cache experiences temporary stalls. Compared to the pipeline for a convel8idntne
BLISS-based microarchitecture adds one pipeline stage for fetching basicd#eckp-
tors. The additional stage increases the misprediction penalty. This disageafitBLISS
is more than compensated for by improvements in prediction accuracy due teddduc

terference at the predictor.

Instruction Cache

The contents of the BLISS BBQ provide an early, yet accurate view into theiatisin
address stream and can be used for instruction prefetching to hide instrastierisses.
Figure 4.5 presents the prefetching scheme used with BLISS. The instructibe
a non-blocking cache that can handle up to four misses concurrently. The instruction
cache has a single read port that can be used by either the instruction fetch tat or
prefetcher. When the instruction cache is serving a miss or when the instrugteue
is full, the port can be used by the prefetcher to lookup further instructions in tiee ca
based on the content of the BBQ. If the instructions are not available in the istruc
cache, the instructions are prefetched from lower memory hierarchy. Tteegbred cache
lines are brought into a separate buffer to prevent instruction cache pollutiore t&&c
prefetched cache line is accessed by the instruction fetch unit, it isariato the instruc-
tion cache.

Many prefetching techniques have been widely used with conventional inetrseis
to hide the latency of cache misses. The simplest technique is the sequeriéitdhong
[103, 77]. In this scheme, one or more sequential cache lines that follow thetietehed

line are prefetched. Stream prefetching only helps with misses on sequesitiattions.
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Figure 4.5: The prefetcher in the BLISS-based front-end.

With BLISS, the prefetcher initiates prefetches for cache lines on thaigbeel path of
execution using the BBQ content. The advantage of such a scheme is that it etolpref
potentially useful instructions even for non-sequential access patterns assldmgneh
prediction is sufficiently accurate and requires no training. BLISS pieifegds similar to
history-based schemes [104, 39, 48] that use the patterns of previous accessesdo init
the new prefetches. The difference is that we require no additional historg tabléne

BB-cache and the predictors act as an accurate history mechanism.

Energy Efficiency

BLISS allows us to achieve high energy efficiency in two ways: it reducesmasted
energy in the overall design and reduces the front-end energy. BLISS reducstethy
wasted on fetching and executing mispredicted instructions as a result ohpheved
prediction accuracy. By reducing execution time, the BLISS-based delsigrisaves on

the energy consumed by the clock tree and the processor resources even whee they ar

stalling or idling.
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The availability of basic block descriptors allows for energy optimizatibas teduce
the front-end energy consumption. Each basic block defines exactly the number of instruc-
tions needed from the instruction cache. Using segmented word lines [30] for @ne dat
portion of the instruction cache, we can fetch the necessary words whilataagionly the
necessary sense-amplifiers in each case. As front-end decouplinge®leigiter instruc-
tion cache latency without loss in speculation accuracy, we can accaghdirtags for a
set associative instruction cache, and in subsequent cycles, accesatbelgat the way
that hits [91]. Furthermore, we can save decoding and tag access energynistithetion
cache by merging instruction cache accesses for sequential blocks in the BB@itihthe
same instruction cache line. Finally, the front-end can avoid the aczessrte or all pre-
diction tables for descriptors that are not conditional branches or for descriptotsiete
as statically predictable by branch hints. Chapter 6 discusses these agbmiechniques

in more details and evaluates them.

4.2 Hardware-only Decoupled Front-End

A decoupled front-end similar to the one in Figure 4.2 can be implemented without the
ISA support provided by BLISS. The FTB design proposed by Reinman et. al. [89, 90]
describes the latest of such design. In this section, we briefly describeddsgn and

compare it to the BLISS-based front-end design.

4.2.1 The FTB Front-End Design

Figure 4.6 depicts the FTB front-end by Reinman et. al. [89, 90], which represents a
comprehensive, high-performance architecture for a decoupled, block-based fromtxend.
design uses #etch target buffer (FTBas an enhanced basic block BTB [111]. Each FTB
entry describes fetch block a set of sequential instructions starting at a branch target and

ending with a strongly biased, taken branch or an unbiased branch [88]. A fetchnidgyck
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Figure 4.6: The FTB architecture for a decoupled, block-based front-end.

include several strongly biased, not-taken branches. Therefore, a fetchntédgadkclude
several basic blocks. Apart from a tag that identifies the address of thenfitsidtion in
the fetch block, the FTB entry contains the length of the block, the type of the terngnati
branch or jump, its predicted target, and its predicted direction. Fetch bdwekseated
in hardware by dynamically parsing the stream of executed instructions andiolgstéie

behavior of control-flow instructions.

Each cycle, the FTB is accessed using the program counter. On an FTB higrtivegs
address of the block (PC), its length, and the predicted direction and targeistred in the
fetch target queue (FTQ¥imilar to the BBQ, the FTQ decouples control-flow prediction
from instruction cache accesses. On an FTB miss, the front-end inpethe FTQ max-
imum length (15 instructions), fall-through fetch blocks starting at the nddsess, until
an FTB hit occurs or the back-end of the processor signaisséetchor a misprediction
A misfetch occurs when the decoding logic detects a jump in the middle of a fedck. bl

In this case, the pipeline stages behind decoding are flushed including the FTQ aQd the |



4.2. HARDWARE-ONLY DECOUPLED FRONT-END 53

a new FTB entry is allocated for the fetch block terminating at the jump, aadution
restarts at the jump target. A misprediction occurs when the executiometors a taken
branch in the middle of a fetch block or when the control-flow prediction for theitetmn
ing branch (target or direction) proves to be incorrect. In either case,ltbkewipeline is
flushed and restarted at the branch target. If the fetch block was reathiedfi B, the FTB
entry is updated to indicate the shorter fetch block or the change in targdifhrpoedic-
tion. Otherwise, a new FTB entry is allocated for the block terminatingeabtispredicted
branch. Even though both misfetches and mispredictions lead to creation of toéw fe
blocks, no FTB entries are allocated for fall-through fetch blocks becausergedidocks
are automatically fetched in the case of a FTB miss. Next sectiomevikw qualitatively

the advantages and the disadvantages of the FTB design compared to the BLISS design.

4.2.2 Hardware vs. Software Basic Blocks

The FTB design encapsulates all the advantages of a decoupled, block-based front-end.
Nevertheless, the performance of the FTB-based design is limited byuirs@oes intro-
duced during fetch block creation and by the finite capacity of the FTB. When a jump
instruction is first encountered, a misfetch event will flush the pipeline-eodtin order to
create the proper fetch block. When a taken branch is first encountered, a fliigfhesh

IS necessary to generate the proper FTB entry. This is also the case wiagtla fwitches
behavior from biased not-taken to unbiased or taken, in which case we needtemgher
existing fetch block. In addition, we lose accuracy at the predictor tabldseantry that

was used for the branch at the end of the old block, will now be used for the branch that
switched behavior. A fetch block is identified by the address of its first instruand not

by the address of the terminating branch or jump. Hence, as the length of a fetch block
changes, the branch identified by its address also changes. The branch terntireatilolg

block will need to train new predictor entries.
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Moreover, the frequency of such problematic events can be significant due to tle fini
capacity of the FTB. As new FTB entries are created, older yet usefulenteag be evicted
due to capacity or conflict misses. When an evicted block is needed again, Bhenfy
must be recreated from scratch leading to the misfetches, mispogdicéind slow predic-
tor training highlighted above. In other words, an FTB miss can cost tens ofs¢yhie
time necessary to refill the pipeline of a wide processor after one or moreadispons.
Finally, any erroneous instructions executed for the large, fall-through fdtcks injected
in the pipeline on FTB misses lead to wasted energy consumption. Using &isfetath
block length may reduce the number of erroneous instructions executed; howeveil| this w
lead to the creation of smaller fetch-blocks that will negatively affsrformance. The

FTB design is incapable of merging smaller blocks into a single larger block.

The BLISS front-end alleviates the basic problems of the FTB-based desigh).thé&
BLISS basic blocks are software defined. They are never split or recreateatdhyare as
jumps are decoded or branches change their behavior. In other words, the BLISS front-end
does not suffer from misfetches or mispredictions due to block creation. Of cRLtRS
still has mispredictions due to incorrect prediction of the direction or targdteobranch
terminating a basic block, but there are no mispredictions due to discoveripjting
fetch blocks. In addition, the PC used to index prediction tables for a branchagsathe
address of the corresponding BBD. This address never changes regardless of the behavior
of other branches in the program, which leads to fast predictor training. Secondnesen
descriptors are allocated in the BB-cache, the old descriptors are natyaebtAs part of
the program code, they exist in main memory and in other levels of the memoaydiigr
(e.g. L2-cache). On a BB-cache miss, the BLISS front-end retrievesingiglescriptors
from the L2-cache in order of ten cycles in most cases. Given a reasonabjeaacy in
the BBQ, the latency of the L2-cache access does not drain the pipeline from tiasisuc
Hence, the BLISS front-end can avoid the mispredictions and the energy pesstyaied

with recreating fetch blocks on an FTB miss.
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The potential drawbacks of the BLISS front-end are the length of the basic blocks
and the utilization of the BB-cache capacity. FTB fetch blocks can be longeBhESS
basic blocks as they can include one or more biased not-taken branches. Longer blocks
allow the FTB front-end to fetch more instructions per control-flow predictidowever,
the BLISS front-end actually fetches marsefulinstructions per control-flow prediction.
Although the BLISS blocks are smaller, they are accurately defined by seftwar FTB,
the long, fall-through fetch blocks introduced on FTB misses contain large numbers of
erroneous instructions that lead to misfetches, mispredictions, and sldietpreraining.
In addition, the IPC is typically constrained by the commit width of the back-endIH@Ge
for imbalanced back-ends are further constrained by instruction dependenciestoider
having larger fetch blocks may not improve performance. The BLISS front-enchfeay
underutilize the capacity of the BB-cache by storing descriptors for fall-throlatks or
blocks terminating with biased not-taken branches. This can lead to highsirates for
the BB-cache compared to the FTB. In Chapter 5, we will show that the BBecachieves

good hit rates for a variety of sizes and consistently outperforms an equadty SITB.

4.3 Related Work

Block-based front-end engines were introduced by Yeh and Patt to improve pmedict
accuracy [111], with basic block descriptors formed by hardware without anyi@ulit
ISA support. Decoupled front-end techniques have been explored by [17] and [105].
Reinman et al. combined the two techniques in the FTB decoupled front-end design
[88, 89, 90]. Ramirez et al. applied an FTB-like approach to long sequentialctish
streams created with code layout optimizations and achieved 4% performgmmoeéement
[86].

Significant amount of front-end research has also focused on trace caches [94, 29],

trace predictors [45], and trace construction [78]. Trace caches have beem tsheork
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well with basic blocks defined by hardware [14, 49]. One can form traces on top of the
basic blocks in the BLISS ISA. BLISS provides two degrees of freedom for code lay-
out optimizations (blocks and instructions), which could be useful for trace favmatd
compaction.

Other research in front-end architectures has focused on multi-block foedit00,
99], control-flow prediction [83, 26], and parallel fetching of no contiguous instruction
streams [74, 95]. Such techniques are rather orthogonal to the block-aware ISAdrel ca

used with a BLISS-based front-end engine.

4.4 Summary

This chapter presented the BLISS-based front-end that fetches the basidésuaciptors
and the associated instructions in a decoupled manner. The BLISS-basedfioapkaces
the branch target buffer with a BB-cache that caches the block descripprmgirams. The
descriptors provide the front-end with the architectural information negegsacontrol-

flow prediction in a compressed and accurate manner. This allows the dectropkeend

to improve prediction accuracy by judicious use and training of branch predictonsye

the instruction cache latency from the prediction critical path, and aatuynatefetch in-
structions to hide instruction cache misses.

A decoupled front-end with similar advantages can be implemented without e IS
support provided by BLISS [88, 89]. However, its performance is limited bycmacies
introduced during fetch block creation and by the finite capacity of the fetch-béboiage.
With BLISS, on the other hand, the software defined basic blocks allow the decoupled
front-end to avoid the inaccuracies of hardware creation of fetch blocks astdrofetch

block information at any level of the memory hierarchy.



Chapter 5

Evaluation for High-End Superscalar

Processors

The BLISS ISA provides architectural support for control-flow prediction andungon
delivery. The basic block descriptors convey the software information sagefor ac-
curate branch prediction and guided instruction prefetching. In the previous chaeter,
introduced a processor front-end that decouples control-flow speculation from fiwstruc
cache accesses. While instruction fetching requires the information BBbes, instruc-
tion decoding is no longer in the critical path for accurate prediction.

This chapter presents a quantitative evaluation of BLISS for high-end suerpoad
cessors. Section 5.1 presents the methodology and tools. In Section 5.2, we discuss in
details the evaluation results for the BLISS-based front-end and comparedth a con-
ventional front-end design and a hardware-only, decoupled design (FTB). Sectjpm5.3
vides further insights by comparing the BLISS front-end to specific variants df Tie
design. In Section 5.4, we explore the design space for the BLISS front-end by vaeying k
architectural parameters. While this chapter primarily focuses on tli@pemnce evalua-
tion for high-end processor cores, Chapter 6 presents the energy evaluation aret Chapt

evaluates BLISS for embedded processor designs.
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5.1 Methodology

5.1.1 Processor Configurations

Our evaluation covers three processor models. The "Base” model refleatseessalar
processor that uses a RISC ISA. Its front-end relies on a conventional BTBaasdnot
decouple control-flow predictions from instruction fetching. The FTB model uses a decou-
pled front-end with hardware-only techniques to form extended fetch blockslowfthe
organization discussed in Section 4.2.1. The BLISS model uses a decoupled fronttend tha
utilizes the basic block descriptors in the BLISS ISA. It follows the orgation described
in Section 4.1.1. We assume that the three models operate at the same clock frefoenc
performance, we report instructions committed per cydk) to focus on architectural
differences rather than circuit differences.

Table 5.1 presents the microarchitecture parameters used in the evabfdherthree
processor models. We simulate both 8-way and 4-way execution cores witheallirhod-
els. The 8-way execution core is generously configured to reduce back-endstiaisany
front-end performance differences are obvious. The 4-way execution core ifylooss
eled after the Alpha 21264 processor [52] and represents a more practical imiz&aore
The three models differ only in the front-end. All of the other parameters araaddénthe
pipeline of the base model consists of six stages: fetch, decode, issue, exeitabsck,
and commit stage. Both of the BLISS and FTB designs have an additional pipe stege. T
extra stage in the BLISS design is for fetching BBDs and in the FTB design é&tessing
the FTB and pushing fetch-blocks into the FTQ.

In all comparisons, the number of blocks (entries) stored in BTB, FTB, anddg8Becis
the same so no architecture has an unfair advantage. Actually, all truetists take ap-
proximately the same number of SRAM bits to implement for the same number ofsentrie
The BTB/FTB/BB-cache is always accessed in one cycle. The latency otlibe caches

in clock cycles is set properly based on its relative size compared BSFHB/BB-cache.
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Front-End Parameters
Base FTB BLISS
Fetch Width 8 instructions/cycle (4) 1 fetch block/cycle 1 basic block/cycle
Target BTB: 2K entries FTB: 2K entries BB-cache: 2K entries
Predictor 4-way, 1-cycle accessl-way, 1-cycle access 4-way, 1-cycle access
8 entries per cache ling
Decoupling Queue - FTQ: 4 entries BBQ: 4 entries
Prefetching - Based on FTQ Based on BBQ
Common Processor Parameters
Prediction 1 prediction per cycle
Hybrid gshare: 4K counters
Predictor PAg L1: 1K entries, PAg L2: 1K counters
selector: 4K counters
RAS 32 entries with shadow copy
Instruction cache 32 KBytes, 4-way, 64B blocks, 1 port, 2-cycle access pigelin
Issue/Commit Width |8 instructions/cycle (4)
IQ/RUU/LSQ Size ||64/128/128 entries (32/64/64)
FUs 12 INT & 6 FP (6, 3)
Data cache 64 KBytes, 4-way, 64B blocks, 2 ports, 2-cycle access pipéli
L2 cache 1 MByte, 8-way, 128B blocks, 1 port, 12-cycle access, 4&yepeat rate
Main memory 100-cycle access

Table 5.1: The microarchitecture parameters used for performance evalofligh-end
superscalar processors. The common parameters apply to all three models KBB,
BLISS). Certain parameters vary between 8-way and 4-way processayuatibns. The
table shows the values for the 8-way core with the values for the 4-way coreantpasis.

The same instruction cache and predictors are used in all three models. BbéhFiB
and BLISS include an extra queue for decoupling. The size of the BTB/FTB/BB-cache
should be approximately 1/4 to 1/8 the size of the instruction cache as each lwasic bl

corresponds to 4 to 8 instructions on average (see Section 3.4.2).

For the FTB and BLISS front-ends, we implement instruction prefetching bastekon
contents of the FTQ and BBQ buffers described in Section 4.1.2. When the instruction
cache is stalled due to a miss or because the 1Q is full, the contents of FQ¥BlBies are

used to look up further instructions in the instruction cache. Prefetchesigaésid when a
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potential miss is identified. The prefetched data goes to a separate plaifeatto avoid
instruction cache pollution. The simulation results account for contention for tloeate

bandwidth between prefetches and regular cache misses.

For the case of BLISS, we present results wBhISS-Hint$ and without BLISS the
static prediction hints in each basic block descriptor. When availalalis &ints allow for
judicious use of the hybrid predictor. Strongly biased branches do not use the predictor
and branches that exhibit strong local or global correlation patterns use only one of its

components.

5.1.2 Tools and Benchmarks

Our simulation framework is based on the Simplescalar/PISA 3.0 toolsetbi¢h we
modified to add the FTB and BLISS front-end models. For energy measurements, we
use the Wattch framework with the cc3 power model [15]. In this non-ideal, sgigee
conditional clocking model, power is scaled linearly with port or unit usage, exhapt
unused units dissipate 10% of their maximum power, rather than drawing zero fgower.
ergy consumption was calculated for a QudOprocess with a 1.1V power supply. The
reportedTotal Energyincludes all the processor components (front-end, execution core,

and all caches). Access times for cache structures were calculatgddacti v3.2 [102].

For our experimental evaluation, we study 12 benchmarks from the SPEC CPU2000
suite using their reference datasets [38]. The selected benchmarks Ingng vaquire-
ments on the front-end. The rest of the benchmarks in the SPEC CPU2000 suite perform
similar and their results are not shown for brevity. For benchmarks with pheltiiatasets,
we run all of them and calculate the average. The benchmarks are compilegoaitt
the -O3 optimization level. With all benchmarks and all front-ends, we $lagitst billion
instructions in each dataset and simulate another billion instructions faledied@malysis.

The BLISS code is generated using the process explained in Section 3.3.
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Figure 5.1: Performance comparison for the 8-way processor configuration with tbe Bas
FTB, and BLISS front-ends. The top graph presents raw IPC and the bottom one shows the
percentage of IPC improvement over the Base for FTB and BLISS.

5.2 Evaluation

This section presents the performance comparison between the base, FTH.I8% B
models. To illustrate the source of the performance differences, we aldyp ist details
prediction accuracy issues and the behavior of target prediction tables, ilstrcache,

L2-cache, and instruction prefetcher for each model.

5.2.1 Performance Evaluation

Figure 5.1 compares the IPC achieved for the 8-way superscalar processor caanfigurat
with the three front-ends. The graphs present both raw IPC and percentage of IRB&Zampr
ment over the base front-end. The FTB design provides a 7% average IPC impnbveme

over the base, while the BLISS front-end allows for 20% and 24% improvementtwe
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Figure 5.2: Fetch and commit IPC for the 8-way processor configuration with the FTB
and BLISS front-ends. We present data for a representative subset of benctatks,
average refers to all benchmarks in this study. For BLISS, we present théod#te case
without static branch hints.

base without and with branch hints respectively. The FTB front-end providesrip@ve-

ments over the base for 7 out of 12 benchmarks, while for the remaining benchmarks there
is either no benefit or a small slowdown. On the other hand, the BLISS front-endvuespr
ment over the base is consistent across all benchmarks. Even without stegjdhilSS
outperforms FTB for all benchmarks exceqtr t ex. Forvortex, the FTB front-end is
capable of forming long fetch blocks which helps in achieving a higher FTB hit rate (s
Figure 5.4). With hints, BLISS achieves even higher IPC improvements. 3msinly

due to the improved prediction accuracy, as we will see in Section 5.2.2.

Both FTB and BLISS have fundamental advantages over the base due to their decoupled
front-end (see Section 4.1.1 and 4.2.1). The FTB design is more aggressive than BLISS
in terms of instruction fetching. Nevertheless, overly aggressivauictsbn fetch may hurt
overall performance due to the cost of misfetches and mispredictions. ustralle this
issue, Figure 5.2 compares the fetch and commit IPC for the FTB and BLISSefindst-

The fetch IPC is defined as the average number of instructions described by the blocks
inserted in the FTQ/BBQ in each cycle. Looking at fetch IPC, the FTBgahefgtches more
instructions per cycle than BLISS (3.6 versus 2.8 on the average). The FTB aglvasta

due to the larger blocks and because the front-end generates fall-through blocks on FTB

misses, while the BLISS front-end stalls on BB-cache misses andwesrithe descriptors
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Figure 5.3: Normalized number of pipeline flushes due to direction and target mispredic
tions for the 8-way processor configuration with the Base, FTB, BLISS, andBHBITS
front-ends. We present data for a representative subset of benchmarks, butrdge ave
refers to all benchmarks in this study.

from the L2-cache. Nevertheless, in terms of commit IPC (instructiciredeper cycle),

the BLISS front-end has an advantage (1.9 versus 2.1). In other words, a higher ratio of
instructions predicted by the BLISS front-end turn out to be useful. The longhfaiixgh

fetch blocks introduced on FTB misses contain large numbers of erroneous instructions
that lead to misfetches, mispredictions, and slow predictor trainingh®aother hand, the
BB-cache in BLISS always retrieves an accurate descriptor from theatBe. In other
words, BLISS uses the information available through the instruction seike stbalance

between over and under-speculation.

5.2.2 Prediction Accuracy Analysis

To understand the performance difference between the FTB and BLISS desigass we
going to look first at the prediction accuracy and in the following sections ahgteiction
cache, L2-cache, and the FTB/BB-cache behaviors.

Figure 5.3 quantifies the differences in prediction accuracy for the three designs by
comparing the number of full pipeline flushes. A full pipeline flush occurs when a branch
is executed and either its target or direction is mispredicted. In suase all of the

instructions following the branch are removed from the pipeline and fetchamts it the
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correct address. These flushes have a severe performance impact as thethenfydt
processor pipeline. Compared to the base, BLISS reduces by 41% the number of pipeline
flushes due to target and direction mispredictions. Flushes in BLISS arelysigbote
expensive than in the base design due to the longer pipeline, but they are less fréqaent
BLISS advantage is due to the availability of control-flow information fromBBecache
regardless of instruction cache latency and the accurate indexing and judiciocnfstiise
hybrid predictor. When static branch hints are in UBEISS-Hint$, the branch prediction
accuracy is improved by an average of 1.2% from 93.4% without hints to 94.6% with hints.
The improved prediction accuracy results in an additional 10% reduction in thieerwoh

pipeline flushes.

The FTB front-end also reduces by 17% the number of pipeline flushes due to target and
direction mispredictions. However, it has significantly higher number of pipélisbes
compared to the BLISS front-end as dynamic block recreation affects thefoadaccu-
racy of the hybrid predictor due to longer training and increased interferenceFTiBie
design also suffers from partial (front-end) pipeline flushes due to misfeidies the de-
coding logic detects a jump in the middle of a fetch block. The number of misfetches ca
be used to quantify the effectiveness of FTB in delivering fetch blockdhidmeéxt section,

we will discuss this in more details.

5.2.3 FTB and BB-Cache Analysis

Figure 5.4 evaluates the effectiveness of the BB-cache in delivering BlBDshe FTB
in forming fetch blocks by comparing their hit rates. Since the FTB returnB-thfaugh
block address even when it misses to avoid storing the fall-through blocks, fime tiee
FTB miss rate as the number of misfetches divided over the number of FTB escéss
misfetch occurs when the decoding logic detects a jump in the middle of a fetdh Blbc

the same storage capacity, the BLISS BB-cache achieves a 2% to 3% highez thn the
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Figure 5.4: FTB and BB-cache hit rates for the 8-way processor configuration. Weatrese
data for a representative subset of benchmarks, but the average refeilsetocainarks in
this study.

FTB as the BB-cache avoids block splitting and recreation that occur wheresaclcange

behavior or when the cache capacity cannot capture the working set of the benchmark.

The FTB has an advantage for programs \i&et ex that stress the capacity of the target
cache and include large fetch blocks. Fort ex, the FTB packs 9.5 instructions per entry
(multiple basic blocks), while the BB-cache packs 5.5 instructions per entry édiagic
block). Even though BLISS may not be able to merge basic blocks on biased branches,
its fetch rate is higher than the consumption rate of the back-end. As long as tiés is
case, being more aggressive in creating large fetch blocks does not imprévenaerce.

It may even hurt performance due to frequent misspeculations (see Figure 52alsib i
interesting to note that the BB-cache miss rates for BLISS with and withotg are almost
identical. A BB-cache hit or miss is independent from whether the prediction pabisde
accurate. The small difference between the two is due to the slightlyehtfeontrol-flow

paths followed by the two due to differences in prediction.

5.2.4 Instruction Cache Analysis

Figure 5.5 compares the normalized number of instruction cache accesses aglfariss

the FTB and BLISS front-ends over the base design. Although both of the FTB and BLISS
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Figure 5.5: Instruction cache comparison for the 8-way processor configuration with the
Base, FTB, BLISS, and BLISS-HINTS front-ends. The top graph compares tivahped
number of instruction cache accesses and the bottom one shows the normalized number of
instruction cache misses. We present data for a representative subsetlohbeks; but

the average refers to all benchmarks in this study.

designs enable prefetching based on the contents of the decoupling queue, the BLISS de-
sign has fewer instruction cache misses and accesses. The BLISS gdvardae to the

more accurate prediction as shown in Figure 5.3 and the reduced number of instriogtions
the basic optimizations. The BLISS front-end has 12% fewer instruction cacless&s

and 27% fewer misses compared to the base design. Even with prefetchingcaratec
prediction, the FTB front-end has 10% higher number of instruction cache accesses and
6% higher number of misses compared to the base design. The increase is a result of the
maximum length fetch blocks that are inserted in the FTQ after an FTB riiss dif-

ference would even be higher for a front-end with smaller instruction cacbée tNat a

higher number of instruction cache accesses or misses also has direct imfeeceorrgy

consumption of the front-end.
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Figure 5.6: L2-cache comparison for the 8-way processor configuration with the Base,
FTB, BLISS, and BLISS-HINTS front-ends. The top graph compares the noedaiizm-

ber of L2-cache accesses and the bottom one shows the normalized number of L2-cache
misses. We present data for a representative subset of benchmarks, butaige asters

to all benchmarks in this study.

5.2.5 L2-Cache Analysis

Figure 5.6 compares the normalized number of the L2-cache accesses and mitdses for
FTB and BLISS front-ends. The total number of L2-cache accesses includesexcfresn

the instruction cache and data cache. For BLISS, it also includes acéessehe BB-

cache and the prefetcher. As expected, both of the FTB and BLISS front-ends hghiera hi
number of L2-cache accesses due to prefetching. Although the BLISS L2-cachetberve
BB-cache misses in addition to the instruction cache and data cache nisesimber

of L2-cache accesses and misses are slightly better than the numbers foBthedtgn.

The BLISS design has a 10% higher average number of L2-cache accesses than the base
design, while the FTB design has a 12% higher average. FTB also exhibits a 10% higher

L2-cache misses; this is due to the large number of erroneous instructions thetcheslf
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Figure 5.7: Impact of instruction prefetching for the 8-way processor configuratidn wit
the BLISS front-end. The top graph presents the normalized IPC with no prefgicrie
bottom graph presents the normalized number of cycles the instruction fetch dietdsie

to instruction cache misses with no prefetching.

by the FTB front-end while it is forming the fetch blocks dynamically. BLISSlightly
better than the base design with a 3% fewer L2-cache misses. The BLIS&tagk/ds

mainly due to the better and accurate prediction as shown in Figure 5.3.

5.2.6 Instruction Prefetching Analysis

Figure 5.7 quantifies the performance impact when prefetching is not enabled forl®® BL
front-end. The top graph in Figure 5.7 presents the normalized IPC for BLISS with no
prefetching. On average, performance degrades by 2.5% when prefetching is not enabled.
Most of the loss is from INT benchmarks as they tend to have large instructionifdstpr

and somewhat irregular code access patterns. For FP benchmarks, the IPC aegidat
negligible as those applications are typically dominated by tight code loops with imgh te

poral locality. The bottom graph in Figure 5.7 compares the normalized number of cycles
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the instruction fetch unit is idle due to instruction cache misses for the 8fi&t-end
when prefetching is not enabled. On average, prefetching reduces by 10% the number of
cycles the instruction fetch unitis stalling due to instruction cache ighée instructions
are being retrieved from lower memory hierarchy. This number would evergberior a

front-end with smaller instruction cache.

5.3 Detailed Comparison to FTB Variants

In Section 5.2, we demonstrated that a BLISS-based front-end outperforms dweaher
based FTB design described in Section 4.2.1. To further understand the diffdretwesn
hardware-only and software-assisted basic block formation, this sectiopazes BLISS
to two FTB variants that attempt to reduce its sensitivity to ovecslagion in block for-
mation.

In the first design, biased not-taken branches are not embedded in fetch bloaks. The
fore, any branch in the middle of a fetch block terminates the block and leadsisfetch
when first decoded. This design is essentially BLISS implemented fullyroweae with
no software support and no block coalescing. We refer to this less aggresBivieBign as
FTB-simple. This design fixes couple of the problems with the original FTB desigst, F
the branch predictor is accurately trained as fetch blocks are consiségtinog and are not
shortened when branches change behavior. Second, all branches are predicted by the hybrid
predictor, eliminating the implicit not-taken prediction for the branches el in the
middle of the fetch blocks. This eliminates mispredictions and pipeline fluskesiated
with those embedded branches when there is a conflict with the branch predgdfor its

Nevertheless, the advantages of FTB-simple come at an additional ccs. tiférin-
creased number of misfetches caused by detecting biased not-taken brartbkeesiddle
of fetch blocks may have a negative impact on performance. In addition, the fdetced

blocks are smaller than the blocks created in the original FTB design as Inias&ken
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Figure 5.8: Normalized IPC for the FTB-simple and FTB-smart designs ovearitmal
FTB design for the 8-way processor configuration.

branches are no longer embedded in the fetch blocks. This increases the contertkien for
finite capacity of the FTB and reduces the fetch bandwidth. Finally, the hybridgpoeds
now also used for the biased not-taken branches which may lead to diffeterierence
patterns with other branches.

The second FTB design allows for embedded branches in the middle of fetch blocks
only if their prediction is not-taken. If a branch in the middle of the block is pteditaken,
the decode stage will issue a misfetch. In this case, the pipeline stages debiating are
flushed and fetching restarts at the branch target. We refer to this dedtdiBasmart. The
advantage of this design over the original FTB design is that some possible nesipresi
caused by the default not-taken policy on an FTB miss are converted tetamie$ which
are resolved in the decode stage. Compared to BLISS, the FTB-smart désigs for
block coalescing on biased not-taken branches. The disadvantage of this desigh is t
it relies on the predictor to form the fetch blocks. If the prediction is not ateuthen
additional misfetches will occur and extra fetch blocks may increase thentmméor the
finite capacity of the FTB.

Figure 5.8 compares the normalized IPC for the FTB-simple and FTB-smartreve
original FTB design. For FTB-simple, we present data with different fetolckolengths:
4, 8, and 16 instructions. The FTB-smart design uses a fetch-block length of L&instr

tions similar to the original FTB design. Figure 5.9 compares the normalized number of
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Figure 5.9: Normalized number of mispredictions for the FTB-simple and FTBtsiear
signs over the original FTB design for the 8-way processor configuration.
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Figure 5.10: Normalized number of misfetches for the FTB-simple and FTB-slesidns
over the original FTB design for the 8-way processor configuration.

mispredictions and Figure 5.10 compares the normalized number of misfetches for the

FTB-simple and FTB-smart designs over the original FTB design.

For all of the FTB-simple configurations, we see consistent performance degradati
This is mainly due to the significant increase in the number of misfetches forskimple
compared to the original design. The small improvement in the prediction agdgraot
enough to compensate the significant increase in the number of misfetches. Even though
the number of misfetches slightly decreases with smaller fetch-blockgettiermance
degrades as the average length of fetch-blocks committed decreases fromr8c3iomst
in the original FTB designto 7.5, 5.4, and 3.4 for FTB-simple-16, FTB-simple-8, aBd FT
simple-4 respectively. Note that programs lika t ex which benefits the most from block

coalescing are the worst performer with the FTB-simple design.
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For FTB-smart, we get also a consistent increase in the number of misfetdtwever,
the increase is less dramatic compared to the FTB-simple design. Is tdriRC and
number of mispredictions, we see a slight change with averages close to theldfigiha
design. The average fetch-block length for FTB-smart also slightly dexsdesm 8.3 in
the original FTB design to 8.2 instructions per fetched blocks.

Overall, the original FTB design outperforms all of the other FTB configurations. The
BLISS-based design outperforms the original FTB design as it balances adeander-
speculation with better utilization of the BB-cache capacity. BLISSnapts to strike a
balance between hardware and software features that optimize thd ongices for front-

end engines: useful instructions predicted per cycle.

5.4 Sensitivity Analysis

Our analysis thus far has used a single configuration for both the front-end and the back-end
of the processor. In this section, we validate our conclusions by examining thewsgnsit

of the BLISS and FTB models to key architectural parameters such asgeépaediction
tables, instruction cache, and issue width. In all configurations, the FTB amBtltache

are always accessed in one cycle. The latency of the instruction cacloekcygtcles is set

properly based on its relative size compared to the FTB or BB-cache.

5.4.1 Sensitivity to BB-Cache and FTB Parameters

The performance with both decoupled front-ends depends heavily on the miss rate of the
FTB and BB-cache respectively. As we showed in Figure 5.4, the high BB-cad®e

rate forvortex leads to a performance advantage for the FTB design which is able to
pack more instructions per FTB entry for this benchmark. Figure 5.11 presents thgeaver

IPC across all benchmarks for the 8-way processor configuration with the FTB d6&BL
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Figure 5.11: Average IPC for the 8-way processor configuration with the FTB and BLISS
front-ends as we scale the size and associativity of the FTB and BB-cauobtusts. For
the BLISS front-end, we assume that static prediction hints are not avaihiblis case.

front-ends as we scale the size (number of entries) and associativity of BiarkiIBB-

cache structures. The BB-cache is organized with 8 entries per cachanlalesases.

Figure 5.11 shows that for all sizes and associativities the BLISS front-epdrartms
FTB. The performance for both front-ends improves with larger sizes up untin2kes
which are sufficient to capture the working set of basic blocks or fetch blocks for mos
programs. The performance difference does not change significantly across dgfeesnt
The increasing number of entries eliminates stalls due to BB-cache nusd#isISS and
reduces the inaccuracies introduced by fetch block recreation due to FTBsnmisthe
FTB design. Associativity is less critical for both front-ends. With 512 or Tities,
4-way associativity is preferred but with a larger FTB or BB-cache,a®-¥ sufficient.
Note that with 256 entries, the FTB is more sensitive to the associatinaty the BLISS

front-end.
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Figure 5.12: Average percentage of IPC improvement with the FTB and BLISSdnuls-
over the base design as we vary the size and associativity of the instraattbe. We
simulate an 8-way execution core, 2-cycle instruction cache latency, arat2i€s in the
BTB, FTB, and BB-cache respectively.

5.4.2 Sensitivity to Instruction Cache Size

The use of a small instruction cache was one of the motivations for the FTB and 188 BL
front-ends. The reason is that smaller instruction caches have lowessdetency and
lower power and energy consumption. The instruction prefetching enabled by theldTQ a

BBQ can compensate for the increased miss rate of a small instructioe.cac

Figure 5.12 shows the IPC improvement with the FTB and BLISS front-ends over the
base design as we vary the size and associativity of the instruction cathe way
processor configuration. Note that the instruction cache size of the base desigeds va
along with the size used for the FTB and BLISS designs. Both decoupled front-ends pro-
vide IPC advantages over the baseline for all instruction cache sizes. velowiee IPC
improvement drops as the instruction cache size grows to 32 KBytes (from 12%fiar 7%
FTB, from 24% to 20% for BLISS). With a larger cache size, the instructiche€ancurs
less number of misses and thus the benefit of prefetching is less significant. T8 BL
front-end maintains a 13% IPC lead over the FTB design for all instructidmecsizes and

associativities.
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Figure 5.13: Average IPC with the Base, FTB, and BLISS front-ends as wehalgtency
of the instruction cache from 1 to 4 cycles. We simulate an 8-way execuireng2 KByte
pipelined instruction cache, and 2K entries in the BTB, FTB, and BB-cadp=ctively.

5.4.3 Sensitivity to Instruction Cache Latency

Another advantage of a decoupled front-end is the ability to tolerate higher instruct
cache latencies. The information in the FTB and the BB-cache allow for onsotdiotv
prediction per cycle even if it takes several cycles to fetch and detedeorresponding
instructions in order to locate the actual control-flow instructions in thastréfolerance
to high instruction cache latencies can be useful with decreasing the tistroache area
and power for a fixed capacity or with allowing for a larger instructionheawithin a
certain area, power budget, and clock frequency. Larger instruction caoheesirable

for enterprise applications that tend to have larger instruction footprints [9].

Figure 5.13 presents the average IPC for the 8-way processor configuration with the
base, FTB, and BLISS front-ends as we scale the instruction cache latenty fto 4
cycles. For the base design, IPC decreases 13% as we scale the instrudteatamy
from 1to 4 cycles. With both the FTB and BLISS front-ends, IPC decreasesxapyately
5% between the two end points, which shows good tolerance to instruction caaeylat

The performance loss is mainly due to the higher cost of recovery from mispoagieind
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Figure 5.14: Performance comparison for the 4-way processor configuration with #e Bas
FTB, and BLISS front-ends. The top graph presents raw IPC and the bottom one shows the
percentage of IPC improvement over the Base for FTB and BLISS.

misfetches. The actual number of mispredictions and misfetches does not se@jaifip
cantly, which validates the decoupled front-end approach. BLISS outperformaioBs
all latency values, which validates that architectural support for basaklulescriptors is

superior to hardware-based block creation on top of a conventional instruction se

5.4.4 4-way Processor Analysis

The 8-way processor configuration analyzed in Section 5.2 represents an aggiesgm
point, where the execution core is designed for minimum number of back-end stglise Fi
5.14 shows the impact of the front-end selection on the 4-way execution core comdigurat
described in Table 5.1, which represents a practical commercial implatieent

Figure 5.14 shows that the performance comparison with the 4-way execution core is

nearly identical to that with the 8-way core. FTB provides a 6% performancansalye
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over the base design, while BLISS allows for 14% or 17% IPC improvements withdut a
with the static hints respectively. The absolute values for the improwenagee lower than
with the 8-way core due to the additional stalls in the execution core thatpeagikmance
challenges in the front-end.

In Chapter 7, we are going also to provide additional evidence that demonstrates the

advantage of the BLISS design by evaluating it for embedded processor designs.

5.5 Summary

In this chapter, we performed a detailed evaluation of BLISS for high-end steder pro-
cessors. Compared to conventional superscalar processors, BLISSfalidwghly accu-
rate control-flow speculation and instruction delivery which leads to 20%s=alR@ntage.
We illustrated the usefulness of the hints mechanism in BLISS by using itpgtenment
branch prediction hints and showed that it further improves the performance by\é%.
also compared BLISS to a comprehensive decoupled front-end that dynamicadly bui
fetch blocks in hardware and demonstrated that the BLISS-based front-eetexchB%
performance improvement over it. Unlike techniques that rely solely getand more
complex hardware structures, our proposal attempts to strike a balance hé@vdeare
and software features that optimize the critical metric for front-endnasgiuseful instruc-
tions predicted per cycle. Finally, we showed that the BLISS benefits austrabross a
wide range of architectural parameters for superscalar processors.

While this chapter focused primarily on performance, next chapter evalubt&SB
from the energy perspective and demonstrates that the BLISS based frontmostam

energy on top of the performance benefits.



Chapter 6

Energy Optimizations

Modern high-end processors must provide high application performance in an energy ef-
fective manner. Energy efficiency is essential for dense server sy&eagnslades), where
thousands of processors may be packed in a single colocation site. High energy consump-
tion can severely limit the server scalability, its operational ,castl its reliability [28].
Furthermore, an energy-efficient high performance design allows semicondeotiore

to use the same processor core in chips for both server and notebook applications. For
notebooks, energy consumption is directly related to battery life.

The instruction fetch mechanism largely influences the energy behavior for salpersc
processors [93]. The front-end determines how often the processor is execufulgrnise
structions, mispredicted instructions, or no instructions at all. Aftematruction cache
miss, the front-end stalls and wastes leakage energy until the requiracttiitsis are re-
trieved from lower memory hierarchy. Similarly, when the front-endspeculates, energy
is wasted by fetching and executing erroneous instructions from the wrong exepath.

The front-end itself also consumes a significant percentage of the processenastgl as
it contains large memory arrays (instruction cache, predictor, BTB) that@ressed nearly
every cycle. On average, 13% of the total energy is consumed in the front-elicdlitse

for a 4-way superscalar processor [115].

78
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This chapter presents and evaluates the energy optimizations with the Bakg8-
front-end. Section 6.1 explains how the BLISS front-end reduces the wasted eméngy i
overall design (front-end and back-end). In Section 6.2, we discuss the opiongttat
reduce the energy consumption in the front-end. Section 6.3 explains the methodology
used for evaluation. In Section 6.4, we present and analyze the evaluatios.r&&dtion

6.5 highlights related work.

6.1 Reducing Wasted Energy

In Section 2.3, we reviewed how the front-end detractors affect energy consnmyie
showed that 14% and 7% of the processor total energy are wasted by branch dinedtion a
target mispredictions for INT and FP applications respectively. We dlewed that an
additional 12% and 6% of the total energy are wasted on instruction cache detfactors
INT and FP applications respectively.

The performance enhancements by BLISS address the sources of wasted energy as
well. We demonstrated in Figure 5.2 that BLISS better utilizes the processources by
sustaining high instruction throughput as a result of guided prefetching and accuretie bra
prediction. This eliminates cycles where the back-end is idle wasting lea&kexygy. We
also demonstrated in Figure 5.3 that BLISS improves prediction accurasigmficantly
reduces the number of expensive pipeline flushes. This allows BLISS to reduce fiing ene
wasted on fetching and executing mispredicted instructions. It alsaelies the overhead
of recovering the pipeline from branch mispredictions when the erroneous instrsiatie
removed from the pipeline. By reducing execution time, the BLISS-baségid&so saves
on the energy consumed by the clock tree and the processor resources even when they a
stalling or idling. Overall, the performance benefits of BLISS translatestly to energy
benefits as well as it avoids paying leakage energy wasted on idle resourcesiacessr

dynamic energy wasted on fetching and executing mispredicted instructions.
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The FTB design also reduces overall wasted energy as it improves imstrband-
width and reduces the number of pipeline flushes. However, as we saw in Figure 5.2 and
Figure 5.3, BLISS achieves higher instruction throughput and has fewer pipeline flushes
compared to the FTB design. This allows BLISS to compare favorably to tBed€Sign

in terms of energy efficiency in addition to performance.

6.2 Energy Efficient Front-End

In this section, we show how the BLISS-based front-end facilitatesalexeergy optimiza-
tions in the predictor and instruction cache. The optimizations target both theefrey of

accesses to each front-end resource and the energy consumed per accebsrésoeace.

6.2.1 Predictor Optimizations

BLISS reduces significantly the number of accesses to the branch predictorpa@om

to the conventional design, BLISS reduces by 61% (54% for INT and 71% for FP appli-
cations) the number of accesses to the predictor tables. This is mainly due teasons.
First, the basic block decoupling queue (BBQ) allows for control-flow predictibrisea

rate of one block per cycle. As we demonstrated in Section 3.4, the SPEC CPU bench-
marks have an average of 7.7 instructions per executed basic block (5.8 for it&ger,
for floating-point). With more than 50% of the executed basic blocks have more than
4 instructions, making one prediction for every 4 instructions fetched from theums

tion cache is wasteful. With BLISS, only one prediction is required for dxadic block.

This saves energy in accessing and training the predictors. Note that tiageaveduc-

tion in the number of accesses to the prediction tables for the FP applicatibitgghes

than the average for the INT applications as FP applications have longer basisizksk
Second, the type of the BBD allows us to selectively access and train ttietpren an

accurate manner. For BBDs that correspond to fall-through blocks or blocks terrginat
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with an unconditional control-flow instruction (J, JAL, etc), the predictor isus&d nor

trained.

BLISS also reduces the average energy consumed per predictor access. Dgcoupli
allows for the direction prediction to be verified with a large, taglésdrid predictor,
while the fetch block is waiting in the BBQ [105]. Relaxing the predictor agdese
allows the design of the predictor to be optimized for energy efficiency. Merethe
static hints when available, allow for judicious use of the hybrid predictor. @reaints
are available for a BBD, the front-end can determine which is the best prethocconsult
and update for the associated control-flow instruction without accessing oingahe
selector. Strongly biased branches do not use the predictor table at all and brtwathes
exhibit strong local or global correlation patterns use only one of its components. This

saves 48% of the energy consumed in the hybrid predictor.

6.2.2 Instruction Cache Optimizations

BLISS reduces the number of accesses to the instruction cache. We can medrggrtic-
tion accesses for sequential blocks in the BBQ that hit in the same cachalioeler
to save decoding and tag access energy. Moreover, BLISS reduces the emergyed
per instruction cache access as it facilitates energy optimizatiom®imstruction cache
through selective way/word access and serial access to data and tagstws#crificing

performance.

Reading the complete cache line on instruction fetch is not energy efficientyas onl
subset of the instructions in the line are typically used (e.g. 4 out of 16). A jump kea ta
branch in the middle of the cache line would possibly force the front-end to stelnirig
from a different cache line. Instructions in the early part of a cache light before the
target of a taken branch, are also less likely to be required. With Bld&&h basic block

descriptor defines exactly the number of instructions needed from the instructienarad
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Figure 6.1: An example to illustrate selective word access with BLISS.



6.2. ENERGY EFFICIENT FRONT-END 83

their position within the cache line. Using segmented word lines for the daiampoftthe
instruction cache, we can fetch the necessary instruction words whivatatg only the

necessary sense-amplifiers in each case.

Similar to the bit line segmentation approach proposed in [30], the internal oagjaniz
of each raw in the data array is modified into segments. Each word linetisgpindepen-
dent segments. An additional common word line runs across the segments. The word line
within each segment can be connected or isolated from the common line. Thedétiggh
basic block and the instruction pointer available in the BBD can be used toeisdldut
the targeted segments from the common word line. The prechargers and serifierampl
of the bit lines for the isolated segments are disabled saving their energyffétte/e ca-
pacitive loading on the common line also decreases. The reduction is somefshabygf
the common line that spans a single segment and the diffusion capacitances otiregsol
switches. Figure 6.1 illustrates this optimization by comparing an instruciche access
for a conventional cache to the BLISS selective word approach. The seleaind access
of the instruction cache with a configuration similar to the instruction cachi@ble 6.1

saves 20% of the energy consumed per instruction cache access.

Instruction access latency is often on the critical path for the overatlessor clock cy-
cle. In a conventional set-associative cache design, the tag and dgmagaccessed in
parallel to reduce latency. This approach wastes energy in the bit linesasetamplifiers
of the cache as it must drive all associative ways of the data component. Frot¢end
pling can tolerate higher instruction cache latency with minimal impattte@erformance.
Hence, we can access first the tags for a set-associative instrumtios, @nd in subsequent
cycles, access the data only in the way that hits [91]. A serial cache desigkshup the in-
struction cache lookup into two components: the tag comparison and the data lookup. The
tag array is accessed first. In the next cycle, we access the datdaromly the way that
hits avoiding unnecessarily driving the bit lines of other ways of the cache and siecrea

the number of necessary sense-amplifiers. In Figure 6.2, we illustrate thiszgiton by
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Figure 6.2: An illustration of the serial access to the tag and data arragfsefarstruction

cache.
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Front-End Parameters
Base FTB BLISS
Fetch Width 4 Instructions/cyclel Fetch Block/cycle 1 Basic Block/cycle
Target BTB: FTB: BB-cache:
Predictor 1K entries, 4-way| 1K entries, 4-way 1K entries, 4-way
1-cycle access 1-cycle access 1-cycle access
8 entries/line
Decoupling Queue - FTQ: 8 entries BBQ: 8 entries
I-cache Latency 2-cycle pipelined 3-cycle pipelined
Common Processor Parameters
Hybrid gshare: 4K counters
Predictor PAg L1: 1K entries, PAg L2: 1K counters
selector: 4K counters
RAS 32 entries with shadow copy
I-cache 16 KBytes, 4-way, 64B blocks, 1 port
Issue/Commit 4 instructions/cycle
IQ/RUU/LSQ 32/64/64 entries
FUs 6 INT &3 FP
Data cache 32 KBytes, 4-way, 64B blocks, 2 ports, 2-cycle access pipeli
L2 cache 1 MByte, 8-way, 128B blocks, 1 port, 12-cycle access, 4&yepeat rate
Main memory 100-cycle access

Table 6.1: The microarchitecture parameters used for the energy optimizgbierneents.
The common parameters apply to all three models (base, FTB, BLISS).

comparing the conventional parallel access approach of the instruction cableeBiolSS
serial access. The BLISS serial access of the 4-way set-asgeaatihe configuration
listed in Table 6.1 saves on average 58% of the energy consumed per instructien cac

access.

6.3 Methodology

For energy evaluation, we use a similar methodology and tools to what we used for per-
formance evaluation discussed in Section 5.1. We simulate a 4-way supefscaessor

to evaluate energy of the BLISS-based front-end and compare it to the camadribase)
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and the FTB-based front-ends. The 4-way configuration presents a practical coaime
implementation for high-end processors in 2007. Table 6.1 summarizes the keg@rchit
tural parameters, which are very similar to the 4-way parametdesilin Table 5.1 except
for the modestly sized instruction cache and data cache. The instructionlateiey for

both the BLISS-based and FTB-based designs is set to 3 cycles to supporiadheceess.

We also study the same 12 SPEC CPU2000 benchmarks using their reference dataset
compiled at the -O3 optimization level. For energy measurements, we ud#/dibeh
framework with the cc3 power model [15]. In this non-ideal, aggressive conditclock-
ing model, power is scaled linearly with port or unit usage, except that unusedligsits
pate 10% of their maximum power, rather than drawing zero power. Energy consumption
was calculated for a 0.1n process with a 1.1V power supply. In the following results, the
reportedrront-end Energyncludes instruction cache, predictors, and BTB, FTB-cache, or
BB-cache.Total Energyincludes all the processor components (front-end, execution core,

and all caches).

Table 6.2 presents the normalized energy consumed per access and the norvetized a
age energy consumption for the various components of the 4-way processor configuration
in Table 6.1. The branch predictor alone consumes 5.6% of the total energy per access. The
instruction cache alone consumes 6.9% of the total energy per access. The aveig@ge ene
consumptions for both the branch predictor and the instruction cache are higher (9.9% and
13.6% respectively) because they are accessed nearly every cycle. fidiths case for
other structures (L2-cache, FP-ALU, etc) as they are idle for sevgccwasting only
leakage energy (10% for the Wattch cc3 model). FP-ALU, for example, is ongsaed

for programs that have FP instructions.
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| Component | Energy Per Access| Average Energy Consumption|
Branch Predictor 5.6% 9.9%
Instruction Cache 6.9% 13.6%
Rename Logic 0.9% 1.4%
Instruction Window 9.3% 16.2%
Load/Store Queue 6.4% 4.5%
Arch. Register File 5.9% 3.8%
Result Bus 6.0% 8.8%
INT ALU 9.1% 7.3%
FP ALU 14.0% 11.2%
Data Cache 16.7% 16.3%
Level 2 Cache 19.1% 7.0%

Table 6.2: Energy per access and average energy consumption for the various components
of the 4-way processor configuration.

6.4 Evaluation

In this section, we present the energy evaluation for BLISS. First, weateathe energy
consumed by the front-end alone and then we consider the overall energy consumption for
the processor. Finally, we consider energy-delay-squared produéPJEB a metric that

combines performance and energy for high-end processors.

6.4.1 Front-End Energy

Figure 6.3 compares the front-end energy saving achieved for the 4-way processor con-
figuration with the three front-ends. On average, 13% of the total processor esergy i
consumed in the front-end engine itself as it contains a number of large SRAM struc-
tures (cache, BTB, predictors). The FTB design saves 52% of the front-end ewgrgy
sumed by a conventional front-end design. The BLISS design achieves even higher im
provement and saves 65% of the front-end energy consumed by a conventional front-

end.
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Figure 6.3: Front-end energy saving comparison for the 4-way processor configuration for
the BLISS and FTB front-ends.

To understand the sources of energy savings, we look at the energy consumption for
prediction and instruction cache accesses. Figure 6.4 compares the normaérgyglcon-
sumed on prediction for the FTB and BLISS designs over the base design. The predicti
energy for the base design includes energy consumed in accessing and training toeoBT
the predictor tables. For the FTB design, prediction energy includes the energy cdnsume
in accessing the FTB and the predictors. For BLISS, it includes the energy cptisam
for the BB-cache and the predictors. Both of the FTB and the BLISS designs sigtiifica
reduce the prediction energy consumption by only accessing and training the predictor
once per block. The BLISS design reduces by 63% the energy consumed for prediction.
The FTB design only reduces by 42% the energy consumption for prediction, as dynamic
block recreation affects the prediction accuracy of the hybrid predictor anttsén longer
training and increased interference. When static branch hints are iBUKES-Hints), an
additional 8% saving is achieved as hints allow the front-end to determine wbrpo-
nent of the hybrid predictor is the best to consult and update for the associated comtrol-fl
instruction without accessing or training the selector.

Figure 6.5 presents the normalized energy consumption for accessing the instruction
cache for the FTB and BLISS front-ends over the base design. Both of the FTB aSB&BLI
front-ends reduce significantly the energy consumption in the instruction cache through

selective word accesses and serial tag/data accesses in thetimstcache. The BLISS
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Figure 6.4: Normalized prediction energy consumption for the 4-way processor config-
uration for the FTB and BLISS front-ends over the base design. We present data for a
representative subset of benchmarks, but the average refers to all benchmtlaiskstudy.
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Figure 6.5: Normalized instruction cache energy consumption for the 4-way processor
configuration for the FTB and BLISS front-ends over the base design. We present data
for a representative subset of benchmarks, but the average refers to all lbekemthis

study.

energy saving in accessing the instruction cache is 7% better than the FB.d&sis

is mainly because BLISS reduces by 12% the number of accesses to the instractien c
compared to the base, while for the FTB design, the number of instruction cachsexie

12% higher than the base design due to the maximum length fetch blocks that are inserted
in the FTQ after an FTB miss. Note that BLISS achieves similar sawinmigpsand without

the static prediction hints. The small difference between the two is dueetslightly

different control-flow paths followed by the two due to differences in preaficti
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Figure 6.6: Total energy saving comparison for the 4-way processor configuration for the
BLISS and FTB front-ends.

6.4.2 Total Energy

Figure 6.6 compares the saving in total energy consumption achieved for the 4-way pro-
cessor configuration with the three front-ends. The reported total energy incluties a
processor components (front-end, execution core, and all caches). BLISS1&f#rand

18% total energy advantages over the base design with and without the statitigmedic
hints respectively. BLISS-based design actually achieves 75% of thetwey improve-

ment suggested in Figure 2.8. BLISS also provides 7% total energy advantage &er FT
as dynamic fetch block creation in the FTB front-end leads to execution spedsilated

instructions that waste energy.

Figure 6.7 presents the normalized energy consumption for the various components
of the 4-way processor for the BLISS design without static branch hints over tlee bas
design. The significant reduction in energy consumption in the BLISS front-end accounts
for almost half of the total energy savings (7.9%). We also see a consistent 7% to 8%
reduction in the energy consumption for all of the processor components as BLISS limit
the leakage energy wasted by idle resources and reduces the dynamic energyowasted

fetching and executing erroneous misspeculated instructions in the whole pipeline
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Figure 6.7: Normalized energy consumption for the various components of the 4-way pro-
cessor for the BLISS design without static branch hints over the base design.evémipr
data for a representative subset of benchmarks, but the average refeisetocaiinarks in

this study.

6.4.3 Energy-Delay Product Comparison

Energy-delay products are important metrics in microarchitecture desidgrensdicate
how efficient the processor is at converting energy into speed of operation. @peye
the energy usage per operation. A lower value indicates that energy is morengtici
translated into the speed of operation. The energy-delay pradDé&l)(represents an equal
tradeoff between energy and delay [31]. The energy-delay-squared pr&@f&)(places
more emphasis on deliverable performance over energy consumption [66], whicinas m
appropriate for high-performance, energy-efficient processors. TH® Ebplies that a

1% reduction in circuit delay is worth paying a 2% increase in energy usage.

Figure 6.8 compares the Energy-delay-squared productREInprovement achieved
for the 4-way processor configuration with the three front-ends. The BLISS des$igves
an 83% improvement in EP, while the FTB design has only 35% overall #Dimprove-

ment over the base.
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Figure 6.8: Energy-delay-squared product gPPimprovements comparison for the 4-way
processor configuration for the BLISS and FTB front-ends.

6.5 Related Work

Significant research has focused on reducing power and energy consumption in or through
the front-end. Most techniques trade off a small performance degradation for sighéic

ergy savings. Some techniques target improving the instruction cache energy consumpti
by way prediction [84], selective cache way access [2], sub-banking [30¢amparison
elimination [75, 114], and reconfigurable caches [87, 113]. Other techniques tapgevim

ing the energy efficiency of the predictors using sub-banking [76], front-end gating [64],
selective prediction [7], eliminating predictor and BTB accesses for nanebrinstruc-

tions [76], using profile data to eliminate meta predictor [27] or to switch off phthe
predictor [20], and selective predictor accesses to avoid using predictaefbbehaved
branches [8].

Other techniques focused on controlling over-speculation in the pipeline for bseanche
with low prediction confidence to limit energy wasted on misspeculateduigins. A
confidence estimator is used to assess the quality of branch predictions [34ip&line?
gating [64] uses confidence information to stop wrong-path instructions from entbkang t
pipeline. Selective throttling [4] applies different gating techniques dependitigearonfi-
dence estimation, with the goal of obtaining an optimal tradeoff between poweeaiod-

mance. There are also techniques that focus on tuning the resources of the prodéssor t
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needs of the program by monitoring its performance to reduce energy [5, 43]. Such tech-
niques are rather orthogonal to the block-aware ISA and can be used with a BL4&8&-ba

front-end engine.

6.6 Summary

In this chapter, we demonstrated that BLISS reduces the processor ovengy eon-
sumption as it minimizes leakage energy wasted by idle resources and reducescdyna
energy wasted on fetching and executing erroneous misspeculated instrudtiersso
showed that BLISS significantly reduces the front-end energy consumption by reducing
the number of accesses to the front-end structures and reducing the averagecenergy
sumed per access for each structure. Through detailed simulation, we hawveteabthe
BLISS-based design allows for 63% front-end energy, 16% total energy, and 83% ED
improvements over a conventional superscalar design. The ISA-supporteeridatso
outperforms (21% front-end energy, 7% total energy, and 48%PEBdvanced decoupled
front-ends that dynamically build fetch blocks in hardware. This significantggnen-
provement is achieved in addition to the performance advantages demonisti@regpter

5. Overall, this work establishes the potential of using expressive ISAddi@ss difficult
hardware problems in modern processors in ways that bé&odfiperformance and energy

consumption.



Chapter 7

BLISS for Embedded Processors

Our analysis so far primarily focused on the performance and energy evalaaBanSS
for high-end processors. This chapter shifts the focus to embedded processorsanehich
a key component in most consumer, communications, industrial, and office automation
products. Similarly to high-end, performance and energy efficiency areatdigsign met-
rics for embedded processors. Good performance is important for embedded processors
in order to meet the increasing requirements of demanding applications suclages, im
voice, and video processing. Energy consumption dictates if the processor can lre used
portable or deeply embedded systems for which battery size and lifetimetalrpasiam-
eters. In previous chapters, we showed that BLISS improves both madri¢ségh-end
processors, but we must also validate that this result holds for lower-erxbdeied de-
signs.

In addition to performance and energy efficiency, code size is a criticagjrdesetric
for embedded processors. Code size determines the amount and cost of on-chip or off-chip
memory necessary for program storage. Instruction memory is often as expasdive
processor itself. Even though it seems counter-intuitive, the use of additioc&ldescrip-
tors in BLISS leads to significant reductions in the code size. The descriptaioteecode

size optimizations by removing redundant sequences of instructions across basic blocks

94
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and by allowing a fine-grain interleaving of 16-bit and 32-bit instructions withoutrmae
instructions.

In this chapter, we examine the use of BLISSirwprove all three efficiency metrics
for embedded processors at the same time: smaller codarsilAgetter performancand
lower energy consumption. Improving the three metrics simultaneously isidrzally
difficult to achieve as they introduce conflicting tradeoffs. Most known technigua®ve
one or two metrics, but not all the three at the same time. In Section 7.1, senpthe code
size optimizations enabled with BLISS. Section 7.2 explains the tools and meblggdbi
Section 7.3, we present and analyze the evaluation results. Section 7.4 higldigted r

research.

7.1 Code Size Optimizations

Naive translation of a RISC binary such as MIPS-32 to the correspondingSBé&xs-
cutable leads to larger code size due to the addition of block descriptors. Watinfiv
structions per block on the average, the code size increase is 20%. NevsrtB&lEES
allows for three types of code size optimizations that eliminate this handiwhjead to

significant code size savings over the original.

7.1.1 Basic Optimizations

Basic code size optimizations target redundant jump and branch instructions. offtiese
mizations are unique to BLISS. All jump instructions can be removed as theg@undant;

the BBD defines both the control-flow type and the offset. Moreover, certain comalit
branch instructions can be eliminated if they perform a simple test (equatjnat to zero)

on a register value produced within the same basic block. We encode the simpleaconditi
test in the opcode of the producing instruction which is typically a simple integlenaatic

operation (add or sub). Note that the branch target is provided by the BBD and does not
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BLISS code Optimized BLISS code
BB descriptors BB descriptors
BBDl: BRF, BBD3, , ¢} beqr8, ril BBDL: BRF, BBD3, , ¢} beqr8, ri
BBO2: J . BBD4, 2, e— - add r3, r2, r8 P BBD2: J , BBD4, 2, ‘Iwre, 1492(r30)
BBD3: JAL, foo, 3, .\ addiu r17, r0, 1 BBD3: JAL, foo, 3, ><Eaddu r4, 0, r2
BBD4 : ©1wr6,1492(r30)  : BBD4: ‘add r3, r2, r8 .
C addu r4, 0, r2 \ addiu r17, ro, 1

“add r3, r2, r8

addiu r17, r0, 1

(@) (b)

Figure 7.1: Example to illustrate the block-subsetting code optimization. (a)n@rigi
BLISS code. (b) BLISS code with the block-subsetting optimization. For illtistrgour-
poses, the instruction pointers in basic block descriptors are representegrovs.

need to be provided by any regular instruction, which frees a large number of tretruc
bits.

7.1.2 Block Subsetting

BLISS facilitates the removal of repeated sequences of instructions A#2hstructions
in a basic block can be eliminated, if the exact sequence of the instructions ¢amnnioe
elsewhere in the binary. The matching sequence does not have to be an idental basi
block, just an identical sequence of instructions. We maintain the separatgtigsior
the block but change its instruction pointer to point to the unique location in the binary
for that instruction sequence. We refer to this optimizatioBExk Subsetting Figure
7.1 presents an example to illustrate this optimization. The two instructiatheisecond
basic block in the original code appear in the exact order towards the end of thetinstruc
section. Therefore, they can be removed as long as the instruction pointeBRz B
updated.

Block subsetting leads to significant code size improvements because progeams f
guently include repeated code patterns. Moreover, the compiler generatdsdgusterns

for tasks like function setup, stack handling, and loop setup. By removing jump amchbra
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instructions, the basic code size optimizations expose more repeated instsacfi@nces
that block subsetting can eliminate. In Figure 7.1, the removal of the JAlugtgin, which

would otherwise terminate the third basic block, enables the elimination afiskreictions
in the second basic block. Instruction similarity is also improved becBu$8S stores

branch offsets in the BBDs and not in regular instructions.

In theory, we can improve similarity further if we look at data-flow grapbstract-
ing out the specific registers used instead of looking at specific code sequeneeseHo
encoding such similarity can be expensive. Alternatively, more repeéasdiction se-
guences can be exposed if we consider instruction reordering. In this study, we do not

evaluate such techniques.

Block subsetting can affect performance both ways by interfering with theigi®n
cache hit rate. It can reduce the hit rate as it decreases spatiatyldoainstruction
references. Two sequential basic blocks may now point to instruction sequanoes-i
sequential locations. However, the BLISS front-end can tolerate highendtish cache
miss rates as it allows for effective prefetching using informatiotha basic block de-
scriptors. Block subsetting can also improve cache performance as iesthe cache
capacity wasted on repeated sequences. A comprehensive evaluation ofithizatjon

is presented in Section 7.3.

7.1.3 Block-Level Interleaving of 16/32-bit Code

An effective technique for code size reduction is to extend the instructioto setpport

two instruction lengths, with the processor capable of executing both of them.ompe |
instructions are the instructions of the original ISA. The short instructions atdbset

of the long instructions and encode the most commonly used instructions using a short
encoding format. MIPS-16 and Thumb-2 [54, 108] are examples of such instruction sets

They provide 16-bit extensions to the 32-bit ISAs. A section of code that completedy use
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Figure 7.2: Code size, execution time, and total energy consumption for 32-bit, 16ebit, a
selective 16-bit executables for a processor similar to Intel's XSexl&270 processor
running the MediaBench benchmarks. Lower bars present better results.

the 16-bit instructions can potentially save 50% of the size of a similar code teat us
the 32-bit instructions. However, the short instruction format implies actea limited
set of registers, limited number of opcodes, and a very short immediate aet fadfd.
These challenges limit the potential saving and lead to an increased number oficyna

instructions that result in significant performance losses.

The granularity of interleaving 16-bit and 32-bit code can have a significant impact
on the performance overhead of 16-bit instructions. Interleaving can be done egrtiffe
levels. MIPS-16 [54] allows mixing of 16-bit and 32-bit instructions at the funclewe!
granularity. A special ALX instruction is used to switch between functions with 16-bit and
32-bit instructions. However, function-level granularity is restrictagemany functions
contain both performance critical and non-critical code. Alternatively,cameinterleave
16-bit and 32-bit code at instruction granularity [36, 55, 81]. Special instructiongitire s
necessary to switch between the 16 and 32-bit sections, hence there istseaover each

switch.

Figure 7.2 shows the impact of using a 16-bit ISA on the average code size, execution

time, and energy consumption for a simple embedded processor like the XScaky¥ @ XA
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4 8 4 13 3
Type Offset Length Instruction Pointer Hints

Size Flag <«—
(0) 16-bit
(1) 32-bit

Figure 7.3: The basic block descriptor format with the size flag that indicatles dctual
instructions in the block use 16-bit or 32-bit encoding.

running the MediaBench applications. The 16-bit instructions lead to 41% code size sav-
ings at the cost of 11% and 13% higher execution time and energy consumption. It is
possible to recover the performance and energy overhead by selectivadylsbit in-
structions only for non-critical sections of the code using a few overhead inetis¢b
specify switches between the two formats [36, 55]. As shown in Figure 1&tise use
of short instructions maintains the code size savings and restores the performarmce a
ergy consumption of the original, 32-bit code.

BLISS provides a flexible mechanism for interleaving 16-bit and 32-bit code at the
granularity of basic blocks. This is significantly better than the function-lgkeshularity
in MIPS-16. It is also as flexible as the instruction-level granularity beeaeither all
instructions in a basic block are frequently executed (performance fraicaone of them
is. A single bit in the hints field of the basic block descriptor shown in Figure 7 \&gee
a flag to specify if the block contains 16-bit or 32-bit instructions. No new instrasti
are required to specify the switch between the 16-bit and 32-bit modes. Heegeefft
switches between the two modes incur no additional runtime penalty. We cansagglses
interleave 16-bit and 32-bit instructions in the code. The only restriction isatlsat of
16-bit instructions must start at a 32-bit alignment point. 16-bit NOP instructionssaice
for alignment when required.

All descriptors are 32-bit even for blocks that contain 16-bit instructions. Thas is

small overhead as instructions on average have five to eight times thef siescriptors.



100 CHAPTER 7. BLISS FOR EMBEDDED PROCESSORS

In addition, as we discussed in the previous section, the availability of gessrienables
removing redundant sequences of instructions across basic blocks. The resultingmneduct
in code size significantly exceeds the small overhead of having 32-bit descfgutblscks

with 16-bit instructions. As descriptors are fetched early in the procespefime, we
know the mode for each set of instructions before they are even fetched. This abdo
dynamically expand the 16-bit instructions into their corresponding 32-bit instructions at
fetch stage with no performance overhead. With conventional processotsariskation

usually occurs during the decode stage.

7.2 Methodology

7.2.1 Processor Configurations

To demonstrate the wide applicability of the BLISS ISA across the spectrumloé@ded
computing, we simulate two processor configurations. The first one is modeledhafter t
Intel XScale PXA270 processor [42] as an example of a low-power embedded CPU for
hand-held and portable applications. The second configuration is comparable to the IBM
PowerPC 750GX processor [40] as a high-end embedded core for networking systems.
Table 7.1 summarizes the key architectural parameters used for the twguzatitins. For
BLISS, we split the baseline instruction cache resources between reggtiarctions (3/4

for BLISS instruction cache) and block descriptors (1/4 for BB-cache) dsleasic block
corresponds to 4 to 8 instructions on average. The smaller BLISS instrueitbie cloes

not incur more misses as 17% of the original MIPS instructions are eliminatedtfiem
BLISS code by the simple code size optimizations. The BLISS design no longer gequire
the BTB, therefore that area can be used for the BBQ. We fully model all caonefot the

L2-cache bandwidth between BB-cache misses and instruction cache or Drtigshs.
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Front-End Parameters
XScale PXA270 PowerPC 750GX
Base BLISS Base BLISS
Fetch Width 1 inst/cycle 1 BB/cycle 4 inst/cycle 1 BB/cycle
BTB 32-entry 4-way - 64-entry 4-way -
BB-cache 8 KBytes 4-way 8 KBytes 4-way
- 32B Blocks — 32B Blocks
1-cycle access 1-cycle access
I-cache 32 KBytes 4-way24 KBytes 3-way32 KBytes 8-way24 KBytes 6-way
32B Blocks 32B Blocks 32B Blocks 32B Blocks
2-cycle access| 2-cycle access| 1-cycle access| 1-cycle access
Decoupling Queue - 4 entries - 4 entries

Common Processor Parameters

XScale PXA270

PowerPC 750GX

Execution in-order out-of-order

Predictor Bimod 256-entries Bimod 512-entries

RAS 8 entries 16 entries

Issue/Commit Width 1 instructions/cycle 4 instructions/cycle

IQ/RUU/LSQ Size 16/32/32 entries 32/64/64 entries

FUs 1INT&1FP 2INT&1FP

D-cache 32 KBytes, 4-way, 32B blocks 32 KBytes, 8-way, 32B blocks
1 port, 2-cycle access 1 port, 1-cycle access

L2 cache 256 KBytes, 4-way, 64B blocks| 1 MByte, 8-way, 128B blocks

1 port, 5-cycle access

1 port, 5-cycle access

Main memory

30-cycle access

45-cycle access

Table 7.1: The microarchitecture parameters used for embedded processmati@vaind
code size optimization experiments.

The operation of the front-end with BLISS for embedded processors is simila tp-

eration for the high-end processors. The front-end resources for the two edatuabed-

ded processors in Table 7.1 are sized differently from the high-end processyen5I'1.

The back-ends for the two embedded designs also have fewer resources with #ie XSc

design consuming instructions in an in-order manner at lower throughput. Nevestheles

the front-end behavior for the two embedded designs is the same as the high-end.
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7.2.2 Tools and Benchmarks

Similarly to the case of high-end processors, our simulation framework foedded sys-
tems is based on the Simplescalar tool set. We also used the same methad&egtan

6.3 for energy evaluation. We assume a Qri@rocess with a 1.1V power supply.

Instead of the SPEC benchmarks, we study 10 applications from the MediaBench suite
[57]. The MediaBench programs are more appropriate for the evaluation of embedded
processors as they include common embedded applications such as communication and
multimedia processing. The benchmarks are compiled at the -O2 optimizateuseag
gcc and simulated to completion. The -O2 level includes optimizations thabuaper-
formance significantly but do not increase the code size. The compiler does not perform
loop unrolling or function inlining when this option is specified. Hence, the density of the

initial code is quite good.

Block subsetting is performed in the code optimization step during the BLISSgsode
eration process (see Figure 3.3). If all of the instructions of a basic block agpeahere
in the code stream, the instructions are eliminated and the descriptor psinfedated.
Although instruction rescheduling and register re-allocation might help inifgierg addi-
tional repetitions [22], they are not considered in this study. We allow sygjittilarge basic
block into two sequential basic blocks to further reduce the static code siz&c ldack
splitting requires adding extra BBDs, however, a net reduction in the codeasizee still
achieved if the instructions from one or both of the new blocks can be eliminated. Block
splitting is only performed when the net results is a reduction in the statie size and

only for large blocks (more than 6) to avoid negatively affecting the BB-cactierpgance.

To determine which basic blocks will use 16-bit encoding for their instructionsmve e
ploy the static profitability-based heuristic proposed in [36]. Convertingekitio use the
short instruction format impacts both the code size and the performance of the program

Instructions in 16-bit format can only access 8 registers and may leadftwrmpance loss
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Figure 7.4: Compression ratio achieved for the different BLISS executabbeshe base-
line 32-bit MIPS code.

due to register spilling. In their technique, the impact is estimated usingfigglility anal-
ysis (PA) function. The PA function estimates the difference in code size afatipance
if the block were to be implemented in the short format compared to normal encoding.
These estimates can be used to tradeoff between performance and codadite floe the
program. The heuristic tries to achieve similar code size reduction toisvpassible with

exclusive use of 16-bit instructions without impacting performance.

7.3 Evaluation for Embedded Processors

This section presents the code size, performance, and energy evaluatiorS& Riclthe

two embedded processors.

7.3.1 Code Size

Figure 7.4 presents the compression ratio achieved for the different BLI& itables
compared to the MIPS-32 code size. Compression ratio is defined as the pgecehthe
compressed code size over the original code size. This means that lower ssimpratios
are better.

Direct translation with basic-optimizationB4sic-Optimizationbar) of MIPS-32 code

leads to an increase in code size with a 106% average compression ratis a%isvorse
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than the original MIPS-32 code. Block subsettifigjack-Subsebar) yields an average
compression ratio of 77%. Mixing 16- and 32-bit instruction sets makes the BIX&S e
cutables 29% less than the MIPS-32 code (71% compression ratio). Combining the two
optimizations leads to 61% compression ratio. Note that when the two optiorigaire
enabled, the individual reductions in code size do not add up. This is due to two reasons.
First, block subsetting is only performed within blocks of the same instrucizen $6-bit
instruction blocks can only be considered for block subsetting with other 16-bit blocks and
the same applies to 32-bit blocks. Hence, the opportunity for removing repeated sxjuenc
is less. Second, the saving from eliminating 16-bit instructions is half the s&wany

eliminating 32-bit instructions.

Table 7.2 presents additional detailed statistics on the code size optonzatud-
ied. Extra instructions are required when interleaving 16 and 32-bit blocks due $teregi
spilling as instructions in 16-bit format can only access 8 registersirtasesting to note

that 95% of the code is none performance critical and can be converted to 16-bit encoding.

7.3.2 Performance Analysis

Figure 7.5 compares the percentage of IPC improvement achieved for the diB&t&s
executables for the XScale and the PowerPC processor configurations ovetdesigs.
The original BLISS with basic optimizations provides an 11% average IPC irepremt
for the XScale configuration and a 9% average improvement for the PowerPC caindigura
over the base design. The BLISS advantage is mostly due to the eliminatiorgaffacant
number of pipeline flushes as a result of more accurate prediction (see SectionNo2e?).
that the performance advantage for the PowerPC configuration is slightly |beweithe
advantage for the XScale. As we explained in Section 4.1.2, BLISS tolerates imghe
struction cache access time. The instruction cache access time fobtiaéeXs two cycles,

while the access time for the PowerPC is only one cycle. This implies thpttfi@mance
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BLISS Block-Subset  Block-Subset Interleaving
Benchmark||MIPS-32 Basic without with 16/32
Optimization | BB-splitting BB-splitting Blocks
Code J/B No. of No. of Extra No. of |% of Inst. | Extra
Size Inst. BBs Inst. BBDs Inst. Using | Inst.
(KByte) |Removed Eliminated |Added|Eliminated| 16-bit |Added
adpcm 37 1626/ 2593 2014 534 3054 94%| 730
epic 69 2841 4561 3777 1058 6036 96%| 816
g721 43 1884 2961 2391 637 3659 93%| 664
gsm 70 2805 4397 3405 1178 5649 94%| 948
jpeg 112 4391 6567 5744, 2115 10109 96%, 1286
mesa 453 16811 24673 25183 10529 47825 95%, 6224
mpeg2.dec 79 3413 5124 3887 1224 6391 96%, 1242
mpeg2.enc 106 4241] 6490 4980, 1758 8637 95%, 1820
pegwit 82 2959 4476 3775 1436 7369 95%, 1746
pap 206 10353 14296 11425 3319 18231 96%, 1242
rasta 232 10559 13776 11647 5426 24861 96%| 980

Table 7.2: Statistics for the BLISS code size. The extra instructions for thet IGmiat
are due to register spilling and the short offsets for data references.

benefit of BLISS for the XScale is going to be higher as BLISS will toleratmgguction

cache latency.

BLISS provides very similar IPC improvements even with block subsgtiThe addi-
tional instruction cache misses due to reduced instruction locality atéohehted through
prefetching using the contents of the BBQ. The elimination of repeated insinuss-
guences allows for more unique instructions to fit in the instruction cache at antyipoi

time. Hence, certain applications observe an overall higher instrucicredit rate.

With interleaved 16-bit and 32-bit code, BLISS achieves a 10% average IPGvaipr
ment over the base for XScale and an 8% average improvement for PowevB @ciors
contribute to the change in performance gains. With 16-bit encoding, twice as many i
structions can fit in the instruction cache, which leads to lower miss kHdwever, 16-bit

encoding introduces additional dynamic instructions to handle register spilling and long
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Figure 7.5: Percentage of IPC improvement for the different BLISS binariedloydase
design. The top graph is for the XScale processor configuration. The bottom one is for the
PowerPC configuration.

offsets for load and store instructions. On average, 1% more instructionssaged com-
pared to the original code. The net effect is a small degradation in averdgenpance
compared to the original BLISS. Nevertheless, for benchmarkatika, which stresses
the instruction cache capacity, the net effect is a small performancevepent. Us-
ing block subsetting in addition to interleaved 16-bit/32-bit instructions regubt similar
performance as the one observed when the optimization is enabled on the origi6& BLI

code.

7.3.3 Energy Analysis

Figure 7.6 compares the percentage of total energy improvement achieved using the di
ferent BLISS executables for the XScale and PowerPC processor configukatente

base design. BLISS offers a 23% total energy advantage for the XScale configuratian a
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Figure 7.6: Percentage of total energy savings for the different BLISS binarieshave
base design. The top graph is for the XScale processor configuration. The bottom one is
for the PowerPC configuration.

12% advantage for the PowerPC configuration over the base design. The BLISS advantage
is due to a number of factors: reduced energy spent on mispredicted instructiecsyse

word access in the instruction cache, merging of instruction cache asdessequential
blocks, and judicious access to the branch predicddpcmis the benchmark for which
BLISS achieves the lowest energy-savingdpcmfrequently executes short basic blocks

(2.5 instructions per block) and requires frequent accesses to the BB-cache. h€he ot
benchmarks include 5 instructions or more per basic block.

The energy savings for XScale are higher than the savings for PowerPC. The XScale
instruction cache access time is two cycles which places additionalupeess accurate
control-flow prediction. Moreover, since XScale uses a single-issue pipdBrigrB and
the predictor are accessed for every instruction in the base design. Wi#&Bthey are
accessed once per basic block. For PowerPC, the BTB and predictor areedausss per

4 instructions, hence the energy saved in the front-end with BLISS is lower.
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Figure 7.7: Average Code size, execution time, and total energy consumptiondor sel
tive 16-bit and BLISS (with block-subset and 32/16 blocks) executables for thel&XSca
processor configuration over the base. Lower bars present better results.

Block subsetting leads to slightly lower energy savings. When blocks are sglit-t
hance subsetting, additional accesses to the BB-cache are introduced. |pih@dyit
encodings introduce some energy consumption due to the additional instructions. Never-
theless, BLISS with mixed instruction widths and subsetting provides a 2 Eetoergy

advantage for XScale and a 10% advantage for PowerPC over the base design.

7.3.4 Comparison to Selective Use of 16-bit Code

So far, we have compared BLISS to the base design running conventional RIS&34IP
code. In this section, we compare BLISS with code size optimization to theerbaging
code optimized with selective use of 16 bit-instructions. Figure 7.7 comparkx3lith
block subsetting and selective use of 16-bit blocks to selective use of 16-bitatisirs
with a conventional ISA like Thumb-2 and rISA5¢€11§ [81, 36, 55]. Note that the same
profitability heuristic is used with both ISAs to select which instructionslocks to encode

with 16 bits. The base XScale configuration with the full-sized instructawhe is used

for Sell6.
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By interleaving 16-bit and 32-bit encodings at instruction granularity, Sell6 aeheev
39% code size reduction. Nevertheless, the extra dynamic instructions for s\gitehd
to a small performance and energy degradation. On the other hand, BLISS provides sim
ilar code size reduction and at the same time achieves 10% performance and 2% tot
energy advantages. BLISS overcomes the code size handicap of the extra blogk desc
tors by allowing an additional code size optimization over Sell6 (block sutggettits
performance and energy advantages are due to the microarchitecture optimezestbled
with the BLISS decoupled front-end and the lack of special instructions foclsing be-
tween 16-bit and 32-bit code. Overall, BLISS improves upon Sell16 by offerindasim

code density at superior performance and energy consumption.

7.4 Related Work

Many code size reduction techniques have been proposed and widely used in embedded
systems [12]. Most techniques store the compressed program code in memory and decom
pression happens on instruction cache misses [110, 60, 50] or inside the processor [59, 23].
Compression is typically dictionary based. Such techniques reduce memory foatptint

the off-chip bandwidth requirements for instruction accesses. When decoropressurs

in the core, additional latency is introduced for instruction execution. When deesm

sion occurs on cache refills, additional pressure is placed on the instructioa capac-

ity. BLISS reduces code size, places no additional pressure on instructiom cagacity,

and improves on execution time. BLISS can be combined with a dictionary essipn

scheme behind the instruction cache for further code size improvements.

Cooper proposed a compiler framework for discovering and eliminating repeated
struction sequences [22]. The echo instruction has been proposed to faellit@teation

of such redundancies [56]. An echo instruction is used in the place of repeateticegjue
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and points back to the unique location for that code. Using echo instructions, 84% com-
pression ratio is reported in [56]. BLISS facilitates redundancy ekton with block
subsetting, which on its own leads to a 77% compression ratio. MoreoverSBall&wvs
for significant performance improvements in addition to code compression, wahiobt i

the case with previous proposals.

7.5 Summary

This chapter evaluated the use of the block-aware instruction set (BLISS8hteve code
size, performance, and energy improvements for embedded processors. Bhi&&s
significant improvements in all three metrics, which is traditionalghallenge to accom-
plish. The software-defined basic block descriptors in BLISS facilitatie size optimiza-
tions by removing redundant sequences of instructions across basic blocks and by allowing
a fine-grain interleaving of 16-bit and 32-bit instructions without overhead ingingctWe
showed that BLISS allows for 40% code size reduction over a conventional BlS&nd
simultaneously achieves 10% performance and 21% total energy improvements, Henc
BLISS improves concurrently the performance and cost of embedded systems.

Overall, the block-aware instruction set compares favorably to previous codéyde
or performance enhancement techniques as it allows concurrent improvemehtisreea

efficiency metrics. Therefore, it can be a significant design option for embexydéems.



Chapter 8

Low Cost Front-End Design for

Embedded Processors

Apart from performance, energy, and code size, cost is an important concembede
ded processors. Managing the cost of an embedded system determines its Supoaf#s a
margin for such systems is typically low. Even a small increase in deast leads to sig-
nificant increase in overall production cost for high volume manufacturing. @& and
power consumption are directly related to the cost of embedded processoasse®ueter-
mines the cost to manufacture the chip. Power consumption determines the cakitgga
and cool the chip. The challenge with embedded processors is that area and poewer effi
ciency must be achieved without compromising performance and energy efficiéhig.
energy and power are directly related, optimizing one of them does not necetisens-
lates to improvement in the other one. Power refers to the activity &\any given point
while energy refers to the total amount of activities during program executimpadssible
that two program profiles have same energy usage with different peak powpat®ss.

This chapter presents a number of design optimizations that target the power consump-
tion and area of the front-end for embedded processors. Primarily, the goabkis sonaller

front-end memory structures that consume less static and dynamic power angtkss
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area. The challenge is to avoid performance loss due to the reduced capaeitgx-W
plore these optimization techniques using the block-aware instruction set{BaiIShi-
tecture. The software-defined basic block descriptors provide a flexible gebstrian-
plement these optimizations efficiently because the descriptors are irisitile to soft-
ware, provide accurate information for prefetching, and can carry softwate. These
optimizations balance out the performance loss of smaller instruction cachedastiore
arrays. Hence, BLISS allows significant reorganization of the front-enubwitaffecting

performance, all within the same software model (ISA).

The remainder of this chapter is organized as follows. In Section 8.1, we didruss
background and motivation for this work. Section 8.2 presents the front-end hardware and
software optimizations. In Section 8.3, we explain the methodology and tools used for
evaluation. In Section 8.4, we present and analyze the evaluation resultity, Beation

8.5 highlights related work.

8.1 Background and Motivation

Embedded processors consume a large fraction of their power budget in the front-end of
their pipeline. The front-end contains several large SRAM structures stiloh Bistruction
cache, the branch target buffer (BTB), and the branch predictor, that agsaccon nearly
every clock cycle. Such memory arrays are sized to hold a large amount ah datker to

obtain good overall performance. For example, the Intel XScale PXA270 proa

Dr
a 32-KByte instruction cache and a 128-entry BTB [42]. Combined, the two structures

consume 22% of the processor total power budget.

Nevertheless, different programs exhibit different locality and memargscpatterns
and even a single program may not need all the available storage at all tinties.pro-

cessor is executing a tight loop, for example, most of the instruction cache is uhzksaut
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O Base with regular I-Cache and BTB B Base with optimal I-Cache and BTB
OBase with small I-Cache and BTB
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Figure 8.1: Normalized execution time, total power, and total energy consuniptitre
base design (32-KByte I-cache, 64-entry BTB), the base design with optinaghkcand
BTB, and the base design with small front-end arrays (2-KByte I-cache, 1$-BMNB).
The processor core is similar to Intel's XScale PXA270 and is running benchrimarks
the MediaBench and SPEC CPU2000 suites. Lower bars present better results.

as smaller cache could provide the same performance but with lower avesr, pod en-
ergy requirements. Figure 8.1 quantifies the total energy and power wasted KARZF
processor due to sub-optimal instruction cache and BTB sizing for MediaBenchP&@ S
CPU2000 applications. The optimal configuration is found using a method similar to [97]
where a continuum of cache sizes and configurations are simulated. During eaclhgycle
cache with the lowest power from among those that hit is selected. Orgaydie% total
power and 17% total energy are wasted if the processor uses larger than netdetians
cache and BTB.

Reducing the instruction cache and BTB capacity of embedded processors by affactor
4 or 8 leads to direct die area and power savings. Table 8.1 presents the naipalizs
dissipation, area, and access time for different smaller instructmreazonfigurations over
the 32-KByte instruction cache of the PXA270 processor using Cacti [102]. A 2-KByte in-
struction cache dissipates only 8.4% of the power dissipated by the 32-KByte cache and
uses only 4.6% of its area. While the use of smaller arrays reduces die area ard pow

dissipation, several applications will now experience additional instruciohecand BTB
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| Configuration | Power | Area | Access Time|
2 KByte, 2 way associative 8.4%| 4.6% 50.7%
4 KByte, 4 way associative | 14.6%/| 9.2% 53.0%
8 KByte, 8 way associative | 26.9%| 18.0% 58.8%
16 KByte, 16 way associative| 51.3% | 42.8% 71.5%

Table 8.1: Normalized power dissipation, area, and access time for diffexsruction
cache configurations over the XScale 32-KByte instruction cache configuration.

misses that will degrade performance and increase energy consumption. Figure 8.1 quan-
tifies the performance penalty with the smaller instruction cache and BEB §€13% on
average). Furthermore, the energy savings from accessing smaller agaysady can-

celed from the cost of operating the processor longer due to the performance degradation.

8.2 Front-End Optimization

This section presents both hardware and software techniques that can reducdathe pe
mance degradation of the small front-end structures. The hardware-basedteshin-
cludeinstruction prefetchingunified instruction cache and BTB structuresdtagless
instruction cachesSoftware-based techniques includstruction re-orderingand various
forms ofsoftware hintsInstruction prefetching hides the latency of extra cache misses by
fetching instructions ahead of time. Unifying the instruction cache and the HoBsa
program to flexibly use the available storage as needed without the limitationfxetla
partitioning. Alternatively, the BTB and the instruction cache could be orgdnizeuch
away that the instruction cache tags are no longer required; hence, their arpavaerd
overhead can be saved. Instruction re-ordering attempts to densely pgakritly used
instruction sequences in order to improve the locality in instruction candeBdB ac-
cesses. Finally, compiler-generated hints can improve the instrucimreerformance

by guiding the hardware to wisely use the limited resources.
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8.2.1 Hardware Prefetching (Hardware)

Instruction cache misses have a severe impact on the processor performdresesy
efficiency as they cause the front-end to stall until the missing instruciimnavailable.
If an instruction cache is smaller than the working set, misses aresglyeproportional
to the cache size. Hence, a smaller instruction cache will typicallgeadditional per-
formance loss. Instruction prefetching can reduce the performance impacseftheses.
Instruction prefetching speculatively initiates a memory access fanstruction cache
line, bringing the line into the cache (or a prefetching buffer) before the procespoests
the instructions. Prefetching from the second level cache or even the maiargnean hide
the instruction cache miss penalties, but only if initiated sufficientlyafeead in advance

of the current program counter.

Most modern processors only support very basic hardware sequential prefetciters. W
a sequential or stream-based prefetcher, one or more sequential cachetéindseatur-
rently requested one are prefetched [103, 77]. Stream prefetching only helpsissihs
on sequential instructions. An alternative approach is to initiate prefetfor cache lines
on the predicted path of execution [21]. The advantage of such a scheme is that it c
prefetch potentially useful instructions even for non-sequential accessngadielong as

branch prediction is sufficiently accurate.

As discussed in Section 4.1.2, BLISS supports efficient execution-based piegetc
using the contents of the BBQ. The BBQ decouples basic block descriptor accesses fr
fetching the associated instructions. The predictor typically runs aheadywenthe in-
struction cache experiences temporary stalls due to a cache miss or whaatthetion
gueue is full. The contents of the BBQ provide an early, yet accurate view intogtrag-
tion address stream and are used to lookup further instructions in the instraatba.
Prefetches are initiated when a potential miss is identified. BLISSmigroves prediction

accuracy (see Section 5.2.2), which makes the execution-based prefetdiengeseven
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more effective. Prefetching, if not accurate, leads to additional L2-cactesses that can

increase the L2-cache power dissipation.

8.2.2 Unified Instruction Cache and BTB (Hardware)

Programs exhibit different behaviors with respect to the instruction cache aBduB-
lization. While some programs stress the instruction cache and are suscépitisl size
(e.g.,rast a from MediaBench), other programs depend more on the BTB capacity (e.g.,
adpcmfrom MediaBench). Even in a single program, different phases may exhibit-differ
ent instruction cache and BTB access patterns. Being able to flexibly stearestruction
cache and BTB resources could be valuable for those types of programs, espeugdly w

the hardware resources are limited.

The BLISS front-end can be configured with a unified instruction cache and Bicac
storage as both instructions and descriptors are part of the architecturddhg-\agary
code. Each line in the unified cache holds either a few basic block descriptorewr a f
regular instructions. The unified cache can be accessed by both the descrigarfet
the instruction fetch units using a single access port. Instruction fetameetultiple
instructions per access (up to a full basic block) to the back-end pipeline and doesaot ne
to happen on every cycle. It only needs to occur when the IQ is not full and the BBQ is
not empty. On the remaining cycles, we perform descriptor fetches using ec@BD
addresses. For the embedded processors we studied, sharing a single port foranstruct

and descriptor fetches had a negligible impact on performance.

On a conventional architecture, storing BTB and instruction cache entri@single
structure is more challenging as the same program counter is used to accessbtites.
This implies that extra information is required to be stored in the unifiedecéx differ-
entiate between BTB and instruction entries. In addition, the two entragstoithe same

cache set, causing more conflicts. The BTB and instruction cache are eéssad more
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frequently as basic block boundaries are not known until instruction decoding. Hence,

sharing a single port is difficult.

8.2.3 Tagless Instruction Cache (Hardware)

In Section 6.2.2, we showed that we could eliminate the data access for debway that
hits. Now we will focus on eliminating the instruction cache tags altogestergge and
access). BLISS provides an efficient way to build an instruction cadhena tag accesses
by exploiting the tags checks performed on descriptor accesses. This imprsirastion
cache access time, reduces its energy consumption significantly, and &dsnina area
overhead of tags. The new tagless instruction cache is organized as a @ippeichtache,
with only the data component. Figure 8.2 illustrates the organization of this cashea¢h
basic block descriptor in the BB-cache, there is only one entry in the taglgascinn
cache which can hold a certain number of instructions, 4 in our experiments. Bifflisg
used in each descriptor in the BB-cache entry to indicate if the correspondirygrethe
tagless instruction cache has valid instructions or not. This flag is izgilduring BB-
cache refill from L2-cache and is set after the instructions are fetcbedttie L2-cache
and placed in the tagless instruction cache. Moreover, the flag that iesli€#tte entry in
the tagless cache is valid or not can be used by the prefetching logic. Thisak®ithe

need to probe the cache and improves the overall performance of the prefetcher.

The operation of the BLISS front-end with the tagless cache is very sitoilehat we
explained in Section 4.1.1 except the way the instruction cache is accesse@B3raahe
miss, the missing descriptors are retrieved from the L2-cache. Attdmg,ghe instruction
valid bits (V) are initialized for those descriptors indicating that their associatcliction
cache entries are invalid. The instruction fetch unit uses the valid bigtermine how to
access the instruction cache. If the instruction valid bit is not set, thirugt®ns are

retrieved from the L2-cache using the instruction pointer available from therigéor.
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BB-cache Entry Format

type target length | instr. pointer | hints bimod| IV
(4b) (30b) (4b) (13b) (2b) | (2b) | (1b)
Tag Index Offset
Way 0 Way 3
Tag Valid Data Tag Valid Data
- - - ] j— j—
H = = H ————
o o

BB-Cache

i BBD

Data

<y

Y

A

y

Instructions

Matching Way

I-Cache

Figure 8.2: The organization of the tagless instruction cache with BLISS.
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Once the instructions are retrieved and placed in the instruction cachealttiebit for

the corresponding descriptor is set. If the instruction valid bit is set, threici®ns are
retrieved from the instruction cache using the index field of the PC and the indée of
matching BB-cache way. For basic blocks larger than 4 instructions, only thédofins
instructions are stored in the instruction cache. In the applications studiedpb8%
executed basic blocks include 4 instructions or less. Similar to the victumecave use

a 4-entry fully associative cache to store the remaining instructions. vidgtisn cache

is accessed in a subsequent cycle and is tagged using the PC. In a case aqf thaniss

instructions are brought from the L2-cache.

Nevertheless, the tagless instruction cache has two limitation$, ¢ise a BB-cache
entry is evicted, the corresponding instruction cache entries become invalatidition,
the virtual associativity and size of the instruction cache are now linkéttiat of the BB-
cache and cannot be independently set. We can use an alternative approach for indexing
the tagless cache to solve this limitation. We can determine the locatibwe iinstruction
cache independently by an additional pointer field in the BB-cache format. Thigis s
ilar to having a fully associative instruction cache, but with additional @emity in its

management (keep track of LRU, etc).

8.2.4 Instruction Re-ordering (Software)

Code re-ordering at the basic block level is a mature method that tunes a birzaspéo
cific instruction cache organization and improves hit rate and utilizatierorfdering uses
profiling information to guide placement of basic blocks within the code. The goal is to
arrange closely executed blocks into chains that are laid out sequentiallg, inereasing
the number of instructions executed per cache line. The improved spatiatyoedluces
the miss rate for the instruction cache of a specific size. This impliesvbaian afford

using a smaller cache without negatively impacting the performance.
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Pettis and Hansen suggested a bottom-up block-level positioning algorithm [80]. In
their approach, they split each procedure into two procedures, one with the commaahly us
basic blocks and one with the rarely used basic blocks ("fluff”). The infrequexdgLged
code is replaced with a jump to the relocated code. Additionally, a jumpéstets at the
end of the relocated code to transfer control back to the commonly executed citdie. W
each of the two procedures, a control-flow graph is used to from chains of basic blocks
based on usage counts. The chains are then placed making fall through the likedfteas

a branch.

Basic block re-ordering is easily supported by BLISS using the explicit blookrigees
tors. Blocks of instructions can be freely re-ordered in the code segment idegimgd
way as long as we update the instruction pointers in the corresponding block descriptors
Compared to re-ordering with conventional architectures, this providesjar benefits.
First, there is no need to split the procedure or introduce additional jump instrador
control transfers between the commonly and the less commonly used code (baveearsd
dynamic instructions). The pointers in the block descriptors handle control traasters
matically. Second, re-ordering basic blocks does not affect branch predictioraayg for
BLISS, as the vital information for speculation is included in the basic bloskrgjgors
available through the BB-cache (block type, target offset). On a conventioctates-
ture, re-ordering blocks may change the number of BTB entries needed and the conflicts

observed on BTB accesses.

8.2.5 Cache Placement Hints (Software)

Conventional caches are designed to be managed purely by hardware. Hardware must
decide where to place the data and which data to evict during cache replacArnente-
guence is that the cache resources may not be optimally utilized for a specifroteke

leading to poor cache hit rate. Compilers and profile-based tools can help thegmoce
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with selecting the optimal policies in order to achieve the highest possiblerpemce
using the minimal amount of hardware. Hints can indicate at which cache leisejsof-
itable to retain data based on their access frequency, excluding infrequeefrodgathe first
level cache. Hints can also guide the hardware placing data in the cactedaanflicts,

or improve the cache replacement decisions by keeping data with higher changseof re

A compiler can attach hints to executable code at various granularitigsevwery in-
struction, basic block, loop, function call, etc. BLISS provides a flexible meshafor
passing compiler-generated hints at the granularity of basic blocks. The ldsbffidne
basic block descriptor contains optional compiler-generated hints. Specifyingahibties
basic block granularity allows for fine-grain information without increasimg length of
all instruction encodings or requiring additional, out-of-band, instructions that taery
hints. Hence, hints can be communicated without modifying the conventional instructi
stream or affecting static or dynamic instruction counts. Furthermore, digmeiptors
are fetched early in the pipeline, the hints can be useful with decisiongwagh pipeline

stages, even before instructions are decoded.

We evaluate two types of software hints for the L1 instruction cache managehtent
first type indicates if a basic block should be excluded from the L1 instruction c&¢he
rely on prefetching, if enabled, to bring excluded blocks from the L2-cache when needed.
Note that the hints are visible to the prefetcher, therefore, cache probing equitad for
those blocks. A very simple heuristic based on profiling information is usedectsehich
cache lines are cache-able. We exclude blocks with infrequently executedrmbtmeks
that exhibit high miss rates. The second type of hints redistributes the cadssesover
the cache sets to minimize conflict misses. The hints are used as part ofdtlessathat
indexes the cache. The 3 hint bits are concatenated with the index field of thesature

form the new cache index field.
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Front-End Parameters
XScale PXA270
Base BLISS
Fetch Width 1 inst/cycle 1 BB/cycle
I-cache
Regular 32 KBytes, 32-way, 32B Blocks, 2-cycle access
Small 2 KBytes, 2-way, 32B Blocks, 2-cycle access
BTB/BB-cache]
Regular 64-entry, 4-way 64-set, 4-way
Small 16-entry, 2-way 16-set, 2-way
BBQ - 4 entries
Common Processor Parameters
XScale PXA270
Execution single-issue, in-order with 1 INT & 1 FP unit
Predictor 256-entry bimod with 8 entry RAS
D-cache 32 KBytes, 4-way, 32B blocks, 1 port, 2-cycle access
L2-cache 128 KBytes, 4-way, 64B blocks, 1 port, 5-cycle acgess
Main memory 30-cycle access

Table 8.2: The microarchitecture parameters for base and BLISS processor @aiidigur
used for power and area optimization experiments.

8.3 Methodology

Table 8.2 summarizes the key architectural parameters for the base a8 Btdcessor
configurations. Both are modeled after the Intel XScale PXA270 [42]. For famggne
comparisons, the base design uses serial instruction tag and data actéssese also
performed experiments with a high-end embedded core comparable to the IBMARDwer
750GX [40] and the achieved results are consistent.

For performance evaluation, we used similar tools to what we discussediiorse
5.1.2. We also used the same tools presented in Section 6.3 for energy evaluation. For
performance, we report IPC, ignoring the fact that processors with smaltbes may
be able to run at higher clock frequencies than processors with larger cacleestudy

10 benchmarks form MediaBench suite and SPEC CPU2000 suite compiled at the -O2



8.4. EVALUATION 123

M 1-Prefetching O 2-Instruction Reordering
l 3-Unified Cache O4-Tagless Cache + Prefetching
B 5a-Exclude Cache Hints O 5b-Redistribute Cache Hints
E Optimizations 1+2+3+5b
1.20
1.15 -
o
e = .
- 1.10 5 H
@ £ £
N -] = £
£ 1.05 ‘
(=} 5 = £ 5 5 £ £
- % % Elg ; | Igl EI I Ig % §|§
0.95 El | = = = El I El £ - =

adpcm g721 jpeg mesa pegwit rasta gcc crafty vortex apsi Average

Figure 8.3: Normalized IPC for BLISS with the different front-end optimizasi over the
base. The BLISS design uses the small I-cache and BB-cache. The base desigreus
regular I-cache and BTB. The 1.0 line presents the base design. Higher bars présent be
performance.

optimization level using gcc. The selected benchmarks have relativelyimsgpuction

cache or BTB miss rates.

8.4 Evaluation

This section presents the performance, cost, and energy evaluation anaBldiS8fusing

the different optimization techniques.

8.4.1 Performance Analysis

Figure 8.3 compares the IPC of BLISS with small caches and the various ogtonio
that of the base design with large caches (IPC of 1.0). We only present a single ctombina
of optimizations, the best performing one (prefetching + instruction re-orderungfied
cache + redistribute cache hints). For reference, the average norm&ddr various

other configurations is: 0.87 for the base design with small cabi@sfor the base design
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with small caches and prefetching, an@9for BLISS with small caches and no prefetch-
ing. It is important to notice that for all but one benchmag&d), all optimizations allow
BLISS with small caches to reach the IPC of the base design with lachesaThe design
with the combined optimizations consistently outperforms the base with aage/éPC

improvement of 9%.

The analysis for the individual optimizations is the following. The advantages of in-
struction prefetching and re-ordering are consistent across all benchmatien &m-
bined, re-ordering reduces significantly the prefetching traffic. The unifideeagaamost
beneficial for benchmarks that put pressure on the BTB (ppgg), but may also lead
to additional conflicts (e.ggrafty). With the tagless cache, the performance greatly
depends on the size of the basic blocks executed. For large basic blockex and
apsi ), performance degrades as the instruction cache cannot fit all the instructions in
the block (limit of 4). Similarly, for programs with many small blocks (2 es$ in-
structions as in g721), the instruction cache capacity is underutilized. Thegagehe
performs best for programs with basic blocks of size 4 instructionspdgi t. It is
also best to combine the tagless instruction cache with prefetching to dbatamflict
misses. Software hints tend to provide a consistent improvement for all béti@hmarks.
The redistribute cache hints achieve slightly better performance than thelex@zache

hints.

To understand the effectiveness of each technique in reducing the performarac im
of the small instruction cache, we look at the instruction cache miss ratebd differ-
ent optimizations. Figure 8.4 presents the normalized number of instruction cagbesmi
for BLISS with the different front-end optimizations over the base desigh thi¢ small
instruction cache. The reduction in instruction cache misses with phafgtanstruction
re-ordering, and unified cache is consistent across most benchmarks with a 2@geaver
For the tagless instruction cache + prefetching, the decrease variesgeiy tlepends on

the basic block average size. Both of the software cache placement hin{zrefitkching
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Figure 8.4: Normalized number of instruction cache misses for BLISS with tferetiit
front-end optimizations over the base. The BLISS design uses the smalié¢-aad BB-
cache. The base design uses the small I-cache and BTB. Lower bars presgnmebatts.

| | Power | Area | Access Time|

Instruction Cache 8.4% | 4.6% 50.7%
Predictor Tables 75.4%| 47.5% 94.7%

Table 8.3: Normalized power dissipation, area, and access time for theisstalction
cache and predictor tables over the large structures of the XScale configuration.

significantly reduce the number of cache misses with an average of 58%. Finalbgst
combination of the optimizations (prefetching + instruction re-ordering + unifetie +

redistribute cache hints) achieves 66% reduction.

8.4.2 Cost Analysis

Power and die area determine the cost to manufacture and package the chip. Table 8.3
summarizes the normalized power and area of the small front-end struoterethe large
structures for the XScale configuration. We also report the normalized ancessfor
the small front-end structures. However, we ignore the fact that the poyoegs the
small caches can run at higher clock frequency. The small instruction caghdissipates

8.4% of the power dissipated by the large cache and uses only 4.6% of its area. The small
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Figure 8.5: Normalized total energy comparison for BLISS with the differesmitfend
optimizations over the base. The BLISS design uses the small I-cache acddBB- The
base design uses the regular I-cache and BTB. The 1.0 line presents the base desgn. L
bars present better results.

predictor tables dissipate 75.4% of the power dissipated by the larger struatdrese
only 47.5% of the area. The small instruction cache access time is also hiadf atess

time for the large cache.

8.4.3 Total Energy Analysis

Figure 8.5 compares the total energy of BLISS with small caches and the variougzapt
tions to that of the base design with large caches (energy of 1.0). Lower enerdters be
For reference, the average total energy for other configurations is: 0.95 for the bage de
with small cached).93for the base design with small caches and prefetchingDa8&for
BLISS with large caches.

With all optimizations, BLISS with small caches consumes less energythigabase
with small or large caches. The combined optimizations lead to an energy cptsam
of 81%. The tagless instruction cache configuration provides significant energy benefits
for several benchmarkadpcm | peg, nesa, pegwit)as it eliminates redundant tag ac-
cesses. However, forort ex, the tagless instruction cache has the highest energy con-

sumption. This is due to the fact thair t ex has large basic blocks that will require to be
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Figure 8.6: Average execution time, total power, and total energy consumptionder ba
design (with large caches), base design (with optimal caches), base {eglyrrilter
cache and a combination of front-end optimizations), and BLISS (with smaillesaand a
combination of front-end optimizations). Lower bars present better results.

prefetched and placed in the small victim cache. For the remaining optiamnizaenergy

consumption tracks the IPC behavior.

8.4.4 Comparison to Hardware-based Techniques

Many techniques have been proposed to save the front-end power without the need for a
new ISA. One such example is the Filter cache design proposed by Kin et al. [FdjeA
cache is a tiny cache introduced as the first level of memory in the ingtnustemory
hierarchy.

Many of the front-end optimizations that are presented in Section 8.2 cabeisple-
mented with a conventional instruction set using the Filter cache. Figuraighéarizes
the comparison between BLISS with the combined optimizations (unified cacledetqgtr-
ing + instruction re-ordering + redistribute hints) to the base design witte(leache +
prefetching + instruction re-ordering + selective caching hints). Notesthalar front-end
optimizations and cache sizes are used with both designs. The base XScale abafigur
with the full-sized instruction cache and BTB is shown as a referenaealgd show the

results for the base design with optimally-sized caches. We use a methitatt $inj97]
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to quantify the amount of energy wasted due to sub-optimal cache sizes. A continuum of
cache sizes and configurations are simulated. During each cycle, the cdchigaddwest

power from among those that hit is selected.

BLISS with the front-end optimizations provides similar total power reducto the
base design with Filter cache and the optimally-sized design (14% savingd$o Ipro-
vides similar total energy savings to the optimally-sized design (19% reductiba)small
advantage is due to the more efficient access of instruction cache in the Basg3$nodel
(see Chapter 6). More important, the power and energy savings do not lead to paderma
losses as it is the case for the base design with the Filter cache. BLiSHlgs a 9%
performance improvement over the base design with large caches and a 12% aeder
improvement over the base design with Filter cache and the combined fronpenmiza-
tions. The performance advantage is due to two reasons. First, the effic@atrientation
of front-end optimizations mitigates the negative effects of the smallicistm cache and
BTB. Second, the block-aware architecture allows for higher prediction anctirat pro-
vides the additional performance gains (see Chapter 5). In addition, BLISS provides 7%
energy improvement over the base design with Filter cache and the comboméabfid
optimizations. Overall, BLISS with small caches and front-end optitidna improves
upon the Filter cache with comparable front-end optimizations by offeringaimpdwer
reduction at superior performance and energy consumption (12% performance and 7% total

energy improvements).

We only report IPC for the BLISS and the Filter cache designs, ignoring the opportunity
for performance gains if we exploit the faster access time of the small€aBlgeeducing
the clock period, the BLISS and Filter cache designs can run at higher clock hagsie
than processors with larger caches which will result in additional perfocenand energy

improvements.
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8.5 Related Work

Significant amount of front-end research focused on instruction cache optonzaif
microprocessor-based systems because of the cache’s high impact on systemagrexé,
cost, and power. The use of a tiny (Filter) cache to reduce power dissipa®proposed
by Kin et al. [53]. Bellas et al. [10] proposed using a profile-aware compilenap
frequent loops into the Filter cache to reduce the performance overhead. Bld@8esr
similar power reduction as the Filter cache design and at the same tipnevies perfor-
mance and energy consumption. Lee et al. [58] suggested using a tiny tagless lo@p cac
with a controller that dynamically detect loops and fill the cache. The loop cache i
alternative to the first level of memory which is only accessed when ig giiaranteed.
Since the loop cache is not replacing the instruction cache, their approach esphev
energy consumption with small performance, area, and total power overhead.eRal.

[32] evaluated different small cache designs.

Many techniques have been proposed to reduce the instruction cache energy. Some of
the techniques include way prediction [84], selective cache way accessif2Zhamking
[30], and tag comparison elimination [75, 114], Other research has focusedamfigec
urable caches [87, 113] where a subset of the ways in a set-associative cachibseta s
of the cache banks are disabled during periods of modest cache activity to reduce power
Using a unified reconfigurable cache has also shown to be effective in providiategr
levels of hardware flexibility [63]. Even though reconfigurable caches aretigéan re-
ducing energy consumption, they have negligible effect on reducing the peak power or the

processor die area.

Many prefetching techniques have been suggested to hide the latency of cadkge miss
The simplest technique is the sequential prefetching [103, 77]. In this scheme, oneeor m
sequential cache lines that follow the current fetched line are prefetchistbrydbased

schemes [104, 39, 48] use the patterns of previous accesses to initiate the nevhgsefet
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The execution-based scheme has been proposed as an alternative approach B€hi21]. |
scheme, the prefetcher uses the predicted execution path to initiagsesc®ther types of
prefetching schemes include the wrong path prefetching [82] and the software ¢iv@pera
approach [61]. In the later one, the compiler inserts software prefetches faegoential
misses. BLISS enables highly accurate execution-based prefetching usountbats of
the BBQ.

Much research exists at exploring the benefit of code re-ordering [106]. Most of the
techniques use a variation of the code positioning algorithm suggested by PettisesthHa
[80]. Several researchers have also worked on using software-genleiratetb improve
the performance and power of caches [46, 68, 13, 41]. BLISS efficiently enablestiosir
re-ordering with no extra overhead and no impact on speculation accuracgoWtoythe
architecturally visible basic block descriptors allow communicating sofvinints without

modifying the conventional instruction stream or affecting its instruction ¢oolgrint.

8.6 Summary

This chapter evaluated several front-end optimizations that improve tfegpance of em-
bedded processors with small front-end caches. Small caches allow foraaaral power
efficient design but typically lead to performance challenges. The optimizaincluded
instruction prefetching and re-ordering, selective caching, tagless itistriaache, and
unified instruction and branch target caches. We built these techniques on tojblafdke
aware instruction set (BLISS) architecture that provides a flexiblegutatfor both soft-

ware and hardware front-end optimizations. The best performing combined optomgza
(prefetching + unified cache + redistribute cache hints) allow an embeddessparavith
small front-end caches to be 9% faster and consume 14% less power and 19% Iggs ener

than a similar pipeline with large front-end structures. While some of thenogtions
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can also be implemented with a conventional instruction set, they lebmvay perfor-
mance benefits and are typically more complex. Overall, BLISS allowstopbwer and
low cost embedded designs in addition to performance, energy, and code size gelvanta

Therefore, it can be a significant design option for embedded systems.



Chapter 9

Conclusions and Future Work

This dissertation examined the use of a block-aware instruction set atah#t€BLISS)
to address the front-end challenges. The theme of this expressive ISA igwosaift-
ware to assist the front-end hardware by providing architecture support for ctiawol
prediction and instruction delivery. BLISS defines basic block descriptoasidition to
and separately from the actual instructions in each program. A descriptorbassthe
type of the control-flow operation that terminates the block, its potential taageltthe
number of instructions in the basic block. This information is sufficient to tcdettad:
latency of instruction accesses, regulate the use of prediction stru@ndedirect instruc-
tion prefetching. The architecture also provides a flexible communication misamghat
software can use to provide hardware with critical information about instruéetching
and control-flow.

We evaluated the BLISS ISA across a wide spectrum of processors and demeohstra
that BLISS provides efficient ISA-level support for front-end optimizations taet all
of the processor efficiency metrics. We showed that BLISS significanplyawes both the
performance and the energy consumption of high-end superscalar processors. For embed-
ded processors where code size and cost are of greater concern, BLISS gjlufisast

reduction in the code size, total power, and die area in addition to the perfoenaand

132
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energy gains. BLISS also compares favorably to hardware-only techniquesrbtolp of
conventional ISAs with no software-support.

Overall, this work demonstrated the potential of delegating hardware functias i
perscalar processors to software using an expressive instruction seestilias a proces-
sor with simpler hardware structures that performs better and consumenérgy than
aggressive hardware designs that operate on conventional instruction sets.

The primary contributions of this dissertation are:

e We defined the block-aware ISA that provides basic block descriptors in addition to
and separately from the actual instructions in each program. The BLISS psovide
accurate information for control-flow prediction and instruction prefetchirigout
fetching and parsing the actual instruction stream. BLISS also providessatite
mechanism for conveying compiler-generated hints at basic block granulatiity wi
out modifying the conventional instruction stream or affecting its instructadec

footprint.

e We proposed a decoupled front-end organization based on the BLISS ISA. The new
front-end replaces the BTB with a descriptor’s cache. It uses the infamatiail-
able in descriptors to improve control-flow accuracy, implement guideduictsin
prefetching, and reduce the energy used for control-flow prediction and instruction
delivery. We demonstrated that the new architecture improves upon convéstiena
perscalar designs by 20% in performance and 16% in energy. We also showed that
it outperforms hardware-only approach for decoupled front-ends by 13% and 7% for
performance and energy respectively. These benefits are robust acrossrangele

of architectural parameters.

e We evaluated the use of BLISS for embedded processor designs. We developed a
set of code size optimizations that utilize the ISA mechanism to provide coee siz

reduction of 40%. Unlike alternative proposals that tradeoff performance or energy
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consumption for code density, we showed that BLISS-based embedded designs pro-
vide 10% performance and 21% energy advantages in addition to the improved code

size.

e We developed and evaluated a set of hardware and software techniques fortow cos
front-ends for embedded systems. The optimization techniques target the size and
power consumption of instruction caches and predictor tables. We showed that the
decoupling features of BLISS and the ability to provide software hints allow for
embedded designs that use minimally sized, power efficient caching and predictor

structures, without sacrificing performance.

Future Work

We have made a great progress in evaluating and exploring the benefits of using &% BLI
ISA to assist the hardware in dealing with the front-end challenges. Hawihere are
still opportunities and challenges to follow up with. In the future, we intenckpboge the

potentials of the BLISS ISA in several ways:

e We would like to examine the use of the BLISS ISA with a variety of hardware
and software optimization techniques such as trace caches [94], hyperblocks [62],
and multiple-branch predictors [100]. Those techniques are rather orthogonal to the
BLISS ISA as one can form streams or traces on top of the basic blocks in BLISS
BLISS simplifies the hardware for all of them as it eliminates the needteztieasic

blocks on the fly.

e We showed that BLISS provides a very flexible mechanism to communicatesseftw
hints. We evaluated two different usages to improve code density and poedicti
accuracy. In the future, we would like to explore some of the other uses that we

presented in Section 3.2. In particular, we are interested in using thetbistsle
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the processor resources based on the program needs to save energy and power at the

back-end of the processor.

e With the recent shift to multi-threaded and multi-core architecturesywuld like
to explore the use of BLISS for such designs. Exploiting the BBDs for those designs
will facilitate fine-grain parallelism, allow better managementdbared caches and

resources, and help in tightly coupled multi-core/multi-thread synchroaizati

The philosophy of the BLISS ISA is to allow the software to assist the hardimare
dealing with difficult challenges. While BLISS mainly focuses on the frontsead of
the processor, it would be interesting to try to use the same philosophy to dbahweit

problems at the back-end of the processor.
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