
24 December/January 2006-2007 ACM QUEUE rants: feedback@acmqueue.com

Computer
ArchitectureFO

CU
S

UNLOCKING
CONCURRENCY

ACM QUEUE December/January 2006-2007 25 more queue: www.acmqueue.com

Multicore architectures are an inflection
point in mainstream software development
because they force developers to write paral-
lel programs. In a previous article in Queue,

Herb Sutter and James Larus pointed out, “The concur-
rency revolution is primarily a software revolution. The
difficult problem is not building multicore hardware, but
programming it in a way that lets mainstream applica-
tions benefit from the continued exponential growth
in CPU performance.” 1 In this new multicore world,
developers must write explicitly parallel applications that
can take advantage of the increasing number of cores that
each successive multicore generation will provide.

Parallel programming poses many new challenges to
the developer, one of which is synchronizing concurrent
access to shared memory by multiple threads. Program-
mers have traditionally used locks for synchronization,
but lock-based synchronization has well-known pitfalls.
Simplistic coarse-grained locking does not scale well,
while more sophisticated fine-grained locking risks intro-
ducing deadlocks and data races. Furthermore, scalable
libraries written using fine-grained locks cannot be easily
composed in a way that retains scalability and avoids
deadlock and data races.

TM (transactional memory) provides a new concur-
rency-control construct that avoids the pitfalls of locks
and significantly eases concurrent programming. It brings
to mainstream parallel programming proven concur-

rency-control concepts used for decades by the database
community. Transactional-language constructs are easy
to use and can lead to programs that scale. By avoid-
ing deadlocks and automatically allowing fine-grained
concurrency, transactional-language constructs enable the
programmer to compose scalable applications safely out
of thread-safe libraries.

Although TM is still in a research stage, it has increas-
ing momentum pushing it into the mainstream. The
recently defined HPCS (high-productivity computing
system) languages—Fortress from Sun, X10 from IBM,
and Chapel from Cray—all propose new constructs for
transactions in lieu of locks. Mainstream developers who
are early adopters of parallel programming technologies
have paid close attention to TM because of its potential
for improving programmer productivity; for example, in
his keynote address at the 2006 POPL (Principles of Pro-
gramming Languages) symposium, Tim Sweeney of Epic
Games pointed out that “manual synchronization…is
hopelessly intractable” for dealing with concurrency in
game-play simulation and claimed that “transactions are
the only plausible solution to concurrent mutable state.”2

Despite its momentum, bringing transactions into the
mainstream still faces many challenges. Even with trans-
actions, programmers must overcome parallel program-
ming challenges, such as finding and extracting parallel
tasks and mapping these tasks onto a parallel architecture
for efficient execution. In this article, we describe how

Multicore programming with transactional memory

ALI-REZA ADL-TABATABAI, INTEL
CHRISTOS KOZYRAKIS, STANFORD UNIVERSITY

 BRATIN SAHA, INTEL

26 December/January 2006-2007 ACM QUEUE rants: feedback@acmqueue.com

transactions ease some of the challenges programmers
face using locks, and we look at the challenges system
designers face implementing transactions in program-
ming languages.

PROGRAMMING WITH TRANSACTIONS
A memory transaction is a sequence of memory opera-
tions that either executes completely (commits) or has no
effect (aborts).3 Transactions are atomic, meaning they are
an all-or-nothing sequence of operations. If a transac-
tion commits, then all of its memory operations appear
to take effect as a unit, as if all the operations happened
instantaneously. If a transaction aborts, then none of its
stores appear to take effect, as if the transaction never
happened.

A transaction runs in isolation, meaning it executes as
if it’s the only operation running on the system and as if
all other threads are suspended while it runs. This means
that the effects of a memory transaction’s stores are not
visible outside the transaction until the transaction com-
mits; it also means that there are no other confl icting
stores by other transactions while it runs.

Transactions give the illusion of serial execution to the
programmer, and they give the illusion that they execute
as a single atomic step with respect to other concurrent
operations in the system. The programmer can reason
serially because no other thread will perform any confl ict-
ing operation.

Of course, a TM system doesn’t really execute transac-
tions serially; otherwise, it would defeat the purpose of
parallel programming. Instead, the system “under the
hood” allows multiple transactions to execute concur-
rently as long as it can still provide atomicity and isola-
tion for each transaction. Later in this article, we cover
how an implementation provides atomicity and isolation
while still allowing as much concurrency as possible.

The best way to provide the benefi ts of TM to the
programmer is to replace locks with a new language
construct such as atomic { B } that executes the state-
ments in block B as a transaction. A fi rst-class language
construct not only provides syntactic convenience for the
programmer, but also enables static analyses that provide
compile-time safety guarantees and enables compiler
optimizations to improve performance, which we touch
on later in this article.

Figure 1 illustrates how an atomic statement could
be introduced and used in an object-oriented language
such as Java. The fi gure shows two different implemen-
tations of a thread-safe map data structure. The code in
section A of the fi gure shows a lock-based map using
Java’s synchronized statement. The get() method simply
delegates the call to an underlying non-thread-safe map

Computer
ArchitectureFO

CU
S

class LockBasedMap implements Map
{
 Object mutex;
 Map m;
 LockBasedMap(Map m) {
 this.m = m;
 mutex = new Object();
 }
 public Object get() {
 synchronized (mutex) {
 return m.get();
 }
 }
 // other Map methods
 . . .
}

class AtomicMap implements Map
{

 Map m;
 AtomicMap(Map m) {
 this.m = m;
 }
 public Object get() {
 atomic {
 return m.get();
 }
 }
 // other Map methods
 . . .
}

Lock-based vs. Transactional Map Data Structure
A B

FIG 1

class LockBasedMap implements Map
{
 Object mutex;
 Map m;
 LockBasedMap(Map m) {
 this.m = m;
 mutex = new Object();
 }
 public Object get() {

Lock-based vs. Transactional Map Data Structure
A B
Lock-based vs. Transactional Map Data StructureLock-based vs. Transactional Map Data Structure

UNLOCKING
CONCURRENCY

ACM QUEUE December/January 2006-2007 27 more queue: www.acmqueue.com

implementation, fi rst wrapping the call in a synchronized
statement. The synchronized statement acquires a lock
represented by a mutex object held in another fi eld of the
synchronized hash map. This same mutex object guards
all the other calls to this hash map.

Using locks, the programmer has explicitly forced all
threads to execute any call through this synchronized
wrapper serially. Only one thread at a time can call any
method on this hash map. This is an example of coarse-
grained locking. It’s easy to write thread-safe programs in
this way—you simply guard all calls through an interface
with a single lock, forcing threads to execute inside the
interface one at a time.

Part B of fi gure 1 shows the same code, using transac-
tions instead of locks. Rather than using a synchronized
statement with an explicit lock object, this code uses a
new atomic statement. This atomic statement declares
that the call to get() should be done atomically, as if
it were done in a single execution step with respect to
other threads. As with coarse-grained locking, it’s easy
for the programmer to make an interface thread safe by
simply wrapping all the calls through the interface with
an atomic statement. Rather than explicitly forcing one
thread at a time to execute any call to this hash map,
however, the programmer has instead declared to the sys-
tem that the call should execute atomically. The system
now assumes responsibility for guaranteeing atomicity
and implements concurrency control under the hood.

Unlike coarse-grained locking, transactions can pro-
vide scalability as long as the data-access patterns allow
transactions to execute concurrently. The transaction
system can provide good scalability in two ways:
• It can allow concurrent read operations to the same

variable. In a parallel program, it’s safe to allow two or
more threads to read the same variable concurrently.
Basic mutual exclusion locks don’t permit concurrent
readers; to allow concurrent readers, the programmer
has to use special reader-writer locks, increasing the
program’s complexity.

• It can allow concurrent read and write operations to dif-
ferent variables. In a parallel program, it’s safe to allow
two or more threads to read and write disjoint vari-
ables concurrently. A programmer can explicitly code
fi ne-grained disjoint access concurrency by associating
different locks with different fi ne-grained data elements.
This is usually a tedious and diffi cult task, however,
and risks introducing bugs such as deadlocks and data
races. Furthermore, as we show in a later example, fi ne-
grained locking does not lend itself to modular software
engineering practices: In general, a programmer can’t
take software modules that use fi ne-grained locking and
compose them together in a manner that safely allows
concurrent access to disjoint data.

Transactions can be implemented in such a way that
they allow both concurrent read accesses, as well as con-
current accesses to disjoint, fi ne-grained data elements

(e.g., different objects or
different array elements).
Using transactions, the
programmer gets these
forms of concurrency with-
out having to code them
explicitly in the program.

It is possible to write a
concurrent hash-map data
structure using locks so
that you get both concur-
rent read accesses and con-
current accesses to disjoint
data. In fact, the recent
Java 5 libraries provide a
version of HashMap, called
ConcurrentHashMap, that
does exactly this. The code
for ConcurrentHashMap,
however, is signifi cantly
longer and more compli-
cated than the version

Performance of Transactions vs. Locks

ti
m

e
(s

)

number of threads
1

3.0

2.5

1.5

0.5

0
2 164

synch
(coarse)

synch
(fine)

atomic

8

2.0

1.0

FIG 2FIG 2

28 December/January 2006-2007 ACM QUEUE rants: feedback@acmqueue.com

using coarse-grained locking. The algorithm was designed
by threading experts and it went through a comprehen-
sive public review process before it was added to the Java
standard. In general, writing highly concurrent lock-based
code such as ConcurrentHashMap is very complicated
and bug prone and thereby introduces additional com-
plexity to the software development process.

Figure 2 compares the performance of the three differ-
ent versions of HashMap. It plots the time it takes to com-
plete a fi xed set of insert, delete, and update operations
on a 16-way SMP (symmetric multiprocessing) machine.4

As the numbers show, the performance of coarse-grained
locking does not improve as the number of processors
increases, so coarse-grained locking does not scale. The
performance of fi ne-grained locking and transactional
memory, however, improves as the number of proces-
sors increases. So for this data structure, transactions give
you the same scalability and performance as fi ne-grained
locking but with signifi cantly less programming effort.
As these numbers demonstrate, transactions delegate to
the runtime system the hard task of allowing as much
concurrency as possible.

Although highly concurrent libraries built using
fi ne-grained locking can scale well, a developer doesn’t
necessarily retain scalability after composing larger appli-
cations out of these libraries. As an example, assume the
programmer wants to perform a composite operation that
moves a value from one concurrent hash map to another,
while maintaining the invariant that threads always see
a key in either one hash map or the other, but never in
neither. Implementing this requires that the programmer

resort to coarse-grained locking, thus losing the scalability
benefi ts of a concurrent hash map (fi gure 3A). To imple-
ment a scalable solution to this problem, the program-
mer must somehow reuse the fi ne-grained locking code
hidden inside the implementation of the concurrent hash
map. Even if the programmer had access to this imple-
mentation, building a composite move operation out of
it risks introducing deadlock and data races, especially in
the presence of other composite operations.

Transactions, on the other hand, allow the program-
mer to compose applications out of libraries safely and
still achieve scalability. The programmer can simply wrap
a transaction around the composite move operation (fi g-
ure 3B). The underlying TM system will allow two threads
to perform a move operation concurrently as long as the
two threads access different hash-table buckets in both
underlying hash-map structures. So transactions allow a
programmer to take separately authored scalable software
components and compose them together into larger
components, in a way that still provides as much concur-
rency as possible but without risking deadlocks because of
concurrency control.

By providing a mechanism to roll back side effects,
transactions enable a language to provide failure atomic-
ity. In lock-based code, programmers must make sure that
exception handlers properly restore invariants before
releasing locks. This requirement often leads to compli-
cated exception-handling code because the programmer
must not only make sure that a critical section catches
and handles all exceptions, but also track the state of the
data structures used inside the critical section so that the
exception handlers can properly restore invariants. In a
transaction-based language, the atomic statement can roll
back all the side effects of the transaction (automatically
restoring invariants) if an uncaught exception propagates
out of its block. This signifi cantly reduces the amount
of exception-handling code and improves robustness, as
uncaught exceptions inside a transaction won’t compro-
mise a program’s invariants.

UNLOCKING
CONCURRENCY

Computer
ArchitectureFO

CU
S

move(Object key) {
 synchronized(mutex) {
 map2.put(key, map1.remove(key));
 }
}

move(Object key) {
 atomic {
 map2.put(key, map1.remove(key));
 }
}

Thread-safe Composite Operation
A B

FIG 3
move(Object key) {
 synchronized(mutex) {
 map2.put(key, map1.remove(key));
 }
}

Thread-safe Composite Operation
A B
Thread-safe Composite OperationThread-safe Composite Operation

ACM QUEUE December/January 2006-2007 29 more queue: www.acmqueue.com

TRANSACTIONS UNDER THE HOOD
Transactional memory transfers the burden of concur-
rency management from the application programmers to
the system designers. Under the hood, a combination of
software and hardware must guarantee that concurrent
transactions from multiple threads execute atomically
and in isolation. The key mechanisms for a TM system
are data versioning and conflict detection.

As transactions execute, the system must simultane-
ously manage multiple versions of data. A new ver-
sion, produced by one of the pending transactions, will
become globally visible only if the transaction commits.
The old version, produced by a previously committed
transaction, must be preserved in case the pending trans-
action aborts. With eager versioning, a write access within
a transaction immediately writes to memory the new data
version. The old version is buffered in an undo log. If the
transaction later commits, no further action is necessary
to make the new versions globally visible. If the transac-
tion aborts, the old versions must be restored from the
undo log, causing some additional delay. To prevent other
code from observing the uncommitted new versions (loss
of atomicity), eager versioning requires the use of locks
or an equivalent hardware mechanism throughout the
transaction duration.

Lazy versioning stores all new data versions in a write
buffer until the transaction completes. If the transaction
commits, the new versions become visible by copying
from the write buffer to the actual memory addresses. If
the transaction aborts, no further action is needed as the
new versions were isolated in the write buffer. In con-
trast to eager versioning, the lazy approach is subject to
loss of atomicity only during the commit process. The
challenges with lazy versioning, particularly for software
implementations, are the delay introduced on transaction
commits and the need to search the write buffer first on
transaction reads to access the latest data versions.

A conflict occurs when two or more transactions
operate concurrently on the same data with at least one
transaction writing a new version. Conflict detection
and resolution are essential to guarantee atomic execu-
tion. Detection relies on tracking the read set and write
set for each transaction, which, respectively, includes the
addresses it read from and wrote to during its execution.
We add an address to the read set on the first read to it
within the transaction. Similarly, we add an address to
the write set on the first write access.

Under pessimistic conflict detection, the system checks
for conflicts progressively as transactions read and write
data. Conflicts are detected early and can be handled

either by stalling one of the transactions in place or by
aborting one transaction and retrying it later. In general,
the performance of pessimistic detection depends on the
set of policies used to resolve conflicts, which are typically
referred to as contention management. A challenging issue
is the detection of recurring or circular conflicts between
multiple transactions that can block all transactions from
committing (lack of forward progress).

The alternative is optimistic conflict detection that
assumes conflicts are rare and postpones all checks until
the end of each transaction. Before committing, a transac-
tion validates that no other transaction is reading the
data it wrote or writing the data it read. The drawback to
optimistic detection is that conflicts are detected late, past
the point a transaction reads or writes the data. Hence,
stalling in place is not a viable option for conflict resolu-
tion and may waste more work as a result of aborts. On
the other hand, optimistic detection guarantees forward
progress in all cases by simply giving priority to the
committing transaction on a conflict. It also allows for
additional concurrency for reads as conflict checks for
writes are performed toward the end of each transaction.
Optimistic conflict detection does not work with eager
versioning.

The granularity of conflict detection is also an important
design parameter. Object-level detection is close to the
programmer’s reasoning in object-oriented environments.
Depending on the size of objects, it may also reduce over-
head in terms of space and time needed for conflict detec-
tion. Its drawback is that it may lead to false conflicts,
when two transactions operate on different fields within
a large object such as a multidimensional array. Word-
level detection eliminates false conflicts but requires more
space and time to track and compare read sets and write
sets. Cache-line-level detection provides a compromise
between the frequency of false conflicts and time and
space overhead. Unfortunately, cache lines and words are
not language-level entities, which makes it difficult for
programmers to optimize conflicts in their code, particu-
larly with managed runtime environments that hide data
placement from the user.

A final challenge for TM systems is the handling of
nested transactions. Nesting may occur frequently, given
the trend toward library-based programming and the fact
that transactions can be composed easily and safely. Early
systems automatically flattened nested transactions by
subsuming any inner transactions within the outermost.
While simple, the flattening approach prohibits explicit
transaction aborts, which are useful for failure atomic-
ity on exceptions. The alternative is to support partial

30 December/January 2006-2007 ACM QUEUE rants: feedback@acmqueue.com

rollback to the beginning of the nested transaction when
a confl ict or an abort occurs during its execution. It
requires that the version management and confl ict detec-
tion for a nested transaction are independent from that
for the outermost transaction. In addition to allowing
explicit aborts, such support for nesting provides a power-
ful mechanism for performance tuning and for control-
ling the interaction between transactions and runtime or
operating system services.5

It is unclear which of these options leads to an optimal
design. Further experience with prototype implemen-
tations and a wide range of applications is needed to
quantify the trade-offs among performance, ease of use,
and complexity. In some cases, a combination of design
options leads to the best performance. For example, some
TM systems use optimistic detection for reads and pes-
simistic detection for writes, while detecting confl icts at
the word level for arrays and at the object level for other
data types.6 Nevertheless, any TM system must provide
effi cient implementations for the key structures (read
set, write set, undo log, write buffer) and must facilitate
the integration with optimizing compilers, managed

runtimes, and existing libraries. The following sections
discuss how these challenges are addressed with software
and hardware techniques.

SOFTWARE TRANSACTIONAL MEMORY
STM (software transactional memory) implements trans-
actional memory entirely in software so that it runs on
stock hardware. An STM implementation uses read and
write barriers (that is, inserts instrumentation) for all
shared memory reads and writes inside transactional code
blocks. The instrumentation is inserted by a compiler and
allows the runtime system to maintain the metadata that
is required for data versioning and confl ict detection.

Figure 4 shows an example of how an atomic construct
could be translated by a compiler in an STM implementa-
tion. Part A shows an atomic code block written by the
programmer, and part B shows the compiler instrument-
ing the code in the transactional block. We use a simpli-
fi ed control fl ow to ease the presentation. The setjmp
function checkpoints the current execution context so
that the transaction can be restarted on an abort. The
stmStart function initializes the runtime data structures.
Accesses to the global variables a and b are mediated
through the barrier functions stmRead and stmWrite. The
stmCommit function completes the transaction and makes
its changes visible to other threads. The transaction gets
validated periodically during its execution, and if a con-
fl ict is detected, the transaction is aborted. On an abort,
the STM library rolls back all the updates performed by
the transaction, uses a longjmp to restore the context

saved at the beginning of
the transaction, and reex-
ecutes the transaction.

Since TM accesses need
to be instrumented, a
compiler needs to generate
an extra copy of any func-
tion that may be called
from inside a transac-
tion. This copy contains
instrumented accesses
and is invoked when the
function is called from
within a transaction. The
transactional code can be
heavily optimized by a
compiler—for example, by
eliminating barriers to the
same address or to immut-
able variables.7

UNLOCKING
CONCURRENCY

Computer
ArchitectureFO

CU
S

int foo (int arg)
{
 …
 atomic
 {
 b = a + 5;
 }
 …
}

int foo (int arg)
{
 jmpbuf env;
 …
 do {
 if (setjmp(&env) == 0) {
 stmStart();
 temp = stmRead(&a);
 temp1 = temp + 5;
 stmWrite(&b, temp1);
 stmCommit();
 break;
 }
 } while (1);
 …

Translating an Atomic Construct for STM
A User Code B Compiled Code

FIG 4

int foo (int arg)
{
 …
 atomic
 {
 b = a + 5;
 }
 …

Translating an Atomic Construct for STM
A User Code B Compiled Code
Translating an Atomic Construct for STMTranslating an Atomic Construct for STM

ACM QUEUE December/January 2006-2007 31 more queue: www.acmqueue.com

The read and write barriers operate on transaction
records, pointer-size metadata associated with every piece
of data that a transaction may access. The runtime system
also maintains a transaction descriptor for each transaction.
The descriptor contains its transaction’s state such as the
read set, the write set, and the undo log for eager version-
ing (or the write buffer for lazy versioning). The STM
runtime exports an API that allows other components of
the language runtime, such as the garbage collector, to
inspect and modify the contents of the descriptor, such
as the read set, write set, or undo log. The descriptor also
contains metadata that allows the runtime system to infer
the nesting depth at which data was read or written. This
allows the STM to partially roll back a nested transaction.8

The write barrier implements different forms of data
versioning and conflict detection for writes. For eager ver-
sioning (pessimistic writes) the write barrier acquires an
exclusive lock on the transaction record corresponding to
the updated memory location, remembers the location’s
old value in the undo log, and updates the memory loca-
tion in place. For lazy versioning (optimistic writes) the
write barrier stores the new value in the write buffer; at
commit time, the transaction acquires an exclusive lock
on all the required transaction records and copies the
values to memory.

The read barrier also operates on transaction records
for detecting conflicts and implementing pessimistic or
optimistic forms of read concurrency. For pessimistic
reads the read barrier simply acquires a read lock on the
corresponding transaction record before reading the data
item. Optimistic reads are implemented by using data ver-
sioning; the transaction record holds the version number
for the associated data.9

STM implementations detect conflicts in two cases:
the read or write barrier finds that a transaction record
is locked by some other transaction; or in a system with
optimistic read concurrency, the transaction finds, during
periodic validation, that the version number for some
transaction record in its read set has changed. On a con-
flict, the STM can use a variety of sophisticated conflict
resolution schemes such as causing transactions to back
off in a random manner, or aborting and restarting some
set of conflicting transactions.

STMs allow transactions to be integrated with the rest
of the language environment, such as a garbage collec-
tor. They allow transactions to be integrated with tools,
such as debuggers. They also allow accurate diagnostics
for performance tuning. Finally, STMs avoid baking TM
semantics prematurely into hardware.

STM implementations can incur a 40-50 percent over-

head compared with lock-based code on a single thread.
Moreover, STM implementations incur additional over-
head if they have to guarantee isolation between transac-
tional and nontransactional code. Reducing this overhead
is an active area of research. Like other forms of TM, STMs
don’t have a satisfactory way of handling irrevocable
actions such as I/O and system calls, nor can they execute
arbitrary precompiled binaries within a transaction.

HARDWARE ACCELERATION FOR TM
Transactional memory can also be implemented in
hardware, referred to as HTM (hardware transactional
memory). An HTM system requires no read or write bar-
riers within the transaction code. The hardware manages
data versions and tracks conflicts transparently as the
software performs ordinary read and write accesses. Apart
from reducing the overhead of instrumentation, HTM
systems do not require two versions of the functions used
in transactions and work with programs that call unin-
strumented library routines.

HTM systems rely on the cache hierarchy and the cache
coherence protocol to implement versioning and conflict
detection. Caches observe all reads and writes issued by
the processors, can buffer a significant amount of data,
and are fast to search because of their associative organi-
zation. All HTM systems modify the first-level caches, but
the approach extends to lower-level caches, both private
and shared.

To track the read set and write set for a transaction,
each cache line is annotated with R and W tracking bits
that are set on the first read or write to the line, respec-
tively. When a transaction commits or aborts, all tracking
bits are cleared simultaneously using a gang or flash reset
operation.

Caches implement data versioning by storing the
working set for the undo log or the data buffer for the
transactions. Before a cache write under eager versioning,
we check if this is the first update to the cache line within
this transaction (W bit reset). In this case, the cache line
and its address are added to the undo log using additional
writes to the cache. If the transaction aborts, a hardware
or software mechanism must traverse the log and restore
the old data versions.10

In lazy versioning, a cache line written by the trans-
action becomes part of the write buffer by setting its W
bit.11 If the transaction aborts, the write buffer is instanta-
neously flushed by invalidating all cache lines with the W
bit set. If the transaction commits, the data in the write
buffer becomes instantaneously visible to the rest of the
system by resetting the W bits in all cache lines.

32 December/January 2006-2007 ACM QUEUE rants: feedback@acmqueue.com

To detect conflicts, the caches must communicate
their read sets and write sets using the cache coherence
protocol implemented in multicore chips. Pessimistic
conflict detection uses the same coherence messages
exchanged in existing systems.12 On a read or write access
within a transaction, the processor will request shared
or exclusive access to the corresponding cache line. The
request is transmitted to all other processors that look up
their caches for copies of this cache line. A conflict is sig-
naled if a remote cache has a copy of the same line with
the R bit set (for an exclusive access request) or the W bit
set (for either request type). Optimistic conflict detection
operates similarly but delays the requests for exclusive
access to cache lines in the write set until the transaction
is ready to commit. A single, bulk message is sufficient to
communicate all requests.13

Even though HTM systems eliminate most sources of
overhead for transactional execution, they nevertheless
introduce additional challenges. The modifications HTM
requires in the cache hierarchy and the coherence pro-
tocol are nontrivial. Processor vendors may be reluctant
to implement them before transactional programming
becomes pervasive. Moreover, the caches used to track the
read set, write set, and write buffer for transactions have
finite capacity and may overflow on a long transaction.

Long transactions may be rare, but they still must
be handled in a manner that preserves atomicity and
isolation. Placing implementation-dependent limits on
transaction sizes is unacceptable from the programmer’s
perspective. Finally, it is challenging to handle the trans-
action state in caches for deeply nested transactions or
when interrupts, paging, or thread migration occur.14

Several proposed mechanisms virtualize the finite
resources and simplify their organization in HTM systems.
One approach is to track read sets and write sets using
signatures based on Bloom filters. The signatures provide
a compact yet inexact (pessimistic) representation of the
sets that can be easily saved, restored, or communicated
if necessary. The drawback is that the inexact representa-
tion leads to additional, false conflicts that may degrade
performance. Another approach is to map read sets,
write sets, and write buffers to virtual memory and use

hardware or firmware mechanisms to move data between
caches and memory on cache overflows.

An alternative virtualization technique is to use a
hybrid HTM-STM implementation. Transactions start
using the HTM mode. If hardware resources are exceeded,
the transactions are rolled back and restarted in the STM
mode.15 The challenge with hybrid TM is conflict detec-
tion between software and hardware transactions. To
avoid the need for two versions of the code, the software
mode of a hybrid STM system can be provided through
the operating system with conflict detection at the granu-
larity of memory pages.16

A final implementation approach is to start with an
STM system and provide a small set of key mechanisms
that targets its main sources of overhead.17 This approach
is called HASTM (hardware-accelerated STM). HASTM
introduces two basic hardware primitives: support for
detecting the first use of a cache line, and support for
detecting possible remote updates to a cache line. The
two primitives can significantly reduce the read barrier in
general instrumentation overhead and the read-set valida-
tion time in the case of optimistic reads.

CONCLUSIONS
Composing scalable parallel applications using locks is
difficult and full of pitfalls. Transactional memory avoids
many of these pitfalls and allows the programmer to
compose applications safely and in a manner that scales.
Transactions improve the programmer’s productivity by
shifting the difficult concurrency-control problems from
the application developer to the system designer.

In the past three years, TM has attracted a great deal
of research activity, resulting in significant progress.18
Nevertheless, before transactions can make it into the
mainstream as first-class language constructs, there are
many open challenges to address.

Developers will want to protect their investments
in existing software, so transactions must be added
incrementally to existing languages, and tools must be
developed that help migrate existing code from locks to
transactions. This means transactions must compose with
existing concurrency features such as locks and threads.
System calls and I/O must be allowed inside transactions,
and transactional memory must integrate with other
transactional resources in the environment. Debugging
and tuning tools for transactional code are also chal-
lenges, as transactions still require tuning to achieve
scalability and concurrency bugs are still possible using
transactions.

Transactions are not a panacea for all parallel program-

UNLOCKING
CONCURRENCY

Computer
ArchitectureFO

CU
S

ACM QUEUE December/January 2006-2007 33 more queue: www.acmqueue.com

ming challenges. Additional technologies are needed to
address issues such as task decomposition and mapping.
Nevertheless, transactions take a concrete step toward
making parallel programming easier. This is a step that
will clearly benefit from new software and hardware
technologies. Q

AUTHORS’ NOTE
For extended coverage on the topic, refer to the slides
from the PACT ’06 (Parallel Architectures and Compila-
tion Techniques) tutorial, “Transactional Programming in
a Multicore Environment,” available at http://csl.stanford.
edu/~christos/publications/tm_tutorial_pact2006.zip.

REFERENCES
1. Sutter, H., Larus, J. 2005. Software and the concur-

rency revolution. ACM Queue 3 (7).
2. Sweeney, T. 2006. The next mainstream programming

languages: A game developer’s perspective. Keynote
speech, Symposium on Principles of Programming
Languages. Charleston, SC (January).

3. Herlihy, M., Moss, E. 1993. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium
on Computer Architecture. San Diego, CA (May).

4. Adl-Tabatabai, A., Lewis, B.T., Menon, V.S., Murphy,
B.M., Saha, B., Shpeisman, T. 2006. Compiler and
runtime support for efficient software transactional
memory. In Proceedings of the Conference on Program-
ming Language Design and Implementation. Ottawa,
Canada (June).

5. A. McDonald, A., Chung, J., Carlstrom, B.D., Cao
Minh, C., Chafi, H., Kozyrakis, C., Olukotun, K. 2006.
Architectural semantics for practical transactional
memory. In Proceedings of the 33rd International Sympo-
sium on Computer Architecture. Boston, MA (June).

6. Saha, B., Adl-Tabatabai, A., Hudson, R., Cao Minh, C.,
Hertzberg, B. 2006. McRT-STM: A high-performance
software transactional memory system for a multicore
runtime. In Proceedings of the Symposium on Principles
and Practice of Parallel Programming. New York, NY
(March).

7. See reference 4.
8. See reference 6.
9. See reference 6.
10. Moore, K., Bobba, J., Moravan, M., Hill, M., Wood,

D. 2006. LogTM: Log-based transactional memory.
In Proceedings of the 12th International Conference on
High-Performance Computer Architecture. Austin, TX
(February).

11. Hammond, L., Carlstrom, B., Wong, V., Chen, M.,
Kozyrakis, C., Olukotun, K. 2004. Transactional
coherence and consistency: Simplifying parallel
hardware and software. IEEE Micro 24 (6).

12. See reference 10.
13. See reference 11.
14. Chung, J., Cao Minh, C., McDonald, A., Skare, T.,

Chafi, H., Carlstrom, B., Kozyrakis, C., Olukotun, K.
2006. Tradeoffs in transactional memory virtualiza-
tion. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and
Operating Systems. San Jose, CA (October).

15. Damron, P., Fedorova, A., Lev, Y., Luchangco, V.,
Moir, M., Nussbaum, D. Hybrid transactional mem-
ory. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and
Operating Systems. San Jose, CA (October).

16. See reference 14.
17. Saha, B., Adl-Tabatabai, A., Jacobson, Q. 2006. Archi-

tectural support for software transactional memory.
In Proceedings of the 39th International Symposium on
Microarchitecture. Orlando, FL (December).

18. Transactional Memory Online Bibliography; http://
www.cs.wisc.edu/trans-memory/biblio/.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

ALI-REZA ADL-TABATABAI is a principal engineer in the
Programming Systems Lab at Intel Corporation. He leads a
team developing compilers and scalable runtimes for future
Intel architectures. His current research concentrates on lan-
guage features supporting parallel programming for future
multicore architectures.
CHRISTOS KOZYRAKIS (http://csl.stanford.edu/~christos)
is an assistant professor of electrical engineering and com-
puter science at Stanford University. His research focuses
on architectures, compilers, and programming models for
parallel computer systems. He is working on transactional
memory techniques that can greatly simplify parallel pro-
gramming for the average developer.
BRATIN SAHA is a senior staff researcher in the Program-
ming Systems Lab at Intel Corporation. He is one of the
architects for synchronization and locking in the next-gen-
eration IA-32 processors. He is involved in the design and
implementation of a highly scalable runtime for multicore
processors. As a part of this he has been looking at language
features, such as transitional memory, to ease parallel pro-
gramming.
 © 2006 ACM 1542-7730/06/1200 $5.00

