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Multicore architectures are an inflection 
point in mainstream software development 
because they force developers to write paral-
lel programs. In a previous article in Queue, 

Herb Sutter and James Larus pointed out, “The concur-
rency revolution is primarily a software revolution. The 
difficult problem is not building multicore hardware, but 
programming it in a way that lets mainstream applica-
tions benefit from the continued exponential growth 
in CPU performance.” 1 In this new multicore world, 
developers must write explicitly parallel applications that 
can take advantage of the increasing number of cores that 
each successive multicore generation will provide.

Parallel programming poses many new challenges to 
the developer, one of which is synchronizing concurrent 
access to shared memory by multiple threads. Program-
mers have traditionally used locks for synchronization, 
but lock-based synchronization has well-known pitfalls. 
Simplistic coarse-grained locking does not scale well, 
while more sophisticated fine-grained locking risks intro-
ducing deadlocks and data races. Furthermore, scalable 
libraries written using fine-grained locks cannot be easily 
composed in a way that retains scalability and avoids 
deadlock and data races.

TM (transactional memory) provides a new concur-
rency-control construct that avoids the pitfalls of locks 
and significantly eases concurrent programming. It brings 
to mainstream parallel programming proven concur-

rency-control concepts used for decades by the database 
community. Transactional-language constructs are easy 
to use and can lead to programs that scale. By avoid-
ing deadlocks and automatically allowing fine-grained 
concurrency, transactional-language constructs enable the 
programmer to compose scalable applications safely out 
of thread-safe libraries. 

Although TM is still in a research stage, it has increas-
ing momentum pushing it into the mainstream. The 
recently defined HPCS (high-productivity computing 
system) languages—Fortress from Sun, X10 from IBM, 
and Chapel from Cray—all propose new constructs for 
transactions in lieu of locks. Mainstream developers who 
are early adopters of parallel programming technologies 
have paid close attention to TM because of its potential 
for improving programmer productivity; for example, in 
his keynote address at the 2006 POPL (Principles of Pro-
gramming Languages) symposium, Tim Sweeney of Epic 
Games pointed out that “manual synchronization…is 
hopelessly intractable” for dealing with concurrency in 
game-play simulation and claimed that “transactions are 
the only plausible solution to concurrent mutable state.”2

Despite its momentum, bringing transactions into the 
mainstream still faces many challenges. Even with trans-
actions, programmers must overcome parallel program-
ming challenges, such as finding and extracting parallel 
tasks and mapping these tasks onto a parallel architecture 
for efficient execution. In this article, we describe how 
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transactions ease some of the challenges programmers 
face using locks, and we look at the challenges system 
designers face implementing transactions in program-
ming languages.

PROGRAMMING WITH TRANSACTIONS
A memory transaction is a sequence of memory opera-
tions that either executes completely (commits) or has no 
effect (aborts).3 Transactions are atomic, meaning they are 
an all-or-nothing sequence of operations. If a transac-
tion commits, then all of its memory operations appear 
to take effect as a unit, as if all the operations happened 
instantaneously. If a transaction aborts, then none of its 
stores appear to take effect, as if the transaction never 
happened.

A transaction runs in isolation, meaning it executes as 
if it’s the only operation running on the system and as if 
all other threads are suspended while it runs. This means 
that the effects of a memory transaction’s stores are not 
visible outside the transaction until the transaction com-
mits; it also means that there are no other confl icting 
stores by other transactions while it runs.

Transactions give the illusion of serial execution to the 
programmer, and they give the illusion that they execute 
as a single atomic step with respect to other concurrent 
operations in the system. The programmer can reason 
serially because no other thread will perform any confl ict-
ing operation. 

Of course, a TM system doesn’t really execute transac-
tions serially; otherwise, it would defeat the purpose of 
parallel programming. Instead, the system “under the 
hood” allows multiple transactions to execute concur-
rently as long as it can still provide atomicity and isola-
tion for each transaction. Later in this article, we cover 
how an implementation provides atomicity and isolation 
while still allowing as much concurrency as possible.

The best way to provide the benefi ts of TM to the 
programmer is to replace locks with a new language 
construct such as atomic { B } that executes the state-
ments in block B as a transaction. A fi rst-class language 
construct not only provides syntactic convenience for the 
programmer, but also enables static analyses that provide 
compile-time safety guarantees and enables compiler 
optimizations to improve performance, which we touch 
on later in this article. 

Figure 1 illustrates how an atomic statement could 
be introduced and used in an object-oriented language 
such as Java. The fi gure shows two different implemen-
tations of a thread-safe map data structure. The code in 
section A of the fi gure shows a lock-based map using 
Java’s synchronized statement. The get() method simply 
delegates the call to an underlying non-thread-safe map 
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class LockBasedMap implements Map
{
    Object mutex;
    Map m;
    LockBasedMap(Map m) {
        this.m = m;
        mutex = new Object();
    }
    public Object get() {
        synchronized (mutex) {
            return m.get();
        }
    }
    // other Map methods
    . . .
} 

class AtomicMap implements Map
{
    
    Map m;
    AtomicMap(Map m) {
        this.m = m;
    }
    public Object get() {
        atomic {
            return m.get();
        }
    }
    // other Map methods
    . . .
}

Lock-based vs. Transactional Map Data Structure
A B

FIG 1 
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implementation, fi rst wrapping the call in a synchronized 
statement. The synchronized statement acquires a lock 
represented by a mutex object held in another fi eld of the 
synchronized hash map. This same mutex object guards 
all the other calls to this hash map. 

Using locks, the programmer has explicitly forced all 
threads to execute any call through this synchronized 
wrapper serially. Only one thread at a time can call any 
method on this hash map. This is an example of coarse-
grained locking. It’s easy to write thread-safe programs in 
this way—you simply guard all calls through an interface 
with a single lock, forcing threads to execute inside the 
interface one at a time.

Part B of fi gure 1 shows the same code, using transac-
tions instead of locks. Rather than using a synchronized 
statement with an explicit lock object, this code uses a 
new atomic statement. This atomic statement declares 
that the call to get() should be done atomically, as if 
it were done in a single execution step with respect to 
other threads. As with coarse-grained locking, it’s easy 
for the programmer to make an interface thread safe by 
simply wrapping all the calls through the interface with 
an atomic statement. Rather than explicitly forcing one 
thread at a time to execute any call to this hash map, 
however, the programmer has instead declared to the sys-
tem that the call should execute atomically. The system 
now assumes responsibility for guaranteeing atomicity 
and implements concurrency control under the hood.

Unlike coarse-grained locking, transactions can pro-
vide scalability as long as the data-access patterns allow 
transactions to execute concurrently. The transaction 
system can provide good scalability in two ways:
•  It can allow concurrent read operations to the same 

variable. In a parallel program, it’s safe to allow two or 
more threads to read the same variable concurrently. 
Basic mutual exclusion locks don’t permit concurrent 
readers; to allow concurrent readers, the programmer 
has to use special reader-writer locks, increasing the 
program’s complexity. 

•  It can allow concurrent read and write operations to dif-
ferent variables. In a parallel program, it’s safe to allow 
two or more threads to read and write disjoint vari-
ables concurrently. A programmer can explicitly code 
fi ne-grained disjoint access concurrency by associating 
different locks with different fi ne-grained data elements. 
This is usually a tedious and diffi cult task, however, 
and risks introducing bugs such as deadlocks and data 
races. Furthermore, as we show in a later example, fi ne-
grained locking does not lend itself to modular software 
engineering practices: In general, a programmer can’t 
take software modules that use fi ne-grained locking and 
compose them together in a manner that safely allows 
concurrent access to disjoint data. 

Transactions can be implemented in such a way that 
they allow both concurrent read accesses, as well as con-
current accesses to disjoint, fi ne-grained data elements 

(e.g., different objects or 
different array elements). 
Using transactions, the 
programmer gets these 
forms of concurrency with-
out having to code them 
explicitly in the program.

It is possible to write a 
concurrent hash-map data 
structure using locks so 
that you get both concur-
rent read accesses and con-
current accesses to disjoint 
data. In fact, the recent 
Java 5 libraries provide a 
version of HashMap, called 
ConcurrentHashMap, that 
does exactly this. The code 
for ConcurrentHashMap, 
however, is signifi cantly 
longer and more compli-
cated than the version 
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using coarse-grained locking. The algorithm was designed 
by threading experts and it went through a comprehen-
sive public review process before it was added to the Java 
standard. In general, writing highly concurrent lock-based 
code such as ConcurrentHashMap is very complicated 
and bug prone and thereby introduces additional com-
plexity to the software development process.

Figure 2 compares the performance of the three differ-
ent versions of HashMap. It plots the time it takes to com-
plete a fi xed set of insert, delete, and update operations 
on a 16-way SMP (symmetric multiprocessing) machine.4 

As the numbers show, the performance of coarse-grained 
locking does not improve as the number of processors 
increases, so coarse-grained locking does not scale. The 
performance of fi ne-grained locking and transactional 
memory, however, improves as the number of proces-
sors increases. So for this data structure, transactions give 
you the same scalability and performance as fi ne-grained 
locking but with signifi cantly less programming effort. 
As these numbers demonstrate, transactions delegate to 
the runtime system the hard task of allowing as much 
concurrency as possible.

Although highly concurrent libraries built using 
fi ne-grained locking can scale well, a developer doesn’t 
necessarily retain scalability after composing larger appli-
cations out of these libraries. As an example, assume the 
programmer wants to perform a composite operation that 
moves a value from one concurrent hash map to another, 
while maintaining the invariant that threads always see 
a key in either one hash map or the other, but never in 
neither. Implementing this requires that the programmer 

resort to coarse-grained locking, thus losing the scalability 
benefi ts of a concurrent hash map (fi gure 3A). To imple-
ment a scalable solution to this problem, the program-
mer must somehow reuse the fi ne-grained locking code 
hidden inside the implementation of the concurrent hash 
map. Even if the programmer had access to this imple-
mentation, building a composite move operation out of 
it risks introducing deadlock and data races, especially in 
the presence of other composite operations.

Transactions, on the other hand, allow the program-
mer to compose applications out of libraries safely and 
still achieve scalability. The programmer can simply wrap 
a transaction around the composite move operation (fi g-
ure 3B). The underlying TM system will allow two threads 
to perform a move operation concurrently as long as the 
two threads access different hash-table buckets in both 
underlying hash-map structures. So transactions allow a 
programmer to take separately authored scalable software 
components and compose them together into larger 
components, in a way that still provides as much concur-
rency as possible but without risking deadlocks because of 
concurrency control. 

By providing a mechanism to roll back side effects, 
transactions enable a language to provide failure atomic-
ity. In lock-based code, programmers must make sure that 
exception handlers properly restore invariants before 
releasing locks. This requirement often leads to compli-
cated exception-handling code because the programmer 
must not only make sure that a critical section catches 
and handles all exceptions, but also track the state of the 
data structures used inside the critical section so that the 
exception handlers can properly restore invariants. In a 
transaction-based language, the atomic statement can roll 
back all the side effects of the transaction (automatically 
restoring invariants) if an uncaught exception propagates 
out of its block. This signifi cantly reduces the amount 
of exception-handling code and improves robustness, as 
uncaught exceptions inside a transaction won’t compro-
mise a program’s invariants. 
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move(Object key) {
    synchronized(mutex) {
        map2.put(key, map1.remove(key));
    }
}

move(Object key) {
    atomic {
        map2.put(key, map1.remove(key));
    }
}

Thread-safe Composite Operation
A B

FIG 3 
move(Object key) {
    synchronized(mutex) {
        map2.put(key, map1.remove(key));
    }
}

Thread-safe Composite Operation
A B
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TRANSACTIONS UNDER THE HOOD
Transactional memory transfers the burden of concur-
rency management from the application programmers to 
the system designers. Under the hood, a combination of 
software and hardware must guarantee that concurrent 
transactions from multiple threads execute atomically 
and in isolation. The key mechanisms for a TM system 
are data versioning and conflict detection. 

As transactions execute, the system must simultane-
ously manage multiple versions of data. A new ver-
sion, produced by one of the pending transactions, will 
become globally visible only if the transaction commits. 
The old version, produced by a previously committed 
transaction, must be preserved in case the pending trans-
action aborts. With eager versioning, a write access within 
a transaction immediately writes to memory the new data 
version. The old version is buffered in an undo log. If the 
transaction later commits, no further action is necessary 
to make the new versions globally visible. If the transac-
tion aborts, the old versions must be restored from the 
undo log, causing some additional delay. To prevent other 
code from observing the uncommitted new versions (loss 
of atomicity), eager versioning requires the use of locks 
or an equivalent hardware mechanism throughout the 
transaction duration. 

Lazy versioning stores all new data versions in a write 
buffer until the transaction completes. If the transaction 
commits, the new versions become visible by copying 
from the write buffer to the actual memory addresses. If 
the transaction aborts, no further action is needed as the 
new versions were isolated in the write buffer. In con-
trast to eager versioning, the lazy approach is subject to 
loss of atomicity only during the commit process. The 
challenges with lazy versioning, particularly for software 
implementations, are the delay introduced on transaction 
commits and the need to search the write buffer first on 
transaction reads to access the latest data versions.

A conflict occurs when two or more transactions 
operate concurrently on the same data with at least one 
transaction writing a new version. Conflict detection 
and resolution are essential to guarantee atomic execu-
tion. Detection relies on tracking the read set and write 
set for each transaction, which, respectively, includes the 
addresses it read from and wrote to during its execution. 
We add an address to the read set on the first read to it 
within the transaction. Similarly, we add an address to 
the write set on the first write access.

Under pessimistic conflict detection, the system checks 
for conflicts progressively as transactions read and write 
data. Conflicts are detected early and can be handled 

either by stalling one of the transactions in place or by 
aborting one transaction and retrying it later. In general, 
the performance of pessimistic detection depends on the 
set of policies used to resolve conflicts, which are typically 
referred to as contention management. A challenging issue 
is the detection of recurring or circular conflicts between 
multiple transactions that can block all transactions from 
committing (lack of forward progress). 

The alternative is optimistic conflict detection that 
assumes conflicts are rare and postpones all checks until 
the end of each transaction. Before committing, a transac-
tion validates that no other transaction is reading the 
data it wrote or writing the data it read. The drawback to 
optimistic detection is that conflicts are detected late, past 
the point a transaction reads or writes the data. Hence, 
stalling in place is not a viable option for conflict resolu-
tion and may waste more work as a result of aborts. On 
the other hand, optimistic detection guarantees forward 
progress in all cases by simply giving priority to the 
committing transaction on a conflict. It also allows for 
additional concurrency for reads as conflict checks for 
writes are performed toward the end of each transaction. 
Optimistic conflict detection does not work with eager 
versioning. 

The granularity of conflict detection is also an important 
design parameter. Object-level detection is close to the 
programmer’s reasoning in object-oriented environments. 
Depending on the size of objects, it may also reduce over-
head in terms of space and time needed for conflict detec-
tion. Its drawback is that it may lead to false conflicts, 
when two transactions operate on different fields within 
a large object such as a multidimensional array. Word-
level detection eliminates false conflicts but requires more 
space and time to track and compare read sets and write 
sets. Cache-line-level detection provides a compromise 
between the frequency of false conflicts and time and 
space overhead. Unfortunately, cache lines and words are 
not language-level entities, which makes it difficult for 
programmers to optimize conflicts in their code, particu-
larly with managed runtime environments that hide data 
placement from the user. 

A final challenge for TM systems is the handling of 
nested transactions. Nesting may occur frequently, given 
the trend toward library-based programming and the fact 
that transactions can be composed easily and safely. Early 
systems automatically flattened nested transactions by 
subsuming any inner transactions within the outermost. 
While simple, the flattening approach prohibits explicit 
transaction aborts, which are useful for failure atomic-
ity on exceptions. The alternative is to support partial 
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rollback to the beginning of the nested transaction when 
a confl ict or an abort occurs during its execution. It 
requires that the version management and confl ict detec-
tion for a nested transaction are independent from that 
for the outermost transaction. In addition to allowing 
explicit aborts, such support for nesting provides a power-
ful mechanism for performance tuning and for control-
ling the interaction between transactions and runtime or 
operating system services.5 

It is unclear which of these options leads to an optimal 
design. Further experience with prototype implemen-
tations and a wide range of applications is needed to 
quantify the trade-offs among performance, ease of use, 
and complexity. In some cases, a combination of design 
options leads to the best performance. For example, some 
TM systems use optimistic detection for reads and pes-
simistic detection for writes, while detecting confl icts at 
the word level for arrays and at the object level for other 
data types.6  Nevertheless, any TM system must provide 
effi cient implementations for the key structures (read 
set, write set, undo log, write buffer) and must facilitate 
the integration with optimizing compilers, managed 

runtimes, and existing libraries. The following sections 
discuss how these challenges are addressed with software 
and hardware techniques. 

SOFTWARE TRANSACTIONAL MEMORY
STM (software transactional memory) implements trans-
actional memory entirely in software so that it runs on 
stock hardware. An STM implementation uses read and 
write barriers (that is, inserts instrumentation) for all 
shared memory reads and writes inside transactional code 
blocks. The instrumentation is inserted by a compiler and 
allows the runtime system to maintain the metadata that 
is required for data versioning and confl ict detection. 

Figure 4 shows an example of how an atomic construct 
could be translated by a compiler in an STM implementa-
tion. Part A shows an atomic code block written by the 
programmer, and part B shows the compiler instrument-
ing the code in the transactional block. We use a simpli-
fi ed control fl ow to ease the presentation. The setjmp
function checkpoints the current execution context so 
that the transaction can be restarted on an abort. The 
stmStart function initializes the runtime data structures. 
Accesses to the global variables a and b are mediated 
through the barrier functions stmRead and stmWrite. The 
stmCommit function completes the transaction and makes 
its changes visible to other threads. The transaction gets 
validated periodically during its execution, and if a con-
fl ict is detected, the transaction is aborted. On an abort, 
the STM library rolls back all the updates performed by 
the transaction, uses a longjmp to restore the context 

saved at the beginning of 
the transaction, and reex-
ecutes the transaction.   

Since TM accesses need 
to be instrumented, a 
compiler needs to generate 
an extra copy of any func-
tion that may be called 
from inside a transac-
tion. This copy contains 
instrumented accesses 
and is invoked when the 
function is called from 
within a transaction. The 
transactional code can be 
heavily optimized by a 
compiler—for example, by 
eliminating barriers to the 
same address or to immut-
able variables.7 
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int foo (int arg) 
{
  …
  atomic 
  {
    b = a + 5;
  }
  …
}

int foo (int arg)
{
  jmpbuf env;
  …
  do {
    if (setjmp(&env) == 0) {
     stmStart();
       temp = stmRead(&a);
       temp1 = temp + 5;
       stmWrite(&b, temp1);
     stmCommit();
     break;
    }
  } while (1);
  …

Translating an Atomic Construct for STM
A  User Code B  Compiled Code

FIG 4 
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The read and write barriers operate on transaction 
records, pointer-size metadata associated with every piece 
of data that a transaction may access. The runtime system 
also maintains a transaction descriptor for each transaction. 
The descriptor contains its transaction’s state such as the 
read set, the write set, and the undo log for eager version-
ing (or the write buffer for lazy versioning). The STM 
runtime exports an API that allows other components of 
the language runtime, such as the garbage collector, to 
inspect and modify the contents of the descriptor, such 
as the read set, write set, or undo log. The descriptor also 
contains metadata that allows the runtime system to infer 
the nesting depth at which data was read or written. This 
allows the STM to partially roll back a nested transaction.8 

The write barrier implements different forms of data 
versioning and conflict detection for writes. For eager ver-
sioning (pessimistic writes) the write barrier acquires an 
exclusive lock on the transaction record corresponding to 
the updated memory location, remembers the location’s 
old value in the undo log, and updates the memory loca-
tion in place. For lazy versioning (optimistic writes) the 
write barrier stores the new value in the write buffer; at 
commit time, the transaction acquires an exclusive lock 
on all the required transaction records and copies the 
values to memory. 

The read barrier also operates on transaction records 
for detecting conflicts and implementing pessimistic or 
optimistic forms of read concurrency. For pessimistic 
reads the read barrier simply acquires a read lock on the 
corresponding transaction record before reading the data 
item. Optimistic reads are implemented by using data ver-
sioning; the transaction record holds the version number 
for the associated data.9 

STM implementations detect conflicts in two cases: 
the read or write barrier finds that a transaction record 
is locked by some other transaction; or in a system with 
optimistic read concurrency, the transaction finds, during 
periodic validation, that the version number for some 
transaction record in its read set has changed. On a con-
flict, the STM can use a variety of sophisticated conflict 
resolution schemes such as causing transactions to back 
off in a random manner, or aborting and restarting some 
set of conflicting transactions. 

STMs allow transactions to be integrated with the rest 
of the language environment, such as a garbage collec-
tor. They allow transactions to be integrated with tools, 
such as debuggers. They also allow accurate diagnostics 
for performance tuning. Finally, STMs avoid baking TM 
semantics prematurely into hardware.

STM implementations can incur a 40-50 percent over-

head compared with lock-based code on a single thread. 
Moreover, STM implementations incur additional over-
head if they have to guarantee isolation between transac-
tional and nontransactional code. Reducing this overhead 
is an active area of research. Like other forms of TM, STMs 
don’t have a satisfactory way of handling irrevocable 
actions such as I/O and system calls, nor can they execute 
arbitrary precompiled binaries within a transaction.

HARDWARE ACCELERATION FOR TM
Transactional memory can also be implemented in 
hardware, referred to as HTM (hardware transactional 
memory). An HTM system requires no read or write bar-
riers within the transaction code. The hardware manages 
data versions and tracks conflicts transparently as the 
software performs ordinary read and write accesses. Apart 
from reducing the overhead of instrumentation, HTM 
systems do not require two versions of the functions used 
in transactions and work with programs that call unin-
strumented library routines. 

HTM systems rely on the cache hierarchy and the cache 
coherence protocol to implement versioning and conflict 
detection. Caches observe all reads and writes issued by 
the processors, can buffer a significant amount of data, 
and are fast to search because of their associative organi-
zation. All HTM systems modify the first-level caches, but 
the approach extends to lower-level caches, both private 
and shared.

To track the read set and write set for a transaction, 
each cache line is annotated with R and W tracking bits 
that are set on the first read or write to the line, respec-
tively. When a transaction commits or aborts, all tracking 
bits are cleared simultaneously using a gang or flash reset 
operation. 

Caches implement data versioning by storing the 
working set for the undo log or the data buffer for the 
transactions. Before a cache write under eager versioning, 
we check if this is the first update to the cache line within 
this transaction (W bit reset). In this case, the cache line 
and its address are added to the undo log using additional 
writes to the cache. If the transaction aborts, a hardware 
or software mechanism must traverse the log and restore 
the old data versions.10 

In lazy versioning, a cache line written by the trans-
action becomes part of the write buffer by setting its W 
bit.11 If the transaction aborts, the write buffer is instanta-
neously flushed by invalidating all cache lines with the W 
bit set. If the transaction commits, the data in the write 
buffer becomes instantaneously visible to the rest of the 
system by resetting the W bits in all cache lines.  
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To detect conflicts, the caches must communicate 
their read sets and write sets using the cache coherence 
protocol implemented in multicore chips. Pessimistic 
conflict detection uses the same coherence messages 
exchanged in existing systems.12 On a read or write access 
within a transaction, the processor will request shared 
or exclusive access to the corresponding cache line. The 
request is transmitted to all other processors that look up 
their caches for copies of this cache line. A conflict is sig-
naled if a remote cache has a copy of the same line with 
the R bit set (for an exclusive access request) or the W bit 
set (for either request type). Optimistic conflict detection 
operates similarly but delays the requests for exclusive 
access to cache lines in the write set until the transaction 
is ready to commit. A single, bulk message is sufficient to 
communicate all requests.13  

Even though HTM systems eliminate most sources of 
overhead for transactional execution, they nevertheless  
introduce additional challenges. The modifications HTM 
requires in the cache hierarchy and the coherence pro-
tocol are nontrivial. Processor vendors may be reluctant 
to implement them before transactional programming 
becomes pervasive. Moreover, the caches used to track the 
read set, write set, and write buffer for transactions have 
finite capacity and may overflow on a long transaction. 

Long transactions may be rare, but they still must 
be handled in a manner that preserves atomicity and 
isolation. Placing implementation-dependent limits on 
transaction sizes is unacceptable from the programmer’s 
perspective. Finally, it is challenging to handle the trans-
action state in caches for deeply nested transactions or 
when interrupts, paging, or thread migration occur.14

Several proposed mechanisms virtualize the finite 
resources and simplify their organization in HTM systems. 
One approach is to track read sets and write sets using 
signatures based on Bloom filters. The signatures provide 
a compact yet inexact (pessimistic) representation of the 
sets that can be easily saved, restored, or communicated 
if necessary. The drawback is that the inexact representa-
tion leads to additional, false conflicts that may degrade 
performance. Another approach is to map read sets, 
write sets, and write buffers to virtual memory and use 

hardware or firmware mechanisms to move data between 
caches and memory on cache overflows. 

An alternative virtualization technique is to use a 
hybrid HTM-STM implementation. Transactions start 
using the HTM mode. If hardware resources are exceeded, 
the transactions are rolled back and restarted in the STM 
mode.15 The challenge with hybrid TM is conflict detec-
tion between software and hardware transactions. To 
avoid the need for two versions of the code, the software 
mode of a hybrid STM system can be provided through 
the operating system with conflict detection at the granu-
larity of memory pages.16 

A final implementation approach is to start with an 
STM system and provide a small set of key mechanisms 
that targets its main sources of overhead.17 This approach 
is called HASTM (hardware-accelerated STM). HASTM 
introduces two basic hardware primitives: support for 
detecting the first use of a cache line, and support for 
detecting possible remote updates to a cache line. The 
two primitives can significantly reduce the read barrier in 
general instrumentation overhead and the read-set valida-
tion time in the case of optimistic reads. 

CONCLUSIONS
Composing scalable parallel applications using locks is 
difficult and full of pitfalls. Transactional memory avoids 
many of these pitfalls and allows the programmer to 
compose applications safely and in a manner that scales. 
Transactions improve the programmer’s productivity by 
shifting the difficult concurrency-control problems from 
the application developer to the system designer. 

In the past three years, TM has attracted a great deal 
of research activity, resulting in significant progress.18 
Nevertheless, before transactions can make it into the 
mainstream as first-class language constructs, there are 
many open challenges to address. 

Developers will want to protect their investments 
in existing software, so transactions must be added 
incrementally to existing languages, and tools must be 
developed that help migrate existing code from locks to 
transactions. This means transactions must compose with 
existing concurrency features such as locks and threads. 
System calls and I/O must be allowed inside transactions, 
and transactional memory must integrate with other 
transactional resources in the environment. Debugging 
and tuning tools for transactional code are also chal-
lenges, as transactions still require tuning to achieve 
scalability and concurrency bugs are still possible using 
transactions. 

Transactions are not a panacea for all parallel program-
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ming challenges. Additional technologies are needed to 
address issues such as task decomposition and mapping. 
Nevertheless, transactions take a concrete step toward 
making parallel programming easier. This is a step that 
will clearly benefit from new software and hardware 
technologies. Q

AUTHORS’ NOTE 
For extended coverage on the topic, refer to the slides 
from the PACT ’06 (Parallel Architectures and Compila-
tion Techniques) tutorial, “Transactional Programming in 
a Multicore Environment,” available at http://csl.stanford.
edu/~christos/publications/tm_tutorial_pact2006.zip. 
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