Library-based Prefetching for Pointer-intensive Applications

Varun Malhotra and Christos Kozyrakis
Computer Systems Laboratory
Stanford University
{vsagar@gmail.com, christos@ee.stanford}edu

February 2006

Abstract

Processor speed has been improving faster than memoryclatien over two decades. Thus, an increased
portion of execution time is spent stalling on loads, waijtior data from the memory hierarchy. Prefetching is an
effective mechanism to hide memory latency for applicatisith low temporal locality. However, existing hard-
ware prefetching techniques work well for array-based paogs but not effective effective for pointer-intensive
applications. Existing software prefetching techniqueguire recompilation or even modifications to application
code before running on a new system with different hardwararpeters.

In this paper, we exploit two opportunities to address thialienge. First, chip-multiprocessors (CMPs) are
quickly becoming the norm, providing spare processors fefgiching tasks. Second, productivity reasons en-
courage programmers to make frequent use of standard orlapgdata-structure libraries. Hence, we propose a
novel software prefetching scheme for pointer-based data:tures in which prefetching is performed by a helper
thread included in the data-structure library code. Thefpteh thread runs on a spare processor and relies on
the library’s knowledge of the data-structure type and ascpattern to perform effective prefetching. All the
development effort for prefetching is concentrated in theaty code and is done once. The user application is
not modified at all, as the library APl remains the same. Wdémpent and evaluate the library-based prefetch
scheme. We demonstrate that it performs accurate prefgi@nd leads to an average reduction in execution time
of 26% for pointer-intensive benchmarks with appreciable mgnsball time. Furthermore, we show that, using
dynamic adaptation, the benefits from library-based pofiely are robust across a range of memory system and
application parameters without the need for recompilation

1 Introduction

Fundamental trends in the semiconductor industry are rgubke gap between memory and processor speeds
to increase at a rapid pace. Cache hierarchies with mulégkds can hide memory access latency for programs
with goodtemporalor spatiallocality. However, caches are ineffective for applicasiavith poor locality or large
working sets. For such cases, data prefetching can rede@@giact of memory latency by initiating memory fetch
well in advance so that they overlap with useful computatiBnefetching works well for array-based programs
where spatial locality makes it easy to predict future asegsHardware prefetching is available in all processors
today. Itis highly effective for array-based computatibat has limited applicability to pointer-intensive progra
which access heap data in irregular patterns.

The goal of this paper is to improve the performance of poimiensive, memory-bound applications through
prefetching. Previous attempts have used elaborate heedwefetching techniques that make specific assump-
tions about data-structure organization and access patteat cannot be changed after chip fabrication. Compiler-

based prefetching has been limited by the inaccuracy ot giainter analysis. Moreover, recompilation is nec-
essary before we run the application on a new system withréifit memory characteristics. Preexecution-based
prefetching is also limited by the dependence on profilifgrimation on the specific system parameters and
datasets used in the profiling runs. In contrast, we propasdtaare prefetching technique that does not require
significant hardware support, does not rely on pointer aiglyand provides robust results for a range of system
parameters.

Our approach is based on two basic observations. First,rohifiprocessors (CMPs) are quickly becoming
the norm for server and desktop systems. For the majorityiokaot applications which are not parallel, CMPs
provide idling processor cores for software prefetchirgk$a Second, programmers frequently use popular or
standard libraries of data-structures in their applicetioApart from the obvious link between code reuse and
productivity, libraries typically include code that is tmtdebugged and better tuned than what the programmer
may be able to do within a short period of time. These two olagiems lead us tbbrary-based prefetching (LBR)
where the library code forks a prefetch thread on a spareepsoc (if available) that performs software prefetching
for the data-structures described in the library. LBP iagparent to the user code as the library API remains the
same.

We have implemented library-based prefetching for two jenpaata-structure libraries, the C++ Standard Tem-
plate Library (STL) and the LEDA C++ library [24, 22]. Predbing pointer-intensive data-structures within li-
brary is effective as the library code knows the data-stinecorganization, the location of pointers, and even the
type and progress of traversals. Our prefetch thread caoleiexthis information to perform accurate prefetch-
ing for pointer-based structures such as linked lists,yktages, and graphs. The helper threagcks active
data-structures, detects the type of the current trayeardlissues prefetch accesses ahead of the application. To
maintain high accuracy, the library portion executing witthe application thread communicates to the helper
thread, information about data-structure accesses in-avaggasynchronous manner.

LBP works with any existing application that uses the enbdriibrary. The user code is not modified because
the library API remains the same. In the common case of dyreliyilinked libraries, LBP does not require
recompilation and works with existing binaries. We alsovsltizat using dynamic adaptive control, LBP is robust
to a wide range of system and application parameters sucitasad size and memory latency. Hence, the prefetch
code in the library can be developed once and used sucdgssfiil multiple systems. Of course, LBP is limited
to applications that use data-structure libraries. Howegreen its simplicity (no hardware or application charjges
and extendability (can add to any data-structure libramg)believe it is an important tool for improving the latency
of memory-bound, sequential applications on CMP systems.

The specific contributions of our work are:

- We develop a framework for library-based prefetching infEdystems that exploits data-structure informa-
tion for accurate prefetching for pointer-intensive apgtions.

- We tune the prefetching framework, reduce its overheadpaadent excessive prefetching which might
cause cache pollution. Furthermore, we developdaptive controscheme that automatically adjusts the
speed of prefetching given the observed memory latency pplication behavior.

- We evaluate library-based prefetching and obtain speedtipver26% for the pointer-intensive memory-
bound benchmarks. The results are robust across a wide odngemory latency parameters.

We should stress that critical insights of LBP are wheregtobing is implemented (in the library) and how
(transparent to user code, automatically tuned withowsmgglation). The prefetching patterns exploited by LBP
are not different from those exploited through compilesdzhor manual software prefetching. Essentially, this
paper presents how libraries should be implemented to ssithe problem of memory latency.

Throughout the text, we use the terms prefetch thread apehedread interchangeably.

The rest of the paper is organized as follows. Section 2 wevielated work. Section 3 presents the basic
concepts behind library-based prefetching. Sections 45addscribe the algorithms and tuning necessary to
implement LBP. We present results of the experiments ini@eét and conclude with Section 7.

2 Related Work

Initial work on hardware prefetching focused on sequewtiatrided array accesses [14, 25, 2, 26]. Correlation-
based prefetching schemes used a prediction table to ghdfgtire accesses [13]. Mehrotra et al. extended the
model to detect recurrent memory accesses [21]. Roth et@oped a dependence based prefetching scheme and
jump-pointer framework for prefetching linked data-stiues (LDS) [29, 30]. Subsequent improvements were
proposed in [3, 18]. Recently, Chilimbi and Hirzel proposedorrelation-based software scheme [6]. Recent
research includes work by Cooksey et al. on content dirguteftching [10]. Collins et al. used a pointer cache
to assist in prefetching [7]. Yang and Lebeck used a hybffifveme-hardware prefetching scheme [33]. Hardware
prefetching for pointer-intensive data-structures hasattivantage of access to dynamic program behavior. On the
other hand, it has no specific knowledge of the data-streaitganization and a simple change in the data-structure
code can render a hardware prefetch engine useless.

There is also significant work on software-based prefetcfi2, 27]. Mowry et al. and Luk et al. improve on
previous schemes by performing static analysis to avoi@cessary prefetch instructions [23, 17]. They also make
the case for history-pointer prefetching wherein LDS nogiesaugmented with prefetching pointer fields [17].
Even though the space overhead is low, maintaining thesagointers for dynamically changing data structures
can introduce significant overhead. In general, compideseld prefetching has to handle the difficulty of data-
structure layout analysis and pointer disambiguationtHemmore, static insertion of prefetch instructions cdanno
handle varying memory latencies across different systamden using different dataset sizes.

More recently,pre-executiontechniques that use idling hardware resources toprefetch threadsahead of
the application programs, have shown promise. Pre-exatgatn be controlled using hardware to extract pre-
execution code from dynamic instruction traces [1, 8]. Altgely, compiler-assisted software techniques have
been proposed to automatically extract pre-execution frmae program source code [15] or compiled program
binaries [9, 34]. Pre-execution techniques typically rety profiling information which makes the code less
portable across systems and datasets. They also requaiécsigt hardware modification as the pre-execution
threads typically execute in a speculative manner. Compdsed pre-execution can also run into the limitations
of pointer-analysis or static prefetch placement.

Our work builds upon previous work. However, we propose td prefetching code in common libraries.
Libraries include significant macroscopic information abthe data-structure organization and behavior to assist
in making the prefetch decisions. The prefetch code dewsdmp must be done only once by the library developer.
All library users can benefit by merely dynamically linkingetoptimized library. Dynamic behavior is tracked
without profiling techniques or extensive hardware modifoces. Overall, our approach simplifies the problem of
prefetching for the most common pointer-intensive dataestires such as linked-lists, trees, generalized graphs,
and hash-tables, by moving the prefetching code and tunipiggam into the library.

A similar though orthogonal approach is taken by STAPL t@pelize data structures [28]. The STAPL project
focuses on parallelization and data-placement in NUMAesyistwhile we focus on data prefetching.

3 Library-based Prefetching

3.1 Prefetching Overview

Our library-based prefetching (LBP) technique exploitsdiimg processor in a CMP system to run a prefetch
thread PT) included in a data-structure library. The prefetch thrisegspbawned by the library code the first time it
is called to allocate a new data-structure object. Its gotil track active data-structures, detect regular tralgrsa

and prefetch data-structure elements to reduce the oloser@mory latency for the main progratdP). The same
prefetch thread remains alive until the main program exits.

Figure 1 presents an abstract implementation of the ptetbtead. The thread can be in one of three possible
states. When no data-structures are actively accessed reguotar traversals are detected, the thread il
state. New data-structure accesses in the main progragetragswitch to thective state. The PT tracks the
following information for each active data structure: thetadstructure type (linked-list, tree etc.), the type of
traversal (forward, breadth-first-search, etc.), a couhi@ indicates the element currently accessed by the main
program, and a counter that indicates the element currprifetched. The prefetch thread attempts to stay ahead
of the main program in the current traversal by a number ohetds refered to as ttetayAheadlistance. When
the distance between PT and MP drops bestayAheador one of the active data structures, the prefetch thread
switches to theprefetchstate and actively prefetches elements according thersavipe. Once the required
distance is restored, the PT switches back to the active. sthino activity is detected for a certain period of
time, the thread switches to idle state. Note that stayAlpaadmeter is a property of the data structure instance.
Different data structures and even different instancehi@famedata structure can have different values of this
parameter. As we discuss later, we dynamically adapt thisnpeter for each data-structure instance based on
observed memory latency and application behavior.

state = IDLE; /*initial state*/
while (!ExitFlag) {
while(state==IDLE)
if (new_DS _activity) state=ACTIVE;
else wait;

/* Initialize info for active data structurd/
void* local_DSptr= global ActiveDSptr;
localiterator= local DSptr—iterator;
traversal= predicttraversaltype();
stayAhead= init_stayAhead;
PTcounter= 0;

/* Compute number of elements to prefetth

diff = MPcounter-PTcounte#stayAhead,;

if (diff >0) state=PREFETCH,;

for (i = 0; i < diff; i ++, PTcounte#+)
Prefetch(locaiterator-+);
/* Note: ++ operator is overloaded;
its implementation depends on DS and travetsal

/* set state ACTIVE or IDLE based on activity
state = senextstate();

/* adjust stayAhead based on dynamic informatibn
stayAhead = adjusttayAhead();

Figure 1. Abstract code for the prefetch thread. For simplicity, the code assumes a single active data-structure.

The PT code is written as part of the data-structure librafe code for detecting regular traversals and

list < int > I
list < int >:: iterator iter;
for (iter = Il.begin(); iter ! = Il.end(); iter++) work(*iter);

Figure 2. Example of forward traversal in a C++ linked list. The begin 4++ and endmethods include additional code for
MP - PT communication.

prefetching elements utilizes knowledge about the allgavit properties of the data-structure (potential travsrsa
characteristics that differentiate them) and the datarvzgtion used in the library (location and role of pointers
in data-structure elements). The PT code requires a cotipidydes for a separate stack and some heap stor-
age. The ordinary data-structure code remains mostly urireddwith a few annotations added to communicate
information to the prefetch thread as the main program asesedata-structure elements.

The prefetch thread may experience difficulties when a wroangersal type is predicted or when the main
program restructures the data-structure during the tsalddeletions, rebalancing, etc.). Difficulties manifest
themselves either as errors on loads issued by PT (invaticeadges) or excessive miss rates in the main thread
indicated by hardware performance counters. In both casegerminate the current traversal and switch the
thread to the idle state. When the data-structure is tradeagain, the PT will attempt prefetching again. The
prefetch thread only loads data-structure elements aner meites. Hence, it cannot corrupt the data of the main
program. To avoid unnecessary virtual memory faults, th&i$€6 non-faulting load instructions.

3.2 Main Program (MP) - Prefetch Thread (PT) Communication

The communication between the main program (MP) and theetotefthread (PT) is a critical aspect of the
system. Frequent communication is necessary for the PTtiweractive data-structures, detect regular traversals,
and track the MP’s location. On the other hand, low overhesdngunication is needed to ensure that the benefits
of prefetching are not cancelled out by excessive commtioitaosts.

We use an one-way, asynchronous communication scheme dle#s$ the above requirements. The MP commu-
nicates with the PT by writing to a set of shared variableso Werds are necessary to indicate a new traversal on
some data-structure: a flag indicating new activity and atpoito the specific data-structure. Another one or two
words are needed per active data structure to track thegsoeagf the traversal (see Section 4 for details). With
linked-lists, for example, a word is used as a counter tacatdi the main program’s progress in a forward or back-
ward traversal. The PT monitors these variables but nevieeswio them. Hence, no inter-thread synchronization
is necessary as there is a single writer. There is also notoeaglicitly notify the prefetch thread about updates
to the shared variables. It is sufficient for PT to periodicabll these variables while in the idle or active states.
The polling frequency can be set to hundreds of cycles. Esdgnthe prefetch thread can afford to learn about a
block of MP element accesses at once instead of polling énetfuto catch each one individually. Hence, we can
reduce significantly the cache to cache transfers necessamplement this communication.

All the code necessary to implement MP-PT communicationgated in the data-structure access methods of
the library code. For instance, for the linked-list trawiis figure 2, it is necessary to modify the library code
that implements thbegin ++-, andendmethods. The extra code lieginnotifies the prefetch thread about a new
traversal to thdl data-structure by setting one flag and one pointer. Eactuggaof ++ increments the counter
indicating the main program’s location within the linkagtl Another shared memory variable set by the MP tells
PT about the direction of traversal of the MP. Based on theevaf thisdirection variable,endbehaves similar to
beginto handle backward traversals or acts as a terminationeiriigg the prefetch thread (for forward traversals).

Overall, we implemented the efficient MP-PT communicatiogchanism by introducing few lines of code per
data-structure type in the implemented library. Sectiohdws that the run-time communication overhead for the

CPU CPU CPU CPU
(MP) (PT) (MP) (PT)
L1 Cache L1 Cache L1 Cache
L
|] |
L2 Cache L2 Cache
Main Memory Main Memory
@ (b

Figure 3. CMP processor alternatives for library-based prefetching. The optional forwarding path in (a) allows L1 refills
for the one CPU to be pushed into the prefetch buffer of the other CPU.

main thread is practically negligible due to its one-wayrafiyonous nature.

3.3 Architecture Considerations

The proposed prefetching scheme is software-based. Meless, the features of the CMP it runs on can affect
its performance. Figure 3 shows the two alternative archites that library-based prefetching could be used with.
Figure 3.a presents a conventional CMP where the two CPUbkdaMP and the PT share the L2 cache but have
private L1. In this system, LPB hides L2 miss latency, whieh icritical problem with wide-issue processors. L1
misses can be hidden if we allow cache refills from the CPU wkag the prefetch thread to Berwardedinto
the prefetch buffer of the CPU executing the main programis &ha relatively simple modification that can be
selectively activated when library-based prefetchingnis o

Figure 3.b presents an alternative organization wherevibeGPUs share a single, highly banked L1-cache.
Such an organization is possible when partitioning a lalg&tered processor like TRIPS [31] into multiple smaller
CPUs or when using a multithreaded CPU (2 virtual CPUs). \Wfitbth an organization, no additional hardware
changes are needed to target both L1 and L2 misses. In tlistbase can be some negative interference between
the MP and PT in the L1-cache. Since the PT private footpsisnall, if prefetching is accurate inteference is
minimal.

3.4 Discussion

LBP has several advantages over conventional prefetcphimgaches. Compared to hardware-based approaches,
it works without significant hardware changes, hence it dmtpose another complexity burden for the processor
design and verification. Even though it is software-basecan exploit dynamic information to regulate how far
ahead the helper thread runs or if it runs at all. The MP conicates its access pattern to the PT which can also
access hardware counters that track miss rates. Compaséatitocompilation techniques, LBP does not require
extensive pointer analysis capabilities. All the informoatabout data-structure organization and regular tral®rs
is available as the prefetching is implemented by the libdmveloper. Furthermore, LBP works well even in the
case of varying hardware parameters (cache sizes, cacmeeandry latencies) as the prefetch thread dynamically
regulates itself (see Section 5.1). Compared to pre-exechased techniques, our approach does not rely on pro-
filing information, hence it is easier to use on a larger \wgrod systems and datasets. Finally, compared to manual
prefetching in the source code, our approach moves the tdrde every application writer to a single, expert
library developer. The development effort is a one timeigféand the prefetch thread does not have to be tuned

6

for every chip as well as for every application. The code tisats the library with prefetching capabilities remains
the same. Assuming dynamic linking of the data-structumaty, LBP does not even require recompilation.

The shortcomings of LBP are the following. First, it takesayyhole CPU or thread in a CMP system. Never-
theless, as most programs are currently sequential or gblynparallel and unable to utilize all CPUs in a useful
way, we believe this is a reasonable trade-off to achieviapeance improvements for single-threaded programs.
If current trends continue, the number of CPUs per chip vaéxincreaing, providing further resources for LBP.
Furthermore, the prefetch thread can be easily turned élfted) if the resources are used for other purposes
without functionality implications for the library code tine application that uses the library. Second, LBP is
limited to common data-structures and regular accessrpattel here will always be special cases that require
unconventional data-structures not captured by commaariés. However, a significant number of developers
use common data-structure libraries for productivity jmsgs, hence our approach has a large audience to serve.

4 Algorithms for Prefetching

This section explains the traversals prefetched for eatdérsteucture type in the implemented library. Our
prefetching technique focuses on some of the commonly yssdier-intensive data-structures like linked-lists
(single and double linked), trees (n-ary, balanced andlanbad), hash-tables, and general graphs. The approach
can be generalized to other pointer-intensive data-strestwith common traversal patterns. Previous work on
software prefetching has thoroughly discused the prefegcbpportunities for each data-structure type (see Sec-
tion 2). Hence, our discussion focuses on how we handle eaatrsal in LBP.

Our specific implementation is based on the C++ Standard Eeenpibrary (STL), a highly parameterized
generic library that is part of the C++ standard [24]. Sind@é& $1cludes a small number of data-structures, we
have extended it to include additional data-structurdsvishg the API specified by LEDA [22], another popular
C++ data-structure library. Nevertheless, the traveratibm detection and prefetching algorithms are not tied in
any way to the specific libraries. They are applicable tomtdmeguages (e.g. Java) and other libraries.

Linked Lists

The traversals for linked lists are easy to handle as moveimienly possible in one dimension. The only possible
traversals are forwardH+) and backward-—). The MP communicates to the PT by incrementing or decrement
ing a counter as it accesses elements in the list. This irgftomis sufficient for the PT to determine the traversal
direction for prefetches and to adjust its speed relatitbéanain program.

General Trees

Trees are somewhat more complicated. The regular accessnsatve exploit are depth-first (pre-order) and
breadth-first (level-order) traversals. There are two waydetect these patterns. One is to automatically detect
them in the PT using information from the main program. The dffdlates a variable in shared memory by
shifting in a few bits that describe the pointers used duiisdraversal {ogn + 1 bits for an n-ary tree). It is
straightforward to separate a depth-first from a breadg{fiaversal by looking at the top few bits in this variable.
An alternative is for the library to provide a high-level ARkt allows users to specifically describe regular tree
traversals. Example APIs from the LEDA library and our esiens are shown in figure 4. It includes four high-
level methods that describe the traversal and the work egy@n each tree element. For depth-first traversals,
three separate methods are needed depending on when wpglieslgto tree nodes. Such a high-level APl makes
it easier for the programmer to manipulate trees. It alsonallthe library code to explicitly notify the prefetch
thread about the traversal type and save the overhead ohatitodetection.

Once the traversal type has been detected, MP communitai@®gress to PT through a simple counter; and
that is sufficient to issue prefetches down the right pathragdlate the helper thread. The prefetch thread allocates

void BFS(void(*func)(iterator iter, void *arg1), void *arg);
void in_order(void(*func)(iterator iter, void *arg1), void *arg)
void pre.order(void(*func)(iterator iter, void *arg1l), void *arg)
void postorder(void(*func)(iterator iter, void *argl), void *arg)

Figure 4. High-level methods for common tree-traversals in a data-structure library. Function funcdoes the processing
on every node.

and implements a queue or a stack with its code in order tefmtethe tree elements in a desired order. This may
introduce some additional misses in caches that reducesttfaloess of prefetching.

Hashtables

Hashtables are primarily used for storing and retrievingais based okeyvalues. Most implementations com-
prise of an array of buckets, with each bucket containingiteoito a linked list @pen chaininy} For any search
query with an input key, the MP indexes into this array of laiskbased on the value of the key. Since accesses
into the array of buckets can be completely arbitrary, itifSadilt to prefetch the array location where the MP
would index into. The library can attempt to lock non-emptickets into the cache, but we have not explored
this option in this study. Once the MP decides on which butkeearch for, the linked list corresponding to that
bucket can be prefetched by the PT using the same technigudsseribed in subsection 4. Nevertheless, these
linked-lists are often short and prefetching is of limitedue.

General Graphs

Nearly all applications that uggeneral graphwisit anodeor anedgeand then explore its neighbors in some order.
The API for graphs in most popular libraries supports exattbse kinds of traversals [22]). The PT included in
our library implementseighborhood prefetchinfpr graphs. The Pperiodically attempts to prefetch edges and
nodes in a small neighborhood around the current locatidheomain program in the graph. It is likely that there
is the data that the MP will access in the near future. If samf@rination is available through the API about the
traversal order, the PT can focus on a specific directionimvitie neighborhood. Otherwise, the best we can do is
to dynamically regulate the size of the neighborhood basetti® main program speed and the observed misses.

5 Extension and Tuning

5.1 Adaptive Control System

One major concern is to choose how far ahead of the main proghmuld the prefetch thread be allowed to
run. Recall from section 3.1 that tlstayAheagarameter regulates distance between the PT and the MRy&\ lar
value may lead to conflict misses and cache pollution. A swuadlle reduces the effectiveness of prefetching and
increases the overhead of MP-PT communication. Furtherpsosingle value is unlikely to be optimal for all
systems and all applications.

To counter this problem, the prefetch thread in our impleiet@n can adaptively adjust the stayAhead param-
eter for each active data-structure instance. Hence, teadibjects of the same type may have different stayAhead
parameters. This is crucial as it allows us to have a singtdamentation of the library regardless of system details
(cache hierarchy, memory latency, etc.) or the applicatlmaracteristics (dataset size). The PT adapts itself based
on the system and workload requirements. When the MP is siogea data structure which invokes prefetching
code, the PT monitors cache misses incurred by the maingrogrhis system relies on sampling the processor

hardware counters, which are set up to count misses. Sucttersiare available in all modern processors. The
functionality for reading hardware performance countsrgrovided by many available libraries lilRAPI [16].
The prefetching thread reads these counters while it is(atl@ot fetching data) since it needs only approximate
information about these counters.

The value of stayAhead is adjusted when the PT observesiiaiimber of cache misses incurred by the MP
are increasing. This is trully dynamic adaptation, not henadting of our system. Itis crucial to determine whether
the cache misses in MP are due to cache pollution (causirfgateonisses) or whether they are compulsory misses
which could not be hidden by the prefetch thread. In the fiasec the value of the stayAhead parameter is too
large while in the latter case, it is too small. To addressishae without complicated control techniques with
high overhead, we start withsamallvalue of stayAhead parametdiO(for our experiments). If PT observes cache
misses in MP then the value of stayAhead parameter is slowhgmented until increased cache misses are noticed
again. This time, they are likely due to conflicts, and hehesstayAhead parameter is decremented accordingly.
The code the implement this control system is only a few linag.

5.2 Handling Data Pointers

A common problem with many programs is that the data strastunight not store the actudhta objects
but pointers to the data objects. We can annotate the pnefgtcode to prefetch such pointers using prefetch
instructions (non-blocking loads). For strongly typedgaages, the contents inside the data structures can be
checked for pointer-types, hence data pointer prefetatémgbe highly accurate. For languages like C and C++, it
is not possible to distinguish between pointers and othtr types stored in the data-structure within the library
code without the help of the compiler. In our implementatiainen the first few elements are fetched we scan
through their contents and use them as pointers for prefestiuctions. Note that prefetch instructions cause no
exceptions with invalid address. We apply a simple filtet thpects elements whose contents do not look like heap
addresses or look more like small negative constants [1fd¢r &ve have visited the first few elements, the PT has
a good idea of where the pointers may exist in each elemetitefjf exist at all) and can implement data pointer
prefetching without the overhead of additional scannimgour implementation, scanning is relatively inexpensive
as we use an architecture with aligned memory addresses.

Note that, even if we know where the pointers are, data pommegetching is not always beneficial. Just because
there are some pointers in an element does not mean thairakzowill be followed during the current traversal.
Hence, data pointer prefetching may potentially lead tdvegmllution.

5.3 Parallel Traversals and Nested Data-structures

Our current prefetch thread implementation is able to rendlltiple active data-structures object traversed in
parallel. Each data-structure has a separate state andegeimdent stayAhead parameters. Prefetch accesses for
multiple active data-structures are interleaved.

Another interesting case is nested data-structures, sutthes of linked-lists. LBP is applicable in this case as
well, even through we have not implemented it in the curremsion of the library. Note that prefetching nested
data-structures is of interest only if both the inner andahter data-structures contribute to cache misses. If one
of them is much larger and dominates misses, single datetste prefetching is sufficient.

6 Evaluation

6.1 Methodology

We evaluate LPB using a simulated CMP system with two widadasprocessor cores. Table 1 provides the
details of the CMP configuration. We do not simulate a largdiPGas we need just one additional thread for LBP.
Nevertheless, LBP is applicable to CMPs with more cores.

Processor Core (2 in the CMP)
Issue Width 3
Pipeline Stages 7

Memory System

16 KB, 2-way set-associative, 2-cycle hit time (pipelined)

16 KB, 2-way set-associative, 2-cycle hit time (pipelined)

512 KB, 8-way set-associative, 12-cycle hit time

Private L1 Instr. Cache
Private L1 Data Cache
Shared 2 Cache

Cache Line Size
Main Memory Latency

32 bytes
200 cycles

Table 1. Simulated machine parameters

Benchmark | Data Structures Used | Dataset Size

Bisort Binary Tree 100,000 integers

Em3D Linked Lists 2000 nodes

Health Linked Lists max level =5

max time = 500

Mst Hashtables 512 nodes
Linked List

Perimeter Quadtree 4096x4096 image

TreeAdd Binary Tree 2048 nodes

Tsp Binary Tree 60,000 cities
Linked Lists

Bfs Binary Tree 1024 nodes

Apsp General Graph 400 nodes

Table 2. Description of the Olden benchmarks.

We implemented LBP by extending the C++ Standard Templdbeaty (STL). The library, including the
prefetch thread, was coded in C++ and compiled with an opimgicompiler at the -O3 level. The library code
uses a standard POSIX thread library to fork the prefetobatihr The conventional part of the library code that
runs within the main application thread was modified in twgysvga) We added code to fork the prefetch thread
the first time library code is invoked, and (b) we add code tmmmmnicate information from the library code in
the main program to the prefetching thread. The modificationluded approximatel0 lines of code per data-
structure in the library. All the development effort for LB$concentrated within the library code. The library
APl is not modified, hence the application code remains theesa

The prefetch thread, including the adaptive control codses garefully optimized to reduce its overhead. Unlike
the main library code that uses several function calls tdémgnt the flexible API and support generic data-types,
the prefetch code is stream-lined with no function calls.n¢ée the prefetch thread can access elements much
faster than main program, even when the main program pesfommother work per element it accesses through
the main library code. For that reason, we did not find it ne@esto modify the STL library to insejamp pointers
in its data-structure organization. Such pointers wouldgeful, but were not necessary.

In our evaluation, we first used a set of microbenchmarksrte thie prefetching algorithms for the various data-
structures and the adaptive mechanism for adjustingsténgAheadparameter for different data structures. The
microbenchmarks allow us to create workloads with varynagdrsal patterns, work per data-structure element,
and frequency of misses, and help in fine tuning the adapteehanism. Due to limited space, we do not present
these results. For an overall evaluation, we use the Oldige efipointer-intensive benchmarks, which also
facilitates comparisons with the previous prefetchingréture which uses these benchmarks almost exclusively
[5]. Table 2 describes the benchmarks used in this study.oOtlite 10 Olden benchmarks, we evaluate seven.

10

PowerandBarnes-Hutvere left out as these programs use heterogértoess which are not commonly supported
in popular data-structure librariesoronoiwas left out as it runs virtually without cache misses. Weehagided
two more benchmarks: (a) BFS involving a breadth-first trealeon a binary tree, and (b) APSP (all pairs shortest
path) which solves all-pairs shortest path problem on argégeaph. The APSP benchmark is a modified version
of the code available in Andrew Goldberg’s Network Optintiza Library [11]. The benchmarks use our STL-like
C++ based library but we did not tune or change them in anyr aths.

Some of the benchmarks in Table 2 use data pointers insidesttatture objects, which the PT tries to identify
and prefetch as well. We use the scheme proposed by Cookséytetreduce the number of prefetch requests
issued for incorrectly identified data pointers [10]. It quises of a couple of filters: one for checking the higher
order bits with a known pointer (if different, then not a pei) and another one for filtering out small floating point
addresses which often look like heap pointers. The poirgterchination filters are able to prefetch data pointers
efficiently and accurately without much overhead. The owadhis low because the detection is performed only
during the beginning of the traversal.

6.2 Performance Improvement

Figure 5 presents the performance improvement with libbeged prefetching. Execution time both without
prefetching, labelledNP and with LBP prefetching labelleB, is reported. The portion of the bars labelkexkc
cycles is the execution time without prefetching with an idealadatemory systemOverheadis the increase
in execution time in the main program due to MP-PT commuinoat The remaining portion of the execution
time is due to memory stalls (L1 and L2 misses). Library-dageefetching reduces the execution time for all
benchmarks that spend a significant portion of time stallaxgnemory, namelyreeAdd em3d health mstand
bfg). The execution time is reduced Bg% (mst treeAdd and40% (em3d, with a reduction 026% on average
for these5 memory intensive applications. No benchmark was slowednddue to prefetching overhead even
those with minimal stall time to begin with.

Formst we get a significant improvement from successfully prdifieig the linked-lists. On the other hand, our
approach is not particularly effective with hashtableshaslinked lists in each bucket are short (2 to 3 elements).
For treeAddand bfs we see good performance improvement by prefetching tharpimee. Some additional
memory stall time remains due to accesses to other variablgghe time needed by the prefetch thread to run
ahead initially. Forem3d the remaining memory stalls are due to the data includehked-list element. Each
element contains a pointer to an array of approximately &tehts. While we prefetch the pointer, we only get
the first few elements of each array. When the remaining el&srere accessed, misses still occur. Maximum
speedup is achieved fdrealthwhere LBP is able to hide most of the memory latency. Intergstesults are
observed for the@pspbenchmark which accesses a general graph. Even though thergnstall time is reduced
by half, overhead of communication for neighborhood pfielg (see Section 4) is also high. Nonetheless, there
is 5% reduction in execution time. Memory stalls fperimeterare significantly reduced but their contribution to
execution time is small. Finally, we achieve small memotgrday reductions fobisort andtspbut they are offset
by the MP-PT communication overhead. The opportunity fefqgpenance improvement was low for the last three
benchmarks as they either have good hit rates or amortizeostef each miss over a significant amount of work.

6.3 Prefetching Accuracy

To gain further insight into how effective LBP is, Figure oegts the cache misoverage Coverage is defined
as the percentage of cache lines brought into the cache [®Tiligat is accessed by the MP before it are replaced.
The coverage measurements also includes addresses Ipeef¢ihat are accessed by the main thread before the
refill is completed (partially successful prefetching)gliie 6 demonstratres that understanding the traversal type

%Data structures are homogeneous when all the data strumdes/objects are of the same type. Power and Barnes-Heittegvlike
data structures where the individual tree nodes can befefeélit types.

11

O Exec B Overhead O Load

[EEY

o7 | T N Bjmun ninia |l
0.5 -
o3 [t tEtttrtetetr ittt

A
N

Normalized Execution Time

o

oo D.‘D. D.‘D. D.‘D. D.‘CL [algNa R D.‘D. D.‘D. D.‘CL
Z Z e Z Z Z e Z Z

TREE| PER | EM |HEA| Bl |MST | TSP |BFS |APSP

Figure 5. Normalized execution time broken into execution, overhead and memory stall components. The NP and P
bars specify performance without prefetching and with LBP prefetching respectively. One (1) is the sequential execution
time without prefetching.

and the data-structure organization in the library codelead to highly accurate prefetch accesses even without
help from hardware. The coverage for L2 prefetches is m@?6 for eight out of nine benchmarkklealthop-
erates on several linked lists which are highly dynamic acdii some overhead by frequently switching between
different active data-structures in the prefetch thread.

L1 coverage is lower than that of the L2 but is still high. Ori@agel7% of the prefetches are later used by the
main thread. The limited L1 capacity and associativity eauscertain portion of the prefetched data to be evicted
before they are used. Furthermore, prefetching the datdaqusifor certain benchmarks creates coverage issues as
not all pointers are used by the main program in every trav¢esn3dandhealth.

6.4 Prefetch Timeliness

Another metric which gives greater insight into the effeetiess of prefetching meliness It is a measure
of how early a prefetch brings data into the cache beforetuiséx by the application. Positive timeliness implies
that the prefetched data arrived early, while negativeltirass implies that prefetch was issued late and was only
partially successful at best. If the data is brought intochehe too early; it can lead to cache pollution. We look at
two applications ém3dandtreeAdd that use different types of data structures. Figure 7@}pphe distribution of
time difference between refill of prefetch loads and its usthk corresponding load of the MP fem3d A small
fraction of prefetch loads fall into the negative side of thstribution. Work per element on the linked list for
em3dis found to be roughl200 — 250 cycles (excluding memory latency). Thus, ne&®bo of the prefetch loads
are refilled while the PT i§ (yrzmomiarens; = So0.) €lements ahead of the MP. Overall, most of the prefetch
accesses are timely with a small fraction being rather late.

ThetreeAddbenchmark is more taxing for PT as a big portion of the refilief prefetch loads are separated
from the corresponding subsequent loadd loyemory acces=22(0 cycles). The problem with tree data structures
can be explained by a small example. Suppesefor the tree data structure has been overridden to give tkte ne
element in depth-first (DFS) traversal. Unlike a linked Vidtere every++ incurs the same amount of cost;+

12

OL1-Coverage B L2-Coverage

100

95 A

90 -
85 -
80
75 A T T T T T T
ER EM HEA Bl MST TS

TREE P

% of Prefetch Accesses

P BFS APSP

Figure 6. Percentage of prefetches which are completely covered the subsequent corresponding main program loads

Em3d TreeAdd
25 25
20 20
1%} 1%
(] Q
= <
S 15 S 15
(3 (<3
® °®
['% o
5 10 s 10
8 8
5 4 5
0 0

S O & & O O O O O O N O S P O S & O & &
O & S L O QO O & X SO O SO O S SS
S PE TS EFEE S S S

Timeliness (clock cycles) Timeliness (clock cycles)

P P 0O P P P I PSSO
NS S WSS S S SO
»w R NN N SN RN i S 1

Figure 7. Timeliness of em3d & treeAdd prefetches (histogram).

method call in a tree DFS access can incur variable cost depeon the current position of the PT. Thus, the
PT has a hard time to stay ahead of the MP when it has to follog p@aths of pointers to get to the next element
in the traversal. As seen in figure 7, the PT fimeAddhas a harder time staying ahead of the MP as compared
to that ofem3d Nevertheless, we still see that majority of data from pgodféoads arrive well in advance for the

corresponding loads (positive timeliness).

6.4.1 Bandwidth Requirements

We analyze the effect of LBP on the bandwidth used in the systEigure 8 presents the average bandwidth
at the L2 cache and main the memory. THE and P bars specify performance without prefetching and with
LBP prefetching respectively. Due to execution time beieduced by up ta0% with prefetching, the average
bandwidth (2l butes transferredy roqyirement nearly doubles. Even so, the bandwidth rements in bytes per
cycle are quite low in absolute numbers. Because our lidbased prefetching scheme is accurate, the problem of
redundant loads is lessened and does not cause additiomhioth increases. The slight increase in bandwidth
is due to the same number of loads being issued in a smallerftaame as execution time decreases appreciably

as a result of LBP.

6.5 Effect of Main Memory Latency

We varied main memory latency to gain insight into how LBP idquerform in different systems (current and
future). We present results on two benchmarks: one withetinlists €m3d and another operating on a binary

13

L2 Bandwidth Main Memory Bandwidth

0.2 0.14

0.12

0.16 -

0.12

Bytes per cycle
Bytes per cycle
1

0.08
0.04 1
0.04 0.02 1
1 1 °
ol m o |

NP‘P

T T T
D.D.‘D.Q.D.&‘D.D.D.&‘D. D.‘D. D.‘& D.‘D.
P4 =4 P4 =4 P4 =4 =z =4

NP‘P NP‘P NP‘P NP‘P NP‘P NP‘P NP‘P NP‘P

TREE PER| EM HEA| Bl MST | TSP BFS |APSP

TREE | PER EM HEA BI MST TSP | BFS | APSP |

Figure 8. Average bandwidth requirements at the L2 cache and the main memory (bytes/cycle).

TreeAdd EM3D
1.8 2.5
1.6 —
1.4 - . 2
1.2 (1 Iy 7
— g
2 = 1.5
s T H]
% - - = — | . 22‘3” a O stall
£ 0.8 D R 2 = Over
xec g 1 4 @ Exec
0.6 - =
0.4 1
0.5
0.2
(o] o
NP‘P NP‘P NP‘P NP‘P NP‘P we [e fwel e fwel e Tue e el e
50 100 150 200 300
50 100 150 200 300 Memory Latency (cycles)
Memory Latency (cycles)

Figure 9. Effect of varying main memory latency on treeAdd & em3d

tree freeadd. As memory latency increases, the prefetch thread autcaligtincreases the stayAhead parameter
to be able to hide memory latency. Nevertheless, it will takencreased amount of time for the prefetch thread
to achieve the desired distance from the main thread, heme screase in stalling will occur, particularly for
reduced traversals.

With treeadd figure 9 shows that when memory latency is small (50-100esydhe load-stall time is almost
completely hidden by the prefetching system. However, tfecieof memory latency increase affects how far
ahead the PT is from the MP. As memory latency increases, fedfches up with the PT in the traversal more
rapidly as the PT takes longer to fetch each element. Thest# clearly visible in the case tkeadd In em3d
there is sufficient work per element in the main program. Tlwen when memory latency is increased from
50-300 cycles, the prefetch thread is able to stay aheaa:oh#in program.

These results suggest the LBP is effective across diffegetems with different memory parameters. They also
suggest that LBP is even more worthwhile in light of incragsinemory-processor speed gap.

14

7 Conclusions

This paper presents a library-based approach to prefetdaita for pointer-based data-structures such as lists,
trees, and graphs using spare processors in a CMP systemenddémsirate the efficacy of this approach on a set
of pointer-intensive programs, achieving up t&086 reduction in execution time. We observe that the prefatche
issued by our approach are baitmelyandaccuratein hiding most of the cache misses coming from data structure
traversals. Our infrastructure also provides the flexiptio dynamically adapt at runtime to different workloads,
and even scale back prefetching in cases where it would imelyaimpact performance.

Since the prefetching code is a part of the library, all thersi®f the library can benefit by re-compiling their
code with a standard compiler or by dynamically linking thimized library with their code. Hence, library-
based prefetching is a simple and effective method to retheeexecution time for memory bound applications
that make use of data-structure libraries. Library progrems should consider constructing libraries for the future
with LBP and other such performance optimizations that cqoé the available resources in CMPs in ways
transparent to user code.

References

[1] M. Annavaram, J. M. Patel and E. S. Davids@sta prefetching by dependence graph precomputafisternational
Symposium on Computer Architecture (2001): 52-61

[2] J.-L. Baer and T.-F. Chei\n effective on-chip preloading scheme to reduce data aqesalty International Conference
on Supercomputing (1991): 176-186

[3] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L.gogort, A. Yoaz and U. Weise€orrelated Load-Address
Predictors International Symposium on Computer Architecture (1999)-63

[4] D. Butenhof,Programming With POSIX Threadaddison Wesley] st Edition (1997)

[5] M. C. Carlisle and A. Rogers§oftware Caching and Computation Migration in Olgd@mninciples and Practice of Parallel
Programming (1995): 29-38

[6] T. M. Chilimbi, M. Hirzel, Dynamic Hot Data Stream Prefetching for General-PurposegPaims Programming Lan-
guage Design and Implementation (2002): 199-209

[7] J. D. Collins, S. Sair, B. Calder and D. M. Tullselginter cache assisted prefetchjrigternational Symposium on
Microarchitecture (2002): 62—73

[8] J.D. Collins, D. M. Tullsen, H. Wang and J. P. ShBxynamic speculative precomputatidnternational Symposium on
Microarchitecture (2001): 306—-317

[9] J.D. Collins, H. Wang, D. M. Tullsen, C. J. Hughes, Y.-leéd, D. M. Lavery and J. P. She®peculative precomputation:
long-range prefetching of delinquent loadisternational Symposium on Computer Architecture (200#)-25

[10] R. Cooksey, S. Jourdan and D. Grunwadd stateless, content-directed data prefetching mechamsachitectural
Support for Programming Languages and Operating Systed@g)2279-290

[11] A. GoldbergNetwork Optimization Libraryhttp://www.avglab.com/andrew/soft.html

[12] E.H. Gornish, D. Granston and A. V. Veidenbauompiler-directed data prefetching in multiprocessorgwmemory
hierarchies International Conference on Supercomputing (1990): 368—

[13] D.Joseph and D. GrunwalBrefetching Using Markov Predictgrinternational Symposium on Computer Architecture
(1997): 252-263

[14] N. P. Jouppilmproving Direct-Mapped Cache Performance by the Additba Small Fully-Associative Cache and
Prefetch Buffersinternational Symposium on Computer Architecture (1986%—373

[15] D. Kim and D. Yeung,Design and evaluation of compiler algorithms for pre-exeny Architectural Support for
Programming Languages and Operating Systems (2002): 789-1

[16] London, K., Dongarra, J., Moore, S., Mucci, P., Seymdéurand Spencer, TEnd-user Tools for Application Perfor-
mance Analysis, Using Hardware Countelisternational Conference on Parallel and Distributed @otimg Systems,
Dallas, TX, August 8-10, 2001

[17] C.-K. Luk and T. C. Mowry,Compiler-Based Prefetching for Recursive Data Structufgshitectural Support for
Programming Languages and Operating Systems (1996): 222-2

[18] M. Karlsson, F. Dahlgren, P. Stenstr&Prefetching Technique for Irregular Accesses to LinkethCairucturesHigh-
Performance Computer Architecture 2000: 206-217

15

[19] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally and Mraddtz, Smart Memories: a modular reconfigurable
architecture International Symposium on Computer Architecture, Mal161-171 (2000)

[20] K. S. McKinley, S. Carr and C.-W. Tsenfmproving Data Locality with Loop Transformation&CM Transactions on
Programming Languages and Systelrggl): 424—-453 (1996)

[21] S. Mehrotra and L. Harrisofi;xamination of a memory access classification scheme fotqreintensive and numeric
programs International Conference on Supercomputing (1996), 136—

[22] K. Mehlhorn and S. Naheifhe LEDA Platform of Combinatorial and Geometric Computi@@mbridge University
Press, (1999)

[23] T. C. Mowry, M. S. Lam and A. Guptd)esign and Evaluation of a Compiler Algorithm for PrefetadpiArchitectural
Support for Programming Languages and Operating Syste982)162—73

[24] D. R. Musser, G. J. Derge and A. Sai&TL Tutorial and Reference Guide: C++ Programming with thian8lard
Template Library 2nd Edition) Addison-Wesley, Reading, MA, (2001)

[25] S. Palacharla and R. E. KesslEraluating Stream Buffers as a Secondary Cache Replacemtarhational Sympo-
sium on Computer Architecture (1994): 24-33

[26] S. S. Pinter and A. YoaZdango: A Hardware-Based Data Prefetching Technique foreSagalar Processordnterna-
tional Symposium on Microarchitecture (1996): 214-225

[27] A. K. Porterfield, Software Methods for Improvement of Cache Performance @erSomputer ApplicationsPhD
thesis, Department of Computer Science, Rice Universig9)

[28] L. Rauchwerger, F. Arzu and K. Oucl8tandard Templates Adaptive Parallel library(STARL3nguages, Compilers,
and Run-Time Systems for Scalable Computers (1998): 4@—-40

[29] A.Roth, A. Moshovos and G. S. Soligpendance Based Prefetching for Linked Data Structyeshitectural Support
for Programming Languages and Operating Systems (1998%:1Pb

[30] A. Roth and G. S. SohEffective Jump-Pointer Prefetching for Linked Data Stunes International Symposium on
Computer Architecture (1999): 111-121

[31] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C.K. Kibn Burger, S.W. Keckler, and C.R. Moorg&xploiting
ILP, TLP, and DLP Using Polymorphism in the TRIPS Architegt80th Annual International Symposium on Computer
Architecture, pp. 422—-433, June 2003.

[32] A.J. Smith,Cache MemoriesACM Computing Surveysl4(3): 473-530 (1982)

[33] C.-L. Yang and A. R. Lebeckush vs. pull: data movement for linked data structutagernational Conference on
Supercomputing (2000): 176-186

[34] C.B. Zilles and G. S. Sohkxecution-based prediction using speculative slitet®rnational Symposium on Computer
Architecture (2001): 2-13

16

