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1 Introduction

Transactional Memory (TM) [9] has the potential to simplifgncurrency management by supporting parallel tasksgtran
actions) that appear to execute atomically and in isolatibhere is already a significant body of work on programming
language constructs for transactional memory [7, 6, 5, 2].1 Nevertheless, there still exists little consensus orese
constructs, particularly those motivated by performanatiaizations.

In this paper, we study a set of data structure algorithmsatuate the ease-of-use and performance benefits afatg
release (ERxonstruct [8, 5]. Early release allows a transaction to neen® data address from its transactional read-set
long before it commits. Once an address has been releaed tatnsactions can write to this address without genmegati
conflict with the releasing transaction. The programmercompiler must guarantee that early release of an addreateis s
removing the address from the read-set should not violaetlerall application atomicity and consistency. The todfde
with early release is obvious: on one hand, removing addseEem the read-set reduces the probability of conflicts tha
incur expensive long stalls or rollbacks. On the other h#émete is an additional burden to guarantee that early relisasafe
for a particular address, regardless of any other code thgthra executing in parallel. Therefore, if a programmer nadlgu
applies early release, she must be extremely careful abloehywhere, and with which address early release is used.

Previous studies have used a single data structure algofiitiked list) to conclude that various forms of early rede@an
be a particularly useful programming construct for perfarmoe optimization of transactional programs [8, 4]. In f{haper,
we study five data structure algorithms and rewrite theirgeactional memory versions to use early release. Our caisens
are as follows: from the point of view of performance, eadjease provides a significant benefit only for highly segaént
data structures such as a linked list or array-based heapcdraurrent data structures such as hash tables and trées (A
trees and B-trees), there is no significant performanceradyga from early release, even for write-intensive worlloeith
significant rollback penalties. From the ease-of-use pafinview, we demonstrate with code examples that the conglexi
of manually using early release is often similar to that ahgdine-grain locks. Therefore, unlike previous work, oesults
suggestthat early release is not a particularly usefultcoctsfor user-level programming with transactional meyngystems.

Of course, early release may still be useful to an optimiziogpiler that is able to automatically identify when it i$esand
profitable to use in transactional code.

2 Methodology

We ran transaction-based code on an execution-driven atomfbr a CMP that follows the TCC architecture [11]. TCC
provides transactional memory using lazy conflict detectio provide non-blocking guarantees. Read-set and weite-s
tracking is at word granularity. The CMP includes up to 32esowith private L1 caches (32 KBytes, 1-cycle access) and
private L2 caches (256 KBytes, 12-cycle access). The retdrsl write-set of the transactions in the studied algorsth
fit in the processor caches, hence there is no overhead fdil@mve and virtualization. The processors communicate aver
16-byte, split-transaction bus. All non-memory instroos in our simulator have a CPI of one, but we model all details
the memory hierarchy for loads and stores, including ipt&eessor communication.

We added an early release instruction to the base TCC motelinBtruction takes a word address and removes it from
the transaction read-set. If the word is in the L1 cache, #ily eelease instruction executes in one clock cycle, otrser it



takes 12 cycles. TCC tracks read-sets at word granularitgiwhielps with the ER implementation. However, early redeas
is difficult to implement consistently in other hardware Tistems that use cache line granularity. In such system= sin
early release instruction provides a word address, it isaf# to release the entire cache line. Alternatively, wededime an
early release instruction that releases an address range the range may not always be aligned to cache line boigsjar
TM systems that track state at cache line granularity wotillcesperience difficulties.

We used a number of data structure algorithms for our evialngtinked list, array-based heap, hash table, AVL tree,
and B-tree of degree 5). Such data structures are integelsénause they include significant parallelism, they aretijos
pointer-based, they are regular enough for a programmerassten and they can be used to create workloads with varying
conflict frequencies or transaction sizes. While transaeti versions for most of these data structures have besemie
before, we contribute new versions with early release. Bohelata structure, we constructed the following benchmadle.
First, we prepopulate the data structure with 6,000 elesterfor all structures but the heap, the key for the elements is a
randomly-generated 8-character string. For the heap, éfge &re randomly generated integers. Then, we perform asseri
of data structure accesses. To create workloads with frequomflicts that favor early release, we use the following ofi
accesses: 35% insertions of new elements, 35% deletiongstihg elements (after searching for them), and 30% re&ds o
elements (after searching for them). A transaction incduntee access followed by 400 cycles of work on the retrievéa. da
The amount of work per transaction makes for a high rollbaakaity, further benefiting early release.

We coded our benchmarks in C using a simple inlined API to édfsmsaction boundaries and early release of addresses.
We also coded the same benchmarks using both coarse-g@)raft fine-grain (FG) locks for comparison purposes. The
coarse-grain case uses a single lock during the data steuateess, but releases the lock during the additional wbinle.
fine-grained case uses per-node locks to expose more cencyiin data structure accesses. The lock-based code ran on a
version of the simulator that has the same resources as tBe/&(Sion but uses regular cache coherence and multiprmcess
synchronization. For both transactional and non-tramsaatcode, we ran simulations using 1 to 32 processors. fewitly,
we present the results for 8, 16, and 32 processors. Largeepsor counts generate the highest conflict frequency, but
including some smaller counts provides insights into scplResults are presented in Figure 1 as execution time,alzed
to sequential execution (represented by 100%). Lower b@rdetter. We break down execution time to useful (regular
instructions and cache stalls), violation (time wastedrangactions that rollback), and overhead due to early seléad-
ditional instructions). We found that the overhead of eaglgase instructions is insignificant for all benchmarksglthan
1%), hence the corresponding bar is practically invisiblall cases.

Even though our results are measured on a particular haedidrsystem, we believe that the conclusions can be gener-
alized. While other hardware or software systems may haylednirollback overheads compared to TCC, we have artifyciall
increased the cost of rollbacks by introducing a signifiambunt of work per data structure access. In a software TM
system, one could call early release once per object instkaice per word, hence reducing the overhead due to addition
instructions [8]. However, we found that no workload extsksignificant overhead due to the early release instrustidhe
coding complexity arguments are equally applicable for 8l systems regardless of the exact APl used. On the other,hand
if early release is applied automatically by a compilerréhis no coding complexity visible to the programmer.

3 Linked List

The linked list data-structure is not optimal for paralletasses, as it arranges elements in a single list and sedweh t
O(N) steps to access. The coarse-grain lock (CG) code for linkeddcesses (not shown) simply adds a setaxfk and
Unl ock statements around the sequential code. Similarly, thenaidM code (not shown) simply addiegi n_xact i on
andend_xact i on around the sequential access code and the additional wodcpess. The TM and CG code is easy to
write given the sequential code.

Figures 2 and 3 show the code for linked list insertion witkefgrain lock (FG) and TM with early release respectively
(TM+ER). The code for deletions is similar. The FG code haldtsck on the current node as it scans the list to ensure dorrec
insertion. Locks are acquired and released in a catefnb-over-hangrocess to make sure that there is no point at which
no lock is held (current and next locks overlap). The TM+ERe&ds similar, but useRel ease instead ofunl ock and
there is no need fdrock statements (addresses are inserted in the read-set arebati@utomatically on loads and stofes)
Overall, the complexity of developing FG and TM+ER code mikir. Misplacing or misusing &el ease statement is

1We also performed experiments with larger pre-populati@ng., 60,000 elements). The results show similar trermsiesomit them for brevity.
2Thebegi n_xact i on andend_xact i on statements are outside of the insert function. They alstwsache code for the extra work per element.
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Figure 1: Execution time for the five data structures workloa ds for different approaches: transactions
(TM), early release (TM+ER), coarse-grain locks (CG), and fi ne-grain locks (FG). The configuration is
8/16/32 processors, 400 cycles of work per access, and 6,000 elements per data structure before timing
starts.

as easy as misplacing or misusingdml ock. Unlike with locks, forgetting an early release statemead ho correctness
implications. However, having an extra one, using the wraddress, or using it too early can lead to incorrect code.

As pointed out by an anonymous reviewer, “the early release does not maintain transactional consistency if a séarch
performed on a linked list and the key is not found, sinceldases the entire list absent from the read set. Non-szataility
can result if there are concurrent insertions. For exanthlead A checks list 1 for X, and inserts Y in list 2 if not found
thread B checks list 2 for Y, and inserts X in list 1 if not foun@ransactional semantics say that either X or Y should
be inserted. However, early release allows both X and Y touwmih the lists. Both the early release and fine-grained
lock version are thus natomposablé This observation provides further evidence on the dasgdrusing early release
in a manual manner. It also indicates that any automated fusarly release by a compiler cannot be applied as a local
optimization. The global atomicity behavior of the apptioa must be taken into account. Hence, early release may be
difficult to use within library code.

Figure 1 shows the execution time of the four versions of ihieed list code. The CG code allows overlapping of the
additional per-access work, but no concurrency on theTise FG code leads to 2.9x better performance in the 16-psoces
case. Since threads operate on different parts of the Iatgthiey only occasionally block each other when one thread



inserts as the other tries to scan through. Neverthelesss k@ited by the instruction overhead and cache misses ¢k lo
acquires and releases. The TM code suffers from frequetdtioos. Transactions that scan towards the end of therkst a
likely to be rolled back by insertions or deletions towarte front as all the list pointers end up in their read-set. rEve
so, TM is 2.5x faster than CG code in the 16-processor casehvitas similar complexity, and is only marginally slower
than FG code. Early release allows transactions to have thienal possible read-set (two elements) and leads to the bes
performance. TM+ER eliminates violation overhead andreffe 1.5x speedup over simple TM. Looking at how the two
TM versions scale, we begin to see higher violation overtiedae 32-processor case for TM. Hence, we surmise that early
release would become increasingly important as we scaleollsrger processor counts for data-structures like linkstd.|
Note, however, that this is a best case scenario for TM+ERelfvorkload is less write-intensive, conflicts are lesgdient

and less expensive, and the advantage of TM+ER over ER iglguéduced.

4 Array-Based Heap

Due to space reasons, we do not present any of the code forthelmsed heap. The heap exhibits the properties
of the linked list taken to an extreme. Again, elements aranged in a single sequence, but now we also have frequent
element swapping throughout the heap on updates. Due te thdsble-up operations, violations are very frequent fer th
transactional versions with such a write-intensive woakloJust like the linked list case, the FG and TM+ER code fer th
heap attempts to hold a lock for two elements or include inrdasl-set two elements. The two algorithms have similar
structure and almost identical complexity.

Figure 1 shows the execution time of the four versions of thaphcode. Again, for a highly sequential structure with
a write-intensive workload, TM+ER leads to significant jpenfiance benefits over TM (2.8x with 16 processors). Again, a
workload with less insertions or deletions exhibits snraliferences. Nevertheless, FG is actually 50% faster ThdmER.

Early release eliminates many, but not all, violations feap updates, which are very write-intenstive. Notice thaibdth the
linked list and the heap, the maximum speedup we achievetingth6-processor CMP is less than 7. The two data-structures
are not well-suited for parallel accesses, particularlyasscale the number of processors in the system. Exclude§®
code, no other version scales well with more processors.

5 AVL Tree

AVL trees are balanced binary trees that searct{fog V) time. Multiple threads can operate in parallel on different
branches. Significant interference is only observed origata for rebalancing. Even in that case, we typically havetate
only a sub-tree, so most threads are not affected. The CG ihcb@les are again simple updates from the sequential code.
The TM has a small read-set in most cases, as it only touchiegla sranch.

Figures 4 and 5 show the code for AVL tree insertion with fimahg lock (FG) and TM with early release (TM+ER).
The code for deletions is similar. The FG lock holds a lockhte immediate parent of the point of insertion. As in the
case of the linked list, locks are acquired and released ovariapped, hand-over-hand manner. If a rotation is nergss
coarser-grain lock is acquired for the whole sub-tree. TREFER releases all nodes but the current parent as it scans dow
the branch using again an overlapped release process. AlgaiRG and TM+ER version have very similar complexity.

Figure 1 shows the execution time of the four versions of thié &ee code. Again, CG can only overlap additional
work; all operations to the tree are serialized. The otherdlversions of the code, TM, FG, and TM+ER, perform and scale
similarly. Despite the overhead of lock acquisition, FG hgserformance advantage over the TM versions. Even though
early release does eliminate some rollbacks, it does neige@ significant advantage over TM (less than 15% improveme
is observed). Most rollbacks are due to subtree rotatioatsate difficult to avoid in both TM and TM+ER.

6 B-Treeand Hash Table

Due to space limitations, we do not present any of the codth#oB-tree or the hash table. Much like the AVL tree, the
B-tree allows for fast searches and concurrency acrossheswith minimum interference. The B-tree code is simitar t
the AVL tree in all cases, but properly adjusted to the degrenature of the tree. The CG and TM code are trivial while
the FG and TM+ER code requires careful locking or releasmg/a scan through the tree. Figure 1 shows that the B-tree
performance results are similar to the AVL results. In thése, rollbacks due to rotations are much less frequent,eas th
balancing requirement is relaxed and the tree nodes holtpieupieces of data. Due to the small number of violations, w
do not notice a visible performance advantage for earlyasge Interestingly, the TM code is even faster than the F@ cod



that suffers from lock acquisition overheads, while the Tddle does not experience significant overheads due to viokti

The hash table is the most concurrent data structure of #ikigroup we studied. Searches are very fast and interferenc
is unlikely. As there are 256 bins, two threads/transasti@mely work on the same bin. Again, the CG and TM code is
trivial. In this case, however, the FG code is also simple@asmly lock a bin at a time, as opposed to the individual eleémen
within the bin (as in the linked list case). Figure 1 shows e, TM+ER, and FG perform nearly identically. Early releas
does not help, as we rarely have two transactions workingnersame linked list.

7 Conclusions

The results in Figure 1 show that even for the very write+istee workloads we studied, early release provides inBigni
cant performance improvement (or no improvement at ally siraple, coarse-grain transactions for the data strusttirat
scale well in parallel systems (trees and hash tables). ©attier hand, for linear data-structures like linked-lestsl array-
based heaps, early release can significantly reduce theeadue to violations. We have also shown through specifie co
examples that the complexity of early release can be sittaildrat of fine-grain locks. While missing early releaseestagnts
do not affect correctness, a misplaced or additional e@iyase is as bad as a misplaced or missing lock/unlock statem
and may lead to atomicity breaches. Hence, instead of appBbarly release on linear data structures like linked:-lstd
heaps, the programmer is probably better off switching taaenconcurrent data structure and using simple transastion

Overall, our analysis suggests that early release is nati@plarly useful construct for user-level programmingdlrans-
actional memory. While our conclusions apply only to the kloads we studied, they suggest that the added programming
complexity is not worth the limited performance boost froarlg release. Moreover, if it is difficult to use early releand
extract performance benefits with regular data structudecit is unlikely that it will be sufficiently useful with mercom-
plicated code. Coarse-grain transactions, potentialti westing support [10], are sufficient to achieve good perémce
with the simple code that programmers expect from trangaatimemory.

On the other hand, there are certain cases where early est@asprovide significant performance advantages, as shown
by the linked-list and heap workloads. Hence, early releaag still be a useful to an optimizing compiler that is able to
automatically identify when it is safe and profitable to uséransactional code.
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int

int

Li st _Insert_FineGain(LinkedList *list, string searchKey, int data){

Li st Node *insert = CreateNode(search, data);
Li st Node *prev = list->head, =*cur=prev->next;

Lock(li st->head- >l ock);
whi | e(cur! =NULL) {
Lock(cur->l ock);
i f (sear chKey<=cur->key){
i nsert->next=cur;
prev->next =i nsert;
Unl ock( prev- >l ock) ;
Unl ock( cur->l ock) ;

return 1;
}
Unl ock( prev- >l ock);
prev=cur;

cur =cur - >next ;
}
i nsert->next=NULL
prev->next =i nsert;
Unl ock( prev- >l ock);
return 1;

Figure 2: Fine-grain (FG) locking code for linked list inser t.

Li st _Insert _TCC Earl yRel ease(Li nkedLi st *list, string searchKey,
Li st Node *insert = CreateNode(search, data);
Li st Node *prev=list->head, =*cur=prev->next;

whi | e(cur! =NULL) {
i f (searchKey<=cur->key){
i nsert->next =cur;
prev->next =i nsert;
Rel ease( &pr ev- >next);
Rel ease( & nsert->next);

return 1;
}
Rel ease( &prev->next);
prev=cur;

cur =cur - >next ;
}
i nsert->next=NULL
prev->next =i nsert;
Rel ease( &prev->next);
Rel ease( & nsert->next);
return 1;

Figure 3: TM with early (TM+ER) for linked list insert.

i nt

dat a) {
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AVLTree_lnsert _FG Avl Tree *tree, string key, int data){
Lock(tree->root);
AVLTree_l nsert _FG Hel per (tree->root, key, data);

}

AVLTree_l nsert _FG Hel per (Node *current, string key, int data){
i f (key==current->key)
Unl ock(current->Lock);
return;
} else if(key<current->key){
i f(current->left==NULL){
current - >| ef t =Cr eat eNode( key, dat a) ;
Unl ock(current->l ock);
return;
} el se{
Node x| eft=current->left;
Lock( | eft->l ock);
Unl ock( current->| ock);
AVLTree_l nsert _FG Hel per (Il eft, key, dat a);
Bal ance(l eft);
}
} else {
i f(current->right==NULL){
current->ri ght =Cr eat eNode(key, dat a) ;
Unl ock(current->l ock);
return;
} el se{
Node =*ri ght=current->right;
Lock(right->l ock);
Unl ock(current->l ock);
AVLTree_l nsert _FG Hel per(right, key, data);
Bal ance(right);

Figure 4: Fine-grain (FG) locking code for AVL tree insert.



O© oo ~NOULh~WNPRE

WWWNNNNNNMNMNNNMNNNNRPRPRPRPRPRPRPRPERPERPRRRPRPRE
NPFPOOO~NOODUODMNWNRPOOO~NOOOIAA WNEO

/1 Can avoid a wapper function by calling the inner function directly.
AVLTree_l nsert_Earl yRel ease(Avl Tree *tree, string key, int data){
AVLTree_l nsert _ER Hel per(tree->root, key, data);

}

AVLTree_l nsert _ER Hel per (Node *current, string key, int data){
i f (key==current->key)
return;
} else if(key<current->key){
if(current->left==NULL){
cur - >| ef t =Cr eat eNode( key, dat a) ;
Rel ease(current->left);
return;
} el se{
Node x| eft=current->left;
Rel ease(current);
AVLTree_l nsert _FG Hel per (Il eft, key, dat a);
Bal ance(l eft);

}
} else {
i f(cur->right==NULL){
cur->ri ght =Cr eat eNode( key, dat a) ;
Rel ease(current->| ock);
return;
} el se{
Node =*right=current->right;
Rel ease(current);
AVLTree_l nsert _FG Hel per(right, key, data);
Bal ance(right);
}
}

Figure 5: TM with early release (TM+ER) for AVL tree insert.



