ATLAS
A Scalable Emulator for Transactional Parallel Systems

Christos Kozyrakis and Kunle Olukotun

Computer Systems Laboratory
Stanford University
http://tcc.stanford.edu
Motivation

- CMPs are here, but how do we program them?
- Our proposal: transactional programming & execution
 - Programs written as sequences of transactions
 - CMP executes transactions in parallel with optimistic concurrency
 - More details at http://tcc.stanford.edu
- Challenges
 - Explore programming model with large applications & datasets
 - Interactions with operating systems and IO
 - Large-scale transactional architectures (>16 nodes)
- Need a fast, scalable emulator for system-level studies
 - Full-system simulation too slow for our purposes…
ATLAS Overview

- A multi-board emulator for transactional parallel systems

- Goals
 - 16 to 64 CPUs (8 to 32 boards)
 - 50 to 100MHz
 - Stand-alone full-feature system
 - OS, IDE disks, 100Mb Ethernet, …

- ATLAS architecture space
 - Small, medium, and large-scale CMPs and SMPs
 - UMA and NUMA
 - Flexible transactional memory hierarchy & protocol
 - Flexible network model
 - Flexible clocking, latency, and bandwidth settings
Building Block: Xilinx ML310 Board

- XC2VP30 FPGA features
 - 2 PowerPC 405 cores
 - 2.4Mb dual-ported SRAM
 - 30K logic cells
 - 8 RocketIO 3.125Gbps transceivers

- System features
 - 256MB DDR, 512MB CompactFlash
 - Ethernet, PCI, USB, IDE, …

- Design and development tools
 - Foundation ISE for design entry, synthesis, …
 - For the transactional memory hierarchy and network
 - Chipscope Pro logic analyzer for debugging
 - EDK for system simulation, system SW development, configuration, …
 - Montavista Linux 3.1 Pro
Example: 2-way bus-based transactional CMP
ATLAS Software Framework

- PowerPC and ML310 features provide rich SW framework
 - Linux OS
 - Port for Xilinx boards available from Montavista
 - Allows exploration of transactions with IO and scheduling
 - Gcc C/C++ software framework
 - TCC API for transactional programming
 - Allows experimentation with wide range of applications
 - Jikes-RVM Java framework
 - TCC API for transactional programming
 - Allows exploration of dynamic optimization techniques
- Allows us to focus on parallel programming quickly
 - No need to develop significant infrastructure from scratch
 - Gradual path to parallel application development
 - Sequential version of C/C++/Java apps runs immediately
Trade-offs & Scalability

- **ATLAS trade-offs**
 - Sacrifice some hardware modeling flexibility
 - Simple CPU, SW or coprocessor FPU, bounded on-chip memory
 - Fast hardware prototyping
 - Develop RTL for transactional memory + networking protocol
 - Rich software framework
 - Based on commercial hardware and software
 - Low cost, timely upgrades and improvements

- **Scaling**
 - Scalability by adding boards (size & performance)
 - Use RocketIO tranceivers and Xilinx Aurora protocol
 - Limitations
 - 32-bit cores can address up to 4GB of shared memory
 - 8 transceivers per chip → must synthesize router for >16 CPU
Summary

- A scalable emulator for transactional parallel systems
 - Based on commercial FPGA chips, boards, and software
 - 32 to 64 CPUs at 50 to 100MHz
 - A 6.4 GIPS emulator at full scale
 - Low cost, fast, flexible

- ATLAS architecture space
 - Large-scale parallel systems with transactional memory support

- ATLAS software space
 - Transactional parallel programming and optimizations
 - Operating systems and IO research
 - Large-scale application development
 - Embedded, server, desktop