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With uniprocessor systems ru n n i n g
into instru c t i o n - l e vel parallelism (ILP) limits
and fundamental VLSI constraints, parallel
a rc h i t e c t u res provide a realistic path tow a rd
scalable performance by letting pro g r a m m e r s
exploit thre a d - l e vel parallelism (TLP) in more
explicitly distributed arc h i t e c t u res. As a re s u l t ,
s i n g l e - b o a rd and single-chip multipro c e s s o r s
a re becoming the norm for server and embed-
ded computing, and are even starting to appear
on desktop platforms. Ne ve rtheless, the com-
plexity of parallel application development and
the continued difficulty of implementing effi-
cient and correct parallel arc h i t e c t u res have
limited these arc h i t e c t u re s’ potential.

Most existing parallel systems add hard w a re
to give programmers an illusion of a single
s h a red memory common to all pro c e s s o r s .
Programmers must divide the computation
into parallel tasks, but all tasks work on a sin-
gle data set resident in the shared memory.
Unfortunately, the hardware required to sup-
port this model can be complex. To provide a
coherent view of memory, the hardware must

determine the location of the latest version of
any particular memory address, re c over the
latest version of a cache line from anywhere
within the system when a load from it occurs,
and efficiently support interprocessor com-
munication of numerous small, cache-line-
s i zed data packets. It must do all this with
minimal latency, too, because individual load
and store instructions depend on each com-
munication event. Fu rther complicating mat-
ters is the problem of sequencing the various
communication events constantly passing
t h rough the system at the fine-grained leve l
of individual load and store instructions. For
s o f t w a re synchronization routines to work ,
hardware designers must devise and correctly
implement sets of rules known as m e m o ry con -
sistency models. Over the years, these models
h a ve pro g ressed from easy-to-understand but
sometimes performance-limiting sequential
consistency schemes to more modern schemes
such as relaxed consistency.

The complex interaction of coherence, syn-
chronization, and consistency makes the job
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of parallel programming difficult. Ex i s t i n g
a p p roaches re q u i re programmers to manage
parallel concurrency directly by creating and
explicitly synchronizing threads. The diffi-
culty stems from the need to achieve the often
c o n flicting goals of functional correctness and
high performance. In particular, using a few
coarse-grained locks can make it simpler to
c o r rectly sequence accesses to variables share d
among parallel threads. On the other hand,
having numerous fine-grained locks often
a l l ows higher performance by reducing the
amount of time wasted by threads as they
compete for access to the same va r i a b l e s ,
although the larger number of locks usually
incurs more locking overhead.

Transactional coherence and consistency
(TCC) simultaneously eases both parallel
p rogramming and parallel arc h i t e c t u re design
by relying on programmer-defined t ra n s a c -
t i o n s as the basic unit of parallel work, com-
munication, memory coherence, and

m e m o ry consistency. Although seve r a l
re s e a rchers have proposed using hard w a re
transactions instead of locks or other parallel
p rogramming constructs individually,4 - 6 TC C
unifies these ideas into an “all transactions,
all the time” model that allows significant
s i m p l i fications of both parallel hard w a re3 a n d
s o f t w a re .2 As parallel arc h i t e c t u res become
i n c reasingly pre valent and a wider variety of
h a rd w a re designers and programmers must
deal with their intricacies, this advantage will
i n c rease TC C ’s import a n c e .

TCC hardware
Processors operating in a TCC-based mul-

t i p rocessor execute speculative transactions in
a continuous cycle (illustrated in Fi g u re 1a)
on multiprocessor hard w a re similar to that
depicted in Fi g u re 1b. A t ra n s a c t i o n is a
sequence of instructions marked by software
that is guaranteed to execute and complete
only as an atomic unit. Each transaction pro-
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Figure 1. Transactional coherence and consistency (TCC) in hardware: the transaction cycle (a) and a diagram of sample TCC-
enabled hardware (b).



duces a block of writes, which the processor
buffers locally while the transaction executes,
committing them to shared memory only as
an atomic unit after the transaction completes.
Once the transaction is complete, hard w a re
must arbitrate system-wide for permission to
commit the transaction’s writes. After w i n n i n g
the arbitration, the processor can exploit high-
bandwidth system interconnect to broadcast
all of the transaction’s writes to the rest of the
system, as one packet. This broadcast can
make scaling TCC to numerous processors a
challenge. Meanwhile, other pro c e s s o r s’ local
caches snoop on the write packets to main-
tain system coherence. Snooping also lets the
p rocessors detect when they have used data
that another processor has subsequently mod-
ified—a dependence violation. Combining all
of the transaction’s writes imparts latency tol-
erance because it reduces the number of inter-
p rocessor messages and arbitrations and
because flushing the writes is a one-way oper-
ation. The commit operation can also prov i d e
i n h e rent synchronization for pro g r a m m e r s
and a greatly simplified consistency protocol
for hard w a re engineers. Most signific a n t l y, this
continual cycle of speculative buffering,
b roadcast, and (potential) violations lets us
replace both conventional coherence and con-
sistence protocols.

Consistency protocols can be simplified
because communication can occur only at
occasional, programmer-defined commit
points, instead of at each of the numero u s
loads and stores used by conventional mod-
els. This has significant implications for both
hardware and software. For hardware design-
ers, TCC simplifies the design by drastically
reducing the number of latency-sensitive arbi-
tration and synchronization events that must
be sequenced by consistency-management
logic in a typical multiprocessor system. To
p rogrammers or parallelizing compilers,
explicit commit operations mean that soft-
w a re can orchestrate communication much
m o re precisely than with conventional con-
sistency models. Simplifying matters further
for most programmers, imposing an order on
the transaction commits and backing up
uncommitted transactions if they have spec-
u l a t i vely read data modified by other transac-
tions effectively lets the TCC system provide
an illusion of uniprocessor execution. As far

as global memory and software is concerned,
all memory re f e rences from a transaction that
commits earlier effectively occurred before all
of the memory re f e rences of a transaction that
committed later. This is true even if their actu-
al execution was interleaved in time, because
all writes from a transaction become visible to
other processors only at commit time.

This simple, pseudo-sequential consistence
model allows for a simpler coherence model,
t o o. During each transaction, stores are
b u f f e red and kept within the transaction’s
p rocessor node to maintain transaction atom-
i c i t y. Processor caches do not use conve n t i o n a l
m o d i f i e d / e xc l u s i ve / s h a re d / i n valid (MESI)-
style protocols to maintain lines in shared or
exclusive states at any point, so many proces-
sor nodes can legally hold the same line simul-
taneously in either an unmodified or
s p e c u l a t i vely modified form. At the end of
each transaction, the pro c e s s o r’s commit
b roadcast notifies all other processors about
its changed state. During this process, the
other processors perform conventional inval-
idation (if the commit packet contains only
addresses) or update (if it contains addresses
and data) to keep their cache state coherent.
Si m u l t a n e o u s l y, they must determine whether
they have read from any of the committed
addresses. If they have, they must restart and
reexecute their current transactions with the
updated data. This protects against true data
dependencies. At the same time, because later
processors’ transactions do not flush out any
data to memory until their own turn to com-
mit, data antidependencies are not an issue.
Until a transaction commits, transactions that
commit earlier do not see its effectively later
results (avoiding write-after-read dependen-
cies), and processors can freely overwrite pre-
viously modified data in a clearly sequenced
manner (handling write-after-write depen-
dencies legally).

TCC will work in a wide variety of multi-
processor hardware environments, including
various chip multiprocessor configurations
and small-scale multichip multipro c e s s o r s .
Within these systems, individual pro c e s s o r
c o res and their local cache hierarchies need
features that provide speculative buffering of
m e m o ry re f e rences and commit arbitration
control. Most significantly, a mechanism for
gathering all modified cache lines from each
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transaction into a commit packet is required.
This mechanism can be a write buffer com-
pletely separate from the caches or an address
buffer that maintains a list of tags for lines
containing data to be committed. The buffer
must hold approximately 4 to 16 Kby t e s
worth of cache lines. If it fills during the exe-
cution of a long transaction, the pro c e s s o r
must declare an ove rf l ow and stall until it
obtains commit permission, when it can con-
tinue executing while writing its results dire c t-
ly to shared memory. Of course, this
write-through behavior means that no other
processors can commit while the transaction
completes, to maintain atomicity. This effect
can cause serious serialization if it occurs fre-
quently, but is acceptable on occasion.

In the caches, all of the included lines must
maintain the following information in some
way:

• Read bits. Bits set on loads to indicate that
a cache line (or portion there o f) has been
read speculatively during a transaction.
A processor’s coherence logic snoops the
read bits while other processor nodes
commit to determine when the pro c e s-
sor has speculatively read any data too
early. If it snoops and sees a write com-
mitted by another processor modifying
an address cached locally with its read bit
set, it must violate its current transaction
and restart.

• Mo d i fied bits. Eve ry cache line has at least
one modified bit. St o res set the modifie d
bit to indicate when any part of the line
has been written speculative l y. The
p rocessor uses these bits to simultane-
ously invalidate all speculatively written
lines when it detects a violation.

Additional bits can improve performance,
but are not essential for correct execution. A
p rocessor cannot flush cache lines with set
read bits from its local cache hierarchy in mid-
transaction; if it does, the processor must stall
for an ove rflow. Set modified bits will cause
similar ove rflow conditions if the write buffer
holds only addresses.

TCC software
TCC parallelization re q u i res only a few new

p rogramming constructs. It is simpler than

parallelization with conventional thre a d e d
models because it needs fewer code transfor-
mations for typical parallelization efforts. In
p a rt i c u l a r, it lets programmers make informed
trade-offs between programmer effort and
p e rformance. In simplified form, pro g r a m-
ming with TCC is a three-step process:

1. Divide the pro g ram into tra n s a c t i o n s. To
c reate a parallel program using TCC, a
p rogrammer coarsely divides the pro-
gram into transactions that can run con-
currently on different processors. In this
respect, parallelizing for TCC is like con-
ventional parallelization, which also
re q u i res finding and marking parallel
code regions. Howe ve r, with TCC the
programmer does not need to guarantee
that parallel regions are independent, as
hardware will catch all dependence vio-
lations dynamically. Our interface lets
programmers divide their program into
parallel transactions using loop iterations
and/or a forking mechanism.

2. Specify transaction ord e r. The default
transaction ordering is to have transac-
tions commit results in the same order as
they would in the original sequential pro-
gram, because this guarantees that the
p rogram will execute corre c t l y. Howe v-
e r, if a programmer can verify that this
commit order constraint is unnecessary,
he or she can relax it completely or par-
tially to improve performance. The inter-
face also provides ways to specify the
a p p l i c a t i o n’s ordering of constraints in
useful ways.

3 . Tune perf o rm a n c e . After selecting and
o rdering transactions, the pro g r a m m e r
can run the program in parallel. The TC C
system can automatically provide feedback
about where violations occur in the pro-
gram, which can direct the pro g r a m m e r
to perform further optimizations.

We describe the interface in C, but it can
be readily adapted to any programming lan-
guage (for example, we also used Java).

Loop-based parallelization
We introduce loop parallelization in the

context of a simple sequential code segment
that calculates a histogram of 1,000 integer
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p e rcentages using an array of corre s p o n d i n g
buckets:

/* input */

int *in = load_data();

int i, buckets[101];

for (i = 0; i < 1000; i++) {

buckets[data[i]]++;

}

/* output */

print_buckets(buckets);

The compiler interprets this program as one
large transaction, exposing no parallelism to
the TCC hard w a re. We can parallelize the f o r
l o o p, howe ve r, with the t _ f o r k e y w o rd :

...

t_for (i = 0; i < 1000; i++) {

...

With this small change, we now have a par-
allel loop that is guaranteed to execute iden-
tically to the original sequential loop. A similar
t _ w h i l e k e y w o rd is also available for
w h i l e loops. Each loop body iteration
becomes a separate transaction that can exe-
cute in parallel but must commit in the orig-
inal sequential ord e r, such as the pattern in
Figure 2. When two parallel iterations try to
update the same histogram bucket simulta-
n e o u s l y, the TCC hard w a re causes the later
iteration to violate when the earlier iteration
commits, forcing the later one to re e xe c u t e
using updated data and preserving the origi-
nal sequential semantics.

In contrast, a conventionally parallelize d
system would re q u i re an array of locks to pro-
tect the histogram bins, resulting in much
more extensive changes:

int* in = load_data();

int i, buckets[101];

/* Define & initialize locks */

LOCK_TYPE bucketLock[101];

for (i = 0; i < 101; i++) {

L O C K _ I N I T ( b u c k e t L o c k [ i ] ) ;

}

for (i = 0; i < 1000; i++) {

L O C K ( b u c k e t L o c k [ d a t a [ i ] ] ) ;

buckets[data[i]] ++;

U N L O C K ( b u c k e t L o c k [ d a t a [ i ] ] ) ;

}

p r i n t _ b u c k e t s ( b u c k e t s ) ;

If any of this locking code is omitted or buggy,
the program m i g h t fail—and not necessarily in
the same place eve ry time—significantly com-
plicating debugging. Debugging is especially dif-
ficult if the errors occur only during infre q u e n t
m e m o ry access patterns. The situation is poten-
tially even trickier if an application must hold
multiple locks simultaneously within a critical
region, because programmers can easily write
code with locking sequences that might dead-
lock in these cases.

Although sequential ordering is generally
useful because it guarantees correct exe c u t i o n ,
in some cases—such as this histogram exam-
ple—it is not actually re q u i red for corre c t n e s s .
In this example, the only dependencies among
the loop transactions are through the his-
togram bin updates, which are perf o r m a b l e
in any order. If programmers can verify that
no dependencies are order-critical, or if there
a re simply no loop-carried dependencies, they
can use the t _ f o r _ u n o r d e r e d a n d
t _ w h i l e _ u n o r d e r e d k e y w o rds to allow
the loop’s transactions to commit in any ord e r.
A l l owing unord e red commits is most useful
in more complex programs with dynamically
varying transaction lengths, because it elimi-
nates much of the time that processors spend
waiting for commit permission betwe e n
unbalanced transactions.

Fork-based parallelization
Although the simple parallel loop API will

w o rk for many programs, some less-stru c t u re d
p rograms might need to generate transactions
more flexibly. For these situations t_fork,
a transactional fork similar to conve n t i o n a l
thread-creation APIs, is useful:

void tt_fork(

void(*child_function_ptr)

(void*),

void *input_data,

int child_sequence_num,

int parent_phase_increment,

int child_phase_increment);

/* Which forks this off: */
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void child_function

(void *input_data);

This call forces the parent transaction to com-
mit, and then creates two completely new — a n d
parallel—transactions in its place. One (the new
p a rent) continues executing the code immedi-
ately following the t _ f o r k, while the other
(the child) starts executing the function at
c h i l d _ f u n c t i o n _ p t r with i n p u t _
d a t a. Other input parameters control ord e r-
ing of forked transactions in relation to other
transactions, as we discuss in the following sec-
tion. We demonstrate this function with a
p a r a l l e l i zed form of a simple two-stage pro c e s s o r
pipeline, which we simulate using the functions
i _ f e t c h for instruction fetch, i n c r e-
m e n t _ P C to select the next instruction, and
e x e c u t e to execute instructions. The child
transaction executes each instruction while the
n ew parent transaction fetches another:

/* Initial setup */

int PC = INITIAL_PC;

int opcode = i_fetch(PC);

/* Main loop */

while (opcode ! = END_CODE)

{

t _ f o r k(execute, &opcode, 

1, 1, 1);

increment_PC(opcode, &PC);

opcode = i_fetch(PC);

}

This example creates a sequence of ove r-
lapping transactions similar to those in Fi g-
u re 3. The t _ f o r k c a l l g i ves enough
flexibility to divide a program into transac-
tions in virtually any way. It can even be used
to build the t _ f o r and t _ w h i l e c o n-
structs, if necessary.

Explicit transaction commit ordering
The simple ordered and unordered modes

might not always suffice. For example, a pro-
grammer might desire partial orderingexe-
cuting unord e red most of the time, but
occasionally imposing some ordering. This is
rare with transactional loops, but quite com-
mon with forked transactions. To handle these
cases, we have developed a simple model for
explicitly controlling transaction sequencing

when necessary. Howe ve r, because sequenc-
ing requirements often vary in small but crit-
ical ways from program to program, this is still
an active area of development as we evaluate
more applications with TCC.

We control transaction ordering by assign-
ing two parameters to each transaction:
s e q u e n c e and p h a s e. These two numbers contro l
the ordering of transaction commits. Tr a n s a c-
tions with the same sequence number might
need to commit in a pro g r a m m e r - d e f i n e d
o rd e r, whereas transactions in differe n t
sequences are always independent. We can use
the c h i l d _ s e q u e n c e _ n u m p a r a m e t e r
within a t _ f o r k call to produce a child trans-
action with a new sequence number. Wi t h i n
each sequence, the phase number indicates
each transaction’s re l a t i ve age. TCC hard w a re
will only commit transactions in the oldest
a c t i ve phase (lowest value) from within each
a c t i ve sequence. Using this notation, an
o rd e red loop is simply a sequence of transac-
tions with the phase number incremented by
one each time, whereas an unord e red loop uses
transactions with the same phase number.

We can impose more arbitrary transaction
phase ordering with the following calls:

void tt_commit(

int phase_increment);

void tt_wait_for_sequence(

int phase_increment, 

int wait_for_sequence_num);

The t _ c o m m i t routine implicitly commits
the current transaction and then immediately
s t a rts another on the same processor with 
its phase number incremented by the
p h a s e _ i n c r e m e n t p a r a m e t e r. The most
common p h a s e _ i n c r e m e n t parameter is
0, which simply breaks a large transaction into
t w o. Howe ve r, using a p h a s e _ i n c r e m e n t
of 1 or more forces an explicit transaction com-
mit ordering. This can be used in many ways,
but the most common is to emulate a conve n-
tional barrier among all transactions in a
sequence using transactional semantics. The sim-
ilar t _ w a i t _ f o r _ s e q u e n c e call perf o r m s
a t _ c o m m i t and waits for all transactions in
another sequence to complete. Pro g r a m m e r s
typically use this call to let a parent transaction
sequence wait for a child sequence to complete,
similar to a conventional thread join operation.
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are sequence:phase. 



Performance evaluation
We used our TCC programming constru c t s

to parallelize applications from va r i o u s
domains. We then used simulation to evalu-
ate and tune their performance for large- and
small-scale TCC systems. 

Our exe c u t i o n - d r i ven simulator models a
p rocessor executing at a fixed rate of one
i n s t ruction per cycle while producing traces
of all transactions in the program. We ana-
lyzed the traces on a parameterized TCC sys-
tem simulator that includes 4 to 32 pro c e s s o r s
connected by a broadcast network. The 
TLP-oriented benefits of TCC parallelization
are fairly orthogonal to speedup from super-
scalar ILP extraction techniques within indi-

vidual processors, so our results can scale for
systems with processors faster (or slower) than
1.0 instructions per cycle, until the commit
broadcast bandwidth is saturated. 

Table 1 lists the values of three key system
parameters that describe three potential TC C
c o n figurations: i d e a l ( i n finite bandwidth, ze ro
overhead), s i n g l e - c h i p / C M P (high bandwidth,
low overhead), and single-board/SMP (medi-
um bandwidth, higher overhead). 

Table 2 presents the applications we used in
the study. These applications exhibit a dive r s e
set of concurrency patterns, including dense
loops (LU Factor), sparse loops (equake), and
task parallelism (SPECjbb). We modified the C
applications to use transactions manually. In
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Table 1. Key parameters in our simulations (all cycle values are in CPU cycles).

InterCPU Commit Violation 
bandwidth overhead delay 

System Description (bytes per cycle) (cycles) (cycles)
Ideal “Perfect” TCC multiprocessor 0 0
Chip multiprocessor (CMP) Realistic multiprocessor on a single chip 16 5 0
Symmetric multiprocessor (SMP) Realistic multiprocessor on a board 4 25 20

Table 2. Characteristics of applications used for our analysis.

Lines Primary 
Source Application Lines of changed TCC 
language Benchmark description Source Input code (percent) parallelization
Java Assignment Resource allocation jBYTEmark 51 × 51 556 5.8 Loop: two ordered,

solver array nine unordered
MolDyn N-body code- Java Grande 2,048 615 3.3 Loop: nine 

modeling particles particles unordered
LUFactor Matrix factorization jBYTEmark 101 × 101 516 1.9 Loop: two ordered, 

and triangular solver matrix four unordered
RayTrace 3D ray tracer Java Grande 150 × 150 1,233 4.9 Loop: nine 

pixel image unordered
SPECjbb Transaction  SPECjbb 230 iterations 27,249 1.3 Fork: five calls (one 

processing without per task type)
server randomization

C art Image recognition/ SPEC2000 FP Reference.1 1,270 8.9 Loop: 11 chunked
neural network and unordered 

equake Seismic wave SPEC2000 FP Reference 1,513 0.8 Loop: three 
propagation unordered
simulation

tomcatv Vectorized mesh SPEC95 FP 256 × 256 array 346 2.0 Loop: seven 
generation unordered

MPEGdecode Video bitstream Mediabench mei16v2.m2v 9,834 4.6 Fork: one call
decoding



contrast, we parallelized most Ja va applications
automatically using the Jrpm dynamic compi-
lation system,4 and then ran them on top of a
version of the Kaffe Ja va virtual machine
(http://kaffe.org) customized to use transac-
tions instead of locks. The only exception was
S PE C j b b, which we manually parallelized by
f o rking transactions for each warehouse task
(such as orders and payments). Although most
p rogrammers assign separate warehouses to
each processor to parallelize this benchmark ,
TCC let us parallelize w i t h i n a single ware-
house, a virtually impossible task with con-
ventional techniques. In all cases, we only
needed to modify a modest percentage of the
original code to make it parallel.

Parallel performance tuning
After a program is divided into transactions,

most problems will tend to be with perf o r-
mance, not correctness. To obtain good per-
formance, programmers must optimize their
transactions to balance a few competing goals:

• Ma x i m i ze para l l e l i s m. Programmers must
b reak as much of the program as possible
into parallel transactions, which should
be of roughly equal size to maintain good
load balancing across pro c e s s o r s .

• Minimize violations. To avoid the costly
discarding of work after violations, pro-
grammers should avoid parallel transac-
tions that communicate fre q u e n t l y.
Keeping transactions reasonably small to
minimize the amount of work lost when
violations occur can also help.

• Mi n i m i ze transaction ove rh e a d. On the
other hand, programmers should gener-
ally avoid ve ry small transactions because
of the overhead associated with starting,
ending, and committing transactions.

• Avoid buffer ove rf l ow s . Buffer ove rf l ow s
can cause serialization by re q u i r i n g
p rocessors to hold commit permission for
a long time. Hence, programmers should
stay away from transactions that read or
write large amounts of state.

Fi g u re 4a shows application speedups as we
applied successive optimizations for CMP con-
figurations with 4, 8, 16, and 32 pro c e s s o r s ,
and Fi g u re 4b breaks down execution time for
the eight-processor case into “useful work , ”

“waiting for commit,” “losses to violations,”
and “idling” caused by too few parallel trans-
actions for the available pro c e s s o r s — u s u a l l y
caused by sequential code regions. Although
the baseline results showed significant speedup,
they often needed improvement. Where pos-
sible, we first optimized with unord e red loops.
Howe ve r, because load balancing was rarely a
p roblem in the applications we selected, as our
l ow “waiting to commit” times show, this did
not significantly improve perf o r m a n c e .

We used results from initial application
runs to guide our optimization efforts. These
runs produced violation re p o rts that summa-
r i zed the load-store pairs and data addre s s e s
causing violations, prioritized by the amount
of time lost. We then used gdb to determine
e x a c t l y which variables and variable accesses
caused the violations. This information is sig-
n i ficantly more useful than feedback ava i l a b l e
on current share d - m e m o ry systems, which
tends to be mostly in terms of coherence pro-
tocol statistics. This feature can gre a t l y
i n c rease programmer productivity by guiding
them d i re c t l y to the most critical communi-
cation. Violation re p o rts can lead to a wide
variety of optimizations, many adapted from
traditional parallelization techniques.

One of the most common optimizations is
the privatization of shared variables that cause
u n n e c e s s a ry violations. For example, we
i m p roved SPECjbb by privatizing some
s h a red temporary buffers. The most common
type of privatization, howe ve r, was to priva-
tize the loop-carried “sum” variable used as a
reduction target within loops that are other-
wise good targets for parallelization. In our
statistics, the “sum” variables caused frequent
violations. Howe ve r, many of the re d u c t i o n
operations are associative, such as addition
and multiplication, and can there f o re be
re o rd e red safely. Programmers can expose par-
allelism by privatizing a “sum” variable with-
in each processor and then combining the
private copies only at loop termination.

Although transactions should usually be
monolithic, it is sometimes more helpful to
b reak large transactions into a transactional
g roup of two or more smaller transactions
which must execute sequentially on one
p ro c e s s o r. A programmer can use a
t _ c o m m i t ( 0 ) call to mark each bre a k p o i n t
between the individual transactions. Because
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this operation splits the original transaction
into two separate atomic regions, the pro-
grammer must not place t _ c o m m i t s in the
middle of critical regions that m u s t e xe c u t e
atomically. Despite this limitation, the tech-
nique can help solve three problems: 

• In s e rting a t _ c o m m i t takes a new ro l l-
back checkpoint, limiting the amount of
w o rk lost to a violation. This is helpful with
S PE C j b b, which has large transactions and
f requent, unavoidable violations.

• It lets the processor commit and broad-
cast changes made by a transaction to
other parallel processors early, when the
original transaction would only have
been partially completed. 

• Because each commit flushes the pro c e s-
s o r’s TCC write buffer, judicious
t _ c o m m i t s can pre vent or re d u c e
buffer overflows.

Loop adjustment techniques can also be crit-
ical when optimizing code for TCC. L o o p
u n ro l l i n g, f u s i o n, fis s i o n, and re n e s t i n g a re com-
mon parallelizing compiler tricks that can all
p rove helpful. Although the techniques are the
same, the patterns used typically differ some-
what, with optimal transaction sizes being the
usual goal. In addition, with loop nests a pro-
grammer must carefully choose the proper loop
nesting level to use as the source of transactions,
because our model does not support nested
transactions. Outer loop bodies provide large,
coarse-grained transactions, but these loop bod-
ies can easily be too large, causing frequent buffer
ove rflows. On the other hand, using inner loop
bodies can make the transactions too small,
incurring exc e s s i ve startup and commit ove r-
heads. Meanwhile, critical loop-carried depen-
dencies can occur at any level. For example,
t o m c a t v’s inner loops had many dependencies
and we re small, forcing us to use outer loops.
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Overall results
Fi g u re 5 presents the best achieved speedups

for three TCC system configurations (ideal,
C M P, and SMP) using 4 to 32 pro c e s s o r s .
While results are generally quite good, com-
binations of unavoidable violations and
regions with insufficient parallel transactions,
causing extra processors to idle, limit some
applications. In addition, large sequential code
regions limit Assignment and RayTrace.

For most benchmarks, CMP performance
closely tracks ideal performance for all pro c e s-
sor counts. The CMP configuration is worse
than the ideal only when insufficient commit
bandwidth is available, which generally occurs
only with 32 or more processors. This causes
processors to stall while waiting for access to
the commit network. Si m i l a r l y, the SMP
TCC configuration achieves very little bene-
fit beyond four- to eight-processor config u r a-
tions because of its significantly reduced global
bandwidth. Of our applications, only Assign-
ment, SPE C j b b, and tomcatv used more
p rocessors to significant advantage. This re s u l t
is still promising, howe ve r, because online
s e rver applications such as SPECjbb would
most likely be the primary applications run-
ning on TCC systems larger than CMPs.

The most significant TCC hardware is the
addition of speculative buffer support. The
amount of state read and written by an aver-
age transaction must be small enough for local
buffering. Fi g u re 6 shows the buffer size need-
ed to hold the state read (Figure 6a) or writ-
ten (Figure 6b) by 10, 50, and 90 percent of
each application’s transactions, sorted by the
90-percent limit’s size, generally from 6 to 12
K bytes for read state and 4 to 8 Kbytes for

write state. All applications have a few ve ry
large transactions that will ove rflow, but TC C
hardware should be able to achieve good per-
formance as long as this does not occur often.

In the future, we plan to explore software
and hardware techniques for scaling TCC

to large-scale parallel systems, so that pro-
grammers can use a single programming par-
adigm on any parallel machines, from small
C M Ps to large SMPs. We will complement
this work by investigating dynamic optimiza-
tion techniques that will help automate the
o t h e rwise time-consuming parallel perf o r-
mance tuning of larger and more complex
TCC programs. Ultimately, we see the com-
bination of TCC hardware and highly auto-
mated TCC programming language support
as forming a new programming paradigm that
will provide a smooth transition from today’s
sequential programs to tomorrow’s parallel
s o f t w a re. This paradigm will be an import a n t
catalyst in transforming parallel pro c e s s i n g
from a niche activity to one that is accessible
to the average software developer. M I C R O
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