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Abstract

Despite their superior performance for multimedia ap-
plications, vector processors have three limitations that hin-
der their widespread acceptance. First, the complexity and
size of the centralized vector register file limits the number
of functional units. Second, precise exceptions for vector
instructions are difficult to implement. Third, vector pro-
cessors require an expensive on-chip memory system that
supports high bandwidth at low access latency.

This paper introduces CODE, a scalable vector microar-
chitecture that addresses these three shortcomings. It is de-
signed around a clustered vector register file and uses a
separate network for operand transfers across functional
units. With extensive use of decoupling, it can hide the
latency of communication across functional units and pro-
vides 26% performance improvement over a centralized or-
ganization. CODE scales efficiently to 8 functional units
without requiring wide instruction issue capabilities. A re-
naming table makes the clustered register file transparent
at the instruction set level. Renaming also enables precise
exceptions for vector instructions at a performance loss of
less than 5%. Finally, decoupling allows CODE to toler-
ate large increases in memory latency at sub-linear per-
formance degradation without using on-chip caches. Thus,
CODE can use economical, off-chip, memory systems.

1 Introduction

Modern vector and data-parallel architectures offer sig-
nificant advantages over superscalar processors for a wide
range of compute-intensive applications: multimedia (VI-
RAM [19], Imagine [15]), broadband and wireless com-
munication (Intel IXS [26], Broadcom Calisto [20]), bioin-
formatics workloads (Cray X1 [1], Tarantula [7]), climate
modeling (NEC ES [24]). The abundance of data-level par-
allelism in such tasks allows them to concurrently execute
tens of arithmetic and memory operations, while issuing
a single instruction per cycle [6]. For data-parallel tasks,
vector processors approach the performance and power effi-
ciency of custom designs, while maintaining the flexibility

and programmability of general-purpose processors. They
are also simpler to build and easier to scale with CMOS
technology than superscalar processors [16, 19].

Nevertheless, there are three remaining obstacles to the
widespread adoption of vector architectures in general-
purpose computer systems: the complexity of a multiported
centralized vector register file (VRF), the difficulty of im-
plementing precise exceptions for vector instructions, and
the high cost of on-chip vector memory systems.

In this paper, we introduce CODE, a microarchitecture
that addresses the three limitations of conventional vector
organizations. The cornerstone of the microarchitecture is a
clustered vector register file (CLVRF) that separates the task
of staging the operands for a single functional unit from the
task of communicating data among functional units. Since it
does not have to support all-to-all communication between
the functional units, as it is the case with the centralized
VRF, the CLVRF is significantly simpler. To avoid the per-
formance loss typically associated with clustered register
files [12], CODE makes extensive use of decoupling. It also
uses a simple renaming table that makes its distributed na-
ture transparent at the instruction set level.

To demonstrate the potential of CODE, we use the VI-
RAM instruction set for multimedia processing and com-
pare it to the VIRAM media-processor, a multi-lane vector
design with a centralized VRF. For the EEMBC benchmarks
and assuming equal die area, CODE is 26% faster than VI-
RAM. While VIRAM is limited to 3 functional units and re-
quires an on-chip memory system, CODE scales efficiently
to 8 functional units with multiple vector lanes and can ef-
fectively hide the high latency of off-chip memory accesses.
In addition, CODE can support precise exceptions for vec-
tor instructions at negligible performance loss.

The rest of this paper is structured as follows. Section
2 discusses the three limitations of conventional vector pro-
cessors. Section 3 introduces the basic features of CODE.
Section 4 focuses on precise exceptions for vector instruc-
tions. Section 5 proceeds with a performance and scaling
evaluation of CODE, including a comparison with the VI-
RAM processor. Section 6 presents related work and Sec-
tion 7 concludes the paper.
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2 Limits of Conventional Vector Processors

Two factors contribute to thehigh complexity of the cen-
tralized VRF: it stores a large number of vector elements
and, more importantly, supports high bandwidth commu-
nication of operands between the vector functional units
(VFUs). A typical VRF stores 2 to 64 KBytes and supports
3 to 10 VFUs [13]. In general, for a vector processor with�

VFUs, the VRF must have approximately�� access ports.
The VRF area, power consumption, and access latency are
roughly proportional to��� ��, ��������, and���� re-
spectively [21]. We can bind the VRF complexity to that
of a 9-ported memory structure by using� � � functional
units. However, this approach limits the ability to overlap
the execution of more than 3 vector instructions, which is
critical for applications with short vectors. Alternatively,
we can time-share a small number of VRF ports between
multiple VFUs, which leads to low utilization of the VFUs
or increases the latency of chaining. Finally, we can use
bank partitioning to implement the multi-ported VRF as a
collection of banks with a smaller number of access ports
per bank [2]. Bank partitioning leads to complicated cases
of structural hazards in the case of non-uniform VFU laten-
cies. In general, the techniques for reducing the VRF com-
plexity provide a one-time reduction of the constant factors
associated with its area, power consumption, and access la-
tency and are not applicable to designs with a large number
of VFUs.

Precise exceptions are required for virtual memory sup-
port and desirable for handling arithmetic faults. However,
they are difficult to implement in vector processors. Each
vector instruction defines a large number of element oper-
ations and takes several cycles to execute, even in multi-
lane organizations. To implement in-order instruction com-
mit, a vector processor requires a reorder buffer that can
store at least one vector register for each VFU. Due to its
large capacity and the need for multiple access ports for for-
warding, a vector reorder buffer has similar complexity to
the VRF. Alternatively, we can integrate the reorder buffer
with the VRF, which exacerbates the complexity of the VRF
by increasing its capacity [9]. Consequently, most vector
processors support imprecise exceptions or do not support
restartable exceptions at all. An additional complication
for precise virtual memory exceptions for vector loads and
stores is the need for a large TLB. To guarantee forward
progress, the TLB must have enough entries to eventually
check and translate all the virtual addresses generated by
one vector instruction without generating TLB refill errors.
In the worst case, an indexed vector load may access a sep-
arate memory page for each element, which requires a large
number of TLB entries. For example, the Tarantula vec-
tor extension for the Alpha architecture uses 512 entries (16
32-entry fully associative TLBs) to avoid TLB thrashing on
indexed vector accesses (128 elements/instruction).

Vector processors traditionally require anaggressive
memory system. High memory bandwidth is inherently nec-
essary to match the high throughput of arithmetic opera-
tions in VFUs with multiple datapaths (multi-lane designs).
Nowadays, we can provide high memory bandwidth with a
number of commodity technologies such as DDR and Ram-
bus [4]. However, recent vector processors also rely on low
memory latency to reduce the number of memory related
stalls for vector instructions and simplify the overall design.
For example, Tarantula uses a 4-MByte on-chip cache with
128 banks to obtain 12-cycle access latency for vector mem-
ory accesses. VIRAM uses a 13-MByte on-chip DRAM
memory with 8 banks to limit latency to 8 cycles. In general,
low access latency requires on-chip memory (main memory
or cache), which increases the overall system cost.

3 The CODE Microarchitecture

This section introduces CODE (Clustered Organization
for Decoupled Execution) within the context of the VIRAM
ISA for multimedia processing. However, CODE is equally
applicable to any other modern vector ISA, such as the Cray
X1 [1] or the Alpha Tarantula [7]. A complete description
of CODE is available in [18].

The VIRAM ISA is a vector load-store extension to the
MIPS architecture. It defines a 8-KByte vector register file
that stores 32 general-purpose registers with 32 64-bit, 64
32-bit, or 128 16-bit elements per register. Integer, floating-
point, and load-store instructions operate on vector registers
under vector length control. Load-store instructions can de-
scribe sequential, strided and indexed access patterns. A
detailed description and analysis of the IRAM ISA for mul-
timedia applications is available in [19].

3.1 Clustered Register File

Figure 1 presents the clustered organization of vector
hardware in CODE. Each cluster contains a single vector
functional unit (arithmetic or load-store) and a small num-
ber of vector registers (e.g. 4 or 8). Collectively, the clusters
must store at least 32 vector registers, the number defined in
the ISA. Yet, there is no upper bound to the overall num-
ber of registers. A cluster also includes an instruction queue
for decoupling reasons, as well as one input and one output
interface which allow vector register transfers from and to
other clusters. The two interfaces do not contain any stor-
age, except for a single cycle buffer for retiming purposes.

CODE distributes the vector registers across the clus-
ters. The local CLVRF partition within each cluster pro-
vides operands to the local VFU and the two communica-
tion interfaces. Hence, it requires 5 access ports: 2 read
and 1 write for the VFU, 1 read port for the output inter-
face, and 1 write port for the input interface. The number
of ports is independent of the overall number of clusters. In
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Figure 1. The block diagram of CODE. The total number of clusters (� ) is a design parameter. A cluster contains an
integer, floating-point, or load-store VFU. We can also have a cluster without a VFU that merely introduces extra vector
registers. The overall number of vector registers across all clusters can be larger than 32.

other words, the area, power consumption, access latency,
and complexity of each CLVRF component are constant.
The overall CLVRF area and power consumption are pro-
portional to� , yet so is the total number of vector regis-
ters. Each additional cluster contributes both a VFU and a
few vector registers that will stage its operands and tempo-
rary results. Therefore, the area and power consumption per
vector register in CLVRF are constant. With the centralized
VRF, on the other hand, the number of registers is constant,
but the area and power consumption grow with��� �� and
�������� respectively.

3.2 Communication Network
CODE requires a separate communication network for

transferring vector registers between clusters. If the source
operand for a vector instruction is not readily available in
the cluster selected for its execution, we must move it across
clusters. Communication takes place by executing a tagged
move-to instruction in the output interface of the sending
cluster and a taggedmove-from instruction in the input in-
terface of the receiving cluster respectively. All move in-
structions are generated by hardware in the vector issue
logic. Since we use the same tag for the two corresponding
move instructions, the high-level control of the network is
straightforward. The input and output interface of the clus-
ters pass to the network the tag of the move instruction they
want to execute. As soon as a tag match is established be-
tween one move-to and one move-from instruction, we can
initiate the transfer1. The full vector register transfer will
take several cycles to complete since the network will likely
be able to move only a few vector elements per cycle.

1If all input and output interfaces execute move instructions in the order
issued to their cluster, we can prove that the network is deadlock-free.

For a fair comparison between the CLVRF and the cen-
tralized organization, we must include the area, power, and
complexity of the communication network. The centralized
VRF incorporates a single-cycle crossbar between the input
and output operands of all functional units. If the CODE
network has to provide similar functionality, the CLVRF
benefits will likely be canceled out. Nonetheless, several
reasons suggest that the network does not have to be a full
crossbar. First, certain pairs of VFUs are rarely used in the
same program or hardly ever communicate (e.g. integer and
floating-point units). In addition, vector instructions fre-
quently use scalar values as one of their source operands.
Finally, the result of one instruction is often used by just
one or two subsequent instructions before it is discarded
[3]. Hence, the overall number of times we will need to
move each vector result is inherently small. We can also try
to assign each vector instruction to the cluster that already
has most of its operands in the local CLVRF partition. In
Section 5.1, we show that for multimedia tasks the commu-
nication bandwidth necessary to achieve full performance is
only a couple of 64-bit words per cycle.

By separating the exchange of vector operands between
functional units from the VRF, CODE turns the exact struc-
ture of the communication network into a separate design
decision. A low-cost processor implementation may select
a simple network (e.g. bus or ring) that has low area and
power overhead. On the other hand, a high-end implemen-
tation may favor a low latency, high bandwidth network that
can minimize the number of cycles each VFU has to wait for
its source operands to arrive from another cluster. In gen-
eral, we can trade off area, power, and complexity in the
network for performance without affecting the design of the
clusters.
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Figure 2. The renaming table and per-cluster state in
the vector issue logic. The specified bit widths can sup-
port a system with 16 clusters and 16 vector registers
per cluster. The valid and dirty bits for each architec-
tural register are also defined in the VIRAM ISA. In this
example, the table indicates that the contents of archi-
tectural vector register 0 are available in the physical
vector register 2 of cluster 4.

3.3 Vector Issue Logic

The distributed register file in CODE deviates signifi-
cantly from the register file model defined in the VIRAM
ISA. The processor may include more than 32 vector reg-
isters across all clusters. In addition, each VFU has direct
access only to a subset of the registers. We address these
two issues in the vector issue logic block.

The basic role of the issue logic is to select the proper
cluster to execute each instruction. This task becomes triv-
ial when there is only one cluster with the proper VFU. The
issue logic may also need to generate the proper inter-cluster
transfers that will move the source operands of the instruc-
tion to the selected cluster. Hence, it must track the physical
location of the 32 architectural vector registers, i.e. the clus-
ter and vector register within the cluster that currently stores
the values of its elements. Figure 2 presents the renaming
table that maintains the mapping of architectural to physical
vector registers. Renaming also eliminates WAW and WAR
hazards between vector instructions. Figure 2 also presents
the per-cluster state that the issue logic maintains, namely
a free-list for the physical registers in the cluster and a few
control registers.

The issue logic reads the renaming table once for each
instruction in order to find the location of its operands. Af-
ter it selects a cluster, it updates the table to reflect the new
physical location of architectural registers due to the exe-
cution of the instruction. All the instruction operands will

be local to the selected cluster, which requires up to 3 vec-
tor register transfers2. Since each cluster can store a limited
number of vector registers, there may not be sufficient space
for the instruction operands. In this case, we first need to
transfer some of the locally stored architectural registers to
other clusters with unallocated physical registers. Overall,
the execution of an instruction may require 0 to 6 register
transfers. The issue logic generates the move-to and move-
from instructions for the transfers and issues them to the
proper clusters along with the original instruction.

Obviously, minimizing the number of transfers per in-
struction is a critical issue. A large number of transfers will
likely lead to frequent stalls, as VFUs will have to wait for
their data to arrive from other clusters. To avoid perfor-
mance degradation, we will need high bandwidth on the
inter-cluster network, which is expensive in terms of area
and power. We can reduce the number of transfers by al-
ways selecting the candidate cluster that requires the least
transfers. Still, this approach is only locally optimal and
can lead to load imbalance. We will analyze the impact of
cluster selection policy in Section 5.1.

The issue logic in CODE is similar in functionality to
that of multi-cluster superscalar processors [11]. However,
it is much simpler, as it is sufficient to maintain an issue
rate of one vector instruction per cycle. Each vector instruc-
tion defines tens of element operations and will occupy a
cluster for several clock cycles. In Section 5.5, we demon-
strate that a single-issue CODE implementation can scale to
8 clusters. On the other hand, a superscalar processor must
issue at least one instruction per cluster per cycle to make
efficient use of its hardware. The wide instruction issue with
the potential for dependencies between instructions leads to
exponential growth in issue logic complexity.

It is important to note that the issue logic dispatches load-
store, arithmetic, and move instructions to the clusters, but
does not control their execution. Each cluster contains the
proper decoding logic to execute instructions, and the net-
work is responsible for sequencing vector element transfers
between input and output interfaces.

3.4 Discussion
CODE executes sequences of vector instructions in a de-

coupled manner. Execution within each cluster proceeds
in-order, with every instruction typically taking several cy-
cles to complete. However, we can exploit the instruction
queues to decouple execution across clusters. Clusters need
to synchronize only when queues become full or when data
dependencies arise and they need to execute the move in-
structions that implement register transfers. We can hide a
significant portion of the overhead of inter-cluster transfers
by allowing the input and output interfaces to look ahead in

2Up to 2 transfers for source operands. The third transfer for the desti-
nation is only needed for predicated execution of vector instructions.



the instruction queue and start executing move instructions
prior to older arithmetic instructions, if there are no depen-
dencies. Overall, decoupled execution is the key feature that
allows CODE to avoid the typical performance degradation
associated with clustered register files (see Section 5.2).

CODE also simplifies the implementation of chaining,
the vector equivalent of forwarding, which is a critical per-
formance factor for any vector processor. CODE imple-
ments chaining across a large number of clusters in a scal-
able manner that uses only intra-cluster control logic. For
example, assume thatvadd andvsub execute in cluster
1 and 2 respectively and thatvsub uses the outcome of
vadd as a source operand. In cluster 1, the VFU that exe-
cutes thevadd will chain to the output interface. As soon
asvadd produces one element of its result, the output in-
terface can push it toward cluster 2 through the network. In
cluster 2, the VFU that executes thevsub chains to the in-
put interface: as soon as another element arrives,vsub can
execute the corresponding element operation. In a multi-
cluster system, the VFU in one cluster can chain to the VFU
in any other cluster just by checking the progress of move
instructions in its local input and output interfaces. In a con-
ventional vector processor with a centralized VRF, on the
other hand, chaining requires control logic that checks the
progress of execution in all possible pairs of VFUs.

Finally, the clustered organization of CODE is compati-
ble with multi-lane implementations. Multi-lane vector pro-
cessors use parallel datapaths and address generators within
each VFU to execute a large number of element operations
per cycle for each instruction [13]. A lane is a partition of
the vector processor that contains one datapath from each
VFU and a set of elements from each vector register. Lanes
and clusters are basically two orthogonal ways to add extra
hardware resources (datapaths) in a vector design. Lanes
allow the parallel execution ofmultiple element operations
per instruction and clusters allow the concurrent execution
of multiple vector instructions. Hence, we can apply CODE
to a multi-lane vector processor by organizing the hardware
resources within each lane into multiple clusters. We eval-
uate the two scaling approaches, clusters and lanes, in Sec-
tion 5.5.

4 Support for Precise Exceptions

At first sight, the decoupled nature of CODE seems to
create further obstacles to implementing precise exceptions.
However, we can exploit the renaming capabilities in the
issue logic to achieve in-order commit of vector instructions
without significant performance loss. We can also adjust
the definition of precise exceptions for vector instructions
to eliminate the need for a large TLB.

4.1 Microarchitecture Support

The key to in-order commit is not to allow a vector in-
struction to change the value or the physical location of an
architectural register until it is known that this and all pre-
ceding instructions will complete without faults. On issu-
ing an instruction, we assign unallocated registers in the
selected cluster for its destination or any source registers
that must be moved across clusters. We do not release the
physical registers with the old value of the destination or the
old locations of the sources until the exception behavior is
known. However, after we have preserved the old value of
a vector register once, we do not preserve additional inter-
mediate values until we issue another instruction that may
cause a fault (e.g. vector load). This optimization can re-
duce significantly the pressure on vector registers, if a suf-
ficient number of the vector instructions executed can never
to generate faults (e.g. vector shift).

We can implement in-order commit without modifying
the clusters by adding a history buffer in the issue logic
[23]. The history buffer keeps track of the changes to the
renaming table and the per-cluster state for each instruction
in case we need to undo them. We insert and extract instruc-
tions from the history buffer in issue order. If the instruction
at the buffer head completes without exception, we release
any physical vector registers that maintain old values or lo-
cations for its operands. If the instruction has caused an
exception, we must scan the history buffer from tail to head
and restore the old vector register mappings for all pending
vector instructions before we flush the buffer. It is important
to note that the history buffer does not store the old vector
register values, just the old mappings. We only need to en-
queue and dequeue one vector instruction per cycle, which
makes the buffer simpler than a history buffer for a super-
scalar processor.

Supporting exceptions places increased pressure on vec-
tor registers. Most vector registers in a cluster may be un-
available because they store old register values for pending
instructions. Hence, we may not be able to issue a new in-
struction that needs to transfer its operands to this cluster. In
other words, supporting precise exceptions may cause fre-
quent stalls in the issue logic and lead to performance loss.
We measure the performance impact of precise exceptions
in Section 5.3.

4.2 ISA Support

The history buffer allows CODE to implement precise
exceptions for vector instructions, but it does not simplify
the TLB for vector loads and stores. For this purpose, we
need an ISA level change.

The fundamental cause of the TLB requirement is that
the definition of precise exception requires that the faulting
instruction cannot modify architecture state. As a result,



an indexed vector load must be able to translate all its ele-
ment addresses without exceptions in order to make forward
progress. We can relax the TLB requirement by allowing
the faulting instruction to update architecture state up to the
first element that causes an exception. For example, if an
indexed vector load causes translation errors for elements
10 and 15, we allow the loading of the first 9 elements to
commit. We still expect that all previous instructions have
fully completed and all following instructions have not up-
dated architecture state at all. When we resume from the
exception, we restart the faulting instruction from the 10th
element. All following instructions proceed as usual.

With the proposed modification, a large TLB is no longer
a functional requirement, just a performance optimization.
Even with a single-entry TLB, an indexed load or store is
guaranteed to advance by at least one element operation af-
ter each TLB miss exception. Processors for applications
with mostly sequential accesses or small working sets may
use a small number of TLB entries. Processors optimized
for indexed access patterns on large working sets may still
choose a large TLB.

Allowing partial completion of one vector instruction is
very similar to the ability of VLIW processors to resume
from exceptions in the middle of a long instruction word.
The idea is to recognize that each vector or VLIW instruc-
tion defines multiple operations with independent exception
behavior. Apart from the control register for the faulting
PC, the implementation of this technique requires a control
register that indicates the first element that caused an ex-
ception. We can use the same register when we resume to
indicate that the first vector instruction must not start from
element 0.

5 Evaluation

To evaluate CODE, we developed a trace-driven, param-
eterized performance model that accounts for detailed tim-
ing events. The model includes a simple, in-order scalar
core with 8-KByte first-level caches. The default configura-
tion has similar execution capabilities and occupies approxi-
mately the same area as a single-lane version of the VIRAM
processor [19]. It includes 2 integer and 1 load-store cluster,
each with 8 vector registers and a 8-entry instruction queue.
Arithmetic VFUs can execute 1 64-bit, 2 32-bit, or 4 16-bit
operations per cycle. The load-store VFU can generate one
address and exchange up to 64 bits with the memory system
per cycle. An additional (4th) cluster introduces 16 vector
registers, but includes no VFU3. The network bandwidth is
two 64-bit words per cycle and its latency is 2 cycles. The
memory system uses 8 banks of DRAM main memory and

3The default configuration includes 40 vector registers, 8 more than VI-
RAM. However, the reduced number of access ports of the CLVRF com-
ponents leads to approximately the same die area as VIRAM.

Consumer Benchmarks
Rgb2cmyk Converts an RGB image to the CMYK format
Rgb2yiq Converts an RGB image to the YIQ format
Filter High-pass gray-scale image filter
Cjpeg JPEG image compression
Djpeg JPEG image decompression

Telecommunications Benchmarks
Autocor Voice compression using autocorrelation
Convenc Convolutional encoder for modems
Bital Bit allocation to frequency bins for ADSL
Fft 256-point fixed-point fast Fourier transform
Viterbi Viterbi decoding for wireless applications

Table 1. The consumer and telecommunication bench-
marks in the EEMBC suite [5]. The benchmarks in-
clude no floating-point operations.

has 8 cycles access latency. Unless otherwise stated, the fol-
lowing sections assume the parameters of the default config-
uration.

Our evaluation uses the ten benchmarks from the
EEMBC suite presented in Table 1. They are represen-
tative of the workload of multimedia devices with wire-
less or broadband communication capabilities. The use of
EEMBC enables direct comparisons to the VIRAM proces-
sor. The benchmarks are highly vectorizable, which allows
us to concentrate on the vector hardware design, which is
the main focus of this paper. Unlike scientific applications,
the EEMBC benchmarks include both long and short vector
operations, which is typical of multimedia applications. An
analysis of the vectorization of the EEMBC benchmarks is
presented in [19]. The traces used with the CODE perfor-
mance model were generated from the C benchmark code
using the VIRAM vectorizing compiler and ISA simulator.

5.1 Microarchitecture Tuning

Before we proceed with the evaluation of CODE, we
tune some of the basic microarchitecture parameters.

Figure 3 present the impact of cluster selection policy
in a CODE configuration with 2 clusters for each type of
vector instructions (integer, load-store). We report speedup
over a configuration with a single cluster per type (no se-
lection necessary). By selecting the cluster that requires
the minimum number of register transfers, we reduce the
pressure on the communication network but create load im-
balance. On average, this policy performs slightly worse
than random selection, which is trivial to implement. We
can eliminate load imbalance by taking into account the size
of cluster instruction queues. The load balancing policy in
Figure 3 selects the cluster for minimum communication,
unless the difference in the queue sizes for the two candi-
dates is more than half the queue capacity (4 instructions).
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Figure 3. The effect of cluster selection policy on performance.

This policy leads to 14% performance improvement over
the minimum communication policy.

The number of vector registers per cluster is another crit-
ical parameter. Without sufficient local registers, each vec-
tor instruction will require a large number of inter-cluster
transfers, which will likely lead to performance loss (see
discussion in Section 3.3). Figure 4 presents the number of
vector register transfers per instruction for the default con-
figuration as a function of the number of vector registers per
cluster. In all cases, the average number of transfers is much
lower than the worst-case 6, due to the reasons discussed in
Section 3.2. Eight registers per cluster are sufficient to hold
the operands and temporary results of each VFU and lead
to less than one transfer per two vector instructions for all
benchmarks excludingFilter. The main kernel ofFil-
ter uses all 32 architectural registers for temporary results,
and its register access pattern interacts poorly with the load
balancing cluster selection policy.

Figure 4 suggests that the actual requirements for inter-
cluster communication are low. Our experiments indicate
that the ability to execute in parallel 2 register transfers at
the rate of one 64-bit word per transfer per cycle is suffi-
cient to reach the full performance potential with the de-
fault configuration. This is significantly lower bandwidth
than that supported by the full crossbar integrated in a cen-
tralized VRF. The communication latency has no significant
effect on the performance of CODE, since decoupling pro-
vides sufficient tolerance for reasonable latency values.

5.2 Comparison to VIRAM

Figure 5 presents the performance improvement of
CODE over VIRAM. This baseline comparison assumes
that both microarchitectures use the same scalar core and
memory system, have identical computational capabilities
(number of VFUs and datapaths per VFU), and occupy ap-
proximately the same die area. We also assume that the
two operate at the same clock frequency, even though the
smaller number of access ports per CLVRF component in
CODE allows for higher frequency than VIRAM.

VIRAM uses a centralized VRF, hence there is no per-
formance penalty for communicating vector results between
its VFUs. On the other hand, CODE makes extensive use
of decoupling, which can hide the latency of inter-cluster
communication. Decoupling also supports a limited form
of out-of-order execution across clusters, which hides other
sources of latency, such as stalls due to bank conflicts in the
memory system or ineffective static scheduling. The VI-
RAM pipeline is strictly in-order with no decoupling across
VFUs. A stall in any VIRAM VFU causes all other func-
tional units to stall as well, even in the absence of dependen-
cies. The main motivation for this rigid pipeline in VIRAM
is to simplify chaining decisions.

Figure 5 shows that VIRAM slightly outperforms CODE
for benchmarks with frequent inter-cluster transfers (Fil-
ter) or no opportunities for decoupling across clusters
(Bital). However, CODE outperforms VIRAM for most
other benchmarks, especially for those with many strided
accesses that cause frequent bank conflicts (Rgb2cmyk).
On the average, CODE outperforms VIRAM by 21% to
42%, depending on the number of lanes used with each mi-
croarchitecture. The performance advantages of CODE are
consistent, yet somewhat smaller with 4 or 8 lanes. A large
number of lanes limits to an extent the ability of CODE to
hide the latency of communication events (see further dis-
cussion in Section 5.5).

For comparison, we should note that, for the EEMBC
benchmarks, the 200MHz 4-lane VIRAM processor is 60%
to 200% faster than GHz-level OOO processors and wide
VLIW designs with specialized SIMD instructions [19].

5.3 Cost of Precise Exceptions

The results so far do not consider the potential cost of
precise exception support. Figure 6 presents the perfor-
mance impact of turning precise exceptions on for vector
instructions in the default CODE configuration. The perfor-
mance degradation is due to the additional pressure on the
vector registers within each cluster and the resulting stalls
in the issue logic. Figure 6 measures the impact on regu-
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Figure 5. The percentage (%) of performance improvement of CODE over VIRAM. Negative percentage indicates that
VIRAM is actually faster than CODE.

lar program execution without any exception actually tak-
ing place. It does not attempt to quantify the overhead of
operating system code in the event of a vector exception.
The VIRAM ISA provides mechanisms that minimize the
number of exceptions that lead to saving/restoring vector
registers and reduce the amount of vector state that is in-
volved with each context switch. The evaluation of these
mechanisms is beyond the scope of this paper.

Figure 6 shows that, with 8 registers per cluster, the per-
formance impact of precise exceptions is less than 5% on
the average4. Eight local registers are sufficient to store the
operands, temporary results, and any preserved old values
for the VFU in the cluster. With less than 8 registers, the
pressure on local registers becomes significant, because the
VFU needs 2 to 3 vector registers just for the operands of
the currently executing instruction. In this register limited
case, the performance loss can be significant (average 15%,
worst case 40%).

4In a few cases, supporting precise exceptions leads to speedup (neg-
ative slowdown in Figure 6). Stalls in the vector issue logic due to local
register pressure sometimes lead to better cluster selection.

5.4 Memory Latency Tolerance

The original motivation for decoupling techniques was to
hide the latency of memory accesses [22]. Vector processors
are also capable of tolerating memory latency on their own,
as they can amortize the cost of initiating a memory transfer
over a large number of element operations [6].

Figure 7 quantifies the potential of combining the two la-
tency tolerance techniques in CODE. It presents the increase
in execution time as we increase the latency per element ac-
cess from 1 to 128 processor cycles. In this case, we assume
that there is no limit to the number of outstanding memory
requests, either at the processor or memory side (i.e. in-
finite bandwidth). Even though practical implementations
will have to set some limit, it is interesting to determine the
maximum potential. Figure 7 shows that CODE can tolerate
latencies up to 32 clock cycles with less than 25% perfor-
mance loss over the single-cycle access case (perfect mem-
ory). With a latency of 128 cycles, execution time increases
by 1.8 times on the average (worst case 3x). In contrast,
the performance loss in the VIRAM processor with increas-
ing memory latency would be dramatic, because its rigid
pipeline is designed specifically for the 8-cycle access la-
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tency and cannot tolerate a slower memory system.
Figure 7 shows that, as long as sufficient bandwidth is

available, it is reasonable to use an off-chip memory system
with a vector processor. Even though both on-chip and off-
chip bandwidth come at a cost, off-chip memory systems
can be larger and more flexible. A vector processor operat-
ing at a modest clock frequency for power efficiency does
not require on-chip caches or main memory. It can access
directly an off-chip main memory system at a small perfor-
mance loss.

5.5 Scalability

Figure 8 presents the performance of CODE as we scale
the number of clusters and lanes in the default configuration.
To increase the number of clusters, we first introduce extra
integer clusters and then add one load-store cluster for ev-
ery two integer clusters when possible. With the additional
clusters, we need to increase the bandwidth available in the
inter-cluster communication network. We allow for 2 addi-

tional 64-bit transfers per cycle for every 3 extra clusters in
the system. In the case of 2, 4, or 8 lanes, we increase the
width of the inter-cluster transfers from 64 bits to 128, 256,
or 512 bits respectively. In all cases, we scale properly the
number and width of the ports to the 8-bank main memory
system.

Increasing the number of lanes allows the execution of
multiple (data-parallel) element operations per cycle for
each vector instruction in progress. Two lanes lead to a
nearly perfect speedup of 2. Four and eight lanes lead to
speedups of 3.1 and 4.8 respectively. In general, efficiency
drops significantly as we move to a large number of lanes.
Applications with very short vectors (10 16-bit elements)
cannot use efficiently a large number of 64-bit datapaths.
For programs with longer vectors, multiple lanes decrease
the execution time of each vector instruction, so it becomes
more difficult to hide the overhead of scalar instructions,
inter-cluster communication, and memory latency.

Increasing the number of clusters allows the parallel ex-
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ecution of multiple vector instructions. The use of 8 clus-
ters provides 50% to 75% performance improvement over
the 4-cluster case, depending on the number of lanes. Yet,
there is little performance improvement with more than 8
clusters for two reasons. Primarily, it is not possible to ef-
ficiently use more than 8 clusters with single-instruction is-
sue, especially in the case of multiple lanes. Furthermore,
data dependencies and an increased number of conflicts in
the memory system limit the possibilities for concurrent in-
struction execution.

Overall, the combination of the two scaling techniques
allows CODE to improve its performance up by almost 7
times, using 8 clusters and 8 lanes, before it becomes in-
struction bandwidth limited.

6 Related Work

Both VIRAM [19] and Tarantula [7], the two most re-
cently proposed vector designs, are based on a centralized
vector register file and multiple lanes. They are both lim-
ited to 3 VFUs due to the VRF complexity. Asanovi`c [2]
analyzed the VLSI benefits of a bank-partitioned VRF and
argued that there is no performance loss compared to a con-
ventional centralized implementation. However, the scope
of his work was also limited to a vector processor with a
small number of VFUs.

Non-centralized register files have been thoroughly stud-
ied outside the scope of vector processors [21]. Imagine
[15] uses a hierarchical register file to feed 6 functional units
in each of its 8 lanes. Software has full control over exe-
cution and communication scheduling through microcoded,
VLIW-style instructions. Hence, Imagine can tailor its reg-
ister access pattern to the data-level or instruction-level par-

allelism of each application. The price for the flexibility is
the need for a full crossbar for communicating data across
functional units and lanes, and a complicated programming
model. Several VLIW processors [10, 25] use a clustered
register file to improve scalability. Their compilers must
generate explicit move instructions. There is typically a per-
formance loss associated with the use of a clustered register
file in VLIW processors [12]. With CODE, the clustered
VRF is transparent to software and decoupling eliminates
the performance overhead.

The Alpha 21264 [14], the Multicluster processor [11],
and the ILDP architecture [17] use clustering techniques to
simplify the register file of an OOO wide-issue engine. The
first two assign architectural registers to clusters in a static
manner. ILDP and CODE use renaming to allow flexible as-
signment of registers to clusters. All clustered superscalar
approaches require issue bandwidth of one instruction per
datapath per cycle for efficient hardware use. By using vec-
tor instructions, CODE can scale to 64 datapaths (8 clusters
and 8 lanes) with single instruction issue and efficiently hide
the latency of inter-cluster communication.

Decoupled vector processors have been analyzed in
terms of performance [8] and VLSI cost [2]. Previous pro-
posals limited the use of decoupling to hiding memory la-
tency and required separate data queues for its implementa-
tion. CODE relies on decoupling to hide additional high la-
tency events, such as inter-cluster communication and sub-
optimal static scheduling. It also eliminates the need for
separate queues by using the local vector registers in each
cluster for data decoupling.

7 Conclusions and Future Work

Three basic limitations discourage the wide use of vec-
tor architectures despite their performance potential for a
number emerging applications: the complexity of the vec-
tor register file, the difficulty of supporting precise excep-
tions, and the high cost of on-chip vector memory system.
This paper introduces CODE, a scalable vector microarchi-
tecture that addresses the three shortcomings. CODE uses
a clustered vector register file that reduces complexity by
separating the task of storing operands for each functional
unit from the task of communicating data between func-
tional units. It makes extensive use of decoupling to hide
the latency of inter-cluster communication and the cost of
accesses to off-chip memory. It applies renaming to hide its
distributed nature from the instruction set and to implement
precise exceptions for vector instructions.

For the EEMBC benchmarks, CODE is 26% faster than
a vector processor with a centralized vector register file that
occupies approximately the same die area. CODE places
modest bandwidth requirements on inter-cluster communi-
cation and suffers less than 5% performance loss due to pre-



cise exception support. Most importantly, CODE scales ef-
ficiently to 64 datapaths (integer and load-store) by combin-
ing the ability to execute multiple data-parallel operations
on eight vector lanes with the ability to execute multiple
vector instructions concurrently on eight vector clusters.

Apart from tuning and evaluating CODE for additional
applications, there are several interesting directions for fu-
ture work. We want to study instruction set enhancements
that will assist the vector issue logic with the tasks of cluster
selection and register allocation. We also intend to evaluate
the potential of CODE with more than one functional unit
per cluster and with wider instruction issue capabilities (e.g.
2-way static issue). Overall, we want to investigate the opti-
mal mix of hardware and software techniques for efficiently
exploiting the data parallelism available in many compute-
intensive applications.
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