High-Performance Architectures for Embedded Memory Systems

Christoforos E. Kozyrakis

Computer Science Division
University of California, Berkeley

kozyraki@cs.berkeley.edu
http://iram.cs.berkeley.edu/
Embedded DRAM systems roadmap

Previous talks

- Network Computer
- Video Games
- Graphics/Disks
- Camera/Phone

Desktop
Laptop

32 MB

8 MB

2 MB

This presentation
Outline

• Overview of general-purpose processors today
• Future processor applications & requirements
• Advantages and challenges of processor-DRAM integration
• Future microprocessor architectures
 – characteristics and features
 – compatibility and interaction with embedded DRAM technology
• Comparisons and conclusions
Current state-of-the-art processors (1)

- High performance processors
 - 64-bit operands, wide instruction issue (3-4)
 - dynamic scheduling, out-of-order execution, speculation
 - large multi-level caches
 - support for parallel systems
 - optimized for technical and/or commercial workloads
 - SIMD multimedia extensions (VIS, MAX, MMX, MDMX, Altivec)
 - 200 to 600 MHz, 20 to 80 Watts, 200 to 300 sq. mm
 - e.g. MIPS R10K, Pentium II, Alpha 21264, Sparc III
Current state-of-the-art processors (2)

- Embedded processors
 - 32/64-bit, single/dual issue, in-order execution
 - single-level (small) caches
 - code density improvements (Thump/MIPS16)
 - DSP/SIMD support
 - integrated I/O and memory controllers
 - some on-chip DRAM (up to 4MB)
 - optimized for low power, price/performance, MIPS/Watt
 - 50 to 250MHz, 0.3 to 4 Watts, 10 to 100 sq. mm
 - e.g. M32R, ARM-9, StrongARM, MIPS R5K, SH-4
Current microprocessor applications

- Desktop: technical workloads (e.g. CAD), office productivity tools
- Servers: file system workloads, transaction processing, decision support
- Embedded: variety of workloads, from printers to digital cameras
- Benchmarks:
 - desktop: SPEC95 (Int/FP)
 - servers: TPC C/D
 - embedded: Dhrystone
Future microprocessor applications

Personal mobile computing

- A single device is: PDA, video game, cell phone, pager, GPS, tape recorder, radio, TV remote…
- Basic interfaces: voice (speech recognition) and image (image/video processing)
- Small size, battery operated devices
- Media processing functions are the basic workload
Requirements on microprocessors

• High performance for multimedia:
 – real-time performance guarantees
 – support for continuous media data-types
 – fine-grain parallelism
 – coarse-grain parallelism
 – high-instruction reference locality, code density
 – high memory bandwidth

• Low power/energy consumption

• Low design/verification complexity, scalable design

• Small size/chip count
Embedded DRAM advantages (1)

• **High memory bandwidth**
 – make internal DRAM bandwidth available to processor
 – wide memory interfaces, custom organizations
 – multiple independent banks interconnected with processor through crossbar
 – how does it translate in performance?

• **Low memory latency**
 – no off-chip memory controller
 – no off-chip bus to arbitrate/drive
 – latency equal to inherent DRAM latency plus on-chip interconnect; still longer than SRAM
Embedded DRAM advantages (2)

• **Energy/power efficiency**
 – elimination of off-chip accesses through high capacitance bus
 – potential for lower power via on-demand memory module activation

• **System size benefits**
 – system-on-a-chip
 – no need for additional cache, external DRAM chips
 – potential for low pin count
Embedded DRAM challenges (1)

- The biggest worry: eDRAM cost
 - wafer cost
 - process steps compared to pure DRAM or logic processes
 - cost per DRAM bit
 - density of eDRAM compared to pure DRAM
 - yield
 - yield of DRAM part of die
 - yield of logic part of die
 - cost of testing
Embedded DRAM challenges (2)

- **Performance of logic**
 - traditional DRAM processes have slow logic transistors
 - potential solutions for eDRAM processes:
 - 2 types of transistors: fast for logic, high Vt for DRAM
 - additional layers of metal
 - cost of process steps?
 - still logic transistor speed may be lower than that of pure logic processes
 - deep pipelined designs
 - use architectures that do rely only on clock frequency for performance; utilize forms of parallelism
Embedded DRAM challenges (3)

- **Power consumption of logic**
 - directly affects temperature, refresh rate and DRAM yield
 - low power logic design
 - intelligent power management in hardware (e.g. clock gating) and software (dynamic voltage scaling)
 - dynamic control of refresh rate

- **Yield of logic component**
 - logic has lower yield than DRAM
 - employ redundancy in processor design?
 - already done for some cache designs
Embedded DRAM challenges (4)

- **Cost/complexity of testing**
 - manufacture testing of a chip with a processor and tens of Mbytes DRAM is expensive
 - processor can be used as build-in-self-test (BIST) engine
Embedded DRAM challenges (5)

- **Organization of on-chip DRAM**
 - width of interface: cache line or datapath width
 - hierarchical structures: multiple independent banks, organized in sub-bank sharing common bus
 - high random bandwidth
 - selective activation for lower power
 - memory crossbar instead of bus
 - caching for latency reduction
 - row buffers or virtual channels to keep more pages open
 - interaction with software?
 - optimum design point?
 - benefits vs. area overhead?
Trends in high-performance architecture

- Advanced superscalar processors
- VLIW: Very long instruction word processors (IA-64/EPIC)
- Single chip multiprocessors
- Reconfigurable processors
- Vector microprocessors (Vector IRAM)
Advanced superscalar processors

• Scale up current designs to issue more instructions (16-32)

• Major features:
 – dynamic instruction scheduling in hardware, out-of order execution
 – branch/dependence/stride/data/trace prediction buffers
 – large multibank caches
Advanced superscalar processors (2)

• Advantages
 – dynamic scheduling exploits run-time info
 – software compatibility
 – high-performance for current desktop applications

• Disadvantages
 – relies on high-speed logic and fast, large caches
 – unpredictable performance (high misprediction cost)
 – limited media processing support (MMX-like units)
 – high design/verification complexity
 – high power consumption due to extensive speculation

• eDRAM perspective
 – cannot fully utilize available eDRAM bandwidth
 – DRAM “unfriendly” environment (power, complexity, size)
 – DRAM for second-level cache?
VLIW processors (IA-64/EPIC)

- Very long instruction word scheme

- Major features
 - Instruction scheduling by compiler (dependence analysis, register renaming etc)
 - Template specifies if instructions can be executed in parallel
 - Software speculation and predicated (conditional) execution
 - Large number of registers
 - Multiple functional units
 - Cache based designs
VLIW processors (IA-64/EPIC) (2)

- Advantages
 - simpler hardware
 - highly scalable

- Disadvantages
 - code size (loop unrolling, software pipelining)
 - compiler performance?
 - software compatibility
 - limited media processing support (MMX-like units)

- eDRAM perspective
 - cannot fully utilize available eDRAM bandwidth
 - requires high-speed logic to make up for run-time information
 - DRAM for second-level cache?
Single chip multiprocessors

- Place multiple processors on a single chip

- Major features
 - symmetric multiprocessor system (shared memory system)
 - shared second-level cache
 - 4 to 8 uniprocessors, similar to current out-of-order designs
Single chip multiprocessors (2)

• Advantages
 – modular design
 – coarse-grained parallelism

• Disadvantages
 – difficulty of efficient parallel programming
 – limited media processing support
 – high power consumption
 – complexity of shared-memory protocols

• eDRAM perspective
 – can utilize bandwidth of multi-bank eDRAM
 – inherent redundancy
 – multiprocessors require large amount of memory
Reconfigurable Processors

- Use reconfigurable (programmable) logic, e.g. look-up tables

- Major features
 - meshes or hierarchical arrays of look-up tables
 - multiple configurations stored within the array
 - multiprocessor organizations with reconfigurable interconnects (RAW)
Reconfigurable Processors (2)

- Advantages
 - programmable/flexible functional unit(s)
 - any data width/function can be supported
 - fine and coarse grain parallelism

- Disadvantages
 - software path complexity (mapping high-level-languages to arrays, run-time environment)
 - power consumption and array size

- eDRAM perspective
 - on-chip DRAM for high-bandwidth data and configuration storage
 - array can be used as high-performance BIST engine
 - DRAM latency complicated programming/software tools
Vector microprocessors

- Vector instructions
 - \((v3[i]=v1[i]+v2[i], \text{for } i=1 \text{ to } N)\)
- Major features
 - vector coprocessor unit
 - instructions define operations on vectors (arrays) of data
 - vector register file
 - strided and indexed memory accesses
 - support for multiple data widths
 - support for DSP/fixed-point
 - conditional/speculative execution support through flag registers
Vector microprocessors (2)

• Advantages
 – predictable performance: in-order model, no caches
 – high performance for media processing
 – low power/energy consumption
 – performance through parallel pipelines, not just clock frequency
 – scalable
 – simple design: no complex issue/speculation logic
 – small code size: single instruction loops

• Disadvantages
 – cannot utilize random instruction-level or thread-level parallelism; just fine-grain parallelism
 – poor performance for many current desktop applications
 – requires high-bandwidth memory system
Vector processors and eDRAM

- Vector processors require multi-bank, high-bandwidth memory system:
 - multiple wide DRAM banks, crossbar interconnect
- Vector processors can tolerate DRAM latency
 - delayed vector pipelines
- eDRAM friendly environment
 - low power, low complexity, modest clock frequencies
- eDRAM testing
 - use vector processor as BIST engine; 10x faster than scalar processors
- Logic redundancy
 - use a redundant vector pipeline
Vector IRAM-1

- **Scalar core**
 - 2-way superscalar MIPS
 - 16KByte I/D caches
- **Vector coprocessor**
 - 64b, 32b, 16b data types
 - maximum vector length 32 @64b, 64@ 32b or 128 @ 16b
 - 2 arithmetic, 2 load/store, 2 flag processing units
 - 4 64bit pipelines per functional unit
 - separate multi-ported TLB

- **Memory system**
 - 16Mbytes DRAM
 - 8 independent banks
 - 256b synchronous interface
 - crossbar interconnect for 12.8GB/sec aggregate bandwidth per direction

- **I/O**
 - 4 serial lines, 1Gb/s per direction
 - fast messaging though network interface connected to memory system
Vector IRAM-1 Block Diagram
VIRAM-1 Technology Summary

Technology: 0.25 micron embedded DRAM-logic process
Memory: 16 MBytes
Die size: 350-400 mm²
Vector pipelines: 4 64-bit (or 8 32-bit or 16 16-bit)
Clock Frequency: 200MHz scalar, vector, DRAM
Serial I/O: 4 lines @ 1 Gbit/s
Power: ~2 W
Performance: 1.6 GFLOPS₆₄ – 6.4 GOPS₁₆
VIRAM-1 Floorplan
Comparison: current desktop domain

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>VLIW</th>
<th>CMP</th>
<th>RC</th>
<th>VIRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEC Int</td>
<td>+</td>
<td>+</td>
<td>=</td>
<td>=</td>
<td>–</td>
</tr>
<tr>
<td>SPEC FP</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>=</td>
<td>+</td>
</tr>
<tr>
<td>TPC (DB)</td>
<td>=</td>
<td>=</td>
<td>+</td>
<td>–</td>
<td>=</td>
</tr>
<tr>
<td>SW Effort</td>
<td>+</td>
<td>=</td>
<td>=</td>
<td>–</td>
<td>=</td>
</tr>
<tr>
<td>Design Scalability</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>Design Complexity</td>
<td>–</td>
<td>=</td>
<td>=</td>
<td>+</td>
<td>=</td>
</tr>
</tbody>
</table>

Legend: + positive, = neutral, – negative
Comparison: personal mobile computing domain

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>VLIW CMP</th>
<th>RC</th>
<th>VIRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time Perf.</td>
<td>–</td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Cont. Data Support</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Energy/power</td>
<td>–</td>
<td>=</td>
<td>=</td>
<td>–</td>
</tr>
<tr>
<td>Code Size</td>
<td>=</td>
<td>–</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Fine-grain parall.</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>+</td>
</tr>
<tr>
<td>Coarse-grain parall.</td>
<td>=</td>
<td>=</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Memory BW</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Design Scalability</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Design Complexity</td>
<td>–</td>
<td>=</td>
<td>=</td>
<td>+</td>
</tr>
</tbody>
</table>
Comparison: eDRAM perspective

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>VLIW CMP</th>
<th>RC</th>
<th>VIRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW Utilization</td>
<td>=</td>
<td>=</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Latency Tolerance</td>
<td>−</td>
<td>=</td>
<td>=</td>
<td>−</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>−</td>
<td>=</td>
<td>=</td>
<td>−</td>
</tr>
<tr>
<td>Need for Fast Logic</td>
<td>−</td>
<td>−</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>DRAM Testing</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Logic Redundancy</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Design Scalability</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>Design Complexity</td>
<td>−</td>
<td>=</td>
<td>=</td>
<td>+</td>
</tr>
</tbody>
</table>
Conclusions

- Unlikely that eDRAM will make it in the desktop high-performance microprocessors (at least for a while)
- Yet, microprocessor applications shifting from desktop domain to personal mobile computing domain
- eDRAM can be of significant benefit to future processor architectures for this environment
 - high bandwidth memory system
 - system-on-a-chip benefits
- Challenges of eDRAM environment can be met by architectures developed for the new computing model
- Cost of eDRAM based processors remains to be seen...
References (1/6)

Computer Architecture

High-performance Processors
• M. Choudhury et.al, “A 300MHz CMOS Microprocessor with Multi-Media Extensions”, Digest of Technical Papers, ISSCC, February 1997
References (2/6)

Embedded Processors

- J. Choquette, “Genesis microprocessor”, Hot Chips Conference Record, August 1998

Embedded DRAM

- D. Patterson et.al, “Intelligent RAMs”, Digest of Technical Papers, ISSCC, February 1997
References (3/6)

- K. Murakami et.al, “Parallel Processing RAM Chip with 256Mb DRAM and Quad Processors”, Digest of Technical Papers, ISSCC, February 1997
References (4/6)

- N. Bowman et.al, "Evaluation of Existing Architectures in IRAM Systems", Workshop on Mixing Logic and DRAM: Chips that Compute and Remember at ISCA '97, June 1997
- NEC Corp., “irtual Channel Memory Technology”, http://www.nec.com

Microprocessor Architecture Trends

- J. Crawford, J. Huck, “Motivations and Design Approach for the IA-64 64-Bit Instruction Set Architecture”, In the Proceedings of the Microprocessor Forum, October 1997
- Y.N. Patt et.al.,” One Billion Transistors, One Uniprocessor, One Chip”, IEEE Computer, 30(9):51-57, September 1997
References (5/6)

General-purpose architectures and media-processing