David Patterson
Thomas Anderson
Neal Cardwell
Richard Fromm

Kimberly Keeton

Christoforos Kozyrakis

Randi Thomas
Katherine Yelick

University of California,
Berkeley

Merging processing

and memory into a

single DRAM chip

could revolutionize

34

the semiconductor

industry.

IEEE Micro

A CASE FOR
INTELLIGENT RAM

wo trends call into question the cur-

rent practice of fabricating micro-

processors and DRAMs as different
chips on different fabrication lines. The gap
between processor and DRAM speed is
growing at 50% per year; and the size and
organization of memory on a single DRAM
chip is becoming awkward to use, yet size
is growing at 60% per year.

Intelligent RAM, or IRAM, merges pro-
cessing and memory into a single chip to
lower memory latency, increase memory
bandwidth, and improve energy efficiency.
It also allows more flexible selection of
memory size and organization, and promis-
es savings in board area. This article reviews
the state of microprocessors and DRAMs
today, explores some of the opportunities
and challenges for IRAMs, and finally esti-
mates performance and energy efficiency of
three IRAM designs.

Why there is a problem

The division of the semiconductor indus-
try into microprocessor and memory camps
has many advantages. First and foremost,
manufacturers can tailor a fabrication line to
suit the device. Microprocessor fab lines
offer fast transistors to make fast logic and
many metal layers to accelerate communi-
cation and simplify power distribution.
DRAM fabs, on the other hand, offer many
polysilicon layers to achieve both small
DRAM cells and low leakage current to
reduce the DRAM refresh rate.

Separate chips also mean separate pack-
ages. SO microprocessors can use expensive
packages that dissipate high power (5 to 70
W) and provide hundreds of pins to make
wide connections to external memory. And
DRAMs can use inexpensive packages that
dissipate low power (1 W) and use only a
few dozen pins.

Separate packages, in turn, mean com-

puter designers can scale the number of
memory chips independently of the number
of processors. Most desktop systems have
one processor and 4 to 32 DRAM chips, but
most server systems have 2 to 16 processors
and 32 to 256 DRAMs. Memory systems have
standardized on single in-line memory mod-
ule (SIMM) or dual in-line memory module
(DIMM) packaging, which allow the end user
to scale the amount of memory in a system.

Quantitative evidence of the industry’s
success is its size: In 1995, DRAMs were a
$37-billion industry, and microprocessors
were a $20-billion industry. In addition to
financial success, the technologies of these
industries have improved at unparalleled
rates. DRAM capacity has quadrupled on
average every three years since 1976, while
microprocessor speed has done the same
since 1986.

However, the split into two camps has its
disadvantages as well. Figure 1 shows that
while microprocessor performance has been
improving at a rate of 60% per year, the
access time to DRAM has been improving at
less than 10% per year. Hence computer
designers are faced with an increasing
processor-memory performance gap, which
is now the primary obstacle to improved
computer system performance.

System architects have attempted to
bridge this gap by introducing deeper and
deeper cache memory hierarchies. Unfortu-
nately, this depth makes the memory laten-
cy even longer in the worst case. For
example, Table 1 lists CPU and memory per-
formance in a recent high-performance com-
puter system—a 300-MHz Alpha 21164
processor running on an AlphaServer 8200
computer.

Note that this system’s main memory
latency is a factor of four larger than the raw
DRAM access time. This difference is due to
the time to drive the address off the micro-

0272-1732/97/$10.00 © 1997 IEEE

processor, multiplex the addresses to 1,000 |~
the DRAM, and turn around the bidi-
rectional data bus, plus the memory

controller overhead, the SIMM con-
100

nectors’ latency, and the time to
drive the DRAM pins first with the
address and then with the return
data.

Processor-memory ;
performance gap

=
o

Despite huge on- and off-chip
caches and very sophisticated proces-
sors with out-of-order, dynamically
scheduled, superscalar pipelines that

1

Relative performance compared to 1980

execute multiple instructions per

clock cycle, the long latency and lim- 1980

1985

1990 1995 2000

ited bandwidth to main memory
dominate performance for some
applications. For example, Table 2
shows clock cycles per instruction
(CPI), cache misses, and fraction of time spent in each com-
ponent of the Alpha 21164 for several benchmark programs.
These include the SPEC92 integer and floating-point CPU
benchmarks, a database program running a debit-credit bench-
mark, and a sparse matrix calculation called Sparse Linpack.?

The database and matrix computations spend about 75%
of their time in the memory hierarchy. Although the 21164
can execute four instructions per clock cycle for a peak CPI
of 0.25, the average CPI for these applications was 3.0 to 3.6.
Digital has since begun shipping a 437-MHz version of the
same processor with the same external memory system. With
a clock almost 50% faster, this processor will spend an even
larger fraction of application time waiting for main memory.
These extraordinary delays in the

Figure 1. Processor-memory performance gap.!

larger being the 512-Kbyte second-level cache.

While the processor-memory performance gap has
widened to the point where it dominates performance for
some applications, the cumulative effect of two decades of
60% per year improvement in DRAM capacity has resulted in
huge individual DRAM chips. This has put the DRAM indus-
try in something of a bind. Figure 2 (next page) shows that
over time the number of DRAM chips required for a rea-
sonably configured PC has been shrinking. This trend is con-
tinuing to the point where soon many PC customers may
require only a single DRAM chip.

The required minimum memory size, reflecting applica-
tion and operating system memory use, has been growing at

memory hierarchy occur despite the Table 1. Latency and bandwidth of the memory system of a 300-MHz
tremendous resources dedicated to Alpha 21164 processor running on an AlphaServer 8200 computer.
bridging the processor-memory per-
formance gap. Size Latency Bandwidth
We call the percent of die area and Memory module (Kbytes) Location ns Clock cycles (Mbytes/s)
transistors dedicated to caches and
other latency-hiding hardware the Instruction cache 8 On chip 6.7 2 4,800
memory gap penalty. Table 3 (next Data cache 8 On chip 6.7 2 4,800
page) quantifies the penalty. In sev- Level-two cache 96 On chip 20.0 6 4,800
eral processors, it has grown to 60% Level-three cache =4,000 Off chip 26.0 8 960
of the area and almost 90% of the Main memory subsystem 64,000 Off chip 253.0 76 1,200
transistors.® In fact, the Pentium Pro Single DRAM component 16,000 Off chip =60.0 18 =30-100
offers a package with two die, the
Table 2. CPI, cache misses, and time spent in Alpha 21164 for four programs.
Fraction of time spent in
Misses per 1,000 instructions* | cache D cache L2 cache L3 cache

Program CPI I D L2 L3 Processor misses misses misses misses

SPECint92 1.2 7 25 11 0 0.78 0.03 0.13 0.05 0.00

SPECfp92 1.2 2 47 12 0 0.68 0.01 0.23 0.06 0.02

Database 3.6 97 82 119 13 0.23 0.16 0.14 0.20 0.27

Sparse 3.0 0 38 36 23 0.27 0.00 0.08 0.07 0.58

* |: instruction cache; D: data cache; L2: level-two cache; L3: level-three cache

March/April 1997 35

IRAM

Table 3. Memory gap penalty for recent microprocessors.

On-chip cache size (Kbytes) Memory gap penalty Die area Transistors
Year Processor | D L2 (% die area*) (% transistors) (mm?)tt (millions)
1994 Digital Alpha 21164 8 8 96 37.4 77.4 298 9.3
1996 Digital StrongARM SA-110 16 16 60.8 94.5 50 2.1
1993 Intel Pentium 8 8 31.9 =32 =300 3.1
1995 Intel Pentium Pro 8 8 512 64.2** 87.51 242 (P) 5.5(P)
282 (L2) 31.0(L2)

* Not counting pad ring
** 22.5% of processor +100% of
L2 cache = 64.2% total

T 18.2% of processor + 100% of level-two cache = 87.5% total
1 P: processor; L2: level-two cache

DRAM generation

1986 1989 1992 1996 1999 2002
1 Mbit 4 Mbits 16 Mbits 64 Mbits 256 Mbits 1 Gbit

o 4 % 8 —> 60%/year
@ 8 16 —» 4
§_. 16
SR —
23 8 2
EZ 32 4 —» 1
s 25%lyear
E
5= 64 8 —m 2
E 128 4 —» 1
p=
256 8 —» 2

Figure 2. Number of DRAM chips for a minimum memory
size PC. Although the desirable minimum memory size is
increasing, the capacity per DRAM chip is increasing more
quickly.

only about half to three-quarters the rate of DRAM chip capac-
ity. For example, consider a word processor that consumes
8 Mbytes; if its memory needs had increased at the rate of
DRAM chip capacity growth, that word processor would have
had to fit in 80 Kbytes in 1986 and 800 bytes in 1976.

Despite the decreasing number of required memory chips
per PC, a system must have at least enough DRAMs so that
their collective width matches the width of the micro-
processor’'s DRAM bus. This width is 64 bits in the Pentium
and 256 bits in several RISC machines. Figure 3 shows that
each fourfold increase in capacity—the traditional difference
between DRAM generations—must be accompanied by a
fourfold increase in width to keep the minimum memory
size the same.

The minimum memory increment is simply the number
of DRAM chips times the capacity of each chip. Figure 4 plots
the memory increment with each DRAM generation and
DRAM width.

The difficulty is that narrower DRAMs have always pro-
vided the lowest cost per bit: A 4-bit-wide part can be, say,
10% cheaper than 16-bit-wide part. Reasons for this differ-
ence include a cheaper package, less testing time, and small-
er die size. Testing time is shorter because it is a function of
both chip width and chip capacity. Die size is smaller

36 IEEE Micro

because the wider DRAMs have wider buses on chip and
require more power and ground pins to accommodate more
signal pins. This cost savings makes SIMMs containing nar-
rower parts attractive.

Wide DRAMs are also more awkward to use in systems
that provide error correction on data buses. A 64-bit data
bus, for example, typically has 8 check bits, meaning that
the width of memory is no longer necessarily a power of 2.
It might seem that a SIMM could use a new wide part for the
data and an older narrow part for the check bits. The prob-
lem here is that new high-bandwidth DRAM interfaces—such
as synchronous DRAM, which interleaves memory banks
internally—do not work well with older DRAMs. In such a
world, it is much more efficient to use 8-bit-wide DRAMs
than 32-bit-wide DRAMSs, as unused memory bits increase
the effective cost.

Figures 2 to 4 suggest that users may no longer automat-
ically switch to a new, larger capacity DRAM as soon as it
matches the cost per bit of the earlier generation. This is
because the new generation’s minimum memory increment
may be much larger than needed. To avoid waste, larger
capacity DRAMs will need wider configurations that are more
expensive per bit than the narrow version of the smaller
DRAMs. In addition, the wider capacity may not match the
width needed for error checking and could hence result in
even higher costs.

SIMM packaging isolates users from the DRAMs within the
package, so it is likely that they will prefer the cheapest SIMM.
This might well have several smaller, narrower DRAMSs rather
than fewer larger, wider DRAMs. We expect either the 256-
Mbit DRAM or 1-Gbit DRAM to see such a critical reception.

Why IRAM is a potential solution

Given the growing processor-memory performance gap
and the awkwardness of high-capacity DRAM chips, we
believe that it is time to consider unifying logic and DRAM
on a single chip. We call such a chip an IRAM, for intelligent
RAM, because most transistors on this merged chip will be
devoted to memory.

The reason to put the processor in DRAM rather than
increasing the on-processor SRAM is that DRAM is in prac-
tice approximately 25 to 50 times denser than cache memo-
ry in a microprocessor.* (The ratio is much larger than the

transistor ratio because DRAMs use
3D structures to shrink cell size).
Thus, IRAM would enable a much
larger amount of on-chip memory
than is possible in a conventional
architecture.

Although others have examined
this issue in the past, IRAM is attrac-
tive today for several reasons. First,
the gap between the performance of
processors and DRAMs has been
widening at 50% per year for 10
years. So, despite heroic efforts by
architects, compiler writers, and
applications developers, memory
speed limits more applications today
than it did in the past.

Second, since the actual processor
today occupies only about one third
of the die (Table 3), the upcoming
Gbhit DRAM has enough capacity that
whole programs and data sets could
fit on a single chip. In the past, so lit-
tle memory could fit on chip with the
CPU that researchers considered
IRAMs mainly as building blocks for
multiprocessors.>’

Third, DRAM die have grown
about 50% each generation and are
being made with more metal layers
to accelerate the longer lines that
come with the larger size. Also,
DRAM manufacturers are starting to
offer fast transistors and many metal
layers to make their technology more
attractive to IRAM applications. At a
cost of, say, 20% more per DRAM
wafer, logic in IRAM can be just as
fast and dense as a conventional
logic process.

Potential advantages

Let’s review the potential advan-
tages of IRAM.

Higher bandwidth. A DRAM nat-
urally has extraordinary internal
bandwidth, essentially fetching the
square root of its capacity each
DRAM clock cycle; an on-chip
processor could tap that bandwidth.

The potential bandwidth of the
Ghit DRAM is even greater than its
logical organization indicates.
Because it is important to keep the
storage cell small, the normal solu-
tion is to limit the length of the bit

DRAM bus interface

(@
| DRAM bus interface |
I 1
(b)
| DRAM bus interface |
I 1
(c)

Figure 3. Relationship of microprocessor’s DRAM bus width to data width of
DRAM chip, minimum number of DRAM chips, and, hence, minimum memory
capacity. Each rectangle represents a DRAM chip, with the rectangle’s area indi-
cating the capacity and its width indicating the number of data pins. For example,
a 4-bit-wide version of the 16-Mbit DRAM requires 16 chips for a 64-bit bus, pro-
viding 32 Mbytes (64 bits/4 bits x 16 Mbits/8 bits per byte) of storage (a). A 4-bit-
wide version of the 64-Mbit DRAM with the same bus also requires 16 chips, but
yields 128 Mbytes (64/4 x 64/8) (b). With the 16-bit-wide version of the 64-Mbit
DRAM, the minimum memory increment returns to 32 Mbytes (64/16 x 64/8),
because we need just four chips for the 64-bit bus (c).

DRAM generation (size, data width)

1 Mbit (x4)
4 Mbits (x16)

4 Mbits (x4)
16 Mbits (x16)

16 Mbits (x4)
64 Mbits (x16)

64 Mbits (x4)
256 Mbits (x16)

O 256-bit microprocessor DRAM bus

8 Mbytes
[2 Mbytes

A 32 Mbytes

8 Mbytes

A 128 Mbytes
32 Mbytes

[64-bit microprocessor DRAM bus

512
A 128 Mbytes

Mbytes

1 10 100
Minimum memory increment (Mbytes)

1,000

Figure 4. Minimum memory size for two DRAM bus widths as DRAM capacity
changes. One bar shows the size for a 64-bit interface, used on the Intel Pentium,
and the other is for a 256-bit interface, used by several RISC chips.

lines, typically with 256 to 512 bits per sense amplifier. This
quadruples the number of sense amplifiers. To save die area,
each block has a small number of 1/0 lines, which reduces

the internal bandwidth by a factor of about 5 to 10 but still

meets the external demand. One IRAM goal is

to capture a

larger fraction of the potential on-chip bandwidth.

March/April 1997 37

IRAM

Table 4. Performance factors for estimating IRAM
performance in a standard DRAM process.

Microprocessor Optimistic Pessimistic

portion time factor time factor
Logic 1.3 2.0
SRAM 1.1 1.3
DRAM 0.1 0.2

For example, Mitsubishi and Samsung each presented pro-
totype 1-Gbit DRAMs at the International Solid-State Circuits
Conference in 1996. As mentioned earlier, to cope with the
long wires inherent in the Gbit DRAMs’ 600-mm? die, ven-
dors are using more metal layers: Mitsubishi uses three, and
Samsung uses four. The Mitsubishi DRAM has a total of 512
two-Mbit memory modules on chip; the Samsung chip has
1,024 one-Mbit modules total.

Thus, a Gbit IRAM might have 1,024 memory modules
each 1 Kbit wide. Not only would there be tremendous band-
width at the sense amps of each block, but the extra metal
layers would enable more cross-chip bandwidth. Assuming
either multiple buses or a crossbar switch, the internal IRAM
bandwidth should be as high as 100 to 200 Gbytes/s.

For comparison, the sustained memory bandwidth of the
AlphaServer 8400—which includes a 75-MHz, 256-bit mem-
ory bus—is 1.2 Ghytes/s. Recently, several computer archi-
tecture researchers have made the case that memory
bandwidth will increasingly limit performance;®° IRAM will
not have this limit.

Lower latency. To reduce latency, IRAM’s wire length
should be kept as short as possible. This suggests that the
fewer bits per block the better. In addition, the DRAM cells
farthest from the processor will be slower than the closest
ones. Rather than restricting the access timing to accommo-
date the worst case, the processor could be designed to
access slow and fast memory differently.

Designers could obtain some additional reduction in laten-
cy simply by not multiplexing the address—there is no rea-
son to do so on an IRAM. Also, being on the same chip with
the DRAM, the processor avoids driving the off-chip wires,
potentially turning around the data bus, and accessing an
external memory controller. In summary, the access latency
of an IRAM processor need not be limited by the same con-
straints as a standard DRAM part. Designers may obtain much
lower latency through intelligent floor planning, using faster
circuit topologies, and redesigning the address/data busing
schemes.

For a latency-oriented DRAM design on the same chip as
the processor, the memory latency for random addresses is
potentially less than 30 ns; this is as fast as second-level
caches. Recall that the memory latency on the AlphaServer
8400 is 253 ns.

These first two points—about bandwidth and latency—
suggest that IRAM offers performance opportunities for two
types of applications:

= Those with predictable memory accesses, such as matrix

38 IEEE Micro

manipulations, may take advantage of the potential 50-
to 100-fold increase in IRAM bandwidth.

= Those with unpredictable memory accesses and very
large memory footprints, such as databases, may take
advantage of the potential 5- to 10-fold decrease in IRAM
latency.

Energy efficiency. Integrating a microprocessor and DRAM
memory on the same die offers the potential for improving the
memory system’s energy consumption. As mentioned earlier,
DRAM is much denser than SRAM, the traditional choice for
on-chip memory. Therefore, an IRAM will have many fewer
external memory accesses, which consume a great deal of ener-
gy in driving high-capacitance off-chip buses. Even on-chip
accesses will be more energy efficient, since DRAM consumes
less energy than SRAM. Finally, an IRAM has the potential for
higher performance than a conventional approach. Because
we can translate higher performance for some fixed energy
consumption into equal performance at a lower amount of
energy, we can translate IRAM'’s performance advantages into
lower energy consumption.*

Memory size and width. Another advantage of IRAM
over conventional designs is that it lets designers adjust both
the size and width of the on-chip DRAM. Rather than being
limited by powers of 2 in length or width, as with conven-
tional DRAM, IRAM designers can specify exactly the num-
ber of words and their width. This flexibility can improve
the cost of IRAM solutions versus memories made from con-
ventional DRAMs.

Board space. Finally, IRAM may be attractive in applica-
tions where board area is precious—such as smart cellular
phones or personal digital assistants—since it integrates sev-
eral chips into one.

Potential disadvantages
Despite these potential advantages, we must address sev-
eral topics before IRAM can succeed:

= Area and power impact of increasing bandwidth to the
DRAM core. Standard DRAM cores are designed with a
few highly multiplexed 1/0 lines to reduce area and
power. To make effective use of a DRAM core’s inter-
nal bandwidth, we will need to add more /O lines. The
area increase will affect IRAM’s cost per bit.

= Retention time of DRAM core when operating at high
temperatures. Giacalone? gave a rule of thumb of halv-
ing the retention rate for every increase of 10 degrees
centigrade. Thus, refresh rates could rise dramatically
for an IRAM run at the temperature of some of today’s
Microprocessors.

= Scaling a system beyond a single IRAM. Even though a
Ghit DRAM contains 128 Mbytes, there will certainly be
systems that need more memory. Thus, a major archi-
tecture challenge is quantifying the pros and cons over
several potential solutions to expandable memory.

= Matching IRAM to the commodity focus of the DRAM
industry. Today’s DRAMs are second-sourced com-
modities that are interchangeable, which allows ven-
dors to manufacture them in high volumes. Unless the

industry were to adopt a single-processor architecture,
adding a processor would stratify IRAMs and effective-
ly reduce interchangeability.

= Testing IRAM. The cost of testing during manufacturing
is significant for DRAMSs. Adding a processor could sig-
nificantly increase the test time on conventional DRAM
testers.

Quantifying the potential advantages
The following sections examine three early attempts to
quantify what might be done with IRAM technology.®

An IRAM Alpha

The fastest current microprocessor, the Alpha 21164, was
described in sufficient detail? to allow us to estimate perfor-
mance of an IRAM using a similar organization. The Alpha
21164 has three on-chip caches: an 8-Kbyte instruction cache,
an 8-Kbyte data cache, and a 96-Kbyte level-two cache. The
system we measured included a third-level 4-Mbyte cache
off chip. (Table 1 describes the chip and system.) If we were
designing an IRAM from scratch, we would surely make dif-
ferent decisions about the memory hierarchy, but a perfor-
mance estimate of this conventional design will give us a
rough idea of IRAM’s potential.

Given the estimate of where time is spent from Table 2, the
next step is to estimate the performance of each piece if this
microprocessor were implemented as an IRAM. Table 4
shows the performance factors by which we multiplied the
Alpha performance parameters to estimate the speed of the
IRAM implementation.® Rather than pick a single number for
each category, we picked optimistic and pessimistic factors
for implementing in a standard DRAM process.

Guesses for the slowdown of logic in a standard DRAM
process range from 1.3 to 2.0; we used these as our opti-
mistic and pessimistic factors for the logic portion of the
processor. A common mistake is to assume that everything
on the microprocessor would slow down by that factor. As
shown in Table 3, however, the vast majority of transistors
in recent microprocessors are used for SRAM. Hence, we use
a separate factor for the speed of SRAM in a DRAM process—
1.1 to 1.3 times slower. Finally, in IRAM the time to main
memory should be 5 to 10 times faster than the 253 ns of the
Alpha system (Table 1). Hence, we multiply these times by
0.1t00.2.

Although some will argue with these values, our purpose
is to suggest an approach to estimating performance so that
others can supply their own values. We have not seen dis-
cussions of SRAM performance separated from logic perfor-
mance, yet a combined performance estimate may lead to
inaccurate predictions.

For our prorated estimate, we first multiply the processor
time by the full logic slowdown, despite the possibility that
the Alpha clock rate is limited by the speed of hits in the
instruction and data caches. Next, since misses from the
instruction and data caches go to the slower level-two cache,
we multiply those misses by the SRAM factor. Misses from the
level-two cache on an IRAM would go to the on-chip DRAM.
As we can have a much wider interface on chip, and since
we believe a latency-oriented DRAM could have much lower
latency, we will assume the misses from the level-two cache
in the IRAM will be about the same speed as those in the
Alpha. Finally, we believe misses from the level-three cache
would be much faster than the 253 ns of the Alpha, so we
multiply them by the DRAM factor.

Table 5 shows the optimistic and pessimistic performance
factors for an IRAM organized like an Alpha 21164. As
expected, the SPEC92 benchmarks are the poorest perform-
ers in IRAM because they spend little time in the memory
hierarchy. These programs are 1.2 to 1.8 times slower,
depending on the IRAM time factors. Note that the database
varies from a little slower to a little faster, and that Sparse
Linpack varies from 1.2 to 1.8 times faster.

We based this study partly on two benchmarks that rarely
miss in the caches. The SPEC92 programs, used in the orig-
inal Alpha study,? are infamous for their light use of the mem-
ory hierarchy. Many real programs don’t behave like SPEC92.

Although every computer designer wants the fastest hard-
ware in which to design microprocessors, there is a range
of performance that is acceptable for the end result. An IRAM
Alpha falls within the acceptable range for the highest per-
formance microprocessors. And if the memory gap contin-
ues to grow, as we expect, we can expect IRAMs to have
even better performance relative to conventional designs.

If performance were the only potential advantage of IRAM,
however, these results are not sufficient to justify the bold step
of producing microprocessors in a DRAM process. Reasons
for IRAM would have to include the cost savings of amortizing
the fab cost using DRAM chips, lower power, less board space,

Table 5. Performance estimates for the IRAM Alpha.*

Fraction of time spent in

Processor | cache misses

D cache misses

L2 cache misses L3 cache misses Total**

Program Opt. Pess. Opt. Pess. Opt. Pess. Opt. Pess. Opt. Pess. Opt. Pess.

SPECint92 1.02 157 0.04 0.05 0.14 0.17 0.05 0.05 0.00 0.00 1.25 1.83
SPECfp92 0.89 1.36 0.01 0.01 0.26 0.30 0.06 0.06 0.00 0.00 1.21 1.74
Database 0.30 0.46 0.18 0.21 0.15 0.18 0.20 0.20 0.03 0.05 0.85 1.10
Sparse 0.35 0.54 0.00 0.00 0.08 0.10 0.07 0.07 0.06 0.12 0.56 0.82

* Ratio of estimated IRAM times to Alpha times, using the optimistic (opt.) and pessimistic (pess.) parameters from Table 4.
** Qverall time, ratio of IRAM to Alpha. A value greater than 1 means IRAM is slower.

March/April 1997 39

IRAM

Because an IRAM has low
latency and is highly
interleaved, it naturally
matches the needs of a vector

processor.

or lower cost due to getting the exact amount of memory on
chip.

Keep in mind, however, that we based the performance
estimate for this case study on using a conventional micro-
processor organization as an IRAM and using a standard
DRAM process. This is unlikely to be the best way to exploit
a new technology. The next section explores an alternative
model that better utilizes the IRAM potential.

An IRAM vector processor

High-speed microprocessors rely on instruction-level par-
allelism (ILP) in programs, which means the hardware has
the potential to execute instructions in parallel. As mentioned
earlier, these high-speed microprocessors rely on getting hits
in the cache to supply instructions and operands at a suffi-
cient rate to keep the processors busy.

An alternative model to exploiting ILP that does not rely
on caches is vector processing. This is a well-established
architecture and compiler model popularized by supercom-
puters, and it is considerably older than the superscalar
model. Vector processors have high-level operations that
work on linear arrays of numbers.

Advantages of vector computers and the vectorized pro-
grams that run on them include the following:

= Each result is independent of previous results, which
enables deep pipelines and high clock rates.

= A single vector instruction does a great deal of work,
which means fewer instruction fetches in general and
fewer branch instructions, and thus fewer mispredicted
branches.

= \Vector instructions often access memory a block at a
time, which allows memory latency to be amortized
over, say, 64 elements.

= \Vector instructions often access memory with regular
(constant-stride) patterns, which allows multiple mem-
ory banks to simultaneously supply operands.

These last two advantages mean that vector processors do
not rely on data caches for high performance. They rely
instead on low-latency main memory, often made from
SRAM, using up to 1,024 memory banks to get high memo-
ry bandwidth.

In addition to an interleaved, low-latency main memory,
vector computers have large register sets, typically 8 to 32
“vector registers,” each with about 32 to 128 sixty-four-bit ele-

40 IEEE Micro

ments. Thus, they have 32 to 256 Kbits of multiported, high-
speed registers. Vector processors also depend on multiple,
pipelined functional units, as do recent high-speed micro-
processors. To match these high-speed functional units to the
high-bandwidth memory, vector processors have multiple
ports between the processor and memory.

Because an IRAM has low latency and is highly inter-
leaved, it naturally matches the needs of a vector processor.
As we head toward hundreds of millions of transistors on a
chip, the large register set and multiple, pipelined function-
al units are also quite plausible. Thus, vectors appear to be
one promising way to exploit IRAM.

Moreover, vectors easily allow a trade-off of more hard-
ware and slower clock rate without sacrificing peak perfor-
mance. For example, a vector processor with a clock rate of
n that operates on two elements per clock cycle has the same
peak performance as a vector processor with a clock rate of
2n that operates on one element per clock cycle.

To achieve multiple instructions per cycle, vector machines
use multiple pipelines. For example, the Cray T90 uses two
pipes, and the Fujitsu VP300 uses eight. Hence, even if IRAM
logic were slower than conventional logic by a factor of two,
a IRAM vector processor could have the same peak perfor-
mance by consuming twice as many elements per clock cycle,
trading transistors for clock rate. The observed performance
would of course depend on application characteristics.

As shown in Figure 5, an IRAM vector microprocessor
might include the following:

= Sixteen 1,024-bit-wide memory ports on the IRAM, offer-
ing a collective 100 Gbytes/s of memory bandwidth;

= Thirty-two 64-element vector registers; and

= Pipelined vector units for floating-point add, multiply,
and divide; integer operations; load/store; and multi-
media operations.

Rather than operating on one element at a time, a eight-pipe
vector processor can operate on eight elements in a clock
cycle at the cost of multiple vector units.

IRAM could have spectacular vector performance. In a
0.18-micron DRAM process with a 600-mm? chip, a high-
performance vector accelerator might have eight add-multi-
ply units running at 1,000 MHz and sixteen 1-Kbit buses run-
ning at 50 MHz. This combination offers 16 Gflops and 100
Gbytes/s, a balanced vector system. To put this performance
in perspective, note that the fastest vector uniprocessor, the
Cray T90, achieves a speed of 1.5 Gflops on 1,000x1,000
Linpack. Historically, Cray Research vector processors have
doubled in performance every 36 months, so a 16-Gflops
IRAM of the Gbit DRAM generation might be faster than a $1-
million vector processor of the same era.

The question with vector processing is what fraction of
the computation can be accelerated. Classically, scientific
programs that deal with matrices have benefited from vec-
tor processing. New multimedia and DSP applications may
lend themselves to vector processors as well. Indeed, one
can characterize the new MMX extension of the 80x86
instruction set as a modest vector extension. Using vector
terminology, in 8-bit mode the MMX has eight vector regis-

ters each with eight 8-bit elements,
and its functional units each use
eight pipes.

We do not intend this study to sug-
gest that IRAM's fate depends on the
popularity of vector processing.
Rather, we intend to show that
IRAM’s performance features may
lead to trade-offs very different from
those in conventional microproces-
sor design, and that even these initial
investigations show promise.

IRAM’s energy efficiency
The increasing prevalence of
portable computing has promoted
energy efficiency from a concern pri-
marily of circuit designers to an issue
of general interest to the computer

A

Two-way,

superscalar processor »| instruction

Vector

A

Net
interface

Level-one
instruction
cache

* queue
—i Load/store i_
Level-one
data
cache Vector registers

'

!

* 8x64 bits _
8x64 bits

.
.
L]

.
.
L]

(LX)

<

Memory interface unit
Yyl

<

oo
LYY
LYY
o0
o0
LYY
LYY

<
<
<

architecture community. While many

have examined processor efficiency,

our goal is to examine the energy

consumed by the memory system.
Power itself can be a deceiving

Figure 5. Organization of an IRAM vector processor design.

metric, since it does not directly
relate to battery life. As an extreme

Table 6. Energy efficiency ratio, IRAM to StrongARM.

case, putting the processor in sleep

mode wins if power is the only met-
ric, yet this solution allows no work
to be accomplished. Energy efficien-
cy—expressed either as Joules per

perl li gce hyfsys compress
IRAM, 16:1 memory 1.0 1.7 1.8 2.3 1.7
IRAM, 32:1 memory 15 2.0 2.5 2.5 4.5

instruction or MIPS per Watt—better
measures how a given machine best uses limited battery life.
Fromm et al. compared the energy efficiency of the Digital
StrongARM memory system, including a 16-Kbyte instruc-
tion cache and a 16-Kbyte data cache on chip, to an IRAM
memory system.!! Looking at the number of bits per unit area
of the StrongARM caches versus a DRAM of similar technol-
ogy, we see a difference of almost 50:1. Taking a conserva-
tive tack, Fromm et al. compared the StrongARM to an IRAM
with memory ratios of 16:1 and 32:1. Table 6 shows IRAM’s
energy efficiency advantage. Depending on the benchmark,
the IRAM advantage is roughly a factor of 2 to 4.

Related work

IRAM may be timely, but it is not a new idea. We have
found three categories useful for classifying related work.

Accelerators. Implementations in this category include
some logic on chip to make a DRAM run well for a restrict-
ed application. Most of the efforts have targeted graphics,
where logic is included with memory to be used as the frame
buffer. The best known example is video DRAM. Other
examples are Mitsubishi’s 3D-RAM, which includes a por-
tion of the z-buffer logic with 10 Mbits of DRAM to speed up
3D graphics,** and Neomagic’s graphics accelerator for
portable PCs. Nongraphics examples include a level-two
cache that uses DRAM to increase size.*

Uniprocessors. This category combines a processor with
on-chip DRAM. This part might be attractive because of high

processor performance, good system power-performance or
cost-performance, or combinations of all three. 415
Multiprocessors. This area includes chips intended
exclusively as building blocks in a multiprocessor, IRAMs
that include a MIMD (multiple instruction, multiple data)
multiprocessor within a single chip,®%! and IRAMs that
include a SIMD (single instruction, multiple data) multi-
processor—or array processor—within a single chip.’8° This
category is the most popular research area for IRAMs.
How they stack up. For uniprocessor and multiprocessor
chips, Figure 6 (next page) shows the amount of hardware for
memory on the x-axis versus the amount of hardware for pro-
cessing on the y-axis. The units of the x-axis are bits of stor-
age. It was more difficult to choose the units for the y-axis.
How do you compare eight 16-bit simple processors each
with one 16-bit ALU, one thousand twenty-four 1-bit proces-
sors each with a 1-bit ALU, and a 32-bit superscalar proces-
sor with two 32-bit ALUs and two 64-bit floating-point units?
Our solution was to multiply the number of each kind of
arithmetic unit that can operate in parallel by its width and
add these products. This yields the number of bits of paral-
lel arithmetic units. Thus, for the three preceding examples,
the number of bits of parallel arithmetic units are: 8 x 16 =
128; 1,024 x 1 = 1,024; and (2 x 32) + (2 x 64) = 192. Figure
6 shows several types of machines; the SIMD research
machines have the most processor bits per chip. Note the
substantial increase in memory for the Mitsubishi M 32 R/D

March/April 1997 41

10,000 oo — of memory on chip, which should
X SIMD on chip (DRAM) o expand by about 60% per year. A
g ET,{%OZ?:&L((SDR&% X Computational RAM best-case scenario would be for
@ A Uniprocessor (DRAM) IRAM to expand its beachhead in
S © MIMD component (SRAM) graphics—which requires about 10
£ 1,000 [s e Mbits of storage—to games, embed-
g : PIP-RAM ded systems, and personal digital
= : (o] assistants, which require about 32

a : PPRAM . . .
B Alpha 21164 0 Mbits. Such high-volume applica-
= : tions could in turn justify the invest-
g . B Execgpea Pe”tfgf” Pro ment in a process more friendly to
© i IRAM, with DRAM cells that are a lit-
'&% : tle bigger than those in a DRAM fab
& J-machine A Mitsubishi 32 R/D but much more amenable to logic

Transputer T9 and SRAM.
© Mosaic-C Then, as IRAMs grow to provide
10 . : 128 to 256 Mbits of storage, the net-
0.10 0.100 10.00 100.00

Mbits of memory

work computer or portable comput-
er markets could adopt this

Figure 6. Ordering of IRAMs in a two-dimensional space: bits of arithmetic units

versus Mbits of memory.

uniprocessor on a single die that uses DRAM.

This figure suggests two directions for IRAM. One path is
up and to the right, using MIMD or SIMD on a chip with a
modest amount of memory per arithmetic unit. The other
path is gradually rising and to the right, going with a much
larger ratio of memory to arithmetic units. This lower path fol-
lows the Amdahl rule of thumb, which suggests that for a
balanced system, memory capacity increases linearly with
processor speed. Although not shown on the graph, the same
technology advance that increases memory density also
makes logic faster.

In our view, due in part to a lack of sufficient on-chip
memory, early IRAM researchers were lured away from mak-
ing good uniprocessors by the promise of scalable multi-
processing.® More recent efforts have targeted multiple
processors on a chip to get high peak performance, but have
neglected the difficulty of programming such machines,
especially when memory is limited.®*” New Gbit DRAMs pro-
vide sufficient on-chip memory to allow IRAMs with more
balanced systems for fast uniprocessors; these are surely eas-
ier to program and hence are more widely applicable.

MERGING A MICROPROCESSOR AND DRAM on
the same chip presents opportunities in performance, ener-
gy efficiency, and cost: a reduction in latency by a factor of
5 to 10, an increase in bandwidth by a factor of 50 to 100,
an advantage in energy efficiency of a factor of 2 to 4, and
an unquantified cost savings from removing superfluous
memory and reducing board area. What is surprising is that
these claims are not based on some exotic, unproven tech-
nology. They are based instead on tapping the potential of
a technology in use for the last 20 years.

We believe the popularity of IRAM is limited by the amount

42 IEEE Micro

technology. Such a success could in
turn entice either microprocessor
manufacturers to include substantial
DRAM on chip, or DRAM manufac-
turers to include processors on chip.

IRAM presents an opportunity for us to change the nature
of the semiconductor industry. From the current division into
logic and memory camps, a more homogeneous industry
might emerge. Historical microprocessor manufacturers
might ship substantial amounts of DRAM—ijust as they ship
substantial amounts of SRAM today—or historical DRAM
manufacturers might ship substantial numbers of micro-
processors. It is not clear which camp would ship the most
memory or the most microprocessors.

Before such a revolution can occur, however, the field
needs more accurate answers to questions such as these:

= What are the speed, area, power, cost, and yield of logic
in a DRAM process?

= What are the speed, area, power, and yield of cachelike
memory in a DRAM process?

= How does DRAM change if it targets low latency?

= How does DRAM change if it targets large internal band-
width?

= How do we balance DRAM'’s requirement for low power
to keep refresh rates low with microprocessors’ require-
ment for high power for high performance?

= Can the microprocessor portion of an IRAM have redun-
dant components so as to achieve the same yields that
DRAM achieves using redundancy?

= Can built-in-self-test bring down the potentially much
higher costs of IRAM testing?

= What is the right way to connect up to 1,000 memory
modules to a single CPU on a single-chip IRAM?

= What computer architectures and compiler optimiza-
tions turn the high bandwidth of IRAM into high per-
formance?

= What is the right memory hierarchy for an IRAM, and
how is that hierarchy managed?

= What is the architectural and operating system solution

for IRAM when applications need more memory than
an IRAM provides on chip?

= Given the changes in technology and applications since
the early 1980s, when RISC research was developed, is
it time to investigate new instruction set architectures?

This list, combined with its potential impact on industry,
makes IRAM an exciting research area. In the next decade, the
answers to such questions will help determine whether IRAMs
will be laboratory novelties or a major industry trend. [

Acknowledgments

DARPA (DABT63-C-0056), the California State MICRO
Program, and research grants from Intel and Sun
Microsystems supported this research. For feedback on ear-
lier versions of this article, we thank Krste Asanovi¢ and
Steven Przybylski.

References

1. J.L. Hennessy and D.A. Patterson, Computer Organization and
Design, 2nd ed., Morgan Kaufmann Publishers, San Francisco,
1997.

2. Z.Cvetanovic and D. Bhandarkar, “Performance Characteriza-
tion of the Alpha 21164 Microprocessor Using TP and SPEC
Workloads,” Proc. Second Int’l Symp. High-Performance Com-
puter Architecture, IEEE Computer Society Press, Los Alamitos,
Calif., 1996. pp. 270-280.

3. D.Patterson et al., “Intelligent RAM (IRAM): Chips That Remember
and Compute,” Dig. Technical Papers, 1997 IEEE Int’l Solid-State
Circuits Conf., IEEE, Piscataway, N.J., 1997, pp. 224-225.

4. S.A. Przybylski, New DRAM Technologies: A Comprehensive
Analysis of the New Architectures, MicroDesign Resources,
Sebastopol, California, 1994.

5. .M. Barron, “The Transputer,” The Microprocessor and Its
Application, D. Aspinall, ed., Cambridge University Press,
London, 1978, pp. 343-357.

6. P.M. Kogge et al., “Combined DRAM and Logic Chip for
Massively Parallel Systems,” Proc. 16th Conf. Advanced
Research in VLSI, IEEE CS Press, 1995, pp. 4-16.

7. M.D. Noakes, D.A. Wallach, and W.J. Dally, “The J-Machine
Multicomputer: An Architectural Evaluation,” Proc. 20th Ann. Int’l
Symp. Computer Architecture, IEEE CS Press, 1993, pp. 224-235.

8. D. Burger, J.R. Goodman, and A. Kagi, “Memory Bandwidth
Limitations of Future Microprocessors,” Proc. 23rd Ann. Int’l
Symp. Computer Architecture, IEEE CS Press, 1996, pp. 78-89.

9. S.E. Perl and R.L. Sites, “Studies of Windows NT Performance
Using Dynamic Execution Traces,” Proc. Second Symp. Operating
Systems Design and Implementation, 1996, pp. 169-183.

10. W.A. Wulf and S.A. McKee, “Hitting the Memory Wall:
Implications of the Obvious,”” Computer Architecture News, Vol.
23, No. 1, Mar. 1995, pp. 20-24.

11. R.Fromm etal., “The Energy Efficiency of IRAM Architectures,”
submitted to ISCA 97: The 24th Ann. Int’l Symp. Computer
Architecture, proceedings to be published by IEEE CS Press, 1997.

12. G. Giacalone et al., “A 1MB, 100MHz Integrated L2 Cache
Memory and 128b Interface and ECC Protection,” Proc. Int’l
Solid-State Circuits Conf., IEEE, 1996, pp. 370-371.

13. M.F. Deering, S.A. Schlapp, and M.G. Lavelle, “FBRAM: A New
Form of Memory Optimized for 3D Graphics,” Proc. SIGGRAPH
94, Assn. for Computing Machinery, New York, 1994, pp. 167-
174.

14. T. Shimizu et al., “A Multimedia 32 b RISC Microprocessor with
16 Mb DRAM,” Dig. Technical Papers, 1996 |EEE Int’| Solid-State
Circuits Conf., IEEE, 1996 pp. 216-217, 448.

15. A. Saulsbury, F. Pong, and A. Nowatzk, “Missing the Memory
Wall: The Case for Processor/Memory Integration,” Int’l Symp.
Computer Architecture, IEEE CS Press, 1996, pp. 90-101.

16. M. Fillo et al., “The M-Machine Multicomputer,” Proc. MICRO
95: 28th Ann. I[EEE/ACM Int’l Symp. Microarchitecture, IEEE,
1995, pp. 146-156.

17. K. Murakami, S. Shirakawa, and H. Miyajima, “Parallel
Processing RAM Chip with 256Mb DRAM and Quad Processor,”
Dig. Technical Papers, 1997 IEEE Int’l Solid-State Circuits Conf.,
IEEE, 1997, pp. 228-229.

18. Y. Aimoto et al., “A 7.68 GIPS 3,84 GB/s 1W Parallel Image
Processing RAM Integrating a 16 Mb DRAM and 128
Processors,” Dig. Technical Papers, 1996 IEEE Int’| Solid-State
Circuits Conf., IEEE, 1996, pp. 372-373, 476.

19. D.G. Elliott, W.M. Snelgrove, and M. Stumm, “Computational
RAM: A Memory-SIMD Hybrid and Its Application to DSP,” Proc.
Custom Integrated Circuits Conf., [EEE, 1992, pp. 30.6.1-30.6.4.

David Patterson holds the Pardee Chair
of Computer Science at the University of
California, Berkeley, where he teaches
computer architecture. He led the design
and implementation of RISC 1, likely the
. first VLSI reduced-instruction-set com-

= N puter. This research became the founda-
tion of the Sparc architecture, currently used by Fuijitsu, Sun,
and Texas Instruments. He was also a leader of the
Redundant Arrays of Inexpensive Disks (RAID) project,
which led to many companies’ high-performance storage
systems. These projects resulted in three distinguished dis-
sertation awards from the Association for Computing
Machinery (ACM).

Patterson has won teaching awards from his university,
the ACM, and the IEEE. He is also a coauthor of five books
and chair of the Computing Research Association. He is a
fellow of both the ACM and the IEEE, and a member of the
National Academy of Engineering.

Thomas Anderson, who is an associate
professor in the Computer Science
Division at UC Berkeley, is perhaps best
known for his work on scheduler activa-
tions and operating system support for
high-performance multiprocessing. His
other projects include the lightweight
remote procedure call (used in the Windows NT RPC system);
Digital's AN2, with its novel high-speed network switch archi-
tecture (the basis for Digital’s ATM products); language-
independent software fault isolation (to be shipped next year

March/April 1997 43

IRAM

as part of Microsoft’s Java VM to provide protected execution
of non-Java code); xFS, the first serverless network file sys-
tem; and the Berkeley NOW project.

Anderson has won the Diane S. Mclntyre Award for excel-
lence in teaching. He was a program committee member for
the ACM ASPLOS Conference in 1996, and a member of
NASA EOSDIS. He coauthored award papers at eight recent
systems conferences, including the 1994 Hot Interconnects
and 1996 Hot Chips symposia.

Neal Cardwell is a graduate student in
computer science at UC Berkeley. His
current research interests include operat-
ing systems, parallel and distributed com-
puting, and compilers. He received a BS
in computer science from the College of
William and Mary.

ﬁ Richard Fromm is a member of the

IRAM project and is currently working
toward a PhD in computer science at UC
Berkeley. Previously, he was a member
of the Semiconductor Engineering Group
at Digital Equipment Corporation, where
he contributed to the design of several
Alpha microprocessors. His research interests are in com-
puter architecture.

Fromm received a BSEE degree from Cornell University,
Ithaca, N.Y., where he cooperated with the Digital Video
Group at Bell Communications Research (Bellcore).

Kimberly Keeton is a PhD candidate in
computer science at UC Berkeley. Her
current research focuses on computer
architecture and operating system sup-
port for large server applications. Her
other research areas have included net-

2l work performance analysis, multimedia
storage servers, and mobile computing.

Keeton received an MS in computer science from UC
Berkeley, and a BS in computer engineering from Carnegie
Mellon University. She is a member of the IEEE, the ACM,
and Usenix.

Christoforos Kozyrakis is currently
pursuing a PhD in computer science at
UC Berkeley. Previously, he was with I1CS-
FORTH, Greece, working on the design
of single-chip high-speed switches. His
research interests include computer archi-
tecture, VLSI systems design, and high-
performance switching and routing.

Kozyrakis received a BSc degree in computer science from
the University of Crete, Greece.

44 |EEE Micro

Randi Thomas, a PhD student in electri-
cal engineering and computer science at
UC Berkeley, is involved with vector
processor research for the IRAM project
and is interested in computer architecture.
She recently worked in the compiler divi-
sion of Cray Research in Eagan, Minn., on
architectural design for two future SG1/Cray microprocessors.

Thomas received her bachelor’s degree in mathematics at
the University of California, Berkeley. Several years later she
returned to Berkeley in the EECS Reentry Program and began
her graduate work there as well. She is currently working
on her master’s thesis.

Katherine Yelick is a faculty member at
UC Berkeley, where she has taught pro-
gramming languages, parallel systems
software, and data structures. Her
research in parallel computing addresses
irregular applications, data structures,
compilers, and runtime systems. Her pro-
jects include equational unification algorithms, parallel sym-
bolic applications, the Multipol distributed data structure
library, the Split-C parallel language, the Titanium compiler
for explicit parallelism, and compiler support for IRAM.

Yelick graduated with a PhD from MIT in 1991, where she
worked on parallel programming methods and automatic
theorem proving and won the George M. Sprowls Award for
an outstanding PhD dissertation.

Address questions concerning this article to David
Patterson, Computer Science Division/EECS Department,
University of California, Berkeley, CA 94720-1776; patter-
son@cs.berkeley.edu.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.
Medium 163

Low 162 High 164

