
Design-Oriented Programming:
Macro-Driven Literate Programming in Self-Validating PDL

Joel Vaughn
tragicomedy73@yahoo.com

Paul Graham makes a provoking argument for why many
software engineers find that Lisp makes them productive and
helps them robust, elegant software through “bottom-up design”
[9]. He argues that the expressivity and clarity of programming
in Lisp are due to its extensibility: “As you're writing a program,
you may think ' I wish Lisp had such-and-such operator.' So you
go and write it. ... Language and program evolve together. ... In
the end your program will look as though the language had been
designed for it” [9]. For much of my time as a software engineer
for real-time firmware applications, I’ve wanted to apply the same
or similar aspects to my area of expertise. For various reasons, I
don’t expect these applications to be written in Lisp any time
soon.

In some firmware development processes, there can be a telling
tension between program design language and source code. (For
most of the issues addressed here the distinctions some make
between PDL and pseudo-code won’t matter.) Many standards
assume that for the PDL to be useful at all, it must be
unambiguous. In other words, you are going to have to write the
program twice. Once in a language that is somewhere between
Pascal and your native language, and once again in a low-level
language (probably C or C++). If you are using the waterfall
model, you might even end up rewriting your pseudo-Pascal
program (which only worked in theory) based on the source code
implementation that mas finally made to work (since it made the
design testable). Some programmers joke in this case that it
would be nice to write a translator that automatically converts
working C into correct PDL. Not such a bad idea, but I think I
have a better one: Have a translator convert your design
language to C, but allow that language to document your design,
rather than merely define the procedures and the order they are
called in, so that the translator can check for semantic issues that
only the designer knows to look for. I’ll also argue that macros—
which make use of a semantic preprocessor rather than
merely a textual preprocessor—can be a powerful extension of
Donald Knuth's idea for Literate Programming [10].

Let me first clarify that I am talking about user-defined semantic
issues, not semantic issues for the low-level source code. I’ve
seen “mixed mode” operations waste an analyst’s time on
documenting the “problem” or get replaced with inefficient code
(that won’t make the compiler issue warnings), while a real
semantic problem slips by unnoticed at compile-time, such as a
values assigned to a variable that hasn’t been converted to the
right units or resolution. According to the C compiler, there is no
type mismatch! And yet, the engineer’s knowledge that the
values are incommensurable could in theory be expressed in
PDL, and this problem could be found by “compiling” the PDL.
Simonyi's Apps Hungarian notation is a method to enable a
"human compiler" to catch design errors, by embedding the
intentional information into the identifiers (what Spolsky refers to
as the "kind" of data as opposed to "type") [14]. This meta-data
could be a part of the PDL itself and these sanity checks could be
automated. Some examples of this particular application in
CQUAL [7] and other proposals for qualified types (e.g., [3])

When I use a macro, I am often dealing with a problem that can’t
be reduced to a function/procedure, either because of real-time
efficiency considerations (e.g., stack space, processing time,
etc.) or because it is not simply a set of instructions that I am
want to abstract. The key point, whether I am using #define to
define a constant or conditional compilation directive (for #ifdef)
or a field selector or a function-like macro or a construct that
alters control-flow, I am attempting to abstract some part of the
design. I’m introducing meta-data into the source code. George
Polya stated, “An important step in solving a problem is to choose
the notation. … The time we spend now on choosing the notation
may be well repaid by the time we save later by avoiding
hesitation and confusion. … [It] may contribute essentially to
understanding the problem” [11] I create notation one #define at
a time. Charles Simonyi (in reference to his idea for manipulating
design information using a “language workbench”) notes, “In
languages such as C, much of the 'intentional' information [i.e.,

design information] is encoded in macros” [10].

I think this could naturally be implemented as an extension of
literate programming. Knuth proposed a scheme for embedding
source code in the context of explanatory text (with the use of a
markup language--TeX being Knuth's choice) [10]. Source code
files are populated with the embedded source code through a
"tangling" application (while various design documents may be
produced by a "weaving" application). By why limit the design to
being defined in terms of the source code? The engineer could
define his own notation, and the act of "tangling" can generate
source code by expanding these macros, checking their semantic
“intentional” information for consistency in the process.

This translator, for which the target is the source code and the
source is PDL, will have access to all kinds of meta-data the
programmer puts into PDL and each macro expansion will be
subject to consistency checks that are part of its definition. You
could write macros that can only be expanded (i.e. resolved to a
source code tokens or toother macro invocations) inside a for
loop, for instance. You could define a new construct and restrict
pointer arithmetic to the scope of that construct (resolving the
PDL to code would then flag a "tangle-time" error if pointer
arithemetic occurred outside one of these user-defined
constructs).

But this just scratching the surface. Many firmware platforms do
not have the luxury of a full operating system. The limited needs
of the application make the interrupt-driven interactions between
various communications, signal processing, fault monitoring, and
various other background tasks a tractable but tricky problem.
From experience, resource management often takes the form of
an Executing-Around pattern. This is conceptually related to
critical region construct, specifically, and to the RAII design
pattern, generally. Raymond Chen's warnings about macros
essentially re-defining the language [2] should be taken seriously,
but as a warning to not arbitrarily change the alter program flow
in a way where it isn't clear what the intended behavior is. A
macro that embodies semantic information about its use, that
encapsulates intentional information about the software
architecture, becomes a notation to help the programmer think
about the system. In his work leading to the language constructs
of conditional critical regions and monitors, Per Brinch Hansen
was looking for "a notation which explicitly restricts operations on
data and enables a compiler to check that these restrictions are
obeyed" [1]. A PDL can capture these restrictions, and the
translator can check them at tangle-time. The notation becomes
part of a Domain Specific Language for expressing the design
intentions.

I’ve noticed that conditional compilation statements are one way
that programmers show how design concerns affect
implementation. (Simonyi points this out as well in [12] in his
discussion on #ifdef’s.) This is often frowned upon in safety-
critical standards, the idea being that engineers could be
confused over which statements are actually going to get
executed. But bad as counterfactuals might be for
implementation, counterfactuals are the essence of design. The
particulars of implementation might need to change based on
several contingencies for which the effects of a design change
can ripple across module boundaries (in spite of encapsulation
and attempts to decouple parts of a complex system). The why
of design is based on contingent decisions. Why must the
contingent versions of a module exist only in the designer’s mind,
rather than in the documented design? It sounds as though
someone is betting on the same developer being around forever
(and having a flawless memory). Practical programmers know
better. This is why the “static if” and “version” constructs fit well
with the pragmatic sensibilities of the D programming language
[4].

Macro definitions would, as for C preprocessor macros and C++
template definitions, include invocations of other macros, which
would eventually resolve to tokens with semantic information (as

in Dmitriev’s templates [6] or template mixins in the D language
[5]) and meta-statements and assertions that provide semantic
information to nearby statements (what Simonyi calls annotations
and stipulations [12]). These macro invocations are more than
just abstractions of executable statements. They can contain
assertions of how properties and states are changing in the
system. Property M of the program has value A after macro X
has been invoked (whether macro X eventually resolves to line
code or a subroutine call), and macro Y might need to be
implemented a different way in source code when M = A, if only
to remove redundant “dead code” from the source code. These
kinds of implicit dependencies exist in code, but they can be
missed in spite of elaborate comments (or because of them).

Simonyi also discusses this possibility that an intention (in this
case, an intended behavior) might be be mapped to more than
one possible implementation depending on assertions (in his
terminology, annotation-dependent application of “reducing
enzymes” or intention-to-code mappings) [12]. One ramification
of this is that there is a means to address cross-cutting
concerns (or “aspects”) that are represented as annotations in
the PDL. The rules for which reduction rule to apply to the macro
expansion could be considered aspect “advice,” with the macro
invocation setting up a well-defined pointcut. Simonyi et al.
allude to this use when they claim, “Language extension should
be considered … when a particular concern (or aspect) is
fragmented over many parts of the source” [13].

Having the PDL translator (while “tangling” or “reducing”)
check the consistency of meta-statements and assertions in
the PDL would combine the power of design validation—as
might be expressed in compile-time assertions—with a
means of providing aspect-oriented design. The engineer
builds these self-checks for design assumptions and concerns
into the design. Once all the macro substitutions are performed
the result is a string of symbols that would , based on the chosen
target (say, C source code for a specific DSP), be mapped to
specific output text in the target language (C, in this case).

More importantly, design constraints and design assumptions
could be first-class entities in PDL, could declared in a PDL-level
procedure, and could be identified as being consequences of
other decisions and assumptions. Rather than simply grep the
source code when I want to check some properties of the design,
I could go a step further and be able to query the design itself
about why a certain constraint is imposed on a function/module/
procedure. Ideally, a design would document the hard-won
knowledge of the engineer about why a system is
implemented in a certain way. But that sounds an awful lot
like having an expert system embedded in your design
document. So it does. And if another constraint were imposed
(or relaxed) by the customer or the system engineers, the expert
system embodied in the design document could actually assist

the developer in thinking through the ramifications of that change.

Simonyi’s ideas for generative programming based on his
workbench approach to design intentions suggests a further
implication. If there is a design one wishes to apply to very
similar applications (say, programs for controllers that solve the
same basic problem but with different system parameters and
design constraints), you could have one set of design files that
produce the various applications with changes to a small set of
parameters. Now the PDL in your design document defines a
fourth generation programming language.

It should be noted here that in many ways, most of these ideas
overlap significantly with Simonyi's ideas for intentional
programming and Ward’s ideas for language-oriented
programming [15, 6]. Theidea proposed here of combining
literate programming with the use of DSLs to represent design
concerns doesn't rule out the "language workbench" approach
discussed by Simonyi and also by Fowler [8], any more than the
use of markup language precludes a high-level interface for that
markup. I’m advocating that a more basic step is that
implementing intentional programming using symbol processing
as an extension of the literate programming concept, and that
macro expansion is a natural way to implement it.

The reason I think that a text-based approach is more
fundamental is that Knuth's ideas keeps a very important fact in
mind: The act of programming is in a fundamental sense an act
of writing. This is why I think Knuth's proposal for literate
programming should not be trivialized as merely a neat
alternative to commenting source code. In general, figures and
charts supplement text, rather than the other way around. A
natural medium for a PDL is hypertext (not necessarily bound to
a particular markup such as HTML or TeX), because formatting
and links are also intentional information; in design commentary,
presentation is content. Any higher-level approach to
manipulating design information should not treat commentary text
as second-class data. Even charts and tables tend to be
convenient representations of text. I think the primacy of text is
one reason why there are so many visual plug-ins available for
Microsoft Word; it's often more convenient to shoehorn visual
presentations into a text processor than to make a presentation-
specific application (e.g. a spreadsheet app) deal with arbitrary
amounts of text in a smooth comfortable way.

To summarize, I am suggesting that a text-based PDL could be
an extremely powerful design tool by allowing a notation that
flexibly handles the following as first-class entities: (a) marked-up
expository text (i.e. be literate), (b) user-defined expansion of
paramerized symbols into text (be bottom-up and abstract), and
(c) embedded meta-data that can be used for code generation
and design-validation (be intentional). It could change the way
we think about design.

[1] P. Brinch Hansen. Operating Systems Principles. Prentice Hall, 1973.
[2] R. Chen. A rant against flow control macros. http://blogs.msdn.com/oldnewthing/archive/2005/01/06/347666.aspx.
[3] B. Chin, S. Markstrum, and T. Millstein. Semantic Type Qualifiers. June 005. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation.
[4] Digital Mars. Conditional Compilation. http://www.digitalmars.com/d/2.0/version.html.
[5] Digital Mars. Template Mixins. http://www.digitalmars.com/d/2.0/template-mixin.html.
[6] S. Dmitriev. Language Oriented Programming: The Next Programming Paradigm. November 2004. http://www.onboard.jetbrains.com.
[7] J. Foster, et al. CQUAL User’s Guide. Version 0.991. April 2007.
[8] M. Fowler. Language Workbenches: The Killer-App for Domain Specific Languages? http:// martinfowler.com/articles/
languageWorkbench.html.
[9] P. Graham. Programming Bottom-Up. http://www.paulgraham.com/progbot.html.
[10] D. E. Knuth. Literate programming. The Computer Journal, 27, 97-111, May 1984.
[11] G. Polya. How to Solve It, 2nd Ed..
[12] C. Simonyi. The Death of Computer Languages, The Birth of Intentional Programming. September 1995. Microsfot Research Technical Report
MSR-TR-95-52.
[13] C. Simonyi, M. Christerson, and S. Clifford. Intentional Software. In OOPSLA '06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications.
[14] J. Spolsky. Making Wrong Code Look Wrong. http://www.joelonsoftware.com/articles/Wrong.html.
[15] M. Ward. Language Oriented Programming. Software - Concepts and Tools, 15, 147-161 1994, http://www.dur.ac.uk/
martin.ward/martin/papers/middle-out-t.pdf.

