The Unthinkable: Automated Theorem Provers For (Tracing) Just-in-Time Compilers

Nikolai Tillmann, Michał Moskal, Wolfram Schulte, Herman Venter, Manuel Fahndrich

Microsoft Research Redmond

Tracing JIT

The Idea

Use Satisfiability Modulo Theories (SMT) solver to understand what the program does.

Trace tree to SMT push/pop

$$t_0 = len_0[a]$$

$$bv_{<}(i, t_0)$$

$$t_1 = len_0[a]$$

$$\neg bx_{<}(i, t_1)$$

$$t_2 = a[i]$$

$$bv_{>}(t_{2},0)$$
 $\neg bv_{>}(t_{2},0)$
 $t_{3} = bv_{+}(p,1)$ $t_{3} = bv_{+}(p,1)$
 $t_{4} = bv_{+}(i,1)$

Optimizations

- forward guard elimination
- common subexpression elimination
 - modulo theories
 - with alias analysis and redundant load elimination
 - all equality analyses combined!
- redundant store elimination

Status: SPUR with Z3

- complete (for bitvectors)
 - strongest possible optimization of this kind
- guard removal implemented in SPUR with Z3
 - easy to implement
 - especially no need to worry about bitvector cornercases
 - couple times slower than SPUR "Classic"
- use Z3 for runtime validation of SPUR?