The Unthinkable:

Automated Theorem Provers
For (Tracing) Just-in-Time Compilers

Tracing JIT

.................... ;to_alen

<i |<tO ;>

tl :=a.len

< i<‘t1 >

t

SSA form

loop-guard

trace-exit

array bounds

| :=t4

t2 -ah]

t5

JIT normally, and
then look for

‘i:=
p =13 |< 250 > \REP

t3:=p+1

......................

t5:=i+1

if-guard hot loops

for (i=0; 1 < a.len; i++)
if (a[i] > 9) p++;

The Idea

Use Satisfiability Modulo Theories
(SMT) solver to understand what the
program does.

Trace tree to SMT push/pop

" t0 —a len [«

|<tO

t2>
t3 :=‘p+ 1 [
t4:=i+1

to = lengy|a]

bv(i,ty)

t; = leng|al

—b L tl)
t, = ali]
bus(t,0) —bus(ty,0)

t3 = bv+(p, 1) t3 = bv+(p! 1)

t, = bv,(i,1)

ts)

Optimizations

e forward guard elimination

e common subexpression elimination
— modulo theories
— with alias analysis and redundant load elimination
— all equality analyses combined!

e redundant store elimination

Status: SPUR with Z3

e complete (for bitvectors)
— strongest possible optimization of this kind

e guard removal implemented in SPUR with Z3

— easy to implement

e especially no need to worry about bitvector corner-
cases

— couple times slower than SPUR “Classic”

e use Z3 for runtime validation of SPUR?

