The Unthinkable:

Automated Theorem Provers
For (Tracing) Just-in-Time Compilers
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The Idea

Use Satisfiability Modulo Theories
(SMT) solver to understand what the
program does.



Trace tree to SMT push/pop
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Optimizations

e forward guard elimination

e common subexpression elimination
— modulo theories
— with alias analysis and redundant load elimination
— all equality analyses combined!

e redundant store elimination



Status: SPUR with Z3

e complete (for bitvectors)
— strongest possible optimization of this kind

e guard removal implemented in SPUR with Z3

— easy to implement

e especially no need to worry about bitvector corner-
cases

— couple times slower than SPUR “Classic”

e use Z3 for runtime validation of SPUR?



