Colorado State University

Qualitative Evaluation Criteria for
Parallel Programming Models

Christopher Krieger, Andrew Stone,
Michelle Mills Strout

FIT 2010

Evaluating Performance and
Programmability

Implementation details tangle with algorithm
specification to cause obfuscation

m Data distribution and layout
m Computation distribution and scheduling

Programmer control enables performance
Tangling hurts programmability

We propose evaluating programming models
by realizing implementation strategy patterns

from the OPL (Mattson et al.)

= SPMD, Loop Par, Fork/Join, BSP, Task Queue,
..., Dist Array Colorado State University

Evaluation Criteria for Programming Models
Tangling and Programmer Control

high A

Interspersed

(=)

I{ Manually applied loop optimizations
A Java synchronized keyword

& BLAS function calls

O Specification of thread affinity to core
V¥ Weaved advice in an AOP language
~ Hadoop configuration files

X Chapel iterators

O OpenMP CRITICAL directive

Hadoop setNumMapTasks()

<> Automatic parallelization

@Target/Goal

>

Hinted
M)
angling
O .
Delegated Injected
-
minimal + # 0O A K j I X
_
Invisible Separated
4 N\
none + POy v
—)
none low

Programmer-control

Colorado State University -

high

Moving Forward

Goal is to encourage the conscious
development of program language constructs
for the exposed and orthogonal specification of
implementation details
Questions for the community
m Other important qualitative criteria?
m Additional parallel patterns for eval framework?
m What are some other construct examples?

m Missing categories in programmer control and
tangling tradeoff space?

Colorado State University

