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Evaluating Performance and
Programmability

Implementation details tangle with algorithm
specification to cause obfuscation

m Data distribution and layout
m Computation distribution and scheduling

Programmer control enables performance
Tangling hurts programmability

We propose evaluating programming models
by realizing implementation strategy patterns

from the OPL (Mattson et al.)

= SPMD, Loop Par, Fork/Join, BSP, Task Queue,
..., Dist Array  Colorado State University



Evaluation Criteria for Programming Models
Tangling and Programmer Control
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Moving Forward

Goal is to encourage the conscious
development of program language constructs
for the exposed and orthogonal specification of
implementation details
Questions for the community
m Other important qualitative criteria?
m Additional parallel patterns for eval framework?
m What are some other construct examples?

m Missing categories in programmer control and
tangling tradeoff space?
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