Two Examples of Parallel Programming without Concurrency
Constructs (PP-CC)

Chen Ding

University of Rochester
{cding}@cs.rochester.edu

1. Introduction

Parallelization is the process of converting a sequential program
into a parallel form. It is recognized that a general solution needs
to incorporate user knowledge and hence there is a need for a
programming interface for parallelization.

Speculative parallelization divides a program into possibly par-
allel tasks and runs them in parallel if they produce the same output
as the original program. A run-time system monitors the execution
for conflicts and reverts to sequential execution if needed. Previous
studies have developed various programming primitives [1, 3, 6, 8,
9,11]. Unlike parallel constructs, many of these new primitives are
hints and can be wrong. We call them parallelization hints. They
mark parallelism but do not change the output of a program.

This short paper discusses the constraints and opportunities
of parallelization hints. The main points are summaried below.
The first two mean lower performance, while the next two may
mean better programmability and more parallelism, compared to
programming not using hints.

e No concurrency constructs. A parallelization hint cannot allow
out-of-order updates to shared data (unless they produce the
same result). This rules out the use of concurrency constructs
such as locks, barriers, critical sections, and transactions.

® Needing speculation support. Speculative execution is needed
to protect against incorrect hints. The cost of speculation limits
the efficiency and scalability of parallel execution.

e Ease of parallel programming. Parallelization is done by adding
hints into a sequential program. The hints, however incorrect
or incomplete, never cause the program to produce incorrect
results. The hints may be inserted by hand or automatically.

o Allowing speculative parallelism. A user may use hints to ex-
press parallelism that exists only in some but not all executions
of a program.

These points, especially the last three, are well known in cases
when hints are used to mark parallelism. In this paper we focus
on the implications on synchronization especially the comparison
between parallelization hints and conventional concurrency con-
structs. We make the comparison concrete using two examples,
which we will parallelize using the following two hints:

® The parallel code block bop_parallel. The hint specifies a pos-
sibly parallel region (PPR) [3]. The PPR code can be run in par-
allel with the code after the PPR. It is similar to a safe future [9]
or an ordered transaction [8].

The serial code block bop_serial. The executions of a serial
code block should not overlap and should happen in the same
order as in the sequential program. It is similar in intent to the
ordered directive in OpenMP. The scope of ordered is a parallel
construct, while bop_serial can appear anywhere in a program.

while (has_work()) while (has_work())
w = get_work() w = get_work()
bop_parallel {
t=do_work(w) t = do_work(w)
bop_serial {
tree.insert(t) tree.insert(t)
}
end while
end while

Figure 1. The work-loop example. The calls to has_work and
get_work are run sequentially. The calls to do_work inside the par-
allel block are executed speculatively in parallel. The speculative
tasks perform tree.insert one at a time in their loop order.

bop_serial is implemented by speculative post-wait [4], which
is an extension of Cytron’s do-across construct [2].

2. A Work Loop

A generic work-processing loop, as shown in Figure 1, tests for
more work, gets the next work item, processes the work, and inserts
the result into a tree. The parallelized version is shown in the same
figure. The parallel block suggests that the processing of different
work items is parallel. We refer to each instance of the parallel
block a possibly parallel task or a PPR task.

The tree-insertion step needs synchronization. With manual par-
allelization, one can place tree.insert into a critical section to
ensure exclusive access to the shared tree. To improve parallelism,
a critical section allows tree insertions to happen in any order—a
later loop iteration may insert its result first if it finishes earlier than
others. However, this flexibility leads to non-determinism and com-
plicates parallel programming. The shape of the tree depends on the
relative finishing times of loop iterations, which depend on resource
allocation in hardware and scheduling by the operating system. If
the tree implementation has an infrequent error that manifests once
every hundred executions, debugging will be difficult since it re-
quires reproducing the error in a debugger.

Using hints, one can put tree.insert in a serial block. A
serial block ensures that every loop iteration waits for all previous
insertions to finish their tree insertion before it can start its tree
insertion. A serial block is more restrictive than the critical section
and may lose parallelism as a result. Consider the scenario in which
the first iteration takes much longer than other iterations, and later
iterations have to wait for a significant amount of time to complete
their last step. The loss of parallelism may be compensated by more
aggressive speculation. For example, the BOP system tries to start a
new PPR task whenever there is an idle processor. It has been shown
effective in tolerating uneven task sizes and non-uniform processor
speeds due to hyperthreading [12].

2010/5/19

The main benefit of the serial block is safety. A user or a
programming tool can insert hints without having to ensure that
they are always correct [3]. The speculation system guarantees that
the resulting tree is always the same as in the sequential execution.
No parallel debugging is needed. There are other benefits. A user
marks the point of fork (in fork-join parallelism) without having
to specify the point of join. The user does not have to understand
all program code to insert hints. In the worst case, speculative
execution is almost as fast as the sequential execution.

The safety guarantee comes at a cost in not just efficiency but
also expressiveness. Since automatic correctness checking is nec-
essary, a hint cannot express any type of parallelization that may
produce an output different from sequential execution. Therefore,
concurrency constructs cannot be hints, and the options for syn-
chronization are limited when using hints. In light of this restric-
tion, we next put parallelization hints to test in a more complex
example.

3. Time Skewing

Iterative algorithms are widely used in numerical analysis and other
domains to compute fixed-point or equilibrium solutions. Figure 2
shows the typical structure of an iterative solver. The outer level is
a convergence loop. In each iteration is an inner loop that computes
on some domain data. We refer to an outer loop iteration as a time
step. For this example, we are concerned with three dependences:
the convergence check, which depends on the results from the
entire time step; the continuation check, which determines whether
to terminate or to start the next time step; and the cross time-step
data conflict, since different time steps use and modify the same
(domain) data.

In manual parallelization, a barrier is inserted between succes-
sive time steps to preserve all three dependences. Although sim-
ple to implement, the solution precludes parallelism between time
steps. Previous literature shows that by overlapping time steps, one
may obtain integer factor performance improvements from better
locality [7,10]. Similar benefits are recently shown for parallel exe-
cutions [5]. Wonnacott called the transformation time skewing [10].

Time skewing can improve parallel efficiency because it re-
moves the periodic barrier synchronization. Parallelization hints
can express time skewing with four annotations shown in Figure 2.
It uses two parallel blocks. The first block allows each time step to
be parallelized. The second allows consecutive time steps to over-
lap. It uses two serial blocks. The first ensures serial data updates,
and the second ensures that dependence check happen after data
updates are completed. This satisfies the first dependence.

The second dependence, the continuation check, is a problem
only at the last iteration. The third, cross-iteration conflicts, hap-
pens between time steps as a whole, but it does not prohibit their
partial overlap if the active PPRs are computing on different parts of
the domain data. The speculation support will detect these two de-
pendences and roll-back to sequential execution when needed. For
the majority length of an execution, the parallelism between time
steps can be profitably exploited. We have tested this transforma-
tion on a clustering algorithm using the BOP system [4]. Each time
step has 15 tasks. When using 7 processors, time skewing was 18%
faster than an OpenMP implementation that used a critical section
and a barrier. The example shows the distinct benefits of paralleliza-
tion hints, despite their inherent limitations and overheads.

References

[1] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
multithreaded programming for C/C++. In Proceedings of the
International Conference on Object Oriented Programming, Systems,
Languages and Applications, 2009.

while (not converged)
foriis1toN
bop_parallel {
r = compute(datali])

bop_serial {

while (not converged) s = s.add_result(r)

foriis1toN
r = compute(datali]) end for
s = s.add_result(r) b%%—g) asrearlgg: %
if good_enough?(s)
end for C: converged = true
if good_enough?(s) end if
C: converged = true }
end if }
end while end while

Figure 2. The time skewing example. The first parallel block al-
lows each time step to be parallelized. The second allows consec-
utive time steps to overlap. The two serial blocks ensure that the
convergence check happens after all data updates are completed.

[2] R. Cytron. Doacross: Beyond vectorization for multiprocessors.
In Proceedings of the 1986 International Conference on Parallel
Processing, pages 836—844, St. Charles, IL, Aug. 1986.

[3] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 223-234, 2007.

[4

=

B. Jacobs, T. Bai, and C. Ding. Distributive program parallelization
using a suggestion language. Technical Report URCS #952,
Department of Computer Science, University of Rochester, 2009.

[5

=

L. Liu and Z. Li. Improving parallelism and locality with asyn-
chronous algorithms. In Proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages
213-222, 2010.

[6] A.Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Spec-
ulative parallelization using software multi-threaded transactions. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 65-76,
2010.

[7]1 Y. Song and Z. Li. New tiling techniques to improve cache temporal
locality. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 215—
228, Atlanta, Georgia, May 1999.

[8] C. von Praun, L. Ceze, and C. Cascaval. Implicit parallelism
with ordered transactions. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
Mar. 2007.

A. Welc, S. Jagannathan, and A. L. Hosking. Safe futures for Java.
In Proceedings of the International Conference on Object Oriented
Programming, Systems, Languages and Applications, pages 439-453,
2005.

[10] D. Wonnacott. Achieving scalable locality with time skewing.
International Journal of Parallel Programming, 30(3), June 2002.

[11] A. Zhai, J. G. Steffan, C. B. Colohan, and T. C. Mowry. Compiler
and hardware support for reducing the synchronization of speculative
threads. ACM Transactions on Architecture and Code Optimization,
5(1):1-33, 2008.

[12] C.Zhang, C. Ding, X. Gu, K. Kelsey, T. Bai, and X. Feng. Continuous
speculative program parallelization in software. In Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 335-336, 2010.

[9

—

2010/5/19

