
FORTH-ICS / TR-172 July 1996

The Architecture, Operation and Design of the Queue
Management Block in the ATLAS I ATM Switch

Christoforos E. Kozyrakis

Among the various switch buffer architectures, output queueing implemented in a com-

pletely shared buffer is the one that achieves the highest possible utilization of both output

bandwidth and buffer space. The high link throughput, small cell size and additional fea-

tures of ATM switching, such as multiple classes of service, multicasting and flow control,

enforce further extensions to the above scheme and demand pure hardware implementa-

tions. In this work we present the hardware block maintaining output queues per priority

class in the ATLAS I single chip ATM switch. It also provides support for multicasting

and multi-lane credit-based flow control. Techniques such as pipelined and superscalar

processing, usually employed in processors’ design, are used in order to accommodate for

the amount and high speed of operation required. This also modifies the approach to the

timing of operations, the control design and the calculation of the hardware complexity.

The block was extensively simulated to ensure the correctness of its operation. Although

the hardware implementation is currently in progress, the circuits already laid out are pre-

sented, while the VLSI design of the remaining blocks is analyzed. In addition, the Priority

Enforcer circuit and its full-custom layout is thoroughly described.

The Architecture, Operation and Design of the Queue

Management Block in the ATLAS I ATM Switch

Christoforos E. Kozyrakisy

Institute of Computer Science (ICS)

Foundation for Research and Technology Hellas (FORTH)

Science and Technology Park, Heraklion, Crete

P.O. Box 1385, GR-711-10 Greece

email: koziraki@ics.forth.gr

Technical Report FORTH-ICS/TR-172 July 1996

c Copyright 1996 by FORTH

Work Performed under ACTS Project 060 "ASICCOM" and as B.Sc. Thesis at the Univ. of Crete

ABSTRACT: Among the various switch buffer architectures, output queueing implemented in a

completely shared buffer is the one that achieves the highest possible utilization of both output

bandwidth and buffer space. The high link throughput, small cell size and additional features of

ATM switching, such as multiple classes of service, multicasting and flow control, enforce further

extensions to the above scheme and demand pure hardware implementations. In this work we

present the hardware block maintaining output queues per priority class in the ATLAS I single chip

ATM switch. It also provides support for multicasting and multi-lane credit-based flow control.

Techniques such as pipelined and superscalar processing, usually employed in processors’ design,

are used in order to accommodate for the amount and high speed of operation required. This

also modifies the approach to the timing of operations, the control design and the calculation of

the hardware complexity. The block was extensively simulated to ensure the correctness of its

operation. Although the hardware implementation is currently in progress, the circuits already

laid out are presented, while the VLSI design of the remaining blocks is analyzed. In addition,

the Priority Enforcer circuit and its full-custom layout is thoroughly described.

KEYWORDS: VLSI switches, ATM switches, ATLAS I switch, shared buffer, credit-based

flow-control, multiple output queues, queue management, pipelining, priority enforcer.

This text is available in Postscript form, by anonymous ftp, from server "ftp.ics.forth.gr".

Dirctory: "tech-reports/1996"

Files: "1996.TR172.QueueMangement.README", "1996.TR172.QueueMangement.ps.gz"

y The author is also with the Computer Science Department, University of Crete, Greece.

Contents

1 Introduction 1

1.1 The ATLAS I switch : 1

1.2 The Queue Management Block : 2

1.3 This thesis : 3

2 Block Organization 4

3 Block Operation 7

3.1 Cell Arrival Operation : 7

3.2 Cell Departure Operation : 8

3.3 Credit Arrival Operation : 9

3.4 Additional Operations : 10

3.5 Further details on block operation : 11

4 Accesses Timing and Port Requirements 13

4.1 Ports Calculation and Verification : 13

4.2 HTRF alternative organizations : 15

5 Queue Management Control 16

5.1 Credits Pipeline Control : 16

5.2 Cells Pipeline Control : 17

6 Bypass Control and Datapaths 20

6.1 Cell/Credit Arrival Bypass : 20

6.2 Head-Tail Pointers Bypass : 22

6.3 Bypass rules and datapath verification : 24

7 Management Commands Support 27

7.1 Management Commands and their Format : 28

7.2 Implementation of Management Commands : 29

8 Block Functional Simulation and Testing 31

9 Block Hardware (VLSI) Implementation 33

9.1 Content-Addressable Memory Cells : 33

9.2 Random-Access Memory Cells : 35

10 The Priority Enforcer Circuit 38

10.1 The Operation of the Priority Enforcer : 38

10.2 Design Alternatives for the Priority Enforcer : 39

10.3 VLSI Techniques for Speeding-Up the Priority Enforcer : : : : : : : : : : : : : : : : : 41

10.4 The Priority Enforcer in the Queue Management Block : : : : : : : : : : : : : : : : : 44

10.5 Cyclic Priority Enforcers : 47

11 Conclusions 49

Acknowledgments 50

References 51

Architecture, Operation and Design of the Queue Management Block 1

1. Introduction

Asynchronous Transfer Mode (ATM) [LeBo92] puts additional requirements both on the speed and the

complexity of switches (routers), used as building blocks in networks. The main reasons for that are : a)

the high cell arrival and departure rates (up to millions of cells per second), due to the high bandwidth of

the links and the small cell size; b) the small delay that cells are expected to undergo through the switch;

c) the high utilization of the output throughput demanded; c) the fact that, since ATM classifies network

traffic according to the quality of service requirements that has to guarantee, switches must route cells

in a priority-based manner; and e) other features desirable in high-speed networks such as multicasting

and flow control. In order to meet these demands, switches must use flexible buffer architectures and

implement high performance data structures for cells stored in them, which were not essential before

[CoST88]. Since these structures must be updated in rates similar to those of cell arrivals and departures,

they must be implemented in hardware [Toba90].

Output queues, implemented as linked lists in a completely shared buffer, have been identified as

the combination of data structure and buffer architecture that results in high utilization of both available

throughput and buffer space [HlKa88][TaFr88]. This organization can be used in ATM switches after

properly extending it to support multiple classes of service, multicasting and flow-control. In this thesis,

we present the Queue Management block of the ATLAS I ATM switch, that maintains queues per output

and per service class, along with queues for multicast cells and cells blocked in the switch by the flow

control protocol.

1.1 The ATLAS I switch

ATLAS I [KaSV96][KSVMC96] is a single-chip ATM switch currently developed at ICS-FORTH within

the ASICCOM 1 project. Its intended use is as building block in high-throughput and low-latency

networks, varying from local area (LAN) to wide area (WAN) and desktop area (DAN) networks.

ATLAS has 16 input and 16 output point-to-point links, each running at 622 Mbits/s. Its aggregate

throughput reaches 20 Gigabits/second. It provides shared buffer for 256 ATM cells, using the pipeline

memory architecture [KaVE95]. ATLAS also supports configurable VP and VP-VC switching (by using

a translation table), both rate and optional credit-based multi-lane back-pressure flow control [KaSS96],

load monitoring, link bundling and merging of flow groups. Multicasting is also supported, as long as

all the copies of the cell transmitted to different links use the same VP/VC identifier.

Internally, the switch has an additional input and output. Thus, it functions as a 17x17 switch. The

17th input is used for inserting cells in the switch from the Switch Control and Monitoring block, while

1The ASSICOM project is part of the European Union ACTS (Advanced Communication Technologies and Services)

Programme.

1.1 The ATLAS I switch

2 Architecture, Operation and Design of the Queue Management Block

the 17th output delivers outgoing cells to this block. These two ports enable the switch management and

control through cell transmissions without interfering with the normal operation.

In order to provide the mechanisms for support of various quality of service requirements, the

ATLAS I switch recognizes three classes of cells, differentiated by their priority level. While the high

priority class is non back-pressured, since it is intended for real-time traffic, the medium and low priority

data are flow-controlled and intended for VBR-ABR and UBR data respectively. Switch resources, e.g.

buffer space, can be partially reserved for each class by using various cell counters in order to define

buffer partitions and other limits. The priority of each incoming cell is specified in the corresponding

entry for its flow group (VP or VP/VC) in the translation table.

The operation of the switch is pipelined and can accommodate for back-to-back and parallel arrivals

and departures of cells, as well as for the execution of the credit-based flow control protocol, through

reception and transmission of credits. The switch will be fabricated in a 0:5�m CMOS technology and

its clock frequency will be 50 MHz.

1.2 The Queue Management Block

The Queue Management 2 block is the part of the ATLAS I switch responsible for implementing the

appropriate data structures for cells within its shared data buffer [KSVMC96]. These structures are used

in order to keep record of both cells blocked by the flow control protocol and cells ready to be transmitted

to their destination, and to be able to serve them in the way defined by the flow control scheme and the

priority rules.

Cells blocked by the credit-based flow control protocol, i.e. cells without all the credits correspond-

ing to their flow group and their destination links, are kept in the CreditLess Cell List (CLL). This list is

implemented as a pool of cells, without any special connectivity. A cell in the data buffer (DB) belongs

to the CLL, when its routing information has been written in the corresponding memories of the block,

and it is not included in any other structure. Cells remain in the CLL until they receive credits for all

their destination links.

Cells ready to be leave the switch are inserted in ready queues. Ready queues are FIFO structures

implemented as linked lists by using head, tail and next cell pointers. There are 54 such queues

maintained by the QM block : one per output and per priority level for unicast cells (16x3), three for cells

destined to the Switch Control and Monitoring block (17th output), plus three queues for the multicast

cells (one for each priority class). Maintaining queues per output enables the switch to fully utilize

output throughput, while queues per priority level make priority-based routing possible. Multicast cells

are placed in separate queues so that links are properly reserved for their transmission when possible,

without unnecessarily delaying any unicast cells. Naturally, the best solution would be to enqueue each

2The Queue Management block will be frequently referred as the QM block in this document.

1.2 The Queue Management Block

Architecture, Operation and Design of the Queue Management Block 3

multicast cell in every unicast ready queue corresponding to a link it must be transmitted to. Yet, this

would require extra memory space for next cell pointers, since each cell in the data buffer could be in

up to 16 ready queues at the same time. In order to avoid sacrificing that much memory to pointers,

separate multicast queues were preferred.

The Queue Management block operates on cells and credits in a pipelined and parallel manner, as

explained later. Operations on incoming cells are performed by using their header and the information

attached to it after passing through the VP/VC Routing and Translation Table. In a similar way, departing

cells are served by producing their new header and their address in the data buffer, and forwarding them

to the proper outlink circuits. The whole credit, as read from the Credit Extraction and Serialization

block, is used for credit operations.

1.3 This thesis

In this work, we examine in details the Queue Management block, the parts it consists of, its operation

and its complexity.

Section 2 presents the organization of the block and the memories it contains. In section 3 we

thoroughly present its operation, while section 5 investigates the number of ports per memory needed

for these actions. Section 6 describes the block control logic, and section 7 explains data hazards due to

the pipelined operation of the block and the way they are handled. In section 8, the simulation methods

used are presented. Section 9 describes the full-custom layout of the two-ported memory blocks and the

the VLSI implementation of the remaining circuits. Section 10, presents the operation of the Prioriry

Enforcer circuit, the design alternatives, the implementation and its full-custom layout for the QM block.

Finally, section 11 describes conclusions and future work.

1.3 This thesis

4 Architecture, Operation and Design of the Queue Management Block

2. Block Organization

The Queue Management block mainly consists of five memories. One of them, the Head-Tail register

file, holds the necessary head and tail pointers for maintaining the ready queues, while the remaining

four hold routing information and characteristics of the cells stored in the switch. The latter correspond

each of their entries to a slot in the data buffer and keep there all information about the cell occupying

that slot. The five memory blocks and their purpose are :

VPout Memory : it holds the new routing information for each cell in the data buffer. This is a 12-bit

field (VP/VCout) used to replace an equal-sized field in the VP/VC section in the cell header. This

field is read from the Routing and Translation Table of the switch on cell arrival. Size: 256 x 12

bits.

OutMask Memory : it contains a mask, indicating the link(s) that the corresponding cell in the data

buffer should be transmitted to (16 bits, one bit per outlink). This mask, called outmask, is also

read from the Routing Table on cell arrival. Although the Routing Table provides a 17th bit as

well, identifying cells destined to the 17th outport (Switch Control and Monitoring block), this bit

is not stored in the OutMask memory. Size: 256 x 16 bits.

CreditMask Memory : it is used only with cells of flow-controlled groups and stores a mask identifying

currently available credits to each cell in the switch (called creditmask). This mask is 16 bits long,

since there can be up to one credit available per outlink per flow-group. Its original contents are

read from the Credit Table memory on cell arrival, and are properly updated, each time a credit

for that flow-group arrives. An additional (17th) bit is used to discriminate between medium and

low priority flow- controlled cells. Size: 256 x 17 bits.

LinkList Memory : it holds a pointer to the next cell in the ready queue to which the corresponding

cell in the DB belongs (if it does). This is an 8-bit address to the data buffer. It also contains the

primary outlink that the next cell must be transmitted to, encoded in 4 bits. This is necessary for

properly reserving links for the transmission of multicast cells (explained in details later). Size:

256 x 12 bits.

Head-Tail register file (HTRF) : this block has 54 entries where it holds the head and tail pointers of

each ready queue. All pointers are 8 bits long and index to a cell in the data buffer. There is a

redundant bit per entry, indicating whether the queue is empty or not (Valid bit), which is used to

accelerate the operation of the block. Size: 54 x 17 bits.

The VPout, OutMask and CreditMask memories comprise the CreditLess Cell List sublock, while

the LinkList memory with its peripheral circuits form the Ready Queues sublock [KSVMC96].

2. Block Organization

Architecture, Operation and Design of the Queue Management Block 5

W
da

ta
Sd

at
a

Ct
rl

Rd
at

a

1x
01

00

decoder

Priority Enforcer

16
0

1

00 1x01

17

encoder

0
1

decoder

decoder

0
1

cr
in

V
P

V
P/

O
M

m
ac

m
gn

t_
da

ta

3V
Pw

e
V

Pr
e

V
Po

ut
 m

em

16
16

cr
in

_l
in

k

ou
t/i

n_
V

P/
O

M
m

acce
lin

O
m

as
k

4

25
6

00 01 1x

88 8
m

gn
t_

ad
r

V
P/

O
M

m
ac

ou
t/i

n_

ce
lio

_a
dr

ce
lio

_a
dr

m
at

ch
_l

in
e

25
6

W
da

ta
Sd

at
a

Ct
rl

16
16

ce
lo

ut
_o

m
as

k cr
d_

om
as

k

cr
ed

it_
m

at
ch

25
6

m
gn

t_
ad

r_
de

c

CR
m

ac

cr
in

_a
dr

25
6

16 17

ce
lin

CR
m

as
k

ce
lin

_p
rio

16

Ct
rl

Rd
at

a

17

CR
m

ac

m
gn

t_
da

ta
16

cr
dC

Rm
as

k

W
da

ta
1

W
da

ta
2

2

O
ut

M
as

k
m

em
Cr

ed
itM

as
k

m
em

ce
lio

_a
dr

cr
in

_a
dr

cr
in

_l
in

k_
2

8
cr

in
_t

ai
l

ce
lin

V
P

16
1

cr
d_

m
as

k
cr

d_
pr

io

cr
in

_o
ld

ta
il

8

8

00 01 1x

25
6

25
6

m
gn

t_
ad

r_
de

c

25
6

LL
m

ac

LL
m

ac

Ct
rl

Rd
at

a

W
da

ta
1

W
da

ta
2

cr
in

_e
nq

ad
r

Li
nk

Li
st

m
em 4

8

nx
t_

pt
r12

12
12

m
gn

t_
da

ta

ce
lin

_p
rip

or
t}

lli
st_

w
2

lli
st_

w
1

3

4

cr
in

_p
rip

or
t

nx
t_

pr
ip

or
t

ou
t/i

n_
2

ce
lo

ut
_a

dr

fre
es

lo
t_

en
c

ou
tli

nk
_m

as
k

m
gn

t_
da

ta

ce
lio

_q
ad

r

LL
ou

t

ce
lio

_o
ld

ta
il

{f
re

es
lo

t_
en

c,

V
Ps

e

O
M

sr

O
M

w
e

O
M

m
od

/re
O

M
re

CR
m

od
/w

e
CR

w
e

lli
st_

re

cr
d_

by
pa

ss
_1

cr
d_

by
pa

ss
_1

cr
d_

by
pa

ss
_2

Rd
at

a1
Rd

at
a2

12
12

V
Po

ut

12

Figure 1: The Queue Management block main datapth.

2. Block Organization

6 Architecture, Operation and Design of the Queue Management Block

1x 01 00 1x 01 00

10

de
co

de
r

1x 01 00 00 01 1x 1 0 10

de
co

de
r

0

1

6

6

celin_queue

celout_queue

out/in_

read_adr1 read_adr2

8

lastcell

crin_tail

nxt_ptr

freeslot_enc

out/in_2
H1wbp

1 1

8 1

out/in_2

H1wbp

17

1

crin_tail

1

178

17

mgnt_data

HTVmac

Head-Tail Memory

Twe1/Vwe1
4

4
Twe2/Vwe2

HTVre1/Hwe1

HTVre2/Hwe2

write_adr1 write_adr2

Wdata1 Wdata2 Ctrl HTVmac
mgnt_adr

1

0
6 crin_queue

T1rb_cr

T1rbp_cl V1rbp_en

V2rby_de

0

1

17

Rdata1

1
freeslot_enc
crin_tail

888
8

Rdata2
17

T2rby

1 1
88

8

HTVout17

crin_tail

celout_adr celio_oldtail celio_valid crin_oldtailcrin_head crin_valid

54

54

54

54

Figure 2: The Head-Tail Pointer register file and its peripheral circuits.

Another important part of the block is the control logic. Since comprehension of block operation is

required in order to understand the organization of control logic, its description is presented later.

The block also contains a number of cells such as registers, multiplexors, decoders and other

combinational circuits and gates, necessary for correct operation. Figure 1 presents the complete

diagram of the main datapath of the block, while figure 2 is the block diagram of the Head-Tail register

file and its peripheral circuits. The purpose and the operation of certain parts of these diagrams will

become clear in the rest of this document.

2. Block Organization

Architecture, Operation and Design of the Queue Management Block 7

3. Block Operation

The purpose of the Queue Management block is to properly maintain the ready queues and the creditless

list on each event. There are three types of events in the ATLAS I switch that effect these queues and

have to be properly handled. These events are cell arrivals, cell departures and credit arrivals.

All cell and credit events are served by the QM block, and the switch in general, in a pipelined

fashion [KSVMC96]. One can imagine the block as a two way superscalar pipelined CPU, where the first

processing unit is used for credit arrival operations, while the second one is shared by cell arrivals and

departures. Since pipelined and superscalar processing is employed, actions related to different events

can be simultaneously in progress. Following, there is detailed description of the pipeline stages, the

actions and accesses performed on each event, based on the diagrams in figures 1 and 2 and the names

of signals and blocks declared there. In addition, table 1 summarizes the main actions per event and per

pipeline stage.

3.1 Cell Arrival Operation

Incoming cells start being processed by the QM block as soon as the Scheduler block decides to serve

them. This is whenever there is a clock cycle when no cell transmission to a link can be initiated. The

necessary actions are performed within three pipeline stages (3 clock cycles), as shown in table 1.

In the first cycle, an empty slot for the cell to be stored in is requested from the Free List block,

which keeps track of all empty slots in the shared data buffer. Its address is given through the freeslot enc

pointer. The corresponding slots of the QM memories are used for holding information about this cell.

In parallel to that, the block holding the cell counters is accessed to find out if the cell can be accepted

by the switch or not, i.e. whether it will cause an overflow of the corresponding buffer partition or not.

In case all slots in the DB are occupied or the cell is dropped, the actions of the following stages are not

performed.

In the same time, the VP/VCout information read from the Routing and Translation Table, is

used as an address to read available credits on all links for the flow group to which the cell belongs,

from the Credit Table memory. The cell "consumes" all credits available for its destination links (or

outlinks) by clearing the corresponding bits in the Credit Table entry, while setting them in its creditmask

(celinCRmask). Cells of non flow-controlled groups are always presented with credits for all their

outlinks. The same holds for cells coming from the 17th input (Switch Control and Monitoring block),

which are always unicast cells. This information is also used to decide whether this cell is ready 3 and

should be enqueued in a ready queue, or it should be added to the CLL. Finally, the class identifier and

3A cell is considered ready when it belongs to a non flow-controlled group, or there are credits available for all its destination

links.

3.1 Cell Arrival Operation

8 Architecture, Operation and Design of the Queue Management Block

the 16 least significant bits of the outlink mask of the cell, read from the Routing Table as well, are used

to form a HTRF address (celin queue) in order to read the tail pointer (celio oldtail) and the valid bit

(celio valid) of the ready queue to which the cell corresponds.

During the next clock cycle, the VP/VCout field (celinVP), the outlink mask (celinOmask) and the

creditmask (celinCRmask) of the cell are stored in the corresponding memories, in the slots indexed by

its DB address (celio adr). If the cell is ready and its corresponding queue is not empty at the time (valid

bit set), its address (freeslot enc) and primary outlink (celin priport) are written in the LinkList entry

indicated by the tail pointer (celio qadr). In this way, the cell is added at the tail of the ready queue. The

accesses of the next stage are performed only for ready cells.

In the last cycle, the DB address of the ready cell (freeslot enc) is written at the tail pointer entry of

the queue slot in the HTRF, indexed by write adr1 vector. If the queue was previously empty (valid bit

reset), the head pointer entry and the valid bit are updated as well.

Event Stage (cycle) Stage (cycle) Stage (cycle) Stage (cycle)

1 2 3 4

Cell Search Free List Write VP/VCout Update Tail Ptr

Arrival Read Cell Counters Write OutMask

Read Tail Ptr Write CreditMask

Read Credit Table Write Next Ptr

Cell Read Head Ptr Read VP/VCout Update Head Ptr

Departure Update/Read OutMask

Read Next Ptr

Credit Search VP/VCout Update/Read CreditMask Read Tail Ptr Write Tail Ptr

Arrival Search OutMask Read OutMask Write Next Ptr

Table 1: The three event types and the main actions per pipeline stage of their operations.

3.2 Cell Departure Operation

The departure of a cell from a ready queue to a specific outlink is also initiated by the Scheduler block.

This is done as soon as the link is idle (or about to become idle) and the priority rules allow that. The

proper actions are performed within three pipeline stages (3 clock cycles).

In the first cycle, the head and tail pointers of the ready queue from which the cell departs, are read

from the HTRF. The address of the queue (celout queue) is calculated by the Scheduler block, using the

service class of the cell and the identity of the outlink. The head pointer (celout adr) identifies the cell

3.2 Cell Departure Operation

Architecture, Operation and Design of the Queue Management Block 9

to be transmitted and is used as an address in all memory accesses during the following cycle, while the

tail pointer (celio oldtail) is only needed to detect if the cell is the last one in the queue. This is the case

where the head and the tail pointers are equal.

During the second cycle, the VP/VCout field (VPout) of the cell is read and forwarded to the proper

outlink circuits in order to form the new cell header. At the same time, the pointer to the next cell in

the queue (nxt ptr) and its primary outlink (nxt priport) are read from the LinkList memory. Finally, the

bit of the cell OutMask entry, corresponding to the selected outlink, is reset. This bit is indicated in the

outlink mask vector. The rest 15 bits in the entry are read from the OutMask memory (celout omask

field). If all these bits are 0, the cell has just been transmitted to its last destination and should be

dequeued. In this case, the Free List block and the block keeping the various cell counters are notified in

order to mark the slot free and decrement or increment the proper counters. This access is a useless read

in the case of a cell destined to the 17th output, since both the outlink mask and the OutMask memory

entry will be zero masks.

The actions of the last cycle take place only when the cell must be dequeued. If the cell is not the

last one in the queue, the head pointer entry in the Head-Tail register file is updated with the address of

the next cell (nxt ptr). Otherwise, the valid bit of the queue is reset to indicate that the queue is now

empty. The address of the slot corresponding to the queue served, is indexed by the write adr1 vector.

3.3 Credit Arrival Operation

Serving an incoming credit is initiated by the Credit Serialization block, whenever an unprocessed credit

exists. The necessary actions take up 4 pipeline stages (4 clock cycles).

During the first cycle, the flow-group identifier of the credit (crinVP) and a 16-bit mask indicating

the arrival link (crin link) are used to search the VPout and OutMask memories respectively, for cells in

the CLL waiting for that credit. Both masks are available from the Credit Serialization block. While we

demand a complete match of an entry with the search pattern in the VPout memory, the search access

in the OutMask memory aims to detect entries with the corresponding outlink enabled (not complete

matching of masks). Thus, logic zeros in the search mask are treated as don’t-care values. Because

of the merging of flow-groups supported by the ATLAS I switch, there can be more than one entries

matching during this search, i.e. more than one cells expecting this credit. Hence, a priority enforcer

must operate on the result of the action (match line vector), in order to select the cell to which the credit

will be handed. It also generates the credit match signal, indicating whether the search operation was

successful or not. The priority enforcer will probably be a cyclic one, in order to maintain some random

selection properties.

If no cell was found during the search, the credit arrival is noted in the Credit Table memory during

the second cycle, by setting the bit corresponding to the arrival link in the proper entry. Otherwise,

3.3 Credit Arrival Operation

10 Architecture, Operation and Design of the Queue Management Block

the output of the priority enforcer, indicating the decoded address of the selected cell (crin adr), is used

to update its creditmask. The bit corresponding to the credit arrival link, identified by the crdCRmask

vector, is set, while all the rest are read (crd omask), along with the bit indicating the cell priority level

(crd prio). At the same time, the outmask of the cell (crd omask) is read from the OutMask memory

and compared to its creditmask in order to decide if the cell is ready and, therefore, must be enqueued.

Actions in the following cycles take place only for ready cells.

In the next cycle, the tail pointer (crin oldtail) and the valid bit (crin valid) of the queue to which

the cell corresponds, are read from the HTRF. The address of the queue (crin queue) is calculated from

the cell’s outmask (crd outmask) and the 17th bit of its creditmask (crd prio), that indicates its priority

level (medium or low). This information was read in the previous cycle.

During the last cycle, the cell is actually enqueued. If the ready queue was previously not empty,

the address of the cell in the DB (crin tail) and its primary outlink (crin priport) are stored in the LinkList

entry indexed by the tail pointer (crin enqadr). In parallel, the same address is stored in the tail pointer

entry (using the write adr2 vector as an address). If the queue was empty before, no writing in the

LinkList memory takes places and, apart from the tail pointer, the head pointer and the valid bit of the

queue are properly set as well.

3.4 Additional Operations

In addition to the operations mentioned above, the QM block has an extra task to perform. It must

provide the Scheduler block with information about the status of the ready queues. Based on this

information, the Scheduler can decide how to serve ready cells as soon as possible, how to maintain the

proper priority rules among them and how to initiate serving incoming cells, when no cell transmission is

feasible. This is accomplished by maintaining three 17-bit amd three 16-bit masks. The first three masks

(not empty high, not empty medium and not empty low) indicate whether the 51 (48 plus 3 for the 17th

output) unicast ready cell queues are empty or not. The other three masks (reserve high, reserve medium

and reserve low) are used for the three multicast ready queues. Each mask indicates the outlinks (1 to

16) to which the cell currently at the head of the corresponding multicast queue must be transmitted to.

Since all cells destined to the 17th outport are unicast, there is no need for a 17th bit in these masks. The

Scheduler must reserve the links for the transmission of the multicast cell, as soon as priority rules allow

that.

The bits of the not empty masks are duplicates of the valid bits of the ready queues and are properly

updated every they are modified. Reserve masks are updated every time there is a new cell at the head

of a multicast queue. If the head is updated during a cell or credit arrival (enqueue in an empty queue),

the outmask of the cell (celin Omask or crd omask respectively) is copied to the corresponding reserve

mask, hence all the links are reserved at once. On the other hand, if the head is updated during a cell

3.4 Additional Operations

Architecture, Operation and Design of the Queue Management Block 11

departure, the outmask of the new head is not available. In order to save an additional access to the

OutMask memory, which would also raise the port requirements for that memory, the primary port field

has been added to each LinkList entry. This field (nxt priport) is used to set one bit in the proper reserve

mask, when the address of the new head (nxt priport) is read from the LinkList memory. When the cell

is transmitted to this outlink, its whole outmask is read (celout omask vector), and the rest of the bits in

the reserve mask, those corresponding to the rest of the destination links, are set as well. Resetting the

bits of reserve masks is performed by the Scheduler block.

3.5 Further details on block operation

There are certain actions described above, that do not serve any obvious reason or it is difficult to

understand their necessity. In the following paragraphs, we present these actions and explain their

purpose.

First of all, it is clear that the valid bit added to each entry in the HTRF is redundant. The information

it provides, whether a ready queue is empty or not, can also be extracted from the not empty and reserve

masks. Yet, this bit was added because of the complexity of the circuit needed to extract this information

for a specific queue from these masks. Maintaining the valid bit has no other cost than the memory bits

it consumes and demands no extra ports for the HTRF, since it is written and read at the same time with

the head and tail pointers. In addition to that, getting the queue’s status from the valid bit and not from

the masks simplifies the bypass control datapaths as explained later.

The OutMask memory, that holds information about the outlinks that each cell must be transmitted

to, does not have a 17th bit which would indicate that a cell must be delivered to the Switch Control and

Management block (17th output). This causes no problem, because all cells destined to the 17th output

are unicast and are always presented with the proper credit. Thus, they are immediately added in the

proper ready queue and no incoming credit has to be handed to one of them. Since the 17th bit in each

OutMask entry would just be set on cell arrival reset on cell departure, we decided to remove it.

One can also notice that, updating the tail pointer when enqueueing an incoming cell could be

performed one clock cycle earlier, in the second pipeline stage. All essential information in order to

decide if this action is necessary and what should be written in the register file is available at the end

of the first stage. What is more, setting the tail pointer as soon as possible, reduces the number of data

hazards and bypass datapaths. Yet, we prefer to delay this write access for one clock cycle, so that it

takes place in the same stage with the write to the HTRF caused by cell departures, which cannot be

done any earlier. Performing the two write actions in corresponding pipeline stages, combined with the

fact that the two operations are never initiated simultaneously, enables time sharing of a single memory

port by both accesses.

Finally, it is not clear why we search the OutMask memory along with the VPout memory during

3.5 Further details on block operation

12 Architecture, Operation and Design of the Queue Management Block

credit arrival, in order to detect cells waiting for the credit. Reasoning this action is important, because

it forces the OutMask memory to support content-addressable accesses. One may argue that VP/VCout

matching is enough, but in this way, there may be a match between the credit’s VP/VCout and a VPout

entry containing "garbage" (the corresponding cell has departed and the slot is marked free). Still this is

not the reason for OutMask searching, since this problem can be solved by concurrently searching the

Free List block 4. Not searching the OutMask memory may cause an error in the following scenario :

suppose that a multicast cell of the flow-controlled group X is stored in the switch, it is at the head of its

ready queue and needs to be transmitted to outlinks 3 and 4. The cell is transmitted to outlink 4 which

is idle at the time, but not to outlink 3 because it is busy with higher priority traffic. If the credit for

group X and outlink 4 returns to the switch before outlink 3 becomes available, and no OutMask search

is performed, the credit will be given to the cell once more. Since the cell has already been transmitted to

outlink 4, handing the credit to the cell is equal to losing it. It should be handed to the Credit Table where

the next cell for that group can get it from. If the OutMask memory was searched as described above,

there would be no matching, because the fourth bit in the cell’s OutMask entry is cleared when it is

transmitted to outlink 4. In addition, this also prevents matching with slots containing "garbage", since,

when a cell is transmitted to its last destination and its slot is marked free, all bits in the corresponding

OutMask entry have already been cleared. Hence, searching the OutMask memory is necessary for the

correct operation of the credit-based flow control protocol.

4The Free-List block contains a small 256 x 1 memory, thus it does not cost much to turn it to a content-addressable memory

(CAM)

3.5 Further details on block operation

Architecture, Operation and Design of the Queue Management Block 13

4. Accesses Timing and Port Requirements

In the previous section, we described the accesses performed on each memory block, supposing that

they have enough throughput to serve them all. Here, we investigate the number of ports per memory

needed to achieve the required throughput for these accesses. In order to do this, we use the information

on block operations and timing of events.

A cell-time is defined to be the minimum time period between two back-to-back cell arrivals or

departures. A cell-time lasts 33 clock cycles, which is 660ns for the ATLAS I switch (20ns clock cycle).

Within one cell-time, there can be up to one cell arrival, one cell departure and 2 credit arrivals per pair

of links (input link X - output link X, X=0,1,...,15). Since, ATLAS is a 16 x 16 switch, the maximum

number of events per cell-time is 16 cell arrivals, 16 cell departures and 32 credit arrivals [KSVMC96].

There is also the case of an additional event per cell-time, e.g. an extra cell arrival caused by a small

difference in the clock periods of two neighboring switches, the injection/delivery of a cell through/to

the Switch Control and Monitoring block or the execution of a management command. These events

usually utilize the 33rd cycle or clock cycles during which the resources necessary are not occupied by

normal events. Thus, serving such an additional event may be delayed for a few cell-times before they

are properly served.

The Queue Management block (just as the whole switch) must have enough resources to be able to

serve all normal events within one cell-time from their appearance. This is so in order to ensure that the

correct data is written/read to/from the shared data buffer [KaVE95] and the size of FIFO memories in the

credit/cell serialization blocks is kept small . Hence , each memory block must have enough throughput

to accommodate for all the accesses that may be performed during the corresponding operations. Based

on the frequency per cell-time of events and the operation of the block as described in the previous

section, we can construct table 2, that analyzes the type 5, the frequency and timing of each access per

event and per memory in the QM block.

4.1 Ports Calculation and Verification

Using table 2, we can calculate the number and type of ports per memory block. First of all, no port can

accommodate for more than 33 accesses per cell-time (33 clock cycles). Thus, the minimum number of

ports needed per memory can be calculated by dividing the number of accesses by 33 (or 32). Yet, we

must also keep in mind the relative timing of the accesses, as defined by the pipeline of their operation

and their timing relations to accesses performed to the same memory during different operations, in order

to verify that this number of ports is sufficient.

Credit arrival operations may be initiated up to 32 times per cell-time, i.e. the credit arrival pipeline

5Type of accesses : rd read access; wr write access; sr search access; mod/rd modify/read access.

4.1 Ports Calculation and Verification

14 Architecture, Operation and Design of the Queue Management Block

Event Freq Stage VPout OutMask CreditMask LinkList Head-Tail

mem mem mem mem reg. file

Cell 16 1 rd

Arrival 2 wr wr wr wr

3 wr

Cell 16 1 rd

Departure 2 rd mod/rd rd

3 wr

Credit 32 1 sr sr

Arrival 2 rd mod/rd

3 rd

4 wr wr

Total

number 64 96 48 64 128

of accesses

Table 2: Memory accesses per event in the QM block.

can be started on every 32 out of 33 clock cycles. Hence, each access performed by this pipeline needs a

dedicated memory port, used on every 32 out of 33 cycles in worst case. On the other hand, cell arrival

and departure operations may be initiated up to 16 times per cell-time each, they have the same number

of pipeline stages and, therefore, can be both served by a single pipeline (as mentioned earlier). This

imposes the restriction that only one operation, either for cell arrival or cell departure, may start on every

clock cycle, but this complies with the operation of the shared data buffer [KaVE95] (either a read or a

write operation may start on a single cycle). A closer look at table 2 also reveals that the two operations

perform accesses to the same memory block in corresponding stages. Thus, time sharing memory ports

between the two operations is possible and safe, since only one of the two operations may be in a certain

pipeline stage on each clock cycle. Consequently, we actually need one memory port for every couple

of accesses to the same memory performed by the pipeline, one for a cell arrival and one for a cell

departure operation in corresponding stages. Taking into account the aforementioned observations and

table 2, we calculate the actual number and type of ports per memory needed. This information, along

with the explanation of the ports’ use, is shown in table 3. One can notice, that the number of ports is

the minimum. This is the result of carefully matching the actions and their timing for cell arrival and

departure operations.

4.1 Ports Calculation and Verification

Architecture, Operation and Design of the Queue Management Block 15

Memory Number type of usage

block of ports each port

VPout 2 read/write read/write VP/VCout field on cell I/O

search search VP/VCout field on credit arrival

OutMask 3 read/write write/modify-read outmask field on cell I/O

search search for enabled outlink on credit arrival

read read outmask field on credit arrival

CreditMask 2 write write creditmask field on cell arrival

read/write modify-read creditmask field on credit arrival

LinkList 2 read/write read/write next cell pointer on cell I/O

write write next cell pointer on credit arrival

Head/Tail 4 read (1) read head/tail pointers on cell I/O

read (2) read head/tail pointers on credit arrival

write (1) write head/tail pointers on cell I/O

write (2) write head/tail pointers on credit arrival

Table 3: Ports required and their purpose per memory block.

4.2 HTRF alternative organizations

The Head-Tail register file seems to be the most demanding, in terms of throughput, memory, since it

needs to be four-ported. A few other alternative organizations for the information provided by this block

were examined, in order to reduce the number of ports and avoid designing a four-ported SRAM. The

first alternative was to place the head and tail pointers in separate memories. Although it seemed, at

first sight, that both memories would be three-ported, operations on empty queues, where enqueueing

demands writing both head and tail pointers, raised the number of ports for the tail register file to

four. Since we would still have to design a four-ported SRAM and, in addition, a three-ported one,

this alternative was abandoned. The second alternative examined, was to keep head and tail pointers

separated and duplicate the tail register file as well. While write accesses to tail pointers would be

performed by both register files, a read access could be served by any single one of them. In this way,

all three register files would be three-ported. Yet, the chip area wasted and the additional complexity of

control and bypass logic, made this solution unattractive too. After all, Head-Tail register file is a small

memory (54 x 17) and must operate at a rather low speed for its size (20ns cycle time), hence we expect

that it will not be that difficult to design a four-ported SRAM cell for it.

4.2 HTRF alternative organizations

16 Architecture, Operation and Design of the Queue Management Block

5. Queue Management Control

Control units in switch blocks are usually built as finite state machines (FSM). FSMs provide a simple

way to encode the state of the block and produce control signals. In addition, their gate-level circuit

can be automatically derived from behavioral descriptions. Yet, the use of a single FSM for the control

unit of the Queue Management block is practically impossible, because of its pipelined and superscalar

operation. Since, the credits pipeline has four stages and the cells pipeline has 3, each one operating on

either a cell arrival or departure, a single FSM would have 432 (!) different states.

The method employed for the QM control unit is the one used for pipelined and superscalar CPUs

[PaHe93]. Once a pipeline is initiated, all the necessary control signals are calculated on the first stage.

They are transferred to the following stages through pipeline registers, until they are "consumed" by the

proper stage. Naturally, on every stage, the information available at the time is used in order to verify

the correctness of the control signals and to selectively alter or cancel some of them, if necessary. Two

such control units exist within the QM block: one for the credits pipeline and one for the cells pipeline.

In the following paragraphs, details about the two control units and their operation are presented. For

better comprehension of their operation, one must have in mind the operation of the whole block on the

various events, as described in section 3.

5.1 Credits Pipeline Control

The control unit of the credits pipeline is responsible for the control signals necessary during credit

arrival operations. The original generation of these signals is triggered by the Credit Serialization block.

Figure 3 presents the flow-control diagram of the unit. The control signals presented in figures 1 and 2,

that are asserted in each stage, are shown inside the stage symbol. The arcs between the stages define

the next stage, and are labeled with conditions that select a specific next stage, when multiple next stages

are possible. As mentioned earlier, the pipeline may be initiated every 32 out of 33 clock cycles in a

cell-time, so multiple stages may be active simultaneously.

In stage 1 (search stage), the search enable signals for the VPout and OutMask memories are

activated. At the end of the stage, the result of the search action (signal credit match) is used to decide

whether control will flow to the next stages, or the credit will be handed to the Credit Table block. Stage

2 (read & compare stage) sets the CRmod/re signal; this forces a modify access to one bit and a read

access to other 15 bits in the CreditMask entry of the cell receiving the credit, through the corresponding

port. Asserting the OMre signal causes a read access to the corresponding OutMask entry. The results

of these two accesses are compare to detect if the cell is ready. In stage 3 (read tail stage), asserting

HTVre2 triggers an access to the HTRF from the second read port, for the tail pointer and valid bit to be

read. Finally, in stage 4 (enqueue stage), control depends on whether the queue is empty at the time or

5.1 Credits Pipeline Control

Architecture, Operation and Design of the Queue Management Block 17

Stage 1 :
search

read&compare
Stage 2 :

Stage 3 :
read tail

cell found

no cell found

cell ready

cell not ready

queue empty queue not empty

finish

finish

update Credit Table

initialize pipeline

Stage 4 :
enqueue

VPsr=1

OMsr=1

CRmod/re=1
OMre=1

HTVre2=1

Vwe2=1
Twe2=1
Hwe2=1

Vwe2=0
Twe2=1
Hwe2=0

llist_we2=0 llist_we2=1

Figure 3: Flow-Control diagram for the credits pipeline

not. In the second case, llist we2 is set to cause a write access to the next cell pointer of the current tail

in the LinkList memory, while asserting Twe2 causes the tail pointer to be updated through the second

write port of the HTRF. In the first case, llist we2 is reset; Hwe2 and Vwe2 are set to force changing the

head pointer and the valid bit of the queue through the same HTRF port, as well.

5.2 Cells Pipeline Control

The control unit of the cells pipeline serves a dual function; it generates control signals for both cell

arrival and departure operations. Its flow-control diagram follows the two control streams in figure 4.

During a clock cycle, only one of two corresponding stages from the two streams may be active, since

either a cell arrival or departure operation may be initiated on a certain cycle by the Scheduler block.

Yet, more than one, not corresponding, stages can be active simultaneously from either streams.

The most important signal of the unit is the one that distinguishes cell arrival from cell departure

operations. It is actually generated by the Scheduler block and is propagated through the pipeline stages,

designating whether the stage should execute the cell arrival or departure actions. This signal (out/in),

5.2 Cells Pipeline Control

18 Architecture, Operation and Design of the Queue Management Block

Stage 1 :
read head

initialize pipeline on cell departure

not last destinationread VP/VCout
Stage 2 :

Stage 3 :

finish

last destination

cell last in queue cell not last in queue

dequeue

finish

 cell dropped

initialize pipeline on cell arrival

Stage 1 :
read tail & DB address

finish

cell not dropped cell ready

queue not empty
cell ready and cell not ready

or queue empty

cell not ready finish

enqueue
Stage 3 :

store cell data
Stage 2 :

queue empty queue not empty

cell ready

finish

HTVre1=1

CRwe=1
OMwe=1
VPwe=1 VPwe=1

CRwe=1
OMwe=1

Twe1=1
Vwe1=1

Hwe1=1 Hwe1=0
Twe1=1
Vwe1=0

HTVre1=1

Vwe1=1Vwe1=0

Hwe1=1 Hwe1=0

llist_we1=1 llist_we1=0

llist_re=1

VPre=1
OMmod/re=1

Figure 4: Flow-Control diagram for the cells pipeline

along with its delayed by one clock cycle version (out/in 2), controls a number of multiplexors, that

select and prepare the correct input data and addresses for the accesses of the two operations. Thus,

out/in coordinates the time sharing of the pipeline resources by the two operations.

For cell arrival operations, control flows according to the left stream in figure 4. In the first stage

(read tail & DB address stage), assertion of HTVre1 triggers an access through the first read port of

the HTRF, in order to read the tail pointer and valid bit. The data received from the Free List and Cell

Counters block are used to decide if the cell is to be dropped or not. Stage 2 (store cell data stage) sets

the write enable signals for the VPout, OutMask and CreditMask memories (VPwe, OMwe and CRwe

respectively), so that cell information is properly stored. If the cell is ready and the queue is not empty,

llist we1 is set as well, so that the next cell pointer of the current tail is written through the read-write

port of the LinkList memory. The appropriate address for this access, which is the previously read tail

pointer, is selected by the out/in 2 signal. Note that this is not the same with the address for the accesses

to the VPout, OutMask and CreditMask memories (celio adr), which identifies the slot to which the

incoming cell is stored. If the cell is not ready, the control flow terminates. Asserting Twe1 during stage

3 (enqueue stage), forces the DB address of the cell (freeslot enc) to be written in the tail pointer entry

through the first write port of the HTRF. If the queue is empty, Hwe1 and Vwe1 are also set for the head

pointer and valid bit to be written.

5.2 Cells Pipeline Control

Architecture, Operation and Design of the Queue Management Block 19

Control for cell departure operations follows the right stream in figure 4. At stage 1 (read head

stage), setting HTVre1 forces the head and tail pointers to be read through the first read port of the HTRF.

Reading the VP/VCout field of the cell is succeeded by asserting the VPre signal in stage 2. At the

same time, the read/write port of the LinkList memory is used to read the pointer to the next cell in the

queue (llist re set). Finally, a modify-read access is triggered in the the OutMask memory, by setting

OMmod/re and selecting the correct input data with the out/in signal. If the 15 bits read are all zero, the

cell is currently transmitted to each last destination and, therefore, dequeue stage (stage 3) must follow.

In the case that the cell departing is not the last one in the queue, asserting Hwe1 forces the next cell

pointer just read to be selected by the out/in 2 signal and written in the HTRF as the new head pointer

(using the second write port). Otherwise, the Vwe1 signal is set, so that the valid bit of the queue is

reset.

5.2 Cells Pipeline Control

20 Architecture, Operation and Design of the Queue Management Block

6. Bypass Control and Datapaths

Superscalar and pipelined processing naturally involves data hazards [PaHe93][PaHe95]. The data used

for calculations by the first pipeline may be simultaneously altered by the second one. The same situation

can also come up between different stages of the same pipeline. In order to confront with this problem,

one must first locate the sources of data hazards and the conditions under which they arise, and then

provide for a stable solution. Two methods for solving this problem are usually employed [PaHe93].

The first one, stalling a pipeline whenever a data hazard occurs, is unacceptable for the ATLAS I switch,

since stalling would result to either dropping incoming cells and credits, or underutilizing the output

throughput. With the second solution, called bypassing (or forwarding) results, one provides additional

propagation paths for the data in order to make them available to the rest of the block as soon as they are

calculated, without waiting for them to be transferred to their regular position.

There are two sources of hazards in the Queue Management block. The first one, and the easiest to

deal with, is caused by concurrent arrivals of cells and their corresponding credits. The second source is

concurrent or back-to-back operations to the same ready queue, which may lead to use of mistaken head

and tail pointers. In the rest of this section, we examine the hazard conditions for both cases and present

the bypass datapaths and control necessary for correct operation.

6.1 Cell/Credit Arrival Bypass

In the first stage of cell arrival operations, the Credit Table block is accessed for available credits for the

incoming cell. Similarly, in the first stage of credit arrival operations, the creditless cell list is searched

for cells waiting for the incoming credit. Yet, if the two pipelined operations for the arrivals of a cell and

its corresponding credit overlap, it is possible that they will "miss" each other. In other words, the cell

will not receive the credit from the Credit Table, while the search action during the credit arrival will

fail. As a consequence, the cell will be blocked, along with all the following cells of its flow-group.

Figure 5 presents the possible overlapping between the pipelines serving the arrivals of a credit and

its corresponding cell, along with the situations when hazards occur. Boxes of the cell arrival pipeline

describe the actions for a not ready cell, while the credit arrival pipeline depicts the actions for a credit

expected by no cell in the CLL.

In situation 1, the credits pipeline searches for cells waiting for the credit at the same time the cells

pipeline stores the cell information in the block memories. Since one cannot guarantee which value of

the memory entries written, the old or the new one, will actually be compared to the search pattern, it is

safer to consider that this entries will not match 6. Thus, situation 1 conceals a hazard case. The same

holds for situation 2, where the search action takes place one clock cycle before the cell information is

6Match canceling is accomplished by pulling down the match lines of memory words written during the same clock cycle.

6.1 Cell/Credit Arrival Bypass

Architecture, Operation and Design of the Queue Management Block 21

1 2

3

Stage 1 :
Search VPout
& OutMask

Stage 2 :
Update

Credit Table

Stage 3 : Stage 4 :

Stage 1 :
Credit Table

Read

Stage 2 :
Store Cell

Info

Stage 3 :
Init

Stage 1 :
Credit Table

Read

Stage 2 :
Store Cell

Info

Stage 3 :
Init

Stage 1 :
Credit Table

Read

Stage 2 :
Store Cell

Info

Stage 3 :
Init

Cell Arrival Op

Credit Arrival Op

Cell Arrival Op

Cell Arrival Op

clock cycle

Init

Figure 5: Data hazards between credit and cell arrival operations.

stored, while the read access to the Credit Table by the cell arrival pipeline is performed even before

the credit starts being processed by the QM block. On the other hand, no hazard exists in situation 3, if

writing and reading the same entry of the Credit Table presents the new data to the memory output 7.

Bypass datapaths for situations 1 and 2 are provided in the diagram of the QM block (figure 1). For

situation 1, the hazard is avoided by keeping the decoded DB address of the incoming cell instead of the

mask indicating the search result. In this way, the search access successfully detects the incoming cell.

The necessary multiplexor is being controlled by the crd bypass 1 signal, asserted when the incoming

cell served by the second stage of the cells pipeline belongs to the same flow-group with the credit

currently at the first stage of its pipeline. Situation 2 is handled by setting the bit corresponding to the

arrival link of the credit (indicated by crin link 2 vector) in the mask of available credits for the incoming

cell (celiCRmask). The rest actions of the credits pipeline are canceled in order to avoid transferring the

credit to the Credit Table as well. This bypass action is controlled by the crd bypass 2 signal, which is

set whenever the incoming cell and credit, being served by the two pipelines in their first stages, belong

to the same flow-group.

7This can be handled by the peripheral circuits of the Credit Table memory without any modifications to its basic memory

cell.

6.1 Cell/Credit Arrival Bypass

22 Architecture, Operation and Design of the Queue Management Block

6.2 Head-Tail Pointers Bypass

Cell and credit events change the status of the ready queues and the creditless list. While the latter is

kept as a pool of cells, thus no special structure or connectivity is maintained, the ready queues are kept

as linked lists. The status of these lists is kept in the form of the head-tail pointers and the valid bits,

all stored in the HTRF memory, and is updated every time a cell is added in the list (on a credit or cell

arrival), or a cell is removed from it (on a cell departure). References and updates to this information

must always be executed in the "correct" order in order to preserve the connectivity of the list. Failure to

maintain this order may lead to reading or writing wrong pointers, and consequently, either losing some

cells and blocking their corresponding flow-groups as well (if they are flow-controlled), or creating non

existing cells.

Changes in the queue status are performed in two stages on all events. In an initial stage, the current

queue status is read from the HTRF. This is later used, along with the data about the credit or cell served,

to calculate the new queue status, which is written back to the HTRF in a following cycle. This time

difference between reading the current status and writing the new one, may be one or two clock cycles,

hence it is possible for another action to also modify or read the queue status in the meanwhile. One

must make sure that each of the two or more actions operating on the same queue concurrently will read

and write the correct data in a well defined order, so that the queue structure remains consistent.

The normal way of working through this problem would be to try to spot all the possible cases of

hazard caused by concurrent operations on the same queue. Yet, the possible valid timing combinations

of the three events and different queue states (empty, one cell in, more than one cells in), measure up to

482(!), as proven by simulations conducted, thus examining them one by one is practically impossible.

For this reason, an alternative strategy is used. First of all, case analysis is performed for every one of

the six possible combinations of two concurrent events, in order to spot simple hazard conditions and the

bypass rules necessary to handle them. For each operation, analysis is confined only to stages between

the one where the queue status is read and the one where the new status is written. This reduces credit

arrival operations to only two stages, while cell arrival and departure operations remain three stages

long. The analysis for the case of possible concurrent executions of one cell arrival and one credit arrival

operation, both working on the same ready queue, is shown in figure 6. Assuming that the same data can

be written and read in the same clock cycle in the HTRF, only two situations of hazard exist. In situation

1, the cell receiving the credit will actually be enqueued before the incoming cell, thus the tail pointer

and valid bit read by the incoming cell in stage 1, must be bypassed values from the credits pipeline. On

the other hand, in situation 2, both cells are enqueued in the same clock cycle. We choose to have the

cell receiving the credit last, since bypassing the tail pointer and valid bit from the cells pipeline to the

credits pipeline is feasible 8. Apart from the bypass, the write access to the HTRF performed by the cell

8The cell arrival pipeline is already using the tail pointer and valid bit, at the time the situation is detected.

6.2 Head-Tail Pointers Bypass

Architecture, Operation and Design of the Queue Management Block 23

. . . Stage 3 :
Read Tail

Stage 4 :
Update Tail

& Valid [Head-Valid]

. . . Stage 3 :
Read Tail

Stage 4 :
Update Tail

& Valid [Head-Valid]

. . . Stage 3 :
Read Tail

Stage 4 :
Update Tail

& Valid [Head-Valid]

Stage 3 :
Update Tail

[Head-Valid]

. . . Stage 3 :
Read Tail

Stage 4 :
Update Tail

& Valid [Head-Valid]

1

2

Cell Arrival Op Init
Stage 1 : Stage 2 :

Read Tail
& Valid

Credit Arrival Op

Credit Arrival Op

Credit Arrival Op

Credit Arrival Op

clock cycle

Figure 6: Data hazards from concurrent cell and credit arrival operations on the same ready queue.

pipeline is canceled.

By performing such an analysis for each pair of concurrent events, table 7, which summarizes the

hazard cases for the data read and written through the four ports of the HTRF and the combination of

events that causes them, can be constructed. For values read or written, that only one hazard case exists,

the bypass condition and rule is the one indicated by the simple case analysis. On the other head, for

the tail pointer and valid bit read through read port 1, for which multiple hazard cases exist, all possible

combinations of cases must be checked as well. Yet, some combinations are not valid, since they assume

concurrent initiation of a cell arrival and a cell departure operation. Hence, only three combinational

cases exist for each value, and it is easy to define bypass condition and rules for them too (by conducting

detailed case analysis).

The above described procedure results to the bypass conditions and sources summarized in table

4. The last column states the bypass condition in terms of the stages in the two pipelines that have to be

active and operating on the same queue. For the cells pipeline, the kind of operation served by the stage

is stated in parenthesis. The value forwarded is given in a coded form 9 in the third column. In addition

9CrC : DB address of the cell receiving the incoming credit; InC : DB address of the incoming cell; Cancel : write access

6.2 Head-Tail Pointers Bypass

24 Architecture, Operation and Design of the Queue Management Block

cell arrivals
combination

cell departure
credit arrival
combination

cell arrivals
combination

cell arrival
cell departure
combination

cell departure
credit arrival
combination

cell departure
credit arrival
combination

READ

HEAD PTR HEAD PTR TAIL PTR VALID BIT

DATA

TO
WRITE

HTRF READ PORT 1 HTRF READ PORT 2

HTRF WRITE PORT 2HTRF WRITE PORT 1

TAIL PTR VALID BIT

DATA

cell - credit
arrivals

cell arrival
cell departure
combination

cell - credit
arrivals

cell - credit
arrivals

cell - credit
arrivals

combination

cell - credit
arrivals
combination

combination combination

combination

Figure 7: Summary of the hazard situations for the data read and written to the HTRF.

to these rules, we assume that reading and writing a HTRF entry in the same clock cycle, produces the

new value as read result. These rules are implemented through the multiplexors placed at the inputs and

outputs of the HTRF (shown in figure 2). Their control signals are produced by combinatorial logic, a

few gates and equality comparators, that detects the bypass conditions and activates the proper bypass

path each time.

6.3 Bypass rules and datapath verification

As mentioned earlier, maintaining the correct connectivity for the ready queues is crucial for the operation

of the switch. In addition to that, we expect that concurrent events on the same queue will be an often

case when switch the operates under heavy load, bundled links are used or most of the traffic is destined

to a limited number of destinations in the network. In other words, we expect that bypass conditions will

appear frequently. Since bypass rules properly maintain the queues’ connectivity on concurrent events,

their correctness needs to be verified through extensive simulation, before hardware implementation.

Two functional models were written for simulation use. They both receive cell and credit events as

inputs and maintain the status of a single ready queue. This includes head and tail pointers, the valid bit

and one pointer per cell in the queue, in order to build the linked list structure. The first model, called the

is being canceled.

6.3 Bypass rules and datapath verification

Architecture, Operation and Design of the Queue Management Block 25

HTRF Bypass Bypass

Data Prio Value Condition

Tail Ptr 1 (Read) 1 CrC Cells Stage 1 (any); Credits Stage 3

2 InC Cells Stage 1 (any) and 2 (arrival)

Valid Bit 1 (Read) 1 1 Cells Stage 1 (arrival); Credits Stage 3

2 1 Cells Stages 1 (arrival) and 2 (arrival)

3 0 Cells Stage 1 (arrival) and 2 (departure); departing cell last

Tail Ptr 2 (Read) CrC Cells Stage 2 (arrival); Credits Stage 3

Valid Bit 2 (Read) 1 Cells Stage 2 (arrival); Credits Stage 3

Head Ptr 1 (Write) CrC Cells Stage 2 (departure); Credits Stage 3; departing cell last

Tail Ptr 1 (Write) Cancel Cells Stages 2 (arrival); Credits Stage 3

Valid Bit 1 (Write) 1 Cells Stages 2 (departure); Credits Stage 3

Table 4: Bypass conditions and sources, according to priority (when multiple sources exist), for data

read and written in the HTRF.

real-model, updates this information on each enqueue or dequeue operation caused by an event, in the

same way this is performed by the Queue Management block. This means that the model follows both

the pipelined operation and the bypass rules of the block. On the other hand, the second model, called

sim-model, maintains the status information by serving all events on a single clock cycle. Events starting

concurrently are served on a fixed order, credit events first and cell events second. There are no hazard

cases and no need for bypassing in the sim-model. Verification of the bypass rules is accomplished by

feeding the same events to both models and comparing the two queues at regular intervals. Mismatches

between the status or the connectivity of the queues, indicates that certain bypass rule is either incorrect

or missing.

The models were used with two simulation methods. The first one performs random tests. Random

events are generated and fed to the models. The appearance probability of each event is controlled by

uniform random variables within segments of parameterized length. On regular intervals, the generation

of events is interrupted and the queues maintained by the two models are compared. Millionsof simulated

clock cycles for the two models were executed with this method.

Although extensive testing with random patterns should probably reveal most errors, still one can

not be sure that all possible error situations are examined. In order to make sure that no combination of

events was left without being tested, we developed the second simulation method. In this method, we

create and test automatically all valid combinations of active pipeline stages and queue states (empty, one

cell in the queue, many cells in the queue) on a certain clock cycle. Since the credits pipeline has four

6.3 Bypass rules and datapath verification

26 Architecture, Operation and Design of the Queue Management Block

stages and the cells pipeline has 3 stages with dual role, there are 24 � 33
= 432 possible combinations

of active stages on a clock cycle. Each one of them, if it is a valid one, is created for the two models for

each of the three queue status. The combinations of stages are created by generating the proper events

within a few cycles, while the queues are initiated to contain the desired number of cells each time.

After a few clock cycles, used by the real-model to serve the events, the two queues are compared for

mismatches. In this way, not only we can detect errors in the bypass rules but specifically spot the cases

incorrectly handled as well. Once the simulation of the two models with this method was successfully

performed, the correctness of bypass rules was assured.

6.3 Bypass rules and datapath verification

Architecture, Operation and Design of the Queue Management Block 27

7. Management Commands Support

Apart from the normal operations, the Queue Management block must also support management com-

mands. By using these commands, we must be able to read and write every memory entry in the block.

The purpose of their existence is to enable testing of the functionality of the block, proper initialization

of the memories and the execution of the algorithm for lost cells/credits detection [KSVMC96].

All blocks exchange data and addresses for management commands through two busses that run

across the whole switch, and connect the various blocks with the Switch Control and Monitoring block.

The functionality of this block is to receive management commands from incoming cells or through the

Test/Configuration port, forward them to the appropriate block within the switch and return their results

to the proper destination. The first bus, C bus, is 9 bits long and identifies the block and the register

within it, from/to which data are read/written through the other bus. The second one, I bus, is 16 bits

long and transfers management data and commands to and from the various blocks.

decoder

Mdone

Mdone_nxt

0 1

COM_REGDATA_REG
OUT_REG

mgnt_data

mgnt_adr_dec

I_bus

mgnt_adr

mdata_le madr_le

mgnt_re

crd_mask

HTVout

LLout
VPout

celout_omask

C_bus

to Queue Management Control

11 10 01 00

16 16

16

16

256

mgnt_adr{7:0}
8

opCode[1]

opCode[3:2]

9

Figure 8: The Queue Management interface for management commands.

The QM block interface for management commands (figure 8) mainly consists of three registers.

The DATA REG register stores data for write accesses through management commands, while the

COM REG register keeps the address of the accesses and their opcode. OUT REG register stores the

data read through these commands. Each one of the three registers has a unique 9bit address within the

switch. When one of these addresses appears on the C bus, either data on the I bus are stored in the

DATA REG or COM REG register, or the contents of OUT REG are driven on the I bus. In the rest

of this section, we explain the commands supported, their format and how they are served by the QM

7. Management Commands Support

28 Architecture, Operation and Design of the Queue Management Block

block.

7.1 Management Commands and their Format

Management commands are sent to the QM block by writing to the COM REG register. Its contents

are divided into five fields, presented in figure 9. Bits 7 to 0 contain the address for the memory access

performed by command. For accesses to the HTRF, only bits 5 to 0 are actually used. Bits 11 to 8 serve

as the opcode of the command. Bit number 12 is the trigger bit, which identifies whether the register

contains an unserved and valid management command. This bit is read by the control circuits in order

to schedule and serve the command. As soon as it is executed, this bit is reset. The extra bit (bit number

13) is used as the 17th data bit in write accesses to the HTRF and the CreditMask memory, because their

word is one bit longer than the DATA REG register. The last two (most-significant) bits are not used.

AddressopCodeTrEx
078111213

Unused
1415

Tr = Trigger Bit
Ex = Extra Bit

Figure 9: Command Register (COM REG) fields.

The Queue Management block recognizes the following commands, which are also summarized

for convenience in table 5, along with their opcode and required data:

VPout Read This command reads one of the 256 entries in the VPout memory. The access is performed

through its read/write port, normally used by the cells pipeline.

VPout Write Writes an entry in the VPout memory. The data written are the 12 least-significant bits

(11-0) in the DATA REG register. It uses the same port with the corresponding read command.

OutMask Read Reads an entry in the OutMask memory. It is performed through the read/write port,

used for cell arrival and departure operations. All bits in the DATA REG register must be reset

before the access is performed.

OutMask Write This command writes an entry in the OutMask memory. The contents of the

DATA REG register are used as write data. It is served from the same memory port with the

OutMask Read command.

CreditMask Read/Modify Using this command one can set some bits while reading the rest in a

CreditMask memory entry. Bits to be set are indicated by ones in the corresponding bits of the

7.1 Management Commands and their Format

Architecture, Operation and Design of the Queue Management Block 29

DATA REG register and the extra bit. The new values of the bits set are also presented with the

read data. The access is served through read/write port of the CreditMask memory, used by the

credits pipeline during usual operation. In order to perform a plain read access, all bits in the

DATA REG register, as well as the extra bit in the COM REG register, must be reset.

LinkList Read Reads an entry from the LinkList memory. The access uses its read/write port, normally

used by the cells pipeline.

LinkList Write Writes an entry in the LinkList memory. The 12 least-significant bits in the DATA REG

register are used as input data. It uses the same port with the corresponding read command.

HTRF Read Reads a word from the Head-Tail Register File (HTRF). It is performed through its second

read port, normally used for credit arrival operations.

HTRF Write This command writes a word in the HTRF. The contents of the DATA REG register as

well as the extra bit, are used as write data. The access uses the second write port of the register

file, normally used by the credits pipeline.

Memory Access opCode Data required

1 VPout Read 0000 no data necessary

2 VPout Write 0001 DATA REG (12 LS bits)

3 OutMask Read 0010 DATA REG=0

4 OutMask Write 0011 DATA REG

5 CreditMask Read/Modify 1101 DATA REG plus Extra bit=modify mask

6 LinkList Read 0100 no data necessary

7 LinkList Write 0101 DATA REG (12 LS bits)

8 HTRF Read 1010 no data necessary

9 HTRF Write 1011 DATA REG plus Extra bit

Table 5: QM management commands (opCode and required data).

7.2 Implementation of Management Commands

Management Commands are not served by the QM block as soon as they are issued. This would

not be possible to achieve without either stalling the normal block operation or providing additional

memory ports for their accesses. Neither effect is desirable. Memory blocks are already multiported and

complex. In addition, the algorithm for lost credits/cells detection, that uses management commands,

7.2 Implementation of Management Commands

30 Architecture, Operation and Design of the Queue Management Block

may be executed every few seconds, thus stalling the switch for its execution would be unacceptable.

The commands are served as soon as the memory port they need is not used by a cell or credit operation.

Hence, in the worst case, a management command will be served 32 cycles after it reaches the QM

block, since at least one of the 33rd clock cycles within a few cell-times is not necessary for any normal

operation. The circuit serving management commands in the QM block works as described in the

following paragraphs.

Whenever the trigger bit in the COM REG is set, the opCode field, along with the memory ports

status, are used to detect when this command can be served. The necessary port is available if the

pipeline stage, within which it is used, is inactive. As soon as it is detected that the proper memory port

will be unoccupied in the next clock cycle, the management data and address, either in a decoded or

encoded form, are fed to the corresponding memory. This is done with one of the management access

signals (VP/OMmac, CRmac, LLmac and HTVmac), shown in figures 1 and 2. In the following cycle,

the memory control signal corresponding to the access is asserted and the trigger bit is reset.

Data produced during read commands are selectively transferred to the OUT REG register, through

two multiplexors, controlled by the command’s opCode (shown in figure 8). If the data read are less

than 16 bits, they occupy the least significant bits of the register. On the other hand, if the data read are

17 bits long (HTRF and CreditMask memory), bit number 0 (least significant) is discarded.

When the access and the transfer of the results to the OUT REG register are complete, the Mdone

signal is pulled down for one clock cycle. This notifies the Switch Control and Monitoring block that the

command has been successfully executed, and that the result data (if any) are available in the OUT REG

register. It is up to this block to read them before they are overwritten by the results of a second command.

As soos as Mdone is pulled up again, the QM block can accept a new management command.

7.2 Implementation of Management Commands

Architecture, Operation and Design of the Queue Management Block 31

8. Block Functional Simulation and Testing

Functional simulation and testing of the Queue Management block has been performed, in order to

ensure its correct operation, prior to its VLSI implementation. In the previous sections, we presented

a number of conclusions, operations and methods, whose validity is easier tested through functional

simulation than layout or gate level design checks. Extensive testing can reveal a wide range of errors,

from architectural errors to incorrect synchronization or timing between different actions of the same

operation, as well as certain aspects of the block architecture and operation that are so far neglected.

Random Credit

and Cell Events

Generator

Block Outputs

Comparator

Queue Management

Block Functional Model

Queue Management

Block Simulation Model

Queues Status

and Connectivity

Comparator

status
queues’

status
queues’

events
outputs

Figure 10: The organization used for functional simulation and testing of the QM block.

The organization used for the simulation is presented in figure 10. The QM block functional

model, written in Verilog-XL [Veri94] as all the rest of the code for this simulation, implements all the

operations and functions described in the previous sections, with a clock cycle precision. This means

that sub-blocks described in it, such as memories, decoders or control units, are these that will actually

be designed, and were written in a behavioral manner so that they execute on each clock cycle the

same operation with the real hardware. Control logic is described in a strictly behavioral manner, since

this is easier to do when changes are frequent, and one can get excellent gate-level netlist from this

description by using sophisticated synthesis tools. On the other hand, the QM block simulation model is

a behavioral high-level description of the block, that executes all operations within a single clock cycle.

Consequently, sub-blocks in this model do not match the real hardware, but all the necessary information

8. Block Functional Simulation and Testing

32 Architecture, Operation and Design of the Queue Management Block

in order to perform the same operations is maintained. Testing the QM block is achieved by regularly

comparing the operations and status of the two models.

The random credit and cell events generator model simulates the rest of the switch by feeding

events and inputs to the two models with the appropriate timing. The operation of all the switch blocks

interacting with the QM block is taken into account in this model, so that the type and the timing of

input signals is correct. Events generation is random; yet, the appearance probability of each event and

its characteristics are parameterized. In this way, we can control the number cells entering or leaving

the block, their flow-group, whether they have all credits available on their arrival, etc. This makes it

possible to run a number of different simulations and test the block under various conditions, loads and

types of traffic. There are also two comparator models. The outputs comparator continuously watches

all outputs of the two models, such as the not empty and reserve masks, and interrupts the simulation

when they differ. The status and connectivity comparator is used in regular intervals in order to compare

the memory contents of the QM models, and make sure that the queues maintained are the same and

do follow basic rules (such as no list becomes a cyclic one). Whenever this comparator is used, events

generation is temporally stalled. With the aforementioned simulation models, extensive testing to the

QM block has been performed (millions of simulated clock cycles of operation).

Management commands where tested by extending the events generator to produce such commands

as well. The outputs comparator was also extended to be able to detect correct completion of these

commands. Yet, management commands changing the queues’ status, i.e. write or modify commands,

were also tested by injecting a few predetermined commands by hand, since random generation of such

commands could destroy the correct connectivity of the ready queues.

Apart from the tests conducted with the above organization, the Queue Management block functional

model will also be tested in the functional simulation of the whole ATLAS I switch. In addition to further

undetected errors, these simulations will also check the interoperability and synchronization of the block

with the rest of the switch.

8. Block Functional Simulation and Testing

Architecture, Operation and Design of the Queue Management Block 33

9. Block Hardware (VLSI) Implementation

The Queue Management block is currently designed using both full-custom and semi-custom VLSI

techniques. The target technology is the SGS-Thomsom Microelectronics 0:5�m CMOS technology

with three metal layers and one polysilicon layer, operating at a supply voltage of 3:3 volts.

The five memories included in the block are multi-ported and have critical timing requirements

and, therefore, need to be designed with full-custom mask-level layout techniques [WeEs93]. They all

are static memories. On the other hand, control logic and the rest of the block logic will be designed

with semi-custom layout techniques. Semi-custom gate-level layout can be produced automatically from

functional or behavioral descriptions by using synthesis tools, such as Synopsys [Syn94].

In this section, we present the two-ported memories and their peripheral circuits already laid out in

full-custom CMOS, and also describe the VLSI implementation of the remaining static memory blocks.

9.1 Content-Addressable Memory Cells

The VPout and OutMask memory blocks have to be content-addressable (CAM) [Gros92] in order to

accommodate for the search action in the first stage of credit arrival operations. There are two basic

alternatives in the layout of static CAM cells [TroS92], presented in figure 11. The left one, 9 transistor

word line
bit bit

match-line

9 xtors CAM Cell

word line
bit bit

match-line

10 xtors CAM Cell

Figure 11: The two layout alternatives for static CAM cells.

cell, consists of a traditional SRAM cell, plus a two-transistor exclusive-OR comparator and a pull-

down transistor for the match-line. The right one, 10 transistor cell, on the other hand, includes two

transistors in series for each bit-line, creating two NAND gate pull-down paths for the match-line. The

first alternative needs only three transistors in total to pull-down the match-line when the value stored in

the cell is different from the one on the bit-line, because it takes advantage of the complementary nature

9.1 Content-Addressable Memory Cells

34 Architecture, Operation and Design of the Queue Management Block

of the two outputs of the cell. The 10 transistor cell will need twice as wide transistors in the NAND gate

pull-down paths in order to offset the series discharge path, and more to offset the additional capacitance

of the match-line due to an extra contact per cell 10. Yet, due to its symmetry, this cell may be laid out in

less area. Since, we are more concerned with achieving high clock cycle period than area optimization,

the 9 transistor cell will probably be used.

word line 2

word line 1

m
at

ch
 e

na
bl

e

bit2 bit1 bit2bit1

match line

bitRWbitRWbitS bitSword line

match-line

(a) (b)

Figure 12: Content-addressable memory cells : (a) the two-ported VPout memory cell, and (b) the

three-ported OutMask memory cell.

The cell for the VPout memory is shown in figure 12(a). It is a two-ported static cell. The first

port (S port) is content-addressable, while the second one (W port) is a plain RAM port. The OutMask

match-line
output

phi1

phi2
phi2

Figure 13: The match accelerator layout.

memory cell, in figure 12(b), differs in two ways. First of all it is a three-ported cell, with one CAM

and two RAM ports. Furthermore, a variation of the normal CAM port is employed, for which a single

bit-line (match enable) is used to search the memory only for logic one and don’t care values [Sidi91].

This variation comes from the 10 transistor CAM cell, as such a 9 transistor cell variation would have an
10Even if a single contact is shared by both paths, the capacitance will be increased due to the extensive overlap of metal

(match-line) and the n-type active area of the pull-down chain.

9.1 Content-Addressable Memory Cells

Architecture, Operation and Design of the Queue Management Block 35

additional contact between diffusion and polysilicon, and therefore occupy larger area and have longer

pull-down time.

There is a race condition for both cells. If a word in one of the two memories is concurrently written

and searched, partial or unnecessary discharge of the match-line may occur. In order to avoid that, we

can selectively discharge on every clock cycle the match-lines of the words written. Race conditions

between read or write operations in the three-ported OutMask memory cannot occur, because of the way

this memory is used.

word line 2
bit2bit1 bit2 bit1

word line 1

Figure 14: The two-ported SRAM cell for the CreditMask and LinkList me mories .

Since the search access of CAM memories is usually twice as slow as the read-write accesses,

especially in the case where the match-line is discharged by a single memory cell, some care must be

taken in order to accelerate it. The match accelerator circuit [OYT89], depicted in figure 13, could

be used in order to achieve high-speed search access. This circuit detects if the match-line is being

discharged. In this case, it cuts off the match-line from the output line, and the latter is discharged

faster, since it has smaller stray capacitance. Yet, because such circuits are usually sensitive to noise

and unstable voltage supply, and since the correctness of the search access is crucial for the operation of

the credit-based flow control protocol, we believe it is safer to use a plain inverter with properly raised

threshold voltage in order to achieve the desired speedup [Uyem92].

9.2 Random-Access Memory Cells

The CreditMask and LinkList memories, along with the Head-Tail register file are static random-access

blocks.

The memory cell for the first two, shown in figure 14, can be the same : a two-ported static RAM

cell. The cell had been layout in full-custom CMOS and its size is 11:8�m x 12:25�m. Yet, the partial

overlapping of cells within the two-dimensional memory array reduces the actual cell size to 10:6�m x

10:55�m. The peripheral circuits for the two memory blocks are different since the second port of the

LinkList is used for write accesses, while for the CreditMask memory is used for read/modify accesses.

9.2 Random-Access Memory Cells

36 Architecture, Operation and Design of the Queue Management Block

BITBIT

OUT OUT

Figure 15: The single-ended operational amplifier laid out for the memories in the QM block.

The overall sizes of the layout of the two memories, including the bit-line drivers, sense-amplifiers and

output latches, are 175�m x 1410�m and 175�m x 1402�m respectively.

0

1

2

3

4

5

0 5e-09 1e-08 1.5e-08 2e-08

VO
LT

AG
E

(v
ol

ts
)

TIME (sec)

"PHI2"
"BIT"

"BIT_B"
"OUT"

"OUT_B"

Figure 16: SPICE waveforms of the extracted netlist from the CreditMask layout, showing the operation

of the sense amplifier.

The sense amplifier circuit laid out for these to memory blocks is a typical CMOS single-output

operational amplifier [HaMa88], presented in figure 15. The amplifier consists of a four-transistor cur-

rent mirror, connected to a current source. The output of the amplifier drives an inverter, designed to

have a 1.5V threshold voltage. Its output feeds the output latch. This design was selected because it

is simple, easy to layout and can safely operate under all process and environment conditions. Its only

disadvantage is the delay in amplifying. Yet, the long clock cycle period (20ns) of the QM block is

9.2 Random-Access Memory Cells

Architecture, Operation and Design of the Queue Management Block 37

enough for the circuit to properly work. Figure 16 presents the SPICE waveforms of the extracted circuit

from the CreditMask memory layout (including all parasitic capacitances). In this figure, one can see the

behavior of the bit lines and the sense amplifier while reading an one. During the read phase (PHI2 high)

the voltage difference between the two bit lines is almost 1V. Nodes OUT and OUT have full voltage

swing and, by the end of the read phase, are at 3.3V and 0V respectively. The size of the sense ampli-

fier cell is 10:6�m x 14:5�m. The same sense amplifier will be used with the other three memories as well.

word line 2

word line 1

bit1bit1 bit2bit2

word line 3

word line 4

bit3bit4 bit3 bit4

Figure 17: The four-ported SRAM cell for the Head-Tail Pointer register file.

The cell for the HTRF will be a four-ported one (figure 17), and probably the most difficult to design.

Although a four ported RAM sounds extremely difficult to design, we believe it is feasible. The HTRF

is not larger than a usual register file found in modern processors. These register files are multiported

as well. In addition to that, the relative slow clock period aimed (20ns), supports the conception that a

54x17 bits four-ported RAM is possible. Still, during the design of this memory block, we will have to

deal with the problem of fitting two rows of sense amplifiers below it (the same problem exists for the

OutMask memory two).

9.2 Random-Access Memory Cells

38 Architecture, Operation and Design of the Queue Management Block

10. The Priority Enforcer Circuit

The Priority Enforcer (PE) was laid out in full-custom CMOS first out of all the other circuits in the

Queue Management block to be designed with full-custom VLSI techniques. The main reasons for that

were: a) the increased complexity and difficulty of its design, b) its critical role in the operation of the

credit-based flow-control protocol and c) the fact that there has been limited work and experience in the

design of such circuits in the past.

In this section, we present in detail the operation of the Priority Enforcer circuit, analyze the most

important design techniques for improving its performance and describe our implementation and its

layout to be used with the QM block. Finally, we present two methods for designing cyclic priority

enforcers.

10.1 The Operation of the Priority Enforcer

The role of the Priority Enforcer is to select one of the words in a content- addressable memory (CAM)

that matched during a search operation. The inputs of the circuit are the match-lines of the CAM, i.e. a

large sequence of bits containing many ones and only a few zeros, which indicate those memory words

that matched with the search pattern. Its output is a sequence of equal size, where a single zero exists,

the one that corresponds to the "first" one in the initial input vector. The Priority Enforcer is necessary

in any application of CAMs, where multiple words may match during a single search operation, and can

be used in order to implement in hardware selection algorithms such as First Come-First Served (FCFS)

and Round-Robin.

In order to evaluate a certain bit of the output of the PE, we must first calculate the outputs

corresponding to all the least significant bits in the input vector. To be more specific, we need to know

whether one or more zeros exist in those bits or not. In the first case, the output bit is set, while in the

second one it is the same with the corresponding input bit. The signal indicating the existence or not

of a zero in the least significant bits is called Nobody-Else-Higher (NEH) and such a signal has to be

calculated for each input bit. The equations for the output and NEH vector are : OUTi = NEHi�1+INi

and NEHi = INi �NEHi�1 (NEH0 = 1). Table 6, presents an example of the operation of the PE,

that detects the leftmost zero in a 16-bit input vector.

From the above paragraph it is obvious that the problem of enforcing priority is directly proportional

to the one of carry calculation and propagation in binary addition. In that case, the input carry for

each bitwise addition depends on the addition result, and therefore the carry, on the least significant

bits. Furthermore, an adder could be used to construct a PE that detects the rightmost zero. This is

accomplished by adding one to the input vector and then using an inverter and a NAND gate per bit to

calculate the final output, as explained figure 18.

10.1 The Operation of the Priority Enforcer

Architecture, Operation and Design of the Queue Management Block 39

IN 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1

NEH 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

OUT 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

Table 6: The operation of a Priority Enforcer detecting the leftmost zero in 16-bit vectors.

OUT :

IN : 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1

1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

+ 1

Figure 18: Example of the detection of the rightmost zero by using an adder.

The priority enforcer can also be related to the design of OR gates with large input sets. Supposing

we could calculate the signalORi for each input bit, where ORi = IN0+ IN1+ :::+ INi�1, the output

for a PE that detects the leftmost one in the input vector can be produced by using an inverter and an

AND gate per bit (figure 19).

10.2 Design Alternatives for the Priority Enforcer

The Priority Enforcer can be easily designed as a regular structure with a ripple-signal, as presented in

figure 20. The NEHi calculation propagates from the top to the bottom. Taking into account that an

AND gate is actually designed in CMOS as a NAND gate followed by an inverter, there is a two gates

delay per bit. Thus, the total delay of the PE is 2N gates (for N inputs). This can be reduced to half

by combining couples of ripple cells and modifying the second one in order to use the NEHi�1 signal

instead, as shown in figure 21. Still the delay of N gates, restricts the use of such circuits to applications

with small N (16 or 32 the most).

A PLA could also be used for the design of a PE with only two gates delay. Yet, for a large N, the

PLA would be a huge one and the delay would be equal to that of two N-input gates!

In order to speed up the operation of the PE, we can take advantage of the similarity of the NEH

signal calculation to the carry propagation problem, and use techniques similar to carry lookahead and

10.2 Design Alternatives for the Priority Enforcer

40 Architecture, Operation and Design of the Queue Management Block

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0IN :

ORi :

OUT : 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Figure 19: Example of the detection of the leftmost one by using multiple OR gates.

carry prediction [WeEs93]. The NEH vector can be calculated by the dual tree structure presented in

figure 22. The role of the upper tree is to reduce the number of input signals to a ripple structure, so

that its fast evaluation is feasible. At each level, the inputs are combined in groups and for each one

of them a NOR gate is used to detect if one or more zeros exist within it. The initial inputs of the tree

are inverted and the outputs of the NOR gates at each level are fed (inverted too) as inputs to the next

one. For example, if inputs are always combined in groups of eight, outputs of the first level indicate

the existence of a zero in every group of eight inputs, those of the second one indicate the existence of

a zero in every group of sixty-four inputs and so on. After an appropriate number of levels, the inputs

are reduced to a small number, e.g. 8 or 16, and can be fed to a ripple-structure. This circuit calculates

the NEH signal for each group formed in the last level of the upper tree. The NEH for the first group is

(naturally) hardwired one.

The lower tree of the structure uses the outputs of the abovementioned ripple chain, as well as the

outputs from each level of the upper tree, in order to decompose the groups, calculate the NEH signal

for each one of them and, finally, evaluate the NEH signal for each original input. Each level consists

of a ripple structure per group. For example, a certain level may have as inputs the NEH signals for the

groups of sixty-four inputs (NEH-64) and the signals indicating the existence of a zero in every group of

eight inputs (ZERO-8), produced in the upper tree. Each NEH-64 signal is used as the original NEH in

a ripple chain, where the inputs are the ZERO-8 signals and the outputs are the NEH signals for every

group of eight inputs. In this way, the lower tree produces the final NEH signals for each initial input

by using the same number of levels with the upper one. After that, a single gate per bit is needed in

order to calculate the final output of the PE. From the above description of the tree structure it is obvious

that the original inputs, as well as the outputs from each level of the upper tree have to propagate until

the corresponding level of the lower tree. The number of levels per tree depends on the number of the

original inputs (N) and, naturally, the number of inputs that a fast ripple chain or a NOR gate may have

in the available CMOS technology.

10.2 Design Alternatives for the Priority Enforcer

Architecture, Operation and Design of the Queue Management Block 41

CELL

NEHi-1

NEHi

INi OUTi

CELL

CELL

CELL

CELL

CELL

CELL

CELL

VDD

IN0

IN1

OUT0

OUT1

Nobody

OUTn-1INn-1

Figure 20: A ripple-signal Priority Enforcer with 2N gates delay.

10.3 VLSI Techniques for Speeding-Up the Priority Enforcer

The above described dual tree structure for the PE can be accelerated by using techniques available in

full-custom CMOS design. These include dynamic circuit methods, domino timed logic and pipelining.

The upper tree in the PE consists of levels of NOR gates. Static CMOS NOR gates with large fan-in

are slow, because of the pmos transistors connected in series, and occupy a large area, since they need

a pmos and a nmos transistor per input. In order to avoid both negative effects we can use precharged

NOR gates with domino timing [Uyem92]. A precharged NOR gate is presented in figure 23. While

the PHI clock signal is low, node OUT is precharged. When PHI is set, the gate is evaluated and, if one

or more inputs are high, node OUT is discharged and node OUT is set. This gate has almost the half

size of the static equivalent one, since it uses a single pmos transistor for pull-up. In addition to that,

multiple cascade precharged gates can be evaluated in the same clock phase. In order for a signal to be

an acceptable input for a precharged gate, it must either remain low or change from low to high during

the evaluation phase. The inverse transition (from high to low) is dangerous, since it would create an

unnecessary and irreversible partial pull-down of the OUT node. Yet, node OUT either remains low, if

no input is high, or rises from low to high during the evaluation phase, if some inputs are high, due to

the pull-down of node OUT. Thus, it is safe to feed the output of such a gate to another one and evaluate

them both in the same clock phase. This type of timing is called domino timing and allows us to evaluate

multiple levels of the upper tree concurrently.

10.3 VLSI Techniques for Speeding-Up the Priority Enforcer

42 Architecture, Operation and Design of the Queue Management Block

NEHi-1

INi

INi+1 OUTi+1

OUTi

NEHi

NEHi+1

CELL

CELL

CELL

VDD

IN0

IN1

OUT0

OUT1

CELL
INn-1 OUTn-1

Nobody

Figure 21: The modified cell for the ripple-signal PE, that reduces its delay to that of N gates.

In a similar way, we can replace the ripple structures in the lower tree with multiple precharged OR

(or NOR) gates, as explained in the subsection 9.1 . The use of such gates requires all inputs of the ripple

structured to be inverted, but in this case we will be able to evaluate multiple gates (i.e. multiple tree

levels) in the same clock phase. The only disadvantage is that one would have to design another NOR

gate (with different fan-in) for each cell in the ripple structure previously used. The first one would have

a single input (inverter), the second one two and so on. In order to avoid that one can merge multiple

NOR gates into a Manchester chain circuit [WeEs93], presented in figure 24. A Manchester chain is a

dynamic circuit that can be used for evaluation of multiple OR-type results. During the low phase of the

clock signal PHI, all nodes INTi are precharged. When is PHI high (evaluation phase), all nodes are

discharged through the series of nmos transistors, upto the point of the chain where the first low input

appears. Supposing that the INi signals are the inverted original inputs, OUTi is the result of a NOR

gate on the first (i-1) inputs. One can also notice that the outputs follow the domino timing, thus can be

fed directly to a second chain, which is evaluated in the same time with the first one. The first input of

a Manchester Chain can be the NEH signal of the least significant inputs, in case it does not operate on

the first group of inputs.

In case the input set is very large, the use of dynamic precharged logic with domino timing may

not be enough by itself to significantly reduce the delay of the Priority Enforcer. For example, if N=512

and all the gates (NOR and Manchester chains) have 8 inputs, there are 2 � log8N � 1 = 5 levels in the

dual tree structure, thus 5 levels of logic to be evaluated in a sequential manner. This is a significant

10.3 VLSI Techniques for Speeding-Up the Priority Enforcer

Architecture, Operation and Design of the Queue Management Block 43

NOR NOR NOR NOR

NORNOR

Ripple Chain

Ripple ChainRipple Chain

Ripple Chain Ripple Chain

Ripple Chain

 . . .
Ripple Chain

 . . .

.
 . . .

 . . .

.

.

NEH

IN

TREE

TREE

LOWER

UPPER

Figure 22: The dual tree structure for a high speed Priority Enforcer.

improvement compared to the N=512 levels of logic in the simple ripple structure, but may still be

infeasible in designs with high clock speed, such as the ATLAS I switch (50 Mhz). In order to overcome

this problem, we can add pipelining between the levels of the dual tree. One can separate the tree levels

in pipeline stages, so that the desired clock frequency is achieved. Each stage must comprise of at least

one tree level. Neighboring stages do not have to operate on the same data set in consequent clock

cycles. Since precharged logic is used, stages can operate in consequent clock phases. While the one

stage is evaluated, the next one is precharged and via versa. Thus two pipeline stages on each inputs set

in every cycle. Still, we would like to notice that, the addition of pipelining does not reduce the overall

delay of a single evaluation of the PE circuit. Yet, it raises the rate at which we can feed inputs and get

results from it to one set per clock cycle, which is important for high performance designs.

10.3 VLSI Techniques for Speeding-Up the Priority Enforcer

44 Architecture, Operation and Design of the Queue Management Block

IN0

INn-1

IN1

OUT OUT

PHI

. . .

Figure 23: A N-input precharged NOR gate with an output inverter for domino timing.

Finally, a last source of delay in the dual tree structure of the PE, is the propagation of the original

inputs and the results of the upper tree throughout the circuit. Folding the two trees together eliminates

this delay. Corresponding levels of the two trees become neighboring and intermediate results have to

propagate over a small distance. This folding is particularly useful when the result of the PE has to be

used as an address for a read/write access to the same CAM, since the result comes out from the same

side that the inputs came from (the side where the CAM is).

10.4 The Priority Enforcer in the Queue Management Block

The Priority Enforcer laid out in full-custom CMOS for the Queue Management block of the ATLAS

I switch has 256 inputs, since it is fed with the combined match-lines from the VPout and OutMask

memories (256 words each). It detects the first word that matched during the search operation, always

starting from the top (word 0). The dual tree structure with the techniques described in the previous

section were applied in its design, adapted to the 0.5um CMOS technology provided by SGS-Thomson.

Yet, no folding of the two trees was necessary, since the output is used as a decoded address to both the

CreditMask and OutMask memories. The floorplan (in a block diagram style) of the PE circuit is shown

in figure 25, along with the sizes of the various parts of the circuit. The floorplan has been turned right

by 90 degrees in order to be easier to examine.

Both trees in the PE consist of a single level. In the upper tree, there are 16 precharged NOR gates

10.4 The Priority Enforcer in the Queue Management Block

Architecture, Operation and Design of the Queue Management Block 45

IN0 IN1 IN2 IN3

OUT0 OUT1 OUT2 OUT3

INT1INT0 INT2 INT3

PHI

prev_NEH

Figure 24: A 4-input Manchester Chain circuit.

with 16 inputs, which produce the signals indicating the existence of a zero in every group of 16 inputs

(ZERO-16). The pull-down part of each NOR gate spreads over the vertical area of the corresponding

inputs. In this way we avoid having to bring the 16 inputs close together (loss of area in turning wires),

without sacrificing speed, which is proportional to that of reading from a memory of 16 words (where

the pull-down paths also spread in the vertical dimension). Instead of feeding the ZERO-16 signals to

a single Manchester chain, we use 16 precharged NOR gates to get the NEH signal for each group of

16 inputs. These gates achieve faster (parallel) calculation without any area cost, as the are placed in

the otherwise unutilized area at the top and bottom of the single Manchester chain. The first gate has a

single input (inverter), the second one has two and so on. The output of the last gate indicates whether a

single match exists or not. The output of each NOR gate is used as a previous NEH input signal signal to

the corresponding Manchester chain in the lower tree. In other words, the output of the first NOR feeds

the second Machester chain, the output of the second one goes to the third Machester chain, etc.

The lower tree consists of a level of 16 Manchester chains with 16 inputs. Each chain has been

broken in two parts of 8 inputs each, where the last output of the first one is used as a NEH input to the

second one, as presented in figure 26 (the precharge pmos transistors have been omitted). The connection

of the two sub-chain in this way is possible because of the domino timing of their inputs and outputs.

In order to further reduce the delay of the chain, the width of the nmos transistors is increased as we

move from the right to the left side of each chain. In this way, the current that can pass through the

nmos transistors in the chain constantly increases as the charge flows from the intermediate nodes to the

ground, and thus, all nodes in the chain are pulled-down faster. In figure 27, there are the waveforms

from the evaluation of a Manchester chain with all inputs high (worst case), as produced by SPICE

simulation on the netlist extracted from actual layout, including all the parasitics capacitances. One can

see that, when the PHI clock signal is set (evaluation phase), the OUT7 node is pulled-up, causing the

nodes in the second sub-chain to be evaluated as well. Within 3ns, the last output (OUT15) is pulled-up

10.4 The Priority Enforcer in the Queue Management Block

46 Architecture, Operation and Design of the Queue Management Block

16 PRECHARGED NOR16

PRECHARGED NOR1, NOR2, ..., NOR16

256+16 ONE PHASE INVERING LATCHES

16 MANCHESTER CHAINS

MATCH-LINES (256)

256x2 ONE PHASE INVERING LATCHES

256 INVERTING LATCHES

BUFFERED MATCH-LINES (256) and NEH SIGNALS (256)

NOBODY

3033.6 µ

12.00 µ

45.30 µ

4.80 µ

18.30 µ

10.00 µm

m

m

m

m

m

Figure 25: The floorplan of the Priority Enforcer in the Queue Management block.

as well and the evaluation of the Manchester chain finishes.

The circuit is separated in two pipeline stages by a column of one phase pipeline latches. Thus,

it takes one clock cycle (20ns), or two clock phases to produce a single result. The fist stage includes

the upper tree, as well as the NOR gates used instead of the intermediate Manchester chain. The second

stage includes only the lower tree. The gates needed in order to evaluate the final output from the initial

inputs and the NEH signal where not added, since their functionality will be included in the wordline

driver of the CreditMask memory. Hence, the outputs of the circuit are the NEH vector and the initial

inputs (matched lines) interleaved.

The total size of the Priority Enforcer circuit is 3033:6�m x 90:4�m, including the output latches.

The horizontal dimension could be further reduced, but we choose not to in order to guarantee the correct

operation under all circumstances. The vertical dimension (11:85�m x 256 = 3033:6�m) was fixed from

10.4 The Priority Enforcer in the Queue Management Block

Architecture, Operation and Design of the Queue Management Block 47

prev_NEH

PHI

OUT0 OUT7 OUT8 OUT15

IN15IN0 IN7 IN8

PHI

Figure 26: The 16-input Manchester Chain circuit used in the Queue Management block.

the start, since the PE circuit must match with that of the OutMask CAM. The circuit was tested with the

STSPICE transistor-level simulator [ST96], provided by SGS-Thomson, under all possible process and

environment conditions.

10.5 Cyclic Priority Enforcers

As mentioned in section 9, the Priority Enforcer may have to be a cyclic one, in order to guarantee

randomness and fairness in the distribution of incoming credits in the case of merging flow-groups. A

cyclic PE does not search for the first word that matched always from a static point (top or bottom).

The starting point moves cyclically, so that all zeros in the input vector have an equal probability to be

selected.

There are two possible ways to implement the cyclic motion of the starting point. The first one is

to start searching from one place below of the previously selected word. If word 255 was previously

selected, we start from the top. The second one is to move the starting point cyclically one place at the

time : first word 0, then word 1 , ..., etc. Both methods have advantages and disadvantages and may

prove to be the appropriate one to use.

Building a cyclic PE does not demand the design of a completely new circuit. We can built cyclic

Priority Enforcers of both types by using two simple (or static) PEs, like the one described in the previous

subsection. At first, we examine the cyclic PE where the starting point is always one place below from the

previously selected word. The first static PE always operates on the original inputs, i.e. the match-lines.

The second one operates on the initial inputs, after they have passed through OR gates with the NEH

produced in the previous cycle. In this way, we set all zeros above the place selected in the previous

cycle (including that one). If the second static PE detects a zero, we keep as final NEH vector the one

it produced. This indicates the first zero existing below previously selected word and until the bottom

(word 255). If not, we use the NEH vector of the first static PE, which identifies the first zero from the

10.5 Cyclic Priority Enforcers

48 Architecture, Operation and Design of the Queue Management Block

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5e-09 1e-08 1.5e-08 2e-08

V
O

LT
A

G
E

 (
vo

lts
)

TIME (sec)

"PHI"
"OUT7"

"OUT15"

Figure 27: SPICE waveforms of the extracted netlist from the 16-input Manchester chain layout.

top and, therefore from the top until the previously selected word. Thus, by using the signals indicating

whether a static PE found a zero or not (signal nobody), we can implement the cyclic motion, at the cost

of two static PE, a buffer for the previous NEH vector and a multiplexor.

The cyclic Priority Enforcer for the second method can be constructed in exactly the same way, by

replacing the buffer for the NEH vector with a "cyclic" shift register. This register would consist of 256

simple latches connected in a row. On every clock cycle, the contents of the latches are shifted by one

place. Initially all latches have an one stored. On each clock cycle a zero is inserted in the top latch,

apart from the case when the pattern 01 was stored in the last two latches. In this case, all latches are

reset. With this "cyclic" shift register we create the NEH vector as if the selected word moved cyclically

by one place on every clock cycle. By using both static PE in the same with as with the first method, we

have a cyclic Priority Enforcer where the starting point cyclically shifts one place on each cycle.

10.5 Cyclic Priority Enforcers

Architecture, Operation and Design of the Queue Management Block 49

11. Conclusions

Throughout this work, it is obvious that maintaining high performance data structures for cells in ATM

switches, is far more complicated than it was in older switches. Additional queues have to be implemented

due to the priority-based routing and the multicasting support, while the rate of events has risen due

to the high link throughput and the flow control protocol needed. The demands in both speed and rate

of operations supported, can be met by using techniques such as pipelined and superscalar processing

of events. This approach significantly reduces hardware complexity, especially in the control unit, and

enables higher utilization of hardware resources, such as memory ports. Yet, one should also consider

the hazard situations that may arise, and provide for a solution through bypassing datapaths.

The Queue Management block, that was presented, uses this approach to maintain 54 output

queues and one pool of cells in the shared data buffer of the ATLAS I switch. It contains five memory

blocks, whose size depends on the buffer’s size, and the number of ports for each one is restricted

to minimum. The block also implements the proper bypass rules for safe operation and supports

management commands. It was functionally simulated, with a clock cycle precisions, in order to ensure

correctness of its operation prior to the VLSI implementation. In addition, the the Priority Enforcer

circuit was both studied and designed, while the full-custom design of the memory cells necessary was

analyzed.

The Queue Management block, as well as the whole ATLAS I switch, is currently in the VLSI design

phase. After that, the testing and post-layout verification phase will follow. The switch is expected to be

sent for fabrication in March 1997. Apart from the usual post-fabrication testing of the chip, its operation

will also be presented by using the ASICCOM demonstrator and test/management software developed

within the same project.

11. Conclusions

50 Architecture, Operation and Design of the Queue Management Block

Acknowledgments

ATLAS I is being developed within the ASICCOM project, funded by the European Union ACTS

Programme.

Many people involved in the ASSICOM project have contributed to this work. I wish to acknowl-

edge in particular Peny Vatsolaki for her contribution to the architecture of the Queue Management

block, Chara Xanthaki for her help with implementation issues and, finally, professor Manolis Katevenis

for his overall guidance.

I also want to thank my parents for their love and support.

Acknowledgments

References

[CoST88] J. Coudreuse, W. Sincoskie, J.S. Turner: “Guest Editorial in Broadband Packet Commu-

nications”, IEEE Journal on Selected Areas in Communications, vol. 6(8), December 1988, pp.

1452-1454.

[Gros92] K. Grosspietsch: “Associative Processors and Memories: A survey”, IEEE Micro, June 1992,

pp. 12-19.

[HaMa88] M. Haskard, I. May: “Analog VLSI Design, nMOS and CMOS”, Prentice Hall, ISBN

0-13-032640-2, 1988.

[HlKa88] M. Hluchyj, M. Karol: “Queueing in High-Performance Packet Switching”, IEEE Journal on

Sel. Areas in Communications, vol. 6, no. 9, December 1988, pp. 1587-1597.

[KaSS96] M. Katevenis, D. Serpanos, E. Spyridakis: “Credit-Flow-Controlled ATM versus Wormohole

Routing”, Technical Report FORTH-ICS/TR-171, "ICS, FORTH, Heraklio, Crete, Greece, July 1996.

URL: file://ftp.ics.forth.gr/tech-reports/1996/1996.TR171.ATM vs Wormhole.ps.gz

[KaSV96] M. Katevenis, D. Serpanos, P Vatsolaki: “ATLAS I: A General-Purpose,

Single-Chip ATM Switch with Credit-Based Flow Control”, Hot Interconnects IV

Symposium, Stanford Univ., CA, USA, Aug. 1996. URL: file://ftp.ics.forth.gr/tech-

reports/1996/1996.HOTI.ATLAS I ATMswitchChip.ps.gz

[KaVE95] M. Katevenis, P. Vatsolaki, A. Efthymiou: “Pipelined Memory Shared Buffer

for VLSI Switches”, Proceedings of the ACM SIGCOMM’95 Conference, Cambridge,

Ma., USA, 30 August - 1 Sep. 1995, pp.39-48. URL: file://ftp.ics.forth.gr/tech-

reports/1995/1995.SIGCOMM95.PipeMemoryShBuf.ps.gz

[KSVMC96] M. Katevenis, D. Serpanos, P Vatsolaki, E. Markatos, K. Courcoubetis: “ATLAS I Archi-

tecture: Architecture of the ATM Switch Chip of ASICCOM”, version 1.1, ASICCOM Consortium

Internal Document, March 1996.

[LeBo92] J. LeBoudec, “The Asynchronous Transfer Mode : A Tutorial”, Computer Networks and

ISDN Systems, vol. 24, no. 4, May 1992.

[OYT89] T. Ogura, J. Yamada, S. Yamada, M. Tan-No: “A 20-kbit Associative Memory LSI for

Artificial Intelligence Machine”, IEEE Journal of Solid-State Circuits, vol. 24, no. 4, August 1989,

pp. 1014-1020.

[PaHe95] D. Patterson, J. Hennessy: “Computer Architecture : a quantitative approach”, Morgan

Kaufman Publishers, ISBN 1-55860-329-8, 1995.

51

[PaHe93] D. Patterson, J. Hennessy: “Computer Organization : the hardwaresofware interface”, Mor-

gan Kaufman Publishers, ISBN 1-55860-281-X, 1993.

[Sidi91] S. Sidiropoulos: “Fast Packet Switches for Asynchronous Transfer Mode”, Technical Report

FORTH-ICS/TR-25, ICS, FORTH, Heraklio, Crete, GR, August 1991, 69 pages.

[ST96] “ST-SPICE User Manual”, SGS-Thomson, July 1996.

[Syn94] “HDL Compiler for Verilog Reference Manual”, Synopsys Inc, March 1994.

[TaFr88] Y. Tamir, G. Frazier: “High-Performance Multi-Queue Buffers for VLSI Communication

Switches”, Proc. of the 15th Int. Symp. on Computer Architecture, ACM SIGARCH vol. 16, no. 2,

May 1988, pp. 343-354.

[Toba90] F.A. Tobagi: “Fast Packet Switch Architectures for Broadband Integrated Services Digital

Networks”, Proceedings of the IEEE, vol. 78, January 1990, pp. 133-167.

[TroS92] N. Troullinos, C. Stormon: “Design Issues in Static Content-Addressable Memory Cells”,

CASE Center Technical Report No. 9208, CASE Center, Syracuse University, August 1992.

[Uyem92] John P. Uyemura: “Circuit design for CMOS VLSI”, Kluwer Academic Publishers, ISBN

0-7923-9184-5, 1992.

[Veri94] “Verilog-XL Reference Manual”, Cadence Design Systems Inc., v. 2.1, Decmber 1994.

[WeEs93] N. Weste, K. Eshraghian: “Principles of CMOS VLSI Design — a Systems Perspective”,

second edition, Addison-Wesley, ISBN 0-201-53376-6, 1993.

52

