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User-facing, latency-sensitive services, such as websearch, underutilize their computing resources during
daily periods of low traffic. Reusing those resources for other tasks is rarely done in production services
since the contention for shared resources can cause latency spikes that violate the service-level objectives of
latency-sensitive tasks. The resulting under-utilization hurts both the affordability and energy efficiency of
large-scale datacenters. With the slowdown in technology scaling caused by the sunsetting of Moore’s law, it
becomes important to address this opportunity.

We present Heracles, a feedback-based controller that enables the safe colocation of best-effort tasks
alongside a latency-critical service. Heracles dynamically manages multiple hardware and software isolation
mechanisms, such as CPU, memory, and network isolation, to ensure that the latency-sensitive job meets
latency targets while maximizing the resources given to best-effort tasks. We evaluate Heracles using
production latency-critical and batch workloads from Google and demonstrate average server utilizations of
90% without latency violations across all the load and colocation scenarios that we evaluated.
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1. INTRODUCTION

Public and private cloud frameworks allow us to host an increasing number of work-
loads in large-scale datacenters with tens of thousands of servers. The business models
for cloud services emphasize reduced infrastructure costs. Of the total cost of owner-
ship (TCO) for modern energy-efficient datacenters, servers are the largest fraction
(50%–70%) [Barroso et al. 2013]. Maximizing server utilization is therefore important
for continued scaling.

Until recently, scaling from Moore’s law provided higher compute per dollar with
every server generation, allowing datacenters to scale without raising the cost. How-
ever, with the sunset of Moore’s law on the horizon due to several imminent challenges
in technology scaling [Esmaeilzadeh et al. 2011; Hardavellas et al. 2011], alternate
approaches are needed to continue scaling datacenter capability. Some efforts seek
to reduce server costs through balanced designs or cost-effective components [Janapa
Reddi et al. 2010; Malladi et al. 2012; Lim et al. 2012]. An orthogonal approach is to
improve the return on investment and utility of datacenters by raising server utiliza-
tion. Low utilization negatively impacts both operational and capital components of
cost-efficiency. Energy proportionality can reduce operational expenses at low utiliza-
tion [Barroso and Hölzle 2007; Lo et al. 2014]. But, to amortize the much larger capital
expenses, an increased emphasis on the effective use of server resources is warranted.

Several studies have established that the average server utilization in most datacen-
ters is low, ranging between 10% and 50% [McKinsey & Company 2008; Vasan et al.
2010; Reiss et al. 2012; Barroso et al. 2013; Delimitrou and Kozyrakis 2014; Carvalho
et al. 2014]. A primary reason for the low utilization is the popularity of latency-critical
(LC) services such as social media, search engines, software-as-a-service, online maps,
webmail, machine translation, online shopping, and advertising. These user-facing
services are typically scaled across thousands of servers and access distributed state
stored in memory or Flash across these servers. While their load varies significantly
due to diurnal patterns and unpredictable spikes in user accesses, it is difficult to
consolidate load on a subset of highly utilized servers because the application state
does not fit in a small number of servers and moving state is expensive. The cost of
such underutilization can be significant. For instance, Google websearch servers often
have an average idleness of 30% over a 24-hour period [Lo et al. 2014]. For a hypo-
thetical cluster of 10,000 servers, this idleness translates to a wasted capacity of 3,000
servers.

A promising way to improve efficiency is to launch best-effort batch (BE) tasks on the
same servers and exploit any resources underutilized by LC workloads [Marshall et al.
2011; Mars et al. 2011; Delimitrou and Kozyrakis 2013]. Batch analytics frameworks
can generate numerous BE tasks and derive significant value even if these tasks are
occasionally deferred or restarted [Delimitrou and Kozyrakis 2014; Boutin et al. 2014;
Carvalho et al. 2014; Curino et al. 2014]. The main challenge of this approach is in-
terference between colocated workloads on shared resources such as caches, memory,
input/output (I/O) channels, and network links. LC tasks operate with strict service
level objectives (SLOs) on tail latency, and even small amounts of interference can
cause significant SLO violations [Mars et al. 2011; Meisner et al. 2011; Leverich and
Kozyrakis 2014]. Hence, some of the past work on workload colocation focused only
on throughput workloads [Nathuji et al. 2010; Cook et al. 2013]. More recent systems
predict or detect when an LC task suffers significant interference from the colocated
tasks and avoid or terminate the colocation [Vasić et al. 2012; Novakovic et al. 2013;
Delimitrou and Kozyrakis 2014; Mars et al. 2011, 2012; Zhang et al. 2014]. These sys-
tems protect LC workloads but reduce the opportunities for higher utilization through
colocation.
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Recently introduced hardware features for cache isolation and fine-grained power
control allow us to improve colocation. This work aims to enable aggressive colocation
of LC workloads and BE jobs by automatically coordinating multiple hardware and
software isolation mechanisms in modern servers. We focus on two hardware mecha-
nisms, shared cache partitioning and fine-grained power/frequency settings, and two
software mechanisms, core/thread scheduling and network traffic control. Our goal is
to eliminate SLO violations at all levels of load for the LC job while maximizing the
throughput for BE tasks.

There are several challenges towards this goal. First, we must carefully share each
individual resource; conservative allocation will minimize the throughput for BE tasks,
while optimistic allocation will lead to SLO violations for the LC tasks. Second, the
performance of both types of tasks depends on multiple resources, which leads to a
large allocation space that must be explored in real time as load changes. Finally, there
are non-obvious interactions between isolated and non-isolated resources in modern
servers. For instance, increasing the cache allocation for an LC task to avoid evictions
of hot data may create memory bandwidth interference due to the increased misses for
BE tasks.

We present Heracles1 [Lo et al. 2015], a real-time, dynamic controller that manages
four hardware and software isolation mechanisms in a coordinated fashion to maintain
the SLO for an LC job. Compared to existing systems [Zhang et al. 2013; Mars et al.
2011; Delimitrou and Kozyrakis 2014] that prevent colocation of interfering workloads,
Heracles enables an LC task to be colocated with any BE job. It guarantees that the
LC workload receives just enough of each shared resource to meet its SLO, thereby
maximizing the utility from the BE task. Using online monitoring and some offline
profiling information for LC jobs, Heracles identifies when shared resources become
saturated and are likely to cause SLO violations and configures the appropriate isola-
tion mechanism to proactively prevent that from happening.

The specific contributions of this work are the following. First, we characterize the
impact of interference on shared resources for a set of production, latency-critical
workloads at Google, including websearch, an online machine learning clustering al-
gorithm, and an in-memory key-value store. We show that the impact of interference
is non-uniform and workload dependent, thus precluding the possibility of static re-
source partitioning within a server. Next, we design Heracles and show that (a) using
application-level latency in the control algorithm is critical for guaranteeing the qual-
ity of service for latency-critical applications; (b) coordinated management of multi-
ple isolation mechanisms is key to achieving high utilization without SLO violations;
(c) carefully separating interference into independent subproblems is effective at reduc-
ing the complexity of the dynamic control problem; and (d) a local, real-time controller
that monitors latency in each server is sufficient. We evaluate Heracles on production
Google servers by using it to colocate production LC and BE tasks . We show that Her-
acles achieves an effective machine utilization of 90% averaged across all colocation
combinations and loads for the LC tasks while meeting the latency SLOs. Heracles also
improves throughput/TCO by 15% to 300%, depending on the initial average utilization
of the datacenter. Finally, we establish the need for hardware mechanisms to monitor
and isolate Dynamic Random-Access Memory (DRAM) bandwidth, which can improve
Heracles’ accuracy and eliminate the need for offline information.

To the best of our knowledge, this is the first study to make coordinated use of new
and existing isolation mechanisms in a real-time controller to demonstrate significant
improvements in efficiency for production systems running LC services.

1The mythical hero that killed the multi-headed monster, Lernaean Hydra.
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2. SHARED RESOURCE INTERFERENCE

When two or more workloads execute concurrently on a server, they compete for shared
resources. This section reviews the major sources of interference, the available isolation
mechanisms, and the motivation for dynamic management.

The primary shared resource in the server are the cores in the one or more CPU
sockets. We cannot simply statically partition cores between the LC and BE tasks using
mechanisms such as cgroups cpuset [Menage 2007]. When user-facing services such as
search face a load spike, they need all available cores to meet throughput demands with-
out latency SLO violations. Similarly, we cannot simply assign high priority to LC tasks
and rely on Operating System (OS) level scheduling of cores between tasks. Common
scheduling algorithms such as Linux’s completely fair scheduler (CFS) have vulnera-
bilities that lead to frequent SLO violations when LC tasks are colocated with BE tasks
[Leverich and Kozyrakis 2014]. Real-time scheduling algorithms (e.g., SCHED_FIFO) are
not work preserving and lead to lower utilization. The availability of HyperThreads
in Intel cores leads to further complications, as a HyperThread executing a BE task
can interfere with an LC HyperThread on instruction bandwidth, shared L1/L2 caches,
and TLBs.

Numerous studies have shown that uncontrolled interference on the shared last-
level cache (LLC) can be detrimental for colocated tasks [Sanchez and Kozyrakis 2011;
Mars et al. 2012; Delimitrou and Kozyrakis 2014; Govindan et al. 2011; Leverich
and Kozyrakis 2014]. To address this issue, Intel has recently introduced LLC cache
partitioning in server chips. This functionality is called Cache Allocation Technology
(CAT), and it enables way partitioning of a highly associative LLC into several subsets
of smaller associativity [Intel 2014]. Cores assigned to one subset can only allocate
cache lines in their subset on refills but are allowed to hit in any part of the LLC.
It is already well understood that, even when the colocation is between throughput
tasks, it is best to dynamically manage cache partitioning using either hardware [Iyer
et al. 2007; Qureshi and Patt 2006; Cook et al. 2013] or software [Nathuji et al. 2010;
Lin et al. 2008] techniques. In the presence of user-facing workloads, dynamic man-
agement is more critical as interference translates to large latency spikes [Leverich
and Kozyrakis 2014]. It is also more challenging as the cache footprint of user-facing
workloads changes with load [Kasture and Sanchez 2014].

Most important LC services operate on large datasets that do not fit in on-chip
caches. Hence, they put pressure on DRAM bandwidth at high loads and are sensitive
to DRAM bandwidth interference. Despite significant research on memory bandwidth
isolation [Iyer et al. 2007; Muralidhara et al. 2011; Jeong et al. 2012; Nesbit et al.
2006], there are no hardware isolation mechanisms in commercially available chips.
In multi-socket servers, one can isolate workloads across Non-Uniform Memory
Access (NUMA) channels [Blagodurov et al. 2011; Tang et al. 2011], but this approach
constrains DRAM capacity allocation and address interleaving. The lack of hardware
support for memory bandwidth isolation complicates and constrains the efficiency of
any system that dynamically manages workload colocation.

Datacenter workloads are scale-out applications that generate network traffic. Many
datacenters use rich topologies with sufficient bisection bandwidth to avoid routing
congestion in the fabric [Issariyakul and Hossain 2010; Al-Fares et al. 2008]. There
are also several networking protocols that prioritize short messages for LC tasks over
large messages for BE tasks [Alizadeh et al. 2010; Wilson et al. 2011]. Within a server,
interference can occur both in the incoming and outgoing direction of the network
link. If a BE task causes incast interference, then we can throttle its core allocation
until networking flow-control mechanisms trigger [Podlesny and Williamson 2012]. In
the outgoing direction, we can use traffic control mechanisms in operating systems
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like Linux to provide bandwidth guarantees to LC tasks and to prioritize their
messages ahead of those from BE tasks [Brown 2006]. Traffic control must be managed
dynamically as bandwidth requirements vary with load. Static priorities can cause un-
derutilization and starvation [Pattara-Aukom et al. 2002]. Similar traffic control can
be applied to solid-state storage devices [Seong et al. 2010].

Power is an additional source of interference between colocated tasks. All modern
multi-core chips have some form of dynamic overclocking, such as Turbo Boost in
Intel chips and Turbo Core in AMD chips. These techniques opportunistically raise
the operating frequency of the processor chip higher than the nominal frequency in
the presence of power headroom. Thus, the clock frequency for the cores used by an
LC task depends not just on its own load but also on the intensity of any BE task
running on the same socket. In other words, the performance of LC tasks can suffer
from unexpected drops in frequency due to colocated tasks. This interference can be
mitigated with per-core dynamic voltage frequency scaling, as cores running BE tasks
can have their frequency decreased to ensure that the LC jobs maintain a guaranteed
frequency. A static policy would run all BE jobs at minimum frequency, thus ensuring
that the LC tasks are not power limited. However, this approach severely penalizes
the vast majority of BE tasks. Most BE jobs do not have the profile of a power virus2

and LC tasks only need the additional frequency boost during periods of high load.
Thus, a dynamic solution that adjusts the allocation of power between cores is needed
to ensure that LC cores run at a guaranteed minimum frequency while maximizing
the frequency of cores for BE tasks.

A major challenge with colocation is cross-resource interactions. A BE task can cause
interference in all the shared resources discussed. Similarly, many LC tasks are sensi-
tive to interference on multiple resources. Therefore, it is not sufficient to manage one
source of interference: All potential sources need to be monitored and carefully isolated
if need be. In addition, interference sources interact with each other. For example, LLC
contention causes both types of tasks to require more DRAM bandwidth, also creating
a DRAM bandwidth bottleneck. Similarly, a task that notices network congestion may
attempt to use compression, causing core and power contention. In theory, the number
of possible interactions scales with the square of the number of interference sources,
making this a very difficult problem.

There are additional sources of interference that we do not examine in this work,
such as storage devices (disks or Solid State Drives (SSDs)) and other I/O devices.
The workloads that we analyze in Section 3 are so latency critical that they do not
rely on these slow devices that inherently have high and unpredictable tail latency
characteristics. Nevertheless, we discuss in related work other solutions that have
been proposed to handle performance isolation for storage and I/O.

3. INTERFERENCE CHARACTERIZATION & ANALYSIS

This section characterizes the impact of interference on shared resources for latency-
critical services.

3.1. Latency-Critical Workloads

We examine three Google production latency-critical workloads and their sensitivity to
interference in various shared resources. websearch is the query serving portion of a
production web search service. It is a scale-out workload that provides high throughput
with a strict latency SLO by using a large fan-out to thousands of leaf nodes that

2A computation that maximizes activity and power consumption of a core.
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process each query on their shard of the search index. The SLO for leaf nodes is in the
tens of milliseconds for the 99%-ile latency. Load for websearch is generated using an
anonymized trace of real user queries.

The websearch workload has high memory footprint as it serves shards of the search
index stored in DRAM. It also has moderate DRAM bandwidth requirements (40% of
available bandwidth at 100% load), as most index accesses miss in the LLC. However,
there is a small but significant working set of instructions and data in the hot path.
Also, websearch is fairly compute intensive, as it needs to score and sort search hits.
However, it does not consume a significant amount of network bandwidth. For this
study, we reserve a small fraction of DRAM on search servers to enable colocation of
BE workloads with websearch.

ml_cluster is a standalone service that performs real-time text clustering using
machine-learning techniques. Several Google services use ml_cluster to assign a clus-
ter to a snippet of text. The ml_cluster workload performs this task by locating the
closest clusters for the text in a model that was previously learned offline. This model
is kept in main memory for performance reasons. The SLO for ml_cluster is a 95%-ile
latency guarantee of tens of milliseconds. The ml_cluster workload is exercised using
an anonymized trace of requests captured from production services.

Compared to websearch, ml_cluster is more memory bandwidth intensive (with 60%
DRAM bandwidth usage at peak) but slightly less compute intensive (lower CPU power
usage overall). It has low network bandwidth requirements. An interesting property of
ml_cluster is that each request has a very small cache footprint, but, in the presence of
many outstanding requests, the combined cache footprint of all the queries translates
to a large amount of cache pressure that spills over to DRAM. This behavior is reflected
in our analysis as a super-linear growth in DRAM bandwidth use for ml_cluster versus
load.

memkeyval is an in-memory key-value store, similar to memcached [Nishtala et al.
2013]. The memkeyval workload is used as a caching service in the backends of several
Google web services. Other large-scale web services, such as Facebook and Twitter, use
memcached extensively. The memkeyval workload has significantly less processing per
request compared to websearch, leading to extremely high throughput in the order of
hundreds of thousands of requests per second at peak. Since each request is processed
quickly, the SLO latency is very low, in the few hundreds of microseconds for the 99%-ile
latency. Load generation for memkeyval uses an anonymized trace of requests captured
from production services.

At peak load, memkeyval is network bandwidth limited. Despite the small amount of
network protocol processing done per request, the high request rate makes memkeyval
compute bound. In contrast, DRAM bandwidth requirements are low (20% DRAM
bandwidth utilization at max load), as requests simply retrieve values from DRAM
and put the response on the wire. The memkeyval workload has both a static working
set in the LLC for instructions, as well as a per-request data working set.

3.2. Characterization Methodology

To understand their sensitivity to interference on shared resources, we ran each of
the three LC workloads with a synthetic benchmark that stresses each resource in
isolation. While these are single node experiments, there can still be significant network
traffic as the load is generated remotely. We repeated the characterization at various
load points for the LC jobs and recorded the impact of the colocation on tail latency.
We used production Google servers with dual-socket Intel Xeons based on the Haswell
architecture. Each CPU has a high core count, with a nominal frequency of 2.3GHz
and 2.5MB of LLC per core. The chips have hardware support for way partitioning of
the LLC.
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We performed the following characterization experiments:

—Cores: As we discussed in Section 2, we cannot share a logical core (a single Hyper-
Thread) between an LC and a BE task because OS scheduling can introduce latency
spikes in the order of tens of milliseconds [Leverich and Kozyrakis 2014]. Hence, we
focus on the potential of using separate HyperThreads that run pinned on the same
physical core. We characterize the impact of a colocated HyperThread that imple-
ments a tight spinloop on the LC task. This experiment captures a lower bound of
HyperThread interference. A more compute or memory intensive microbenchmark
would antagonize the LC HyperThread for more core resources (e.g., execution units)
and space in the private caches (L1 and L2). Hence, if this experiment shows high
impact on tail latency, we can conclude that core sharing through HyperThreads is
not a practical option.

—LLC: The interference impact of LLC antagonists is measured by pinning the LC
workload to enough cores to satisfy its SLO at the specific load and pinning a cache
antagonist that streams through a large data array on the remaining cores of the
socket. We use several array sizes that take up a quarter, half, and almost all of the
LLC and denote these configurations as LLC small, medium, and big respectively.

—DRAM bandwidth: The impact of DRAM bandwidth interference is characterized in
a similar fashion to LLC interference, using a significantly larger array for streaming.
We use numactl to ensure that the DRAM antagonist and the LC task are placed on
the same socket(s) and that all memory channels are stressed.

—Network traffic: We use iperf , an open source TCP streaming benchmark [iperf
2011], to saturate the network transmit (outgoing) bandwidth. All cores except for
one are given to the LC workload. Since the LC workloads we consider serve request
from multiple clients connecting to the service they provide, we generate interference
in the form of many low-bandwidth “mice” flows. Network interference can also
be generated using a few “elephant” flows. However, such flows can be effectively
throttled by TCP congestion control [Briscoe 2007], while the many “mice” flows of
the LC workload will not be impacted.

—Power: To characterize the latency impact of a power antagonist, the same division
of cores is used as in the cases of generating LLC and DRAM interference. Instead of
running a memory access antagonist, a CPU power virus is used. The power virus is
designed such that it stresses all the components of the core, leading to high power
draw and lower CPU core frequencies.

—OS Isolation: For completeness, we evaluate the overall impact of running a BE
task along with an LC workload using only the isolation mechanisms available in
the OS. Namely, we execute the two workloads in separate Linux containers and
set the BE workload to be low priority. The scheduling policy is enforced by CFS
using the shares parameter, where the BE task receives very few shares compared
to the LC workload. No other isolation mechanisms are used in this case. The BE
task is the Google brain workload [Le et al. 2012; Rosenberg 2013], which we will
describe further in Section 5.1.

3.3. Interference Analysis

Figure 1 presents the impact of the interference microbenchmarks on the tail latency
of the three LC workloads. Each row in the table shows tail latency at a certain load
for the LC workload when colocated with the corresponding microbenchmark. The
interference impact is acceptable if and only if the tail latency is less than 100% of the
target SLO. We color-code red/yellow all cases where SLO latency is violated.

By observing the rows for brain, we immediately notice that current OS isolation
mechanisms are inadequate for colocating LC tasks with BE tasks. Even at low loads,
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Fig. 1. Impact of interference on shared resources on websearch, ml cluster, and memkeyval. Each row is
an antagonist and each column is a load point for the workload. The values are latencies, normalized to the
SLO latency. For the full table of data, refer to the Appendix.

the BE task creates sufficient pressure on shared resources to lead to SLO violations
for all three workloads. A large contributor to this behavior is that the OS allows
both workloads to run on the same core and even the same HyperThread, further
compounding the interference. Tail latency eventually goes above 300% of SLO la-
tency. Proposed interference-aware cluster managers, such as Paragon [Delimitrou
and Kozyrakis 2013] and Bubble-Up [Mars et al. 2011], would disallow these coloca-
tions. To enable aggressive task colocation, not only do we need to disallow different
workloads on the same core or HyperThread, we also need to use stronger isolation
mechanisms.

The sensitivity of LC tasks to interference on individual shared resources varies. For
instance, memkeyval is quite sensitive to network interference, while websearch and
ml_cluster are not affected at all. The websearch workload is uniformly insensitive to
small and medium amounts of LLC interference, while the same cannot be said for
memkeyval or ml_cluster. Furthermore, the impact of interference changes depending
on the load: ml_cluster can tolerate medium amounts of LLC interference at loads
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<50% but is heavily impacted at higher loads. These observations motivate the need
for dynamic management of isolation mechanisms in order to adapt to differences
across varying loads and different workloads. Any static policy would be either too
conservative (missing opportunities for colocation) or overly optimistic (leading to SLO
violations).

We now discuss each LC workload separately, in order to understand their particular
resource requirements.

websearch: This workload has a small footprint and LLC (small) and LLC (med)
interference do not impact its tail latency. Nevertheless, the impact is significant with
LLC (big) interference. The degradation is caused by two factors. First, the inclusive na-
ture of the LLC in this particular chip means that high LLC interference leads to misses
in the working set of instructions. Second, contention for the LLC causes significant
DRAM pressure as well. The websearch workload is particularly sensitive to inter-
ference caused by DRAM bandwidth saturation. As the load of websearch increases,
the impact of LLC and DRAM interference decreases. At higher loads, websearch uses
more cores while the interference generator is given fewer cores. Thus, websearch can
defend its share of resources better.

The websearch workload is moderately impacted by HyperThread interference until
high loads. This indicates that the core has sufficient instruction issue bandwidth for
both the spinloop and websearch until around 80% load. Since the spinloop only ac-
cesses registers, it does not cause interference in the L1 or L2 caches. However, since
the HyperThread antagonist has the smallest possible effect, more intensive antago-
nists will cause far larger performance problems. Thus, HyperThread interference in
practice should be avoided. Power interference has a significant impact on websearch
at lower utilization, as more cores are executing the power virus. As expected, the
network antagonist does not impact websearch, due to websearch’s low bandwidth
needs.

ml_cluster: ml_cluster is sensitive to LLC interference of smaller size, due to the
small but significant per-request working set. This manifests itself as a large jump in
latency at 75% load for LLC (small) and 50% load for LLC (medium). With larger LLC
interference, ml_cluster experiences major latency degradation. The ml_cluster work-
load is also sensitive to DRAM bandwidth interference, primarily at lower loads (see
explanation for websearch). The ml_cluster workload is moderately resistant to Hyper-
Thread interference until high loads, suggesting that it only reaches high instruction
issue rates at high loads. Power interference has a lesser impact on ml_cluster since it
is less compute intensive than websearch. Finally, ml_cluster is not impacted at all by
network interference.

memkeyval: Due to its significantly stricter latency SLO, memkeyval is sensitive to
all types of interference. At high load, memkeyval becomes sensitive even to small LLC
interference as the small per-request working sets add up. When faced with medium
LLC interference, there are two latency peaks. The first peak at low load is caused
by the antagonist removing instructions from the cache. When memkeyval obtains
enough cores at high load, it avoids these evictions. The second peak is at higher
loads, when the antagonist interferes with the per-request working set. At high levels
of LLC interference, memkeyval is unable to meet its SLO. Even though memkeyval
has low DRAM bandwidth requirements, it is strongly affected by a DRAM streaming
antagonist. Ironically, the few memory requests from memkeyval are overwhelmed by
the DRAM antagonist.

The memkeyval workload is not sensitive to the HyperThread antagonist except at
high loads. In contrast, it is very sensitive to the power antagonist, as it is compute-
bound. The memkeyval workload does consume a large amount of network bandwidth,
and thus is highly susceptible to competing network flows. Even at small loads, it is
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Fig. 2. Latency vs. IPC for an example LC job.

completely overrun by the many small “mice” flows of the antagonist and is unable to
meet its SLO.

4. HERACLES DESIGN

We have established the need for isolation mechanisms beyond OS-level scheduling
and for a dynamic controller that manages resource sharing between LC and BE
tasks. Heracles is a dynamic, feedback-based controller that manages in real-time four
hardware and software mechanisms in order to isolate colocated workloads. Heracles
implements an iso-latency policy [Lo et al. 2014], namely that it can increase resource
efficiency as long as the SLO is being met. This policy allows for increasing server
utilization through tolerating some interference caused by colocation, as long as the
the difference between the SLO latency target for the LC workload and the actual
latency observed (latency slack) is positive. In its current version, Heracles manages
one LC workload with many BE tasks. Since BE tasks are abundant, this approach is
sufficient to raise utilization in many datacenters. We leave colocation of multiple LC
workloads to future work.

4.1. Latency as the Primary Control Input

Heracles uses application-level latency from the LC workload to guide how it tunes
various hardware/software isolation mechanisms to achieve iso-latency performance.
This approach stands in contrast to several previously proposed systems for colocating
workloads [Iyer et al. 2007; Yang et al. 2013; Mars et al. 2011; Zhang et al. 2013], which
use throughput-based metrics such as Instructions Per Cycle (IPC) to guide their deci-
sion making. For workloads with performance measured by throughput, such as batch
jobs, using IPC as a metric is a great way to directly measure how well an application
is running. However, because IPC is a measure of throughput, it cannot capture how
well an user-facing latency-critical application is meeting its target latency SLO.

To demonstrate this point, we measured 99%-ile latency and IPC for a production
Google serving job. During the execution of the job, it was subjected to various sources
of interference that caused both the IPC and the latency to diverge from when the
serving job was running alone. We sampled both the IPC and the latency at various
times and plot one versus the other as a scatter plot in Figure 2. We see that there
exists a general trend that higher IPCs are less likely to lead to quality of service
violations; however, given just an IPC value, there is no way of identifying whether or
not the latency SLO is being violated. For example, consider the points denoted as A
and B in Figure 2. Given the IPC at A, it is unclear if the latency is then A or B. The
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Fig. 3. Latency vs. IPC under different loads for example M/M/1 queue.

ambiguity can lead to wildly different conclusions, as A is well under the latency SLO
while B is far above it.

Fundamentally, IPC cannot capture the latency behavior of an application. This fact
can be explained using queueing theory. Consider an M/M/1 model, which models a
system that has a single worker servicing a single queue where both the inter-arrival
times and the service times are described by exponential distributions. While actual
LC workloads are described by queueing systems more complicated than M/M/1 (e.g.,
multiple workers and queues, non-exponential inter-arrival and service times, etc.),
the M/M/1 model is still a useful example for reasoning about why IPC is not a good
predictor of latency.

In the M/M/1 example, we denote the peak service rate as μ and the average
query arrival rate as λ. The 99%-ile tail latency can be analytically derived as Equa-
tion (1) [Gross 2008]:

r99 = 1
μ − λ

ln
(

100
100 − 99

)
. (1)

The effect that IPC has on tail latency is to reduce the peak service rate (μ) of the
system. For example, if IPC is degraded by 20% due to interference, then the peak
amount of load the system can handle will also be lowered by 20%. Thus, to find the
tail latency of an M/M/1 queue with an IPC degradation, we modify Equation (1) to get
Equation (3):

η = degraded IPC
original IPC

, (2)

r99 = 1
ημ − λ

ln (100) . (3)

From here, the source of the ambiguity for latency and IPC is clear: latency is a two-
dimensional function of η and λ, which cannot be captured by a single variable. This
can be seen in Figure 3, which shows the latency vs. IPC for an example M/M/1 queue
at different loads. For any given IPC degradation, the latency could be one of infinitely
many possibilities.
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Thus, systems that only use IPC as the control metric must necessarily be conser-
vative and keep the IPC of the LC task as high as possible. However, a conservative
approach will not be able to exploit all possible colocation opportunities. For exam-
ple, when the example M/M/1 system is at 25% load, it can afford to have its IPC
degraded by up to 50% before a latency SLO violation occurs. Therefore, Heracles uses
application-level latency as its primary feedback input, allowing Heracles to safely
accommodate some IPC degradation while colocating workloads. This allows Heracles
to realize additional colocations that were previously not allowed under an IPC-only
control scheme, thereby increasing the utilization that Heracles can achieve under an
iso-latency policy. In addition, by using latency that is directly measured from the LC
task, Heracles sidesteps any accuracy issues that can arise from attempting to model
the queueing behavior of the LC job.

4.2. Isolation Mechanisms

Heracles manages four mechanisms to mitigate interference. For core isolation, Her-
acles uses Linux’s cpuset cgroups to pin the LC workload to one set of cores and
BE tasks to another set (software mechanism) [Menage 2007]. This mechanism is
necessary, since in Section 3 we showed that core sharing is detrimental to latency
SLO. Moreover, the number of cores per server is increasing, making core segregation
finer-grained. The allocation of cores to tasks is done dynamically. The speed of core
(re-)allocation is limited by how fast Linux can migrate tasks to other cores, typically
in the tens of milliseconds.

For LLC isolation, Heracles uses the Cache Allocation Technology (CAT) avail-
able in recent Intel chips (hardware mechanism) [Intel 2014]. CAT implements way-
partitioning of the shared LLC. In a highly associative LLC, this allows us to define
partitions at the granularity of a few percentages of the total LLC capacity. CAT can be
configured to create non-overlapping or overlapping partitions, and in Section 4.3 we
explore the differences between those two partitioning schemes. Ultimately, Heracles
uses non-overlapping partitions, with one partition for the LC workload and a second
partition for all BE tasks. Partition sizes can be adjusted dynamically by programming
model specific registers (MSRs), with changes taking effect in a few milliseconds.

There are no commercially available DRAM bandwidth isolation mechanisms. We
enforce DRAM bandwidth limits in the following manner: We implement a software
monitor that periodically tracks the total bandwidth usage through performance coun-
ters and estimates the bandwidth used by the LC and BE jobs. If the LC work-
load does not receive sufficient bandwidth, then Heracles scales down the number
of cores that BE jobs use. We discuss the limitations of this coarse-grained approach in
Section 4.4.

For power isolation, Heracles uses hardware features, namely CPU frequency moni-
toring, Running Average Power Limit (RAPL), and per-core dynamic voltage frequency
scaling (DVFS) [Intel 2014; Kim et al. 2008]. RAPL is used to monitor CPU power at
the per-socket level, while per-core DVFS is used to redistribute power among cores.
Per-core DVFS setting changes go into effect within a few milliseconds. The frequency
steps are in 100MHz and span the entire operating frequency range of the processor,
including Turbo Boost frequencies.

For network traffic isolation, Heracles uses Linux traffic control (software mecha-
nism). Specifically we use the qdisc [Brown 2006] scheduler with hierarchical token
bucket queueing discipline (HTB) to enforce bandwidth limits for outgoing traffic from
the BE tasks. The bandwidth limits are set by limiting the maximum traffic burst
rate for the BE jobs (ceil parameter in HTB parlance). The LC job does not have
any limits set on it. HTB can be updated very frequently, with the new bandwidth
limits taking effect in less than hundreds of milliseconds. Managing ingress network
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Fig. 4. Comparison of shared and exclusive LLC partitioning. Baseline is without any cache partitioning.

interference has been examined in numerous previous works and is outside the scope
of this work [Jeyakumar et al. 2013].

4.3. LLC Partitioning Exploration

CAT allows LLC partitions to be either non-overlapping or overlapping. In the non-
overlapping case, the last-level cache is hard partitioned into two segments: one par-
tition that can only be used by the LC workload, and the other partition can only be
used by the BE jobs (exclusive). In the overlapping case, the LLC is soft partitioned into
a segment that only the LC job can access, and the rest of the cache can be accessed
by either the LC or the BE jobs (shared). Shared partitioning guarantees the LC job
a minimum amount of cache while allowing it to compete with the BE job for the rest
of the LLC. Conversely, exclusive partitioning trades the opportunity to go beyond the
guaranteed partition for more predictability, as the LLC behavior for the LC task is
agnostic of the BE jobs. Intuitively, shared partitioning should have the potential to
perform as well as, if not better than, exclusive partitioning for the same dedicated LC
partition size. However, as we will see shortly, exclusive partitioning of the LLC turns
out to be better than shared partitioning.

We ran an experiment to quantify the performance differences between the shared
and exclusive LLC partitioning schemes. This experiment was conducted by isolating
(to the best of our ability) LLC interference between a single LC workload and a
BE job, using the same techniques as in Section 3. We varied the amount of cache
accessible to the BE job for both partitioning schemes while keeping the QPS on the
LC job constant. We then measured the resulting 99%-ile latency of the LC workload
as well as the efficacy of using LLC partitioning. The latter metric is computed as the
reduction in the number of CPU cycles that are stalled on the backend as computed
using TopDown [Yasin 2014]. We compare both of these metrics to the baseline case of
when both workloads were colocated without any cache partitioning, where both LC
and BE jobs compete for the entire LLC.

Figure 4 shows the differences between the two different schemes for partitioning
the LLC. First, we immediately observe that for this colocation scenario, the best
LC latency in both cases occurs when almost all of the cache is dedicated to the LC
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job, when the BE task can only access at most 10% of the LLC.3 However, exclusive
partitioning is able to achieve a much lower 99%-ile latency in this scenario compared to
shared partitioning. This observation contradicts the intuitive expectation that shared
partitioning should do no worse than exclusive partitioning. The reason behind this
result is that in the shared case, both the LC and BE jobs are heavily contending in
the shared region of the LLC, reducing the performance of the LC workload. This can
be seen in Figure 4(b), where the reduction in backend stall cycles is far greater for
the exclusive scheme than for the shared one. This demonstrates that the performance
degradation due to contention in the shared region outweighs the benefits of allowing
the LC workload to access the entire cache.

While exclusive partitioning allows for greater performance, it comes with a very
significant downside: If misconfigured, exclusive partitioning can severely degrade
performance. In the above experiment, when the LC job is not given enough cache,
namely when BE is given more than 50% of the LLC, exclusive partitioning results
in worse latency than shared partitioning. In the worst case, exclusive partitioning
significantly degrades performance, causing latencies that exceed the latency of the
baseline case of when no cache partitioning was used. Severe latency degradation from
exclusive partitioning occurs when the LC partition does not fit the LC working set size,
causing high numbers of misses to DRAM. Shared partitioning does not suffer from
this effect, as in the worst case it has the same behavior as if no cache partitioning was
used. Thus, shared partitioning trades performance gains for a safer margin of error.

In Heracles, we use exclusive LLC partitioning due to its notably better isolation
guarantees. Indeed, in Figure 4(a), only exclusive partitioning can satisfy the latency
SLO, while shared partitioning comes close but does not quite succeed. Nevertheless,
from the above experiment it is clear that exclusive partitioning requires monitoring
with a feedback loop to ensure that the LC partition is sufficiently large. We apply this
lesson to the design of the sub-controller responsible for adjusting the LLC partitions
in Section 4.5.

4.4. Design Approach

Each hardware or software isolation mechanism allows reasonably precise control of
an individual resource. Given that, the controller must dynamically solve the high-
dimensional problem of finding the right settings for all these mechanisms at any load
for the LC workload and any set of BE tasks. Heracles solves this as an optimization
problem, where the objective is to maximize utilization with the constraint that the
SLO must be met.

Heracles reduces the optimization complexity by decoupling interference sources.
The key insight that enables this reduction is that interference is problematic only
when a shared resource becomes saturated, that is, its utilization is so high that latency
problems occur. This insight is derived by the analysis in Section 3: The antagonists
do not cause significant SLO violations until an inflection point, at which point the tail
latency degrades extremely rapidly. Hence, if Heracles can prevent any shared resource
from saturating, then it can decompose the high-dimensional optimization problem into
many smaller and independent problems of one or two dimensions each. Then each sub-
problem can be solved using sound optimization methods, such as gradient descent.

Since Heracles must ensure that the target SLO is met for the LC workload, it
continuously monitors latency and latency slack and uses both as key inputs in its
decisions. When the latency slack is large, Heracles treats this as a signal that it

3We note that the observation of better performance when dedicating almost all of the LLC to the LC task
should not be interpreted as a general result, namely that for this particular set of workloads neither the
LC nor the BE tasks are memory intensive.
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Fig. 5. The system diagram of Heracles.

is safe to be more aggressive with colocation; conversely, when the slack is small, it
should back off to avoid an SLO violation. Heracles also monitors the load (queries per
second), and, during periods of high load, it disables colocation due to a high risk of
SLO violations. Previous work has shown that indirect performance metrics, such as
CPU utilization, are insufficient to guarantee that the SLO is met [Lo et al. 2014].

Ideally, Heracles should require no offline information other than SLO targets. Un-
fortunately, one shortcoming of current hardware makes this difficult. The Intel chips
we used do not provide accurate mechanisms for measuring (or limiting) DRAM band-
width usage at a per-core granularity. To understand how Heracles’ decisions affect the
DRAM bandwidth usage of latency-sensitive and BE tasks and to manage bandwidth
saturation, we require some offline information. Specifically, Heracles uses an offline
model that describes the DRAM bandwidth used by the latency-sensitive workloads
at various loads, core, and LLC allocations. We verified that this model needs to be
regenerated only when there are significant changes in the workload structure and
that small deviations are fine. There is no need for any offline profiling of the BE tasks,
which can vary widely compared to the better managed and understood LC workloads.
There is also no need for offline analysis of interactions between latency-sensitive
and best-effort tasks. Once we have hardware support for per-core DRAM bandwidth
accounting [Iyer et al. 2007], we can eliminate this offline model.

4.5. Heracles Controller

Heracles runs as a separate instance on each server, managing the local interactions
between the LC and BE jobs. As shown in Figure 5, it is organized as three subcon-
trollers (cores and memory, power, network traffic) coordinated by a top-level controller.
The subcontrollers operate fairly independently of each other and ensure that their re-
spective shared resources are not saturated.

Top-level controller: The pseudo-code for the controller is shown in Algorithm 1.
The controller polls the tail latency and load of the LC workload every 15s. Waiting for
this amount of time allows for a sufficient number of queries to be serviced in order to
calculate statistically meaningful tail latencies. The polling interval is dependent on
the lowest QPS expected to be served and the percentile tail latency to be measured. A
good rule of thumb is to ensure that there are at least 100 queries sampled, namely that
Interval × QPS × (1 − Percentile

100 ) > 100. If the load for the LC workload exceeds 85% of
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ALGORITHM 1: High-level Controller
1 while True :
2 latency = PollLCAppLatency()
3 load = PollLCAppLoad()
4 slack = (target - latency)/target
5 if slack < 0 :
6 DisableBE()
7 EnterCooldown()
8 elif load > 0.85 :
9 DisableBE()

10 elif load < 0.80 :
11 EnableBE()
12 elif slack < 0.10 :
13 DisallowBEGrowth()
14 if slack < 0.05 :
15 be cores.Remove(be cores.Size() - 2)
16 sleep(15)

its peak on the server, then the controller disables the execution of BE workloads. This
empirical safeguard avoids the difficulties of latency management on highly utilized
systems for minor gains in utilization. For hysteresis purposes, BE execution is enabled
when the load drops below 80%. BE execution is also disabled when the latency slack,
the difference between the SLO target and the current measured tail latency, is nega-
tive. A negative latency slack typically occurs when there is a sharp spike in load for
the latency-sensitive workload. We give all resources to the latency-critical workload
for a while (e.g., 5 minutes) before attempting colocation again. The constants used in
the controller were determined through empirical tuning. The threshold for peak load
(85%) can be set higher for a controller that is more aggressive at raising utilization or
lower for a more conservative scheme.

When these two safeguards are not active, the controller uses slack to guide the
subcontrollers in providing resources to BE tasks. If slack is less than 10%, then the
subcontrollers are instructed to disallow growth for BE tasks in order to maintain a
safety margin. If slack drops below 5%, then the subcontroller for cores is instructed
to switch cores from BE tasks to the LC workload. Reassigning CPUs to the LC task
improves the latency of the LC workload and reduces the ability of the BE job to
cause interference on any resources. If slack is above 10%, then the subcontrollers
are instructed to allow BE tasks to acquire a larger share of system resources. Each
subcontroller makes allocation decisions independently, provided of course that its
resources are not saturated. The latency slack margins are also user tunables, where a
higher latency slack leads to a more conservative controller, while too low of a margin
(<5% for when BE tasks are no longer allowed to grow) can lead to control instability
due to inherent variations in application behavior. The 10% threshold was set as a
compromise to achieve both high utilization and control stability.

Core and memory subcontroller: Heracles uses a single subcontroller for core
and cache allocation due to the strong coupling among core count, LLC needs, and
memory bandwidth needs. If there was a direct way to isolate memory bandwidth,
then we would use independent controllers. The pseudo-code for this subcontroller is
shown in Algorithm 2. Its output is the allocation of cores and LLC to the LC and BE
jobs (two dimensions).

The first constraint for the subcontroller is to avoid memory bandwidth saturation.
The DRAM controllers provide registers that track bandwidth usage, making it easy
to detect when they reach 90% of peak streaming DRAM bandwidth. In this case, the
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Fig. 6. Characterization of websearch showing that its performance is a convex function of cores and LLC.

subcontroller removes as many cores as needed from BE tasks to avoid saturation.
Heracles estimates the bandwidth usage of each BE task using a model of bandwidth
needs for the LC workload and a set of hardware counters that are proportional to the
per-core memory traffic to the NUMA-local memory controllers. For the latter counters
to be useful, we limit each BE task to a single socket for both cores and memory
allocations using Linux numactl. Different BE jobs can run on either socket and LC
workloads can span across sockets for cores and memory.

When the top-level controller signals BE growth and there is no DRAM bandwidth
saturation, the subcontroller uses gradient descent to find the maximum number of
cores and cache partitions that can be given to BE tasks. Gradient descent is an
iterative algorithm that finds a local optimum by calculating the gradient of a function
and then taking a step in the direction of the gradient. This process is represented
mathematically as

xn+1 = xn − γn∇F (xn) . (4)

Applied to the core and cache allocation problem, x = (Cores, Cache Size), F is the
performance of the BE task, and γ is the step size (which can change every iteration).
Since the BE task is a batch workload, we can use throughput based metrics for F.
Gradient descent terminates when a convergence criterion is satisfied, which occurs
when no more cores or cache can be transferred from the LC task to the BE jobs.
Gradient descent is guaranteed to converge to a global optimum when the F is a convex
function, as local and global optima will have the same values [Boyd and Vandenberghe
2004].

Offline analysis of both BE and LC applications (Figure 6) shows that their perfor-
mance is a convex function of core and cache resources, thus guaranteeing that gradient
descent will find a global optimum. Since both the number of cores and the LLC parti-
tion sizes are quantized, we use a quantized approximation to gradient descent to find
an allocation of the cores and cache that is sufficiently close to the optimal allocation.
Finding the optimal allocation is done by performing gradient descent in one dimension
at a time, switching between increasing the cores, and increasing the cache given to
BE tasks. Initially, a BE job is given one core and 10% of the LLC and starts in the
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ALGORITHM 2: Core & Memory Sub-Controller
1 def PredictedTotalBW() :
2 return LcBwModel() + BeBw() + bw derivative
3 while True :
4 MeasureDRAMBw()
5 if total bw > DRAM LIMIT :
6 overage = total bw - DRAM LIMIT
7 be cores.Remove(overage/BeBwPerCore())
8 continue
9 if not CanGrowBE() :

10 continue
11 if state == GROW LLC :
12 if PredictedTotalBW() > DRAM LIMIT :
13 state = GROW CORES
14 else:
15 GrowCacheForBE()
16 MeasureDRAMBw()
17 if bw derivative ≥ 0 :
18 Rollback()
19 state = GROW CORES
20 if not BeBenefit() :
21 state = GROW CORES
22 elif state == GROW CORES :
23 needed = LcBwModel() + BeBw() + BeBwPerCore()
24 if needed > DRAM LIMIT :
25 state = GROW LLC
26 else:
27 be cores.Add(1)
28 sleep(2)

GROW_LLC phase. Its LLC allocation is increased as long as the LC workload meets
its SLO, bandwidth saturation is avoided, and the BE task benefits. The rationale for
starting the BE job with a small LLC partition and then slowly growing it is to avoid the
performance cliff that we observed earlier in Section 4.3 for exclusive LLC partitioning
schemes. The next phase (GROW_CORES) grows the number of cores for the BE job.
Heracles will reassign cores from the LC to the BE job one at a time, each time checking
for DRAM bandwidth saturation and SLO violations for the LC workload. If bandwidth
saturation occurs first, then the subcontroller will return to the GROW_LLC phase.
The process repeats until an optimal configuration has been converged on. The search
also terminates on a signal from the top-level controller indicating the end to growth
or the disabling of BE jobs. The cycle time between each iteration is 2s, to allow for
DRAM bandwidth to settle and to be measured with less noise. With a 2s cycle time,
the typical amount of time to convergence is about 30s.

During gradient descent, the subcontroller must avoid trying suboptimal allocations
that will either trigger DRAM bandwidth saturation or a signal from the top-level
controller to disable BE tasks. To estimate the DRAM bandwidth usage of an allocation
prior to trying it, the subcontroller uses the derivative of the DRAM bandwidth from
the last reallocation of cache or cores. Heracles estimates whether it is close to an SLO
violation for the LC task based on the amount of latency slack.

Power subcontroller: The simple subcontroller described in Algorithm 3 ensures
that there is sufficient power slack to run the LC workload at a minimum guaranteed
frequency. This frequency is determined by measuring the frequency used when the
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ALGORITHM 3: CPU Power Sub-Controller
1 while True :
2 power = PollRAPL()
3 ls freq = PollFrequency(ls cores)
4 if power > 0.90×TDP and ls freq < guaranteed :
5 LowerFrequency(be cores)
6 elif power ≤ 0.90×TDP and ls freq ≥ guaranteed :
7 IncreaseFrequency(be cores)
8 sleep(2)

ALGORITHM 4: Network Sub-Controller
1 while True :
2 ls bw = GetLCTxBandwidth()
3 be bw = LINK RATE - ls bw - max(0.05×LINK RATE, 0.10×ls bw)
4 SetBETxBandwidth(be bw)
5 sleep(1)

LC workload runs alone at full load. Heracles uses RAPL to determine the operating
power of the CPU and its maximum design power, or thermal dissipation power (TDP).
It also uses CPU frequency monitoring facilities on each core. When the operating
power is close to the TDP and the frequency of the cores running the LC workload
is too low, it uses per-core DVFS to lower the frequency of cores running BE tasks in
order to shift the power budget to cores running LC tasks. Both conditions must be
met in order to avoid confusion when the LC cores enter active-idle modes, which also
tends to lower frequency readings. If there is sufficient operating power headroom,
Heracles will increase the frequency limit for the BE cores in order to maximize their
performance. The control loop runs independently for each of the two sockets and has a
cycle time of 2s in order to allow the CPU frequency and average power measurements
to settle.

Network subcontroller: This subcontroller prevents saturation of network trans-
mit bandwidth as shown in Algorithm 4. It monitors the total egress bandwidth of flows
associated with the LC workload (LCBandwidth) and sets the total bandwidth limit of
all other flows as LinkRate − LCBandwidth − max(0.05LinkRate, 0.10LCBandwidth).
A small headroom of 10% of the current LCBandwidth or 5% of the LinkRate is added
into the reservation for the LC workload in order to handle spikes. The bandwidth
limit is enforced via HTB qdiscs in the Linux kernel. This control loop is run once every
second, which provides sufficient time for the bandwidth enforcer to settle.

5. HERACLES EVALUATION

5.1. Methodology

We evaluated Heracles with the three production, latency-critical workloads from
Google analyzed in Section 3. We first performed experiments with Heracles on a single
leaf server, introducing BE tasks as we operated the LC workload at different levels of
load. Next, we used Heracles on a websearch cluster with tens of servers, measuring
end-to-end workload latency across the fan-out tree while BE tasks are also running.
In the cluster experiments, we used an anonymized websearch trace that captures both
the different kinds of queries as well as diurnal load variation. In all cases, we used
Google servers deployed in a production environment.

For the LC workloads we focus on SLO latency. Since the SLO is defined over 60s
windows, we report the worst-case latency that was seen during experiments. For the
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Fig. 7. Latency of LC applications colocated with BE jobs under Heracles. For clarity we omit websearch
and ml cluster with iperf as those workloads are extremely resistant to network interference.

production batch workloads, we compute the throughput rate of the batch workload
with Heracles and normalize it to the throughput of the batch workload running alone
on a single server. We then define the Effective Machine Utilization (EMU) = LC
Throughput + BE Throughput. Note that Effective Machine Utilization can be above
100% due to better binpacking of shared resources. We also report the utilization of
shared resources when necessary to highlight detailed aspects of the system.

The BE workloads we use are chosen from a set containing both production batch
workloads and the synthetic tasks that stress a single shared resource. The specific
workloads are as follow:

—stream-LLC streams through data sized to fit in about half of the LLC and is the
same as LLC (med) from Section 3.2. stream-DRAM streams through an extremely
large array that cannot fit in the LLC (DRAM from the same section). We use these
workloads to verify that Heracles is able to maximize the use of LLC partitions and
avoid DRAM bandwidth saturation.

—cpu_pwr is the CPU power virus from Section 3.2. It is used to verify that Heracles
will redistribute power to ensure that the LC workload maintains its guaranteed
frequency.

—iperf is an open-source network streaming benchmark used to verify that Heracles
partitions network transmit bandwidth correctly to protect the LC workload.

—brain is a Google production batch workload that performs deep learning on images
for automatic labelling [Le et al. 2012; Rosenberg 2013]. This workload is very com-
putationally intensive, is sensitive to LLC size, and also has high DRAM bandwidth
requirements.

—streetview is a production batch job that stitches together multiple images to form
the panoramas for Google Street View. This workload is highly demanding on the
DRAM subsystem.

5.2. Individual Server Results

Latency SLO: Figure 7 presents the impact of colocating each of the three LC work-
loads with BE workloads across all possible loads under the control of Heracles. Note
that Heracles attempts to run as many copies of the BE task as possible and maximize
the resources they receive. At all loads and in all colocation cases, there are no SLO
violations with Heracles. Specifically, Heracles is able to protect the LC workload from
interference caused by brain, a workload that even with the state-of-the-art OS iso-
lation mechanisms would render any LC workload unusable. This validates that the
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Fig. 8. EMU achieved by Heracles.

controller keeps shared resources from saturating and allocates a sufficient fraction
to the LC workload at any load. Heracles maintains a small latency slack as a guard
band to avoid spikes and control instability. It also validates that local information
on tail latency is sufficient for stable control for applications with milliseconds and
microseconds range of SLOs. Interestingly, the websearch binary and shard changed
between generating the offline profiling model for DRAM bandwidth and performing
this experiment. Nevertheless, Heracles is resilient to these changes and performs well
despite the somewhat outdated model.

Heracles reduces the latency slack during periods of low utilization for all workloads.
For websearch and ml_cluster, the slack is cut in half, from 40% to 20%. For memkeyval,
the reduction is much more dramatic, from a slack of 80% to 40% or less. The larger
reduction in slack for memkeyval is because the unloaded latency of memkeyval is
extremely small compared to the SLO latency. The high variance of the tail latency for
memkeyval is due to the fact that its SLO is in the hundreds of microseconds, making
it more sensitive to interference than the other two workloads.

Server Utilization: Figure 8 shows the EMU achieved when colocating production
LC and BE tasks with Heracles. In all cases, we achieve significant EMU increases.
When the two most CPU-intensive and power-hungry workloads are combined, web-
search and brain, Heracles still achieves an EMU of at least 75%. When websearch is
combined with the DRAM bandwidth intensive streetview, Heracles can extract suffi-
cient resources for a total EMU above 100% at websearch loads between 25% and 70%.
Heracles is able to achieve an EMU over 100% because websearch and streetivew have
complementary resource requirements, where websearch is more compute bound and
streetview is more DRAM bandwidth bound. The EMU results are similarly positive
for ml_cluster and memkeyval. By dynamically managing multiple isolation mecha-
nisms, Heracles exposes opportunities to raise EMU that would otherwise be missed
with scheduling techniques that avoid interference.
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Fig. 9. Various system utilization metrics of LC applications colocated with BE jobs under Heracles.

Shared Resource Utilization: Figure 9 plots the utilization of shared resources
(cores, power, and DRAM bandwidth) under Heracles control. For memkeyval, we in-
clude measurements of network transmit bandwidth in Figure 10.

Across the board, Heracles is able to correctly size the BE workloads to avoid saturat-
ing DRAM bandwidth. For the stream-LLC BE task, Heracles finds the correct cache
partitions to decrease total DRAM bandwidth requirements for all workloads. For
ml_cluster, with its large cache footprint, Heracles balances the needs of stream-LLC
with ml_cluster effectively, with a total DRAM bandwidth slightly above the baseline.
For the BE tasks with high DRAM requirements (stream-DRAM, streetview), Heracles
only allows them to execute on a few cores to avoid saturating DRAM. As a result, these
workload combinations have lower CPU utilization but very high DRAM bandwidth.
However, EMU is still high, as the critical resource for those workloads is not compute
but memory bandwidth.

Looking at the power utilization, Heracles allows significant improvements to energy
efficiency. Consider the 20% load case: EMU was raised by a significant amount, from
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Fig. 10. Network bandwidth of memkeyval under Heracles.

20% to 60%–90%. However, the CPU power only increased from 60% to 80%, leading
to an energy efficiency gain of 2.3–3.4x. Overall, Heracles achieves significant gains in
resource efficiency across all loads for the LC task without causing SLO violations.

5.3. Websearch Cluster Results

We also evaluate Heracles on a small minicluster for websearch with tens of servers as
a proxy for the full-scale cluster. The cluster root fans out each user request to all leaf
servers and combines their replies. The SLO latency is defined as the average latency
at the root over 30s, denoted as μ/30s. The target SLO latency is set as μ/30s when
serving 90% load in the cluster without colocated tasks. Heracles runs on every leaf
node with a uniform 99%-ile latency target set such that the latency at the root satisfies
the SLO. We use Heracles to execute brain on half of the leafs and streetview on the
other half. Heracles shares the same offline model for the DRAM bandwidth needs of
websearch across all leaves, even though each leaf has a different shard. We generate
websearch load from an anonymized, 12-hour request trace that captures the part of
the daily diurnal pattern when websearch is not fully loaded and colocation has high
potential.

Latency SLO: Figure 11 shows the latency SLO with and without Heracles for the
12-hour trace. Heracles produces no SLO violations while reducing slack by 20%–30%.
Meeting the 99%-ile tail latency at each leaf is sufficient to guarantee the global SLO.
We believe we can further reduce the slack in larger websearch clusters by introducing
a centralized controller that dynamically sets the per-leaf tail latency targets based on
slack at the root [Lo et al. 2014]. Having a centralized controller would allow a future
version of Heracles to take advantage of slack in higher layers of the fan-out tree.

Server Utilization: Figure 11 also shows that Heracles successfully converts the
latency slack in the baseline case into significantly increased EMU. Throughout the
trace, Heracles colocates sufficient BE tasks to maintain an average EMU of 90% and a
minimum of 80% without causing SLO violations. The websearch load varies between
20% and 90% in this trace.

TCO: To estimate the impact on total cost of ownership, we use the TCO calculator
by Barroso et al. with the parameters from the case-study of a datacenter with low

ACM Transactions on Computer Systems, Vol. 34, No. 2, Article 6, Publication date: May 2016.



6:24 D. Lo et al.

Fig. 11. Latency SLO and effective machine utilization for a websearch cluster managed by Heracles.

per-server cost [Barroso et al. 2013]. This model assumes $2,000 servers with a PUE
of 2.0 and a peak power draw of 500W as well as electricity costs of $0.10/kW-hr. For
our calculations, we assume a cluster size of 10,000 servers. Assuming pessimistically
that a websearch cluster is highly utilized throughout the day, with an average load of
75%, Heracles’ ability to raise utilization to 90% translates to a 15% throughput/TCO
improvement over the baseline. This improvement includes the cost of the additional
power consumption at higher utilization. Under the same assumptions, a controller
that focuses only on improving energy-proportionality for websearch would achieve
throughput/TCO gains of roughly 3% [Lo et al. 2014].

If we assume a cluster for LC workloads utilized at an average of 20%, as many in-
dustry studies suggest [Liu 2011; Vasan et al. 2010], then Heracles can achieve a 306%
increase in throughput/TCO. A controller focusing on energy proportionality would
achieve improvements of less than 7%. Heracles’ advantage is due to the fact that it
can raise utilization from 20% to 90% with a small increase to power consumption,
which only represents 9% of the initial TCO. As long as there are useful BE tasks
available, one should always choose to improve throughput/TCO by colocating them
with LC jobs instead of lowering the power consumption of servers in modern datacen-
ters. Also note that the improvements in throughput/TCO are large enough to offset
the cost of reserving a small portion of each server’s memory or storage for BE tasks.

6. RELATED WORK

Isolation mechanisms: There is significant work on shared cache isolation, includ-
ing soft partitioning based on replacement policies [Wu and Martonosi 2008; Xie
and Loh 2009], way partitioning [Ranganathan et al. 2000; Qureshi and Patt 2006],
and fine-grained partitioning [Sanchez and Kozyrakis 2011; Manikantan et al. 2012;
Srikantaiah et al. 2009]. Tessellation exposes an interface for throughput-based ap-
plications to request partitioned resources [Liu et al. 2009]. Most cache partitioning
schemes have been evaluated with a utility-based policy that optimizes for aggre-
gate throughput [Qureshi and Patt 2006]. Heracles manages the coarse-grained, way-
partitioning scheme recently added in Intel CPUs, using a search for a right-sized
allocation to eliminate latency SLO violations. We expect Heracles will work even
better with fine-grained partitioning schemes when they are commercially available.
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Iyer et al. explores a wide range quality-of-service (QoS) policies for shared cache and
memory systems with simulated isolation features [Iyer et al. 2007; Hsu et al. 2006;
Guo et al. 2007a, 2007b; Iyer 2004]. They focus on throughput metrics, such as IPC and
Misses Per Instruction (MPI), and did not consider latency-critical workloads or other
resources such as network traffic. Cook et al. evaluate hardware cache partitioning for
throughput based applications and did not consider latency-critical tasks [Cook et al.
2013]. Wu et al. compare different capacity management schemes for shared caches [Wu
and Martonosi 2008]. The proposed Ubik controller for shared caches with fine-grained
partitioning support boosts the allocation for latency-critical workloads during load
transition times and requires application level changes to inform the runtime of load
changes [Kasture and Sanchez 2014]. Heracles does not require any changes to the LC
task, instead relying on a steady-state approach for managing cache partitions that
changes partition sizes slowly.

There are several proposals for isolation and QoS features for memory con-
trollers [Iyer et al. 2007; Muralidhara et al. 2011; Jeong et al. 2012; Nesbit et al. 2006;
Nagarajan and Gupta 2009; Ebrahimi et al. 2010; Li et al. 2011; Sharifi et al. 2011].
While our work showcases the need for memory isolation for latency-critical workloads,
such features are not commercially available at this point. Several network interface
controllers implement bandwidth limiters and priority mechanisms in hardware.
Unfortunately, these features are not exposed by device drivers. Hence, Heracles and re-
lated projects in network performance isolation currently use Linux qdisc [Jeyakumar
et al. 2013]. Support for network isolation in hardware should strengthen this
work.

The LC workloads we evaluated do not use disks or SSDs in order to meet their
aggressive latency targets. Nevertheless, disk and SSD isolation is quite similar
to network isolation. Thus, the same principles and controls used to mitigate net-
work interference still apply. For disks, we list several available isolation techniques:
(1) the cgroups blkio controller [Menage 2007], (2) native command queuing (NCQ)
priorities [Intel 2003], (3) prioritization in file-system queues, (4) partitioning LC and
BE to different disks, and (5) replicating LC data across multiple disks that allows
selecting the disk/reply that responds first or has lower load [Dean and Barroso 2013].
For SSDs: (1) many SSDs support channel partitions, separate queueing, and priori-
tization at the queue level, and (2) SSDs also support suspending operations to allow
LC requests to overtake BE requests. The techniques mentioned above have been em-
ployed in other solutions to achieve performance isolation for storage and I/O devices.
Prioritizing requests into multiple queues is used by IOFlow to achieve end-to-end
performance isolation for virtualized storage [Thereska et al. 2013]. The IRIX oper-
ating system uses a mechanism similar to the blkio cgroup in order to partition disk
bandwidth [Verghese et al. 1998].

Interference-aware cluster management: Several cluster-management systems
detect interference between colocated workloads and generate schedules that avoid
problematic colocations. Nathuji et al. develop a feedback-based scheme that tunes
resource assignment to mitigate interference for colocated Virtual Machines (VMs)
[Nathuji et al. 2010]. Bubble-flux is an online scheme that detects memory pressure
and finds colocations that avoid interference on latency-sensitive workloads [Yang et al.
2013; Mars et al. 2011]. Bubble-flux has a backup mechanism to enable problematic
colocations via execution modulation, but such a mechanism would have challenges
with applications such as memkeyval, as the modulation would need to be done in
the granularity of microseconds. DeepDive detects and manages interference between
co-scheduled applications in a VM system [Novakovic et al. 2013]. CPI2 throttles low-
priority workloads that interfere with important services [Zhang et al. 2013]. Finally,
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Paragon and Quasar use online classification to estimate interference and to colocate
workloads that are unlikely to cause interference [Delimitrou and Kozyrakis 2013,
2014].

The primary difference of Heracles is the focus on latency-critical workloads and
the use of multiple isolation schemes in order to allow aggressive colocation without
SLO violations at scale. Many previous approaches use IPC instead of latency as the
performance metric [Yang et al. 2013; Mars et al. 2011; Novakovic et al. 2013; Zhang
et al. 2013]. Nevertheless, one can couple Heracles with an interference-aware cluster
manager in order to optimize the placement of BE tasks.

Latency-critical workloads: There is also significant work in optimizing various
aspects of latency-critical workloads, including energy proportionality [Meisner et al.
2009, 2011; Lo et al. 2014; Liu et al. 2014; Kanev et al. 2014], networking perfor-
mance [Kapoor et al. 2012; Belay et al. 2014], and hardware-acceleration [Lim et al.
2013; Putnam et al. 2014; Tanaka and Kozyrakis 2014]. Heracles is largely orthogonal
to these projects.

7. CONCLUSIONS

We present Heracles, a heuristic feedback-based system that manages four isolation
mechanisms to enable a latency-critical workload to be colocated with batch jobs with-
out SLO violations. We evaluated Heracles on several latency-critical and batch work-
loads used in production at Google on real hardware and demonstrated an average
utilization of 90% across all evaluated scenarios without any SLO violations for the
latency-critical job. Through coordinated management of several isolation mechanisms,
Heracles enables colocation of tasks that previously would cause SLO violations. Com-
pared to power-saving mechanisms alone, Heracles increases overall cost efficiency
substantially through increased utilization.

We learned several lessons while developing and implementing Heracles that were
key to achieving high utilization while maintaining latency SLOs: (1) An iso-latency
policy using application level performance information partitions resources more ef-
ficiently than a policy that seeks to maximize the IPC of the latency-critical task.
(2) Thorough empirical characterization of several Google latency critical workloads
demonstrated that shared resource saturation is the main culprit behind significant
performance degradation in highly utilized systems. (3) Conversely, preventing re-
source saturation allows for high utilization while maintaining latency SLO targets,
greatly simplifying the optimization problem.

There are several directions for future work. One such direction is to extend Heracles
with support for additional shared resources, such as disks and SSDs. Another direction
is to integrate Heracles more deeply with the applications it is managing. Giving
Heracles more information about an application’s current behavior, such as task queue
length and profiling data at the function level, could enable a more dynamic and finer-
grained control scheme.

APPENDIX

Here we include the full data for the characterization of interference for different
latency-critical workloads from various interference sources (Figure 1).
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Fig. 12. Continued on next page.
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Fig. 12. Impact of interference on shared resources on websearch, ml cluster, and memkeyval. Each column
is an antagonist and each row is a load point for the workload. The values are latencies, normalized to the
SLO latency.
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