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Flash	is	underutilized

• Flash	provides	higher	throughput	and	lower	
latency	than	disk

• Flash	is	underutilized	in	datacenters due	to	
imbalanced	resource	requirements

PCIe Flash:
– 100,000s	of	IOPS
– 10s	of	µs	latency
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Datacenter	Flash	Use-Case
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Imbalanced	Resource	Utilization
• Sample	utilization	of	Facebook	servers	hosting	a	Flash-
based	key-value	store	over	6	months
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Imbalanced	Resource	Utilization
• Flash	capacity	and	IOPS	are	underutilized	for	long	
periods	of	time
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Imbalanced	Resource	Utilization
• CPU	and	Flash	utilization	vary	with	separate	trends
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Local	Flash	Architecture

App	
Tier	

RAM	

Flash	

NIC	

App	
Tier	

Clients	 TCP/IP	

Datastore	Service	
	
	
	

App	
Servers	

Key-Value	Store	get(k)	
put(k,val)	

	Applica(on	Tier	 Datastore	Tier	

CPU	

So9ware	

Hardware	

9
Provision	Flash	and	CPU	in	a	dependent	manner.



Disaggregated	Flash	Architecture
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Contributions

For	real	applications	at	Facebook,	we	analyze:	

1. What	is	the	performance	overhead	of	
remote	Flash	using	existing	protocols?

2. What	optimizations improve	performance?

3. When	does	disaggregating	Flash	lead	to	
resource	efficiency	benefits?
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Flash	Workloads	at	Facebook

• Analyze	IO	patterns	of	real	Flash-based	Facebook	
applications

• Applications	use	RocksDB,	a	key-value	store	with	
a	log	structured	merge	tree	architecture

IOPS/TB IO	size

Read 2K – 10K 10KB – 50KB

Write 100	– 1K 500KB	– 2MB

Lots	of	random	reads	

Large,	bursty writes
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Workload	Analysis
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iSCSI is	a	standard	network	
storage	protocol	that	

transports	block	storage	
commands	over	TCP/IP



Workload	Analysis
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√ Transparent	to	application
√ Runs	on	commodity	network
√ Scales	datacenter-wide



Workload	Analysis
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Unloaded	Latency
• Remote	access	with	iSCSI	adds	260µs	to	p95	latency,	
tolerable	 for	our	target	application	(latency	SLO	~5ms)

260µs

17



Application	Throughput
• 45%	throughput	drop	with	“out	of	the	box”	iSCSI	Flash
• Need	to	optimize	remote	Flash	server	for	higher	throughput
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Multi-process	 iSCSI
• Vary	number	of	iSCSI	processes	that	issue	IO	
• Want	enough	parallelism,	 avoid	scheduling	interference
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NIC	offloads
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• Enable	NIC	offloads	for	TCP	segmentation	(TSO/LRO)	to	
reduce	CPU	load	on	Flash	server	and	datastore server
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Jumbo	Frames
• Jumbo	frames	further	reduce	overhead	by	reducing	
segmentation	altogether	(max	MTU	9kB)
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Interrupt	Affinity	Tuning
• Steer	NIC	interrupts	to	core	handling	TCP	connection	
and	Flash	interrupts	to	cores	issuing	IO	commands
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Optimized	Application	Throughput
• Steer	NIC	interrupts	to	core	handling	TCP	connection	
and	Flash	interrupts	to	cores	issuing	IO	commands
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Application	Throughput
• 20%	drop	in	application	throughput,	on	average
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Application	Throughput
• At	the	tail,	overhead	of	remote	access	is	masked	by	
other	factors	like	write	interference	on	Flash
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Sharing	Remote	Flash
• Sharing	Flash	among	2	or	more	tenants	leads	to	more	
write	interference	à degrades	tail	performance
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Disaggregation	Benefits

• Make	up	for	throughput	loss	by	cost-effectively	
scaling	resources	with	disaggregation

• Improve	overall	resource	utilization

• Formulate	cost	model	to	quantify	benefits

27



Resource	Savings
• Resource	savings	of	disaggregated	vs.	local	Flash	
architecture	as	app	requirements	scale
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Resource	Savings
• When	storage	scales	at	higher	rate	than	compute,	save	
resources	by	deploying	Flash	without	as	much	CPU
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Resource	Savings
• When	compute	and	storage	demands	remain	balanced,	
no	benefit	with	disaggregation
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Implications	for	System	Design

• Dataplane:	
– Reduce	compute	overhead	of	network	(storage)	stack	

• Optimize	TCP/IP	processing
• Use	a	light-weight	protocol	

– Provide	isolation	mechanisms	for	shared	remote	Flash

• Control	plane:
– Policies	for	allocating	and	sharing	remote	Flash	

• Important	to	consider	write	IO	patterns	of	applications
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20%	drop		
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Conclusion

• Disaggregating	Flash	is	beneficial	because	it	
allows	us	to	cost-effectively	scale	resources:
– Improve	overall	resource	efficiency	
– Compensate	for	20%	throughput	overhead	by	
independently	deploying	application	resources

• System	tuning	improves	performance	~40%,	
more	opportunities	if	redesign	software	stack
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Backup



Remote	Flash	IOPS	
IO-intensive	benchmark:	4kB	random	reads
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Related	Work

• Disaggregated	disk	storage:
– Petal	[ASPLOS’96],	Parallax	 [HotOS’05],	Blizzard	[NSDI’14]

• Disaggregated	Flash	as	distributed	shared	log:
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• Disaggregated	memory:
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