
Flash	Storage	Disaggregation

Ana	Klimovic1,	Christos	Kozyrakis1,4,	
Eno Thereska3,5,	Binu John2 and	Sanjeev Kumar2

1 2 3

4 5



Flash	is	underutilized

• Flash	provides	higher	throughput	and	lower	
latency	than	disk

• Flash	is	underutilized	in	datacenters due	to	
imbalanced	resource	requirements

PCIe Flash:
– 100,000s	of	IOPS
– 10s	of	µs	latency

2



Datacenter	Flash	Use-Case

App	
Tier	

RAM	

Flash	

NIC	

App	
Tier	

Clients	 TCP/IP	

Datastore	Service	
	
	
	

App	
Servers	

Key-Value	Store	get(k)	
put(k,val)	

	Applica(on	Tier	 Datastore	Tier	

CPU	

So9ware	

Hardware	

3

get	(k)



Imbalanced	Resource	Utilization
• Sample	utilization	of	Facebook	servers	hosting	a	Flash-
based	key-value	store	over	6	months

4



Imbalanced	Resource	Utilization
• Sample	utilization	of	Facebook	servers	hosting	a	Flash-
based	key-value	store	over	6	months

5



Imbalanced	Resource	Utilization
• Sample	utilization	of	Facebook	servers	hosting	a	Flash-
based	key-value	store	over	6	months

utilization

6



Imbalanced	Resource	Utilization
• Flash	capacity	and	IOPS	are	underutilized	for	long	
periods	of	time

7

utilization



Imbalanced	Resource	Utilization
• CPU	and	Flash	utilization	vary	with	separate	trends

8

utilization



Local	Flash	Architecture

App	
Tier	

RAM	

Flash	

NIC	

App	
Tier	

Clients	 TCP/IP	

Datastore	Service	
	
	
	

App	
Servers	

Key-Value	Store	get(k)	
put(k,val)	

	Applica(on	Tier	 Datastore	Tier	

CPU	

So9ware	

Hardware	

9
Provision	Flash	and	CPU	in	a	dependent	manner.



Disaggregated	Flash	Architecture

App	
Tier	

RAM	NIC	

App	
Tier	

Clients	 TCP/IP	

Datastore	Service	
	
	
	

App	
Servers	

get(k)	
put(k,val)	

	Applica(on	Tier	 Datastore	Tier	

CPU	

So5ware	

Hardware	

Flash	NIC	

iSCSI	

CPU	 RAM	

read(blk);		write(blk,data)	

Flash	Tier	

Key-Value	Store	

Remote	Block	Service	 So5ware	

Hardware	

Protocol

10



Contributions

For	real	applications	at	Facebook,	we	analyze:	

1. What	is	the	performance	overhead	of	
remote	Flash	using	existing	protocols?

2. What	optimizations improve	performance?

3. When	does	disaggregating	Flash	lead	to	
resource	efficiency	benefits?

11



Flash	Workloads	at	Facebook

• Analyze	IO	patterns	of	real	Flash-based	Facebook	
applications

• Applications	use	RocksDB,	a	key-value	store	with	
a	log	structured	merge	tree	architecture

IOPS/TB IO	size

Read 2K – 10K 10KB – 50KB

Write 100	– 1K 500KB	– 2MB

Lots	of	random	reads	

Large,	bursty writes

12



Workload	Analysis

App
Tier

RAMNIC
TCP/IP

SSDB
server	wrapper	

Application	Tier Datastore Tier

CPU

Software

Hardware

FlashNIC

RocksDB

Remote	Block	Service Software

Hardware

Protocol Flash	Tier

mutilate
load	

generator

13



Workload	Analysis

App
Tier

RAMNIC
TCP/IP

SSDB
server	wrapper	

Application	Tier Datastore Tier

CPU

Software

Hardware

FlashNIC

RocksDB

Remote	Block	Service Software

Hardware

iSCSI Flash	Tier

mutilate
load	

generator

14

iSCSI is	a	standard	network	
storage	protocol	that	

transports	block	storage	
commands	over	TCP/IP



Workload	Analysis

App
Tier

RAMNIC
TCP/IP

SSDB
server	wrapper	

Application	Tier Datastore Tier

CPU

Software

Hardware

FlashNIC

RocksDB

Remote	Block	Service Software

Hardware

iSCSI Flash	Tier

mutilate
load	

generator

15

√ Transparent	to	application
√ Runs	on	commodity	network
√ Scales	datacenter-wide



Workload	Analysis

App
Tier

4GB10
Gb/E

App
Tier

Clients TCP/IP

SSDB
server	wrapper	

mutilate
load	

generator

Application	Tier Datastore Tier

6	cores

Software

Hardware

Intel	P3600	
PCIe Flash

10Gb/E

iSCSI Flash	Tier

RocksDB

Remote	Block	Service Software

Hardware

Measure	
round-trip	
latency

16



Unloaded	Latency
• Remote	access	with	iSCSI	adds	260µs	to	p95	latency,	
tolerable	 for	our	target	application	(latency	SLO	~5ms)

260µs

17



Application	Throughput
• 45%	throughput	drop	with	“out	of	the	box”	iSCSI	Flash
• Need	to	optimize	remote	Flash	server	for	higher	throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Cl
ie
nt
	La

te
nc
y	
(m

s)

QPS	(thousands)

Local	Flash
iSCSI	baseline	 (8	processes)

45%	drop

18



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Cl
ie
nt
	La

te
nc
y	
(m

s)

QPS	(thousands)

Local	Flash
6	iSCSI	processes	(optimal)
8	iSCSI	processes	(default)
1	iSCSI	process

Multi-process	 iSCSI
• Vary	number	of	iSCSI	processes	that	issue	IO	
• Want	enough	parallelism,	 avoid	scheduling	interference

12%

19



NIC	offloads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Cl
ie
nt
	La

te
nc
y	
(m

s)

QPS	(thousands)

Local	Flash
NIC	offload
iSCSI	with	6	processes
iSCSI	baseline	 (8	processes)

• Enable	NIC	offloads	for	TCP	segmentation	(TSO/LRO)	to	
reduce	CPU	load	on	Flash	server	and	datastore server

8%

20



Jumbo	Frames
• Jumbo	frames	further	reduce	overhead	by	reducing	
segmentation	altogether	(max	MTU	9kB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Cl
ie
nt
	La

te
nc
y	
(m

s)

QPS	(thousands)

Local	Flash
Jumbo	frame
NIC	offload
iSCSI	with	6	processes
iSCSI	baseline	 (8	processes)

10%

21



Interrupt	Affinity	Tuning
• Steer	NIC	interrupts	to	core	handling	TCP	connection	
and	Flash	interrupts	to	cores	issuing	IO	commands

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Cl
ie
nt
	La

te
nc
y	
(m

s)

QPS	(thousands)

Local	Flash
Interrupt	affinity
Jumbo	frame
NIC	offload
iSCSI	with	6	processes
iSCSI	baseline	 (8	processes)

4%

22



Optimized	Application	Throughput
• Steer	NIC	interrupts	to	core	handling	TCP	connection	
and	Flash	interrupts	to	cores	issuing	IO	commands

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Cl
ie
nt
	La

te
nc
y	
(m

s)

QPS	(thousands)

Local	Flash
Interrupt	affinity
Jumbo	frame
NIC	offload
iSCSI	with	6	processes
iSCSI	baseline	 (8	processes)

42%

23



Application	Throughput
• 20%	drop	in	application	throughput,	on	average

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 10 20 30 40 50 60 70 80

Cl
ie
nt
	La

te
nc
y	(
m
s)

QPS		(thousands)

local_avg
remote_avg
local_p95
remote_p95

20%	drop	

24



Application	Throughput
• At	the	tail,	overhead	of	remote	access	is	masked	by	
other	factors	like	write	interference	on	Flash

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 10 20 30 40 50 60 70 80

Cl
ie
nt
	La

te
nc
y	(
m
s)

QPS		(thousands)

local_avg
remote_avg
local_p95
remote_p95

10%	
drop	

25

20%	drop	



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100 120 140

Cl
ie
nt
	La

te
nc
y	(
m
s)

QPS	(thousands)

local_avg
remote_avg
local_p95
remote_p95

Sharing	Remote	Flash
• Sharing	Flash	among	2	or	more	tenants	leads	to	more	
write	interference	à degrades	tail	performance

26

20%	drop
on	avg

25%	drop	
@	tail	



Disaggregation	Benefits

• Make	up	for	throughput	loss	by	cost-effectively	
scaling	resources	with	disaggregation

• Improve	overall	resource	utilization

• Formulate	cost	model	to	quantify	benefits

27



Resource	Savings
• Resource	savings	of	disaggregated	vs.	local	Flash	
architecture	as	app	requirements	scale

40%

30%

20%

10%

0%

-10%

Storage	Capacity	Scaling	 Factor

Co
m
pu

te
	In

te
ns
ity
	S
ca
lin
g	
Fa
ct
or

28

%	cost	benefit	of	
disaggregation



Resource	Savings
• Resource	savings	of	disaggregated	vs.	local	Flash	
architecture	as	app	requirements	scale

40%

30%

20%

10%

0%

-10%

Storage	Capacity	Scaling	 Factor

Co
m
pu

te
	In

te
ns
ity
	S
ca
lin
g	
Fa
ct
or

Balanced	CPU	&	
Flash	utilization

%	cost	benefit	of	
disaggregation

29



Resource	Savings
• When	storage	scales	at	higher	rate	than	compute,	save	
resources	by	deploying	Flash	without	as	much	CPU

40%

30%

20%

10%

0%

-10%

Storage	Capacity	Scaling	 Factor

Co
m
pu

te
	In

te
ns
ity
	S
ca
lin
g	
Fa
ct
or

Balanced	CPU	&	
Flash	utilization

Deploy	more	Flash	
servers	than	compute

30

%	cost	benefit	of	
disaggregation



Resource	Savings
• When	compute	and	storage	demands	remain	balanced,	
no	benefit	with	disaggregation

40%

30%

20%

10%

0%

-10%

Storage	Capacity	Scaling	 Factor

Co
m
pu

te
	In

te
ns
ity
	S
ca
lin
g	
Fa
ct
or

Balanced	CPU	&	
Flash	utilization 31

%	cost	benefit	of	
disaggregation



Implications	for	System	Design

• Dataplane:	
– Reduce	compute	overhead	of	network	(storage)	stack	

• Optimize	TCP/IP	processing
• Use	a	light-weight	protocol	

– Provide	isolation	mechanisms	for	shared	remote	Flash

• Control	plane:
– Policies	for	allocating	and	sharing	remote	Flash	

• Important	to	consider	write	IO	patterns	of	applications

32



40%	
	
30%	
	
20%	
	
10%	
	
		0%	
	
-10%	

Storage	Capacity	Scaling	Factor	

Co
m
pu

te
	In
te
ns
ity

	S
ca
lin
g	
Fa
ct
or
	

%	cost	benefit	of		
disaggrega1on	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	
2	

0	 10	 20	 30	 40	 50	 60	 70	 80	

Cl
ie
nt
	L
at
en

cy
	(m

s)
	

QPS		(thousands)	

local_avg	
remote_avg	
local_p95	
remote_p95	

10%		
drop		

34	

20%	drop		

App	
Tier	

RAM	NIC	

App	
Tier	

Clients	 TCP/IP	

Datastore	Service	
	
	
	

App	
Servers	

get(k)	
put(k,val)	

	Applica(on	Tier	 Datastore	Tier	

CPU	

So5ware	

Hardware	

Flash	NIC	

iSCSI	

CPU	 RAM	

read(blk);		write(blk,data)	

Flash	Tier	

Key-Value	Store	

Remote	Block	Service	 So5ware	

Hardware	

Protocol	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

0	 10	 20	 30	 40	 50	 60	 70	 80	

Cl
ie
nt
	L
at
en

cy
	(m

s)
	

QPS	(thousands)	

Local	Flash	
Interrupt	affinity	
Jumbo	frame	
NIC	offload	
iSCSI	with	6	processes	
iSCSI	baseline	(8	processes)	

42%	

32	



Conclusion

• Disaggregating	Flash	is	beneficial	because	it	
allows	us	to	cost-effectively	scale	resources:
– Improve	overall	resource	efficiency	
– Compensate	for	20%	throughput	overhead	by	
independently	deploying	application	resources

• System	tuning	improves	performance	~40%,	
more	opportunities	if	redesign	software	stack

34



Backup



Remote	Flash	IOPS	
IO-intensive	benchmark:	4kB	random	reads

0	

50	

100	

150	

200	

250	

1	tenant	 3	tenants	 6	tenants	

IO
PS
		(
th
ou

sa
nd

s)
	

	

IRQ	affinity	
Jumbo	frame	
NIC	offload	
Mul@-thread	
Baseline	
Mul@-process	

Local	Flash	IOPS	



Cost	Model



Related	Work

• Disaggregated	disk	storage:
– Petal	[ASPLOS’96],	Parallax	 [HotOS’05],	Blizzard	[NSDI’14]

• Disaggregated	Flash	as	distributed	shared	log:
– CORFU	[NSDI’12],	FAWN	[SOSP’09]

• Disaggregated	memory:
–Memory	blade	servers	(Lim	et	al.)	[ISCA’09]

• Rack-scale	disaggregation:
– Pelican	[OSDI’14],	HP	Moonshot,	Intel	Rack-Scale	


