
ISCA 2007 1

Comparing Memory 
Systems for Chip 
Multiprocessors

Jacob Leverich
Hideho Arakida, Alex Solomatnikov,
Amin Firoozshahian, Mark Horowitz,

Christos Kozyrakis

Computer Systems Laboratory
Stanford University



2

Cores are the New GHz

90s: ↑GHz & ↑ILP
Problems: power, complexity, ILP limits

00s: ↑cores
Multicore, manycore, …

M

P

M M M M M

P P P P P

P P P P P P

M M M M M M



3

What is the New Memory System?

M M M M M M

P P P P P P

P P P P P P

M M M M M M

Data ArrayTags

Cache Controller DMA Engine

Local Storage

CacheCache--based Memorybased Memory Streaming MemoryStreaming Memory



4

The Role of Local Memory

Exploit spatial & temporal locality
Reduce average memory access time

Enable data re-use
Amortize latency over several accesses

Minimize off-chip bandwidth
Keep useful data local

Data ArrayTags

Cache Controller DMA Engine

Local Storage

CacheCache--based Memorybased Memory Streaming MemoryStreaming Memory



5

Who Manages Local Memory?

Cache-based Streaming

Locality
Data Fetch Reactive Proactive
Placement Limited mapping Arbitrary
Replacement Fixed-policy Arbitrary
Granularity Cache block Arbitrary

Communication
Coherence Hardware Software

Cache-based: Hardware-managed
Streaming: Software-managed



6

Potential Advantages of 
Streaming Memory

Better latency hiding
Overlap DMA transfers with computation
Double buffering is macroscopic prefetching

Lower off-chip bandwidth requirements
Avoid conflict misses 
Avoid superfluous refills for output data
Avoid write-back of dead data 
Avoid fetching whole lines for sparse accesses

Better energy and area efficiency
No tag & associativity overhead
Fewer off-chip accesses



7

How Much Advantage over 
Caching?

How do they differ in Performance?

How do they differ in Scaling? 

How do they differ in Energy Efficiency?

How do they differ in Programmability?



8

Our Contribution:
A Head to Head Comparison

CacheCache--based Memorybased Memory
vs.vs.

Streaming MemoryStreaming Memory

Unified set of constraints
Same processor core
Same capacity of local storage per core
Same on-chip interconnect
Same off-chip memory channel

Justification
VLSI constraints (e.g., local storage capacity)
No fundamental differences (e.g., core type)



9

Our Conclusions
Caching performs & scales as well as Streaming

Well-known cache enhancements eliminate differences

Stream Programming benefits Caching Memory
Enhances locality patterns
Improves bandwidth and efficiency of caches

Stream Programming easier with Caches
Makes memory system amenable to irregular & 
unpredictable workloads

Streaming Memory likely to be replaced or at 
least augmented by Caching Memory



10

Simulation Parameters
1 – 16 cores: Tensilica LX, 3-way VLIW, 2 FPUs

Clock frequency: 800 MHz – 3.2 GHz

On-chip data memory
Cache-based: 32kB cache, 32B block, 2-way, MESI
Streaming: 24kB scratch pad

DMA engine
8kB cache, 32B block, 2-way

Both: 512kB L2 cache, 32B block, 16-way

System
Hierarchical on-chip interconnect
Simple main memory model (3.2 GB/s – 12.8 GB/s)



11

Benchmark Applications
No “SPEC Streaming”

Few available apps with streaming & caching versions

Selected 10 “streaming” applications
Some used to motivate or evaluate Streaming Memory

Co-developed apps for both systems
Caching: C, threads
Streaming: C, threads, DMA library

Optimized both versions as best we could



12

Benchmark Applications
Video processing

Stereo Depth Extraction
H.264 Encoding 
MPEG-2 Encoding

Image processing
JPEG Encode/Decode
KD-tree Raytracer
179.art

Scientific and data-intensive
2D Finite Element Method
1D Finite Impulse Response
Merge Sort
Bitonic Sort

Irregular

Unpredictable



13

Our Conclusions
Caching performs & scales as well as Streaming

Well-known cache enhancements eliminate differences

Stream Programming benefits Caching Memory
Enhances locality patterns
Improves bandwidth and efficiency of caches

Stream Programming easier with Caches
Makes memory system amenable to irregular & 
unpredictable workloads

Streaming Memory likely to be replaced or at 
least augmented by Caching Memory



14

Parallelism Independent of 
Memory System

MPEG-2 Encoder @ 3.2 GHz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 CPU 2 CPUs 4 CPUs 8 CPUs 16
CPUs

N
or

m
al

iz
ed

 T
im

e

Cache Streaming

6/10 apps little affected by local memory choice

FEM @ 3.2 GHz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

N
or

m
al

iz
ed

 T
im

e

Cache Streaming

12.4x12.4x 13.8x13.8x



15

Local Memory Not Critical For 
Compute-Intensive Applications

16 cores @ 3.2 GHz

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Cache Stream Cache Stream

MPEG-2 FEM

N
or

m
al

iz
ed

 T
im

e

Useful Data Sync

Intuition
Apps limited by compute
Good data reuse, even 
with large datasets 
Low misses/instruction

Note:
“Sync” includes Barriers 
and DMA wait



16

Double-Buffering Hides Latency 
For Streaming Memory Systems

Intuition
Non-local accesses entirely 
overlapped with computation 
DMAs perform efficient SW 
prefetching

Note
The case for memory-
intensive apps not bound by 
memory BW

179.art, Merge Sort

16 cores @ 3.2 GHz, 12.8 GB/s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Stream

FIR

N
or

m
al

iz
ed

 T
im

e

Useful Data Sync



17

Prefetching Hides Latency For 
Cache-Based Memory Systems

16 cores @ 3.2 GHz, 12.8 GB/s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Prefetch Stream

FIR

N
or

m
al

iz
ed

 T
im

e

Useful Data Sync

Intuition
HW stream prefetcher
overlaps misses with 
computation as well
Predictable & regular 
access patterns



18

Streaming Memory Often Incurs 
Less Off-Chip Traffic

The case for apps with large output streams
Avoids superfluous refills for output streams
Not the case for write-allocate, fetch-on-miss caches

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Cac Str Cac Str Cac Str

FIR Merge Sort MPEG-2

N
or

m
al

iz
ed

 O
ff

-c
hi

p 
Tr

af
fic

Write
Read



19

SW-Guided Cache Policies 
Improve Bandwidth Efficiency

Our system: “Prepare For Store” cache hint
Allocates cache line but avoid refill of old data

Xbox360: write-buffer for non allocating writes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Cac PFS Str Cac PFS Str Cac PFS Str

FIR Merge Sort MPEG-2

N
or

m
al

iz
ed

 O
ff-

ch
ip

 T
ra

ffi
c

Write
Read



20

Energy Efficiency Does not 
Depend on Local Memory

Intuition
Energy dominated by 
DRAM accesses and 
processor core
Local store ~2x energy-
efficiency of cache, but 
small portion of total 
energy

Note
The case for compute-
intensive applications

16 cores @ 800 MHz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he

St
re

am

C
ac

he

St
re

am

C
ac

he

St
re

am

MPEG-2 FEM FIR

N
or

m
al

iz
ed

 E
ne

rg
y

DRAM
L2-cache
L-store
D-cache
I-cache
Core



21

Optimized Bandwidth Yields 
Optimized Energy Efficiency

Superfluous off-chip accesses are expensive!
Streaming & SW-guided caching reduce them

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache PFS Stream

FIR

N
or

m
al

iz
ed

 E
ne

rg
y

DRAM
L2-cache
L-store
D-cache
I-cache
Core

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache PFS Stream

FIR

N
or

m
al

iz
ed

 O
ff

-c
hi

p 
Tr

af
fic

Write
Read



22

Our Conclusions
Caching performs & scales as well as Streaming

Well-known cache enhancements eliminate differences

Stream Programming benefits Caching Memory
Enhances locality patterns
Improves bandwidth and efficiency of caches

Stream Programming easier with Caches
Makes memory system amenable to irregular & 
unpredictable workloads

Streaming Memory likely to be replaced or at 
least augmented by Caching Memory



23

Stream Programming for Caches: 
MPEG-2 Example

MPEG-2 example
P() generates a video frame later consumed by T()
Whole frame is too large to fit in local memory
No temporal locality

Opportunity 
Computation on frame blocks are independent

P Predicted
Video Frame T



24

Stream Programming for Caches: 
MPEG-2 Example

Introducing temporal locality
Loop fusion for P() and T() at block level
Intermediate data are dead once T() done

P Predicted
Video Frame T

Predicted block



25

Stream Programming for Caches: 
MPEG-2 Example

Exploiting producer-consumer locality
Re-use the predicted block buffer
Dynamic working set reduced
Fits in local memory; no off-chip traffic

P T

Predicted block



26

Stream Programming for Caches:
MPEG-2 Example

Stream programming 
beneficial for any 
Memory System

Exposes locality that 
improves bandwidth and 
energy efficiency of local 
memory

Stream programming 
toolchains helpful

2 cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Unoptim
ize

d

Optim
ize

d

Stre
am

MPEG-2

N
or

m
al

iz
ed

 O
ff-

ch
ip

 T
ra

ffi
c

Write
Read



27

Our Conclusions
Caching performs & scales as well as Streaming

Well-known cache enhancements eliminate differences

Stream Programming benefits Caching Memory
Enhances locality patterns
Improves bandwidth and efficiency of caches

Stream Programming easier with Caches
Makes memory system amenable to irregular & 
unpredictable workloads

Streaming Memory likely to be replaced or at 
least augmented by Caching Memory



28

Stream Programming is Easier 
with Caches

Stream programming necessary for correctness 
on Streaming Memory

Must refactor all dataflow

Caches can use Stream programming for 
performance, not correctness

Incremental tuning
Doesn’t require up-front holistic analysis

Why is this important?
Many “streaming apps” include some unpredictable 
patterns



29

Specific Examples

Raytracing
Unpredictable tree accesses
Software caching on Cell (Benthin ’06)

Emulation overhead, DMA latency for refills

Tree accesses have good locality on HW caches

3-D shading
Unpredictable texture accesses
Texture accesses have good locality on HW caches
Caches are ubiquitous on GPUs



30

Our Conclusions
Caching performs & scales as well as Streaming

Well-known cache enhancements eliminate differences

Stream Programming benefits Caching Memory
Enhances locality patterns
Improves bandwidth and efficiency of caches

Stream Programming easier with Caches
Makes memory system amenable to irregular & 
unpredictable workloads

Streaming Memory likely to be replaced or at 
least augmented by Caching Memory



31

Limitations of This Work

Did not scale beyond 16 cores
Does cache coherence scale?

Application scope
May not generalize to other domains
General-purpose != application-specific

Sensitivity to local storage capacity
Intractable without language/compiler support



32

Future Work

Scale beyond 16 cores
Exploit streaming SW to assist HW coherence 

Extend application scope
Generalize to other domains
Consider further optimizations

Study sensitivity to local storage capacity
Introduce language/compiler support



33

Thank you!

Questions?



34

Streaming Memory and
L2 Caches

L2 caches mitigate 
overfetch in 
Streaming apps

Unstructured meshes
Motion estimation

search window
reference frames

Motion Estimation

16 cores w/o 512kB L2

0

0.5

1

1.5

2

2.5

Cache Stream Cache Stream

FEM MPEG-2

N
or

m
al

iz
ed

 O
ff-

ch
ip

 T
ra

ffi
c

Write
Read



35

Streaming Memory Occasionally 
Consumes More Bandwidth

The problem
Data-dependent write pattern

Caching
Automatically track modified 
state
Write back only dirty data

Streaming
Writes back everything
Programming burden & 
overhead to track modified 
state

Bitonic Sort

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cache Stream

N
or

m
al

iz
ed

 O
ff-

ch
ip

 T
ra

ffi
c

Write
Read


	Comparing Memory Systems for Chip Multiprocessors
	Cores are the New GHz
	What is the New Memory System?
	The Role of Local Memory
	Who Manages Local Memory?
	Potential Advantages of Streaming Memory
	How Much Advantage over Caching?
	Our Contribution:�A Head to Head Comparison
	Our Conclusions
	Simulation Parameters
	Benchmark Applications
	Benchmark Applications
	Our Conclusions
	Parallelism Independent of Memory System
	Local Memory Not Critical For Compute-Intensive Applications
	Double-Buffering Hides Latency For Streaming Memory Systems
	Prefetching Hides Latency For Cache-Based Memory Systems
	Streaming Memory Often Incurs Less Off-Chip Traffic
	SW-Guided Cache Policies Improve Bandwidth Efficiency
	Energy Efficiency Does not Depend on Local Memory
	Optimized Bandwidth Yields Optimized Energy Efficiency
	Our Conclusions
	Stream Programming for Caches: MPEG-2 Example
	Stream Programming for Caches: MPEG-2 Example
	Stream Programming for Caches: MPEG-2 Example
	Stream Programming for Caches:�MPEG-2 Example
	Our Conclusions
	Stream Programming is Easier with Caches
	Specific Examples
	Our Conclusions
	Limitations of This Work
	Future Work
	Thank you!
	Streaming Memory and�L2 Caches
	Streaming Memory Occasionally Consumes More Bandwidth
	Putting It All Together:�Locality Opts. and Prefetching
	Observations About Stream Programming on a Cache
	Energy Efficiency Does not Depend on Local Memory



