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Google’s MapReduce

� A general-purpose environment for large-scale data processing

• Programming model (API) and runtime system for large clusters

• Functional representation of data parallel tasks

� Easy to use & very successful within Google

• Indexing system, distributed grep & sort, document clustering, 

machine learning, statistical machine translation,  …

� MapReduce supports

• Automatic parallelization and distribution

� Abstracts parallelization, synchronization, and communication issues

• Fault tolerance

� Task monitoring and replication

• I/O scheduling
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// Applied to each input element

// <key, val> intermediate pairs

// Applied to all pairs with same key

// Final output sorted by key

WordCount Example [OSDI’04]

// input: a document
// intermediate output: key=word; value=1
Map(void *input) {

for each word w in input

EmitIntermediate(w, 1);

}

// intermediate output: key=word; value=1
// output: key=word; value=occurrences
Reduce(String key, Iterator values) {

int result = 0;

for each v in values

result += v;

Emit(key, result);

}
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The Phoenix System

� Question: is MapReduce applicable to multicore programming?

• What is the performance? 

• Is the performance scalable & portable? 

• Does it help with locality and fault management? 

• How does it compare to other parallel programming approaches? 

� Phoenix: a shared-memory implementation of MapReduce

• Uses threads instead of cluster nodes for parallelism

• Communicates through shared memory instead of network messages

� Works with CMP and SMP systems

• Current version works with C/C++ and uses P-threads

� Easy to port to other languages or thread environments
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The Phoenix API

� System-defined functions

• int phoenix_scheduler (scheduler_args_t *args)

� Initializes the runtime system  

• void emit_intermediate (void *key, void *val, int key_size)

• void emit (void *key, void *val)

� User-defined functions

• void (*map_t) (map_args_t *args)

� Map function applied on each input element

• void (*reduce_t) (void *key, void **buffer, int count)

� Reduce function applied on intermediate pairs with same key

• int (*key_cmp_t) (const void *key1, const void *key2)

� Function that compares two keys

• int (*splitter_t) (void *input, int size, map args t *args)

� Splits input data across Map tasks (optional)

Simple & narrow API. Similar to Google’s API
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The Phoenix Runtime

� Orchestrates program execution across multiple threads

• Initiates and terminates threads (workers) 

• Assigns map & reduce tasks to workers

• Handles buffer allocation and communication

� Key runtime features

• Dynamic scheduling of tasks for load balancing

• Communication through pointer exchange (when possible)

• Locality optimization through granularity adjustment

• Support for failure recovery

� Details of parallel execution are hidden from programmer

• Low-level threading, communication, scheduling, …
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Phoenix Execution Overview
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Input Data Splitting

� Divides input data to chunks for map tasks

• Small chunk � map overhead; large chunk � locality issues

� Phoenix: chunk size determined by cache size for locality 

• Or programmer provides custom splitter
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Map Stage

� Each task applies map function to an input chunk

• Phoenix: typically 100s of tasks multiplexed to available workers

• No reduce tasks are started before map tasks complete

� Intermediate pairs partitioned to reduce queues based on keys

• Partitioning can introduce significant overhead!
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Reduce Stage

� Each task processes a key set from the reduce queues

• Dynamic scheduling used for reduce tasks as well

� A poor partition function can lead to significant imbalance

• Default partition function based on key hashing

• Programmer can provide custom partition function
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Merge Stage

� Combines reduce output queues to single sorted output

• May be unnecessary for some applications

• But merge time tends to be small compared to map/reduce time

� Phoenix: binary merging of reduce queues into single queue

• Overhead increases with number of reduce tasks
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Potential Performance Detractors

� Significant detractors
• Partitioning overhead: communication and grouping requirements

• Model overhead: particularly due to calls to emit/emit_intermediate

• Key management: some apps do not naturally associate keys with data

• Repeated Map/Reduce invocations: necessary for some apps

� Practically insignificant issues
• Final merging & sorting: insignificant compared to other tasks

• Buffer management: extensive (re-)use of pre-allocated buffers

• Reduce imbalance: handled through dynamic scheduling 

• Serialized input splitting: most map tasks involve non-trivial work
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Phoenix Fault Tolerance

� Focus: transient or permanent errors in workers 

� Error detection: worker time-out  

• Execution time of similar tasks used as yardstick

� Error recovery

• Restart or potentially re-assign affected tasks

• Handle input/output buffer management

� Future work

• Fault tolerance for the scheduler

• Error detection and isolation through worker sandboxing
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Evaluation Methodology

� Shared-memory systems

• CMP: Niagara-based Sun Fire T1200 (8 CPUs, 4 threads/CPU)

• SMP: Sun Ultra E6000 (24 CPUs)

� SMP results similar to CMP � portable performance

� See paper for details

� 8 applications

• Domains: enterprise, scientific, consumer

• Three code versions: sequential, MapReduce (Phoenix), P-threads

� Optimized independently 

� Experiments

• Talk: performance & scalability, Phoenix Vs. P-threads

• See paper for: dependency to data-set size, dependency to input 

task granularity, (soft & hard) fault injection experiment 
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Applications

� Word count – determine frequency of words in documents

� String match – search file with keys for an encrypted word

� Reverse Index – build reverse index for links in HTML files

� Linear regression – find the best fit line for a set of points

� Matrix multiply – dense integer matrix multiplication

• MapReduce version introduces coarse-grain coordinate variables

� Kmeans – clustering algorithm for 3D data points 

• Multiple MapReduce invocation with translation step

� PCA – principal component analysis on a matrix

• MapReduce version introduces coordinate variables

� Histogram – frequency of RGB components in images

• There is no need for keys in original algorithm
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CMP Speedup

� Good scalability across all applications

• Absolute speedup depends on importance of various detractors

• Note for CMP: 1 core = 4 threads (4 workers)

� Improved locality leads to significant improvements for some apps

� At high core counts: some bandwidth saturation or load imbalance
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Phoenix Vs. P-threads

� Phoenix equal to P-threads if algorithm matches MapReduce model

• Note that P-threads’ low-level API is more flexible

� Anecdote: we looked at Phoenix behavior to tune some Pthreads codes

� P-threads is better for algorithms that do not fit MapReduce model

• Does not use keys, requires multiple MapReduce iterations, …
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Conclusions 

� Phoenix: a shared-memory implementation of MapReduce

• MapReduce API and runtime system for C/C++

� Uses threads instead of cluster nodes for parallelism

� Communicates through shared memory instead of network 

messages

� Dynamic scheduling, locality management, fault recovery, …

• Scalable & portable performance, compares well to P-threads

� Future work 

• Improve queue structures

• Automatic configuration detection

• Better fault detection 

• Experiment with more systems & apps
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Questions? 

�Want a copy of Phoenix? 

• Will post the source code at http://csl.stanford.edu/~christos


