

A Chip-Multiprocessor with Transactional Memory Support

Njuguna Njoroge, Jared Casper, **Sewook Wee**, Yuriy Teslyar, Daxia Ge, Christos Kozyrakis, and Kunle Olukotun

Transactional Coherence and Consistency (TCC) Group Computer Systems Laboratory Stanford University http://tcc.stanford.edu

ATLAS is...

- 8-way Chip-Multiprocessor (CMP) System with Transactional Memory Support
- Full System Prototype Implementation on the Berkeley Emulation Engine 2 (BEE2) board with 5 FPGAs
- Fast and Practical Software Development Platform
 - 100x Faster than the equivalent Software Simulator
 - Full Operating System Support

Outline

- Introduction
- Transactional Memory Overview
- ATLAS System Implementation
- Evaluation
- Conclusion

Introduction

- Chip Multi-Processor (CMP) is NOW
 - Increased Transistor budgets

Scalable Performance w/o power and complexity challenge

- Diminishing return from single-core chips
- Most of processor vendors are toward CMPs

How to program the CMP?

- Conventional Parallel Programming is Difficult
 - Fine-grain locking for the high performance
 - Error-prone (Deadlock / Livelock)
- Transactional Memory (TM) makes it easier
 - Program with large atomic regions
 - Keep the performance of fine-grained locking
- TM has been studied actively from academia & industry
- One Missing Piece:
 - Nobody made a real system with TM support
 - Fast platform to develop applications

ATLAS's Contributions

- The <u>First Hardware Prototype</u>
 - 8-way CMP with TM support (TCC Protocol)
 - <u>Full system support</u> powered by one separate service processor running Linux OS
- The First Evaluation of TM on the real system
 - TM application scales well on ATLAS as promised
- Fast Software Development Platform
 - Runs on 100MHz Real Hardware
 - Runtime Performance Profiler
 - Guided Performance Tuning

Transactional Memory Overview

Transaction:

- A building block of a program
- A Critical Region
- Executed Atomically and Isolated
- Programmer wraps it with TM API
- Rely on Optimistic Concurrency

Optimistic Concurrent Execution assumes that data conflict happens rarely in the runtime

TCC Execution Model

ATLAS Implementation

Requirements

- Read Set & Write Set Buffer
- Conflict Detection
- Transaction Checkpoint to Rollback

ATLAS Implementation

- Modified L1 Data Cache for Read Set & Write Set Buffer
- Modified L1 Snooping Hardware for Conflict Detection
- Special Memory for the Register Checkpoint to Rollback

Issue

- PowerPC 405 hardcore processor on Xilinx Virtex 2 Pro FPGA
- Fast, stable, and abundant software support.
- Disabled internal D-Cache → 13 cycles cache hit latency.

L1 Cache with TCC support

ATLAS Architectural View

ATLAS Hardware Mapping

Mapping ATLAS on the BEE2

User

Xilinx XC2VP70

- 24% LUTS and 10% BRAMs
- IBM PowerPC 405 @ 300MHz
- 16KB 2-way I-Cache & D-Cache
- **512 MB DDR2 DRAM @ 200MHz**
- 10/100M bps Ethernet, RS232 UART, 512 MB Compact Flash
- MontaVista 3.1 Linux (kernel v2.4.30)

Xilinx XC2VP70

- 26% LUTS and 32% BRAMs
- IBM PowerPC 405 @ 100MHz
- 16KB 2-way I-Cache
- Disabled internal D-Cache
- 32KB 4-way D-Cache w/ TCC Support

Sewook Wee @ Stanford University

Ctrl FPGA

Ilcor

1. d. d.

Interchip Link

100MHz

ATLAS Software Stack

TM Application	
ΤΜ ΑΡΙ	ATLAS Profiler
ATLAS Subsystem	
Linux OS	
ATLAS HW on BEE2	

- **TM** Application can be easily written with TM API.
- ATLAS Profiler provides a runtime profiling and guided performance tuning.
- ATLAS subsystem provides Linux OS support for the TM application.

ATLAS Subsystem Routine

ATLAS Full System Support

Serialize for irrevocable requests.

- System Call
- Page-out

ATLAS Runtime Profiler

- TM Application's Performance Tuning point
 - Reduce Violation due to the data conflict
 - Reduce Serialization due to the speculative buffer overflow
- It is inspired by TAPE
- It records
 - Most Significant Violations
 - Data address, Occurrence count,
 PC of the data access, Violator transaction,
 Wasted clock cycle.
 - Most Significant Overflows
 - Data address, Occurrence count,
 PC of the data access, Serialized clock cycle.

Evaluation: Speedup

 ATLAS shows that TM scales well with most of benchmarks.

Number of Processors

- Some applications inherently does not perfectly scale.
 - hashtable : Poor Locality
 - Mp3d: Data Dependency

Evaluation: Visibility

Applications with 1/2/4/8 processor configuration

- ATLAS provides easier way of application analysis.
- It matches well with our in-house software simulator.
 - 100x Faster than the software simulator.

Conclusion

- ATLAS is the first full-system prototype of a CMP with hardware transactional memory support.
- ATLAS shows that TM parallel program results good speedup performance.
- ATLAS provides fast software development platform with runtime performance profiling and guided tuning.

Your comments and questions are welcomed. tcc_fpga_xtreme@mailman.stanford.edu

Sewook Wee @ Stanford University