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Instruction delivery is a critical component for wide-issue, high-frequency processors since its
bandwidth and accuracy place an upper limit on performance. The processor front-end accuracy
and bandwidth are limited by instruction-cache misses, multicycle instruction-cache accesses, and
target or direction mispredictions for control-flow operations. This paper presents a block-aware
instruction set (BLISS) that allows software to assist with front-end challenges. BLISS defines basic
block descriptors that are stored separately from the actual instructions in a program. We show
that BLISS allows for a decoupled front-end that tolerates instruction-cache latency, facilitates
instruction prefetching, and leads to higher prediction accuracy.
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1. INTRODUCTION

Effective instruction delivery is vital for superscalar processors operating at
high clock frequencies [Patt 2001; Ronen et al. 2001]. The rate and accuracy at
which instructions enter the processor pipeline set an upper limit to sustained
performance. Consequently, wide-issue designs place increased demands on
the processor front-end, the engine responsible for control-flow prediction and
instruction fetching. The front-end must mitigate three basic performance de-
tractors: instruction-cache misses that cause long instruction delivery stalls;
target and direction mispredictions for control-flow instructions that send er-
roneous instructions to the execution core and expose the pipeline depth; and
multicycle instruction cache accesses in high-frequency designs that introduce
additional uncertainty about the existence and direction of branches within
the instruction stream. The cost of these detractors for a superscalar processor
is up to 48% performance loss and 21% increase in total energy consumption
[Zmily and Kozyrakis 2005].
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To address these issues in a high performance, yet energy and complexity
effective, way, we propose a block-aware instruction set architecture (BLISS)
[Zmily et al. 2005]. BLISS defines basic block descriptors in addition to and
separately from the actual instructions in each program. A descriptor provides
sufficient information for fast and accurate control-flow prediction without ac-
cessing or parsing the conventional instruction stream. It describes the type of
the control-flow operation that terminates the basic block, its potential target,
and the number of instructions it contains. The BLISS instruction set allows
the processor front-end to access the software-defined basic block descriptors
through a small cache that replaces the branch target buffer (BTB). The de-
scriptors’ cache decouples control-flow speculation from instruction-cache ac-
cesses. Hence, the instruction-cache latency is no longer in the critical path of
accurate prediction. The fetched descriptors can be used to accurately prefetch
instructions and reduce the impact of instruction-cache misses. Furthermore,
the control-flow information available in descriptors allows for judicious use of
branch predictors, which reduces interference and training time and improves
overall prediction accuracy.

Moreover, the architecturally visible basic block descriptors provide a flexi-
ble mechanism for communicating compiler-generated hints at the granularity
of basic blocks without modifying the conventional instruction stream or affect-
ing its instruction cache footprint. Compiler hints can be used to improve the
program code density, to improve performance by guiding the hardware, or to
reduce complexity and power consumption by replacing hardware structures.
In this paper, we use the mechanism to implement branch prediction hints
that lead to additional prediction accuracy, performance, and energy savings
for BLISS-based processors.

The specific contributions of the paper are:

¢ We describe a block-aware ISA (BLISS) that provides basic block descriptors
in addition to and separately from the actual instructions. We describe a set of
optimizations during code generation that eliminate the effect of basic block
descriptors on code size and allow for up to 18% code density improvements
over conventional architectures.

¢ We propose a decoupled front-end for the block-aware instruction set. The
new design replaces the hardware-based branch target buffer with a simple
cache for the software-generated basic block descriptors. We show that the
BLISS-based design leads to 20% performance improvement and 14% total
energy savings over a processor with a conventional front-end.

¢ We show that the BLISS-based design compares favorably to a processor
with an aggressive front-end that forms extended basic blocks and imple-
ments similar performance and energy optimizations using hardware-only
techniques[Reinman et al. 1999b, 2001]. The static information available in
block descriptors allows the BLISS-based design to achieve a better balance
between under and overspeculation in the front-end and achieve 13% higher
performance and 7% additional total energy savings.

¢ We demonstrate that the benefits of the block-aware instruction set are robust
across a wide range of design parameters for superscalar processors, such
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4 8 4 13 3
| Type | Offset | Length | Instruction Pointer | Hints |
Type : basic block type (type of terminating branch) Offset: displacement for PC-relative branches and jumps

- fall-through (FT)
- backward conditional branch (BR_B) Length: number of instruction in the basic block (0..15)
- forward conditional branch (BR_F)
- jump (J) Instruction pointer :
- jump-and-link (JAL) address of the 1st instruction in the block (bits [14:2])
- jump register (JR) bits [31:15] are stored in the TLB
- jump-and-link register (JALR)
- call return (RET) Hints: optional compiler-generated hints
- zero-overhead loop (LOOP) used for static branch hints in this study

Fig. 1. The 32-bit basic block descriptor format in BLISS.

as issue width (four-way and eight-way), instruction-cache size and latency,
branch target cache size, and associativity.

Overall, this work demonstrates the potential of delegating hardware func-
tions in superscalar processors to software using an expressive instruction set.
The result is a processor with simpler hardware structures that performs better
and consumes less energy than aggressive hardware designs that operate on
conventional instruction sets.

The remainder of this paper is organized as follows. In Section 2, we present
the block-aware instruction set. Section 3 describes the modified front-end that
exploits the basic block information available in the proposed ISA. Section 4
overviews the experimental methodology used in this paper. In Section 5, we an-
alyze and compare the benefits of our proposal by measuring performance and
energy consumption for a wide range of processor configurations. In Section 6
we discuss the related research that this work is based on. Section 7 provides
a summary and highlights future work.

2. BLOCK-AWARE INSTRUCTION SET

Our proposal for addressing the front-end performance is based on a block-
aware instruction set (BLISS) that explicitly describes basic blocks [Zmily et al.
2005]. A basic block (BB) is a sequence of instructions starting at the target or
fall-through of a control-flow instruction and ending with the next control-flow
instruction or before the next potential branch target.

2.1 Instruction Set

BLISS stores the definitions for basic blocks in addition to and separately from
the ordinary instructions they include. The code segment for a program is di-
vided in two distinct sections. The first section contains descriptors that define
the type and boundaries of blocks, while the second section lists the actual in-
structions in each block. Figure 1 presents the format of a basic block descriptor
(BBD). Each BBD defines the type of the control-flow operation that terminates
the block. The LOOP type is a zero-overhead loop construct similar to that in the
PowerPC ISA [May et al. 1994]. The BBD also includes an offset field to be used
for blocks ending with a branch or a jump with PC-relative addressing. The
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numeqz=0;
for (i=0; i<N; i++)
if (a[i]==0) numeqz++;

else foo();
@)
mip BLISS code
..... addu ) .r'4-, ) rO, rO B BB descriptors Instructions
‘Ll 1w 16, 0(rl)  : BEDI: FT, _, 1, e— Y aaan rd, 20, ¥0 -
: bneqz r6, L2 E BBD2 : BR_F, BBD4, 2, .—}:-1.“; U ;6‘,. .O'(;l')' o

addui r4, rd, 1 - BBD3: J, BBD5, 1, ‘bneqz 16 :
: 3 L3 BBD4: JALR, __, 1, \addui rd, r4, 1 .
JL2: jalr r3 . BBD5: BR_B, BBD2, 2, \jalr 3 .

Fig. 2. Example program in (a) C source code, (b) MIPS assembly, and (c) BLISS assembly. In
(b) and (c), the instructions in each basic block are identified with dotted-line boxes. Register r3
contains the address for the first instruction (b) or first basic block descriptor (c) of function foo.
For illustration purposes, the instruction pointers in basic block descriptors are represented with
arrows.

actual instructions in the basic block are identified by the pointer to the first
instruction and the length field. The BBD only provides the lower bits ([14:2])
of the instruction pointer; bits ([31:15]) are stored in the TLB. The last BBD
field contains optional compiler-generated hints, which we discuss in detail in
Section 2.3. The overall BBD length is 32 bits.

Figure 2 presents an example program that counts the number of zeros in
array a and calls foo () for each nonzero element. With a RISC ISA like MIPS,
the program requires eight instructions (Figure 2b). The four control-flow oper-
ations define five basic blocks. All branch conditions and targets are defined
by the branch and jump instructions. With the BLISS equivalent of MIPS
(Figure 2c), the program requires five basic block descriptors and seven in-
structions. All PC-relative offsets for branch and jump operations are available
in BBDs. Compared to the original code, we have eliminated the j instruction.
The corresponding descriptor (BBD3) defines both the control-flow type (J) and
the offset; hence, the jump instruction itself is redundant. However, we cannot
eliminate either of the two conditional branches (bneqz, bne). The corresponding
BBDs provide the offsets but not the branch conditions, which are still specified
by the regular instructions. However, the regular branch instructions no longer
need an offset field, which frees a large number of instruction bits. Similarly, we
have preserved the jalr instruction because it allows reading the jump target
from register r3 and writing the return address in register r31.

BLISS treats each basic block as an atomic unit of execution, which is similar
to the block-structured ISA [Hao et al. 1996; Melvin and Patt 1995]. When
a basic block is executed, either every instruction in the block is retired or
none of the instructions in the block are retired. After any misprediction, the
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processor resumes execution at a basic block boundary and there is no need to
handle partially committed basic blocks. Atomic execution is not a fundamental
requirement, but it leads to several software and hardware simplifications. For
instance, it allows for a single program counter that only points within the
code segment for basic block descriptors. The execution of all the instructions
associated with each descriptor updates the PC so that it points to the descriptor
for the next basic block in the program order (PC + 4 or PC + offset). The PC
does not point to the instructions themselves at any time. Atomic basic block
execution requires that the processor has sufficient physical registers for a
whole basic block (15 in this case). For architectures with software handling
of TLB misses, the associativity of the data TLB must be at least as high as
the maximum number of loads or stores allowed per block. For the applications
studied in Section 5, a limit of eight load/stores per block does not cause a
noticeable change in code size or performance. Other precise exceptions are
handled as described in Melvin and Patt [1995].

BLISS compresses the control-flow address space for programs as each BBD
corresponds to four to eight instructions, on average (see Section 5.2). This
implies that the BBD offset field requires fewer bits compared to the regular
ISA. For cases where the offset field is not enough to encode the PC-relative
address, an extra BBD is required to extend the address. The dense PCs used
for branches (BBDs) in BLISS also lead to different interference patterns in
the predictors than what we see with the PCs in the original ISA. For the
benchmarks and processors studied, a 1% improvement in prediction accuracy
is achieved with BLISS compared to the regular ISA because of the dense PCs.
A thorough evaluation of this issue is left for future work.

The redistribution of control-flow information in BLISS between basic block
descriptors and regular instructions does not change which programming
constructs can be implemented with this ISA. Function pointers, virtual meth-
ods, jump tables, and dynamic linking are implemented in BLISS using jump-
register BBDs and instructions in an identical manner to how they are imple-
mented with conventional instruction sets. For example, the target register (r3)
for the jr instruction in Figure 2 could be the destination register of a previous
load instruction.

2.2 Code Size

A naive generation of binary code for BLISS would introduce a basic block
descriptor for every four to eight instructions. Hence, BLISS would lead to sig-
nificant code size increase over a conventional instruction set such as MIPS.
However, BLISS allows for aggressive code optimizations that exceed the capac-
ity for the additional descriptors and lead to overall code density advantages.
As shown in the example in Figure 2, all jump instructions can be removed
as they no longer provide any additional information. Moreover, careful ISA
encoding allows us to eliminate a portion of the conditional branch instructions
that perform a simple test (equal/not-equal to zero) to a register value produced
within the same basic block. Such a simple test can be encoded within the pro-
ducing instruction. Hence, by introducing condition testing versions for a few
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BLISS code Optimized BLISS code
BB descriptors BB descriptors
BBDI: BR_F, BBD3, , ¢ ) beq r8, rl BBDI: BR_F, BBD3, , ¢— 3 beq r8, rl
BBDZ: J , BBD4, 2, ._’, add r3, r2, r8 . BBD2: J , BBD4, 2, lw £6,1492(r30)
BBD3: JAL, foo, 3, .\ addiu rl1l7, r0, 1 BBD3: JAL, foo, 3, >< " addu rd, 0, r2
BBD4 : Y 1w r6,1492(r30): BBDA: ‘add r3, r2, 8 |
! addu r4, 0, r2 \» addiu rl7, r0, 1

. add r3, r2, r8

addiu rl7, r0, 1
(@ (b)

Fig. 3. Example to illustrate the block-subsetting code optimization. (a) Original BLISS code.
(b) BLISS code with the block-subsetting optimization. For illustration purposes, the instruction
pointers in basic block descriptors are represented with arrows.

common instructions, such as addition, subtraction, and logical operations, we
can eliminate a significant portion of branches. Note that the branch target is
provided by the basic block descriptor and does not need to be provided by any
regular instruction.

BLISS also facilitates the removal of repeated instruction sequences [Cooper
and McIntosh 1999]. All instructions in a basic block can be eliminated, if
the exact sequence of the instructions can be found elsewhere in the binary.
We maintain the separate descriptor for the block, but change its instruction
pointer to point to the unique location in the binary for that instruction se-
quence. We refer to this optimization as block-subsetting. Figure 3 presents an
example. The two instructions in the second basic block in the original code
appear in the exact order toward the end of the instruction section. There-
fore, they can be removed as long as the instruction pointer for BBD2 is up-
dated. Block-subsetting leads to significant code size improvements because
programs frequently include repeated code patterns. Moreover, the compiler
generates repeated patterns for tasks like function and loop setup and stack
handling. Instruction similarity is also improved because BLISS stores branch
offsets in the block descriptors and not in regular instructions. Neverthe-
less, block-subsetting can affect the locality exhibited in instruction cache ac-
cesses. To avoid negative performance impact, block-subsetting can be applied
selectively.

2.3 Software Hints

BLISS provides a versatile mechanism for conveying software-generated hints
to the processor pipeline. The use of compiler-generated hints is a popular
method for overcoming bottlenecks with modern processors [Schlansker and
Rau 1999]. The hope is that, given the higher level of understanding of pro-
gram behavior or profiling information, the compiler can help the processor
with selecting the optimal policies and with using the minimal amount of
hardware in order to achieve the highest possible performance at the lowest
power consumption or implementation cost. A compiler could attach hints to
executable code at various levels of granularity—with every instruction, basic
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block, loop, function call, etc. Specifying hints at the basic block granularity
allows for fine-grain information without increasing the length of all instruction
encodings.

2.3.1 Potential Uses of Hints Mechanism. The last field in each basic

block descriptor in Figure 1 provides a flexible mechanism for communicat-
ing compiler-generated hints at basic block granularity. Since descriptors are
fetched early in the processor pipeline, the hints can be useful with tasks and
decisions at any part of the processor (control-flow prediction, instruction fetch,
instruction scheduling, etc.). The following is a nonexhaustive list of potential
uses of the hints mechanism.

Code density: The hints field can be used to aggressively interleave 16
and 32-bit instructions at basic block granularity without the overhead
of additional instructions for switching between 16 and 32-bit modes
[Halambi et al. 2002]. The block descriptor identifies if the associated
instructions use the short or long instruction format. No new instruc-
tions are required to specify the switch between the 16 and 32-bit modes.
Hence, frequent switches between the two modes incur no additional run-
time penalty. Since interleaving is supported at basic block granular-
ity, any infrequently used basic block within a function or loop can use
the short encoding without negative side-effects. Our preliminary exper-
iments indicate that interleaving 16 and 32-bit blocks provides an addi-
tional 20% in code size reduction (on top of the 18% reduction presented
in Section 5.1), while reducing the performance advantages of BLISS by less
than 2%.

Power savings: The hints field specifies if the instructions for the basic block
use a hardware resource, such as the floating-point unit. This allows early
detection of the processor components necessary to execute a code segment.
Clock and power distribution can be regulated aggressively without suffering
stalls during reactivation.

VLIW issue: The hints field is used as a bit mask that identifies the existence
of dependencies between consecutive instructions in the basic block. This
allows for simpler logic for dependence checks within each basic block and
instruction scheduling.

Extensive predication: The hints field specifies one or two predicate registers
used by the instructions in the basic block. This allows for a large number of
predicate registers in the ISA without expanding every single instruction by
4 to 5 bits.

Simpler renaming: The hints field specifies the live-in, live-out, and tempo-
rary registers for the instructions in the basic block. This allows for simpler
renaming within and across basic blocks [Melvin and Patt 1995].

Cluster selection: For a clustered processor, the hints field specifies how to
distribute the instructions in this basic block across clusters given the de-
pendencies they exhibit. Alternatively, the hints field can specify if this basic
block marks the beginning of a new iteration of a parallel loop, so that a new
cluster assignment can be initiated [Moshovos et al. 2001].
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¢ Selective pipeline flushing: The hints can specify reconvergence points for
if-then-else and switch statements so that the hardware can apply selective
pipeline flushing on branch mispredictions.

Some of the examples above require a hints field that is longer than the three
bits allocated in the format in Figure 1. Hence, there can be a trade-off between
the benefits from using the hints and the drawbacks from increasing the BBD
length. Exploring this trade-off is an interesting direction for future work, but
it is beyond the scope of this paper.

It is interesting to note that attaching hints to BBDs has no effect on the
structure and code density of the instruction section of each program and its
footprint and miss rate in the instruction cache. One could even distribute ex-
ecutable code with multiple versions of hints. The different versions can either
represent different uses of the mechanism or hints specialized to the charac-
teristics of a specific microarchitecture. Merging the proper version of hints
with the block descriptors can be done at load time or dynamically, as pages of
descriptors are brought into main memory.

2.3.2 Case Study: Branch Prediction Hints. To illustrate the usefulness of
the hints mechanism, we use it to implement software hints for branch pre-
diction [Ramirez et al. 2001]. The compiler uses three bits to provide a static
or profile-based indication on the predictability of the control-flow operation
at the end of the basic block. Two bits select one of the four predictability
patterns:

e Statically predictable: fall-through basic blocks, unconditional branches, or
branches that are rarely executed or highly biased. For such descriptors,
static prediction is as good as dynamic.

* Dynamically predictable: conditional branches that require dynamic pre-
diction but do not benefit from correlation. A simple bimodal predictor is
sufficient.

e Locally predictable: conditional branches that exhibit local correlation. A

two-level, correlating predictor with per-address history is most appropriate
for such branches (e.g., PAg [Yeh and Patt 1993]).

¢ Globally predictable: branches that exhibit global correlation. A two-level,
correlating predictor with global history is most appropriate for such
branches (e.g., gshare or GAg [McFarling 1993; Yeh and Patt 1993]).

We use the third bit to provide a default taken or not-taken static predic-
tion outcome. With nonstatically predictable descriptors, the static outcome
can only be useful with estimating confidence or initializing the predic-
tor. For statically predictable basic blocks, the hints allow us for accurate
prediction without accessing prediction tables. Hence, there is reduced en-
ergy consumption and less interference. For dynamically predictable basic
blocks, the hints allow us to use a subset of a hybrid predictor and calculate
confidence.
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mipredicted branch target
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Fig. 4. A decoupled front-end for a superscalar processor based on the BLISS ISA.

3. DECOUPLED FRONT-END FOR THE BLOCK-AWARE ISA

This section presents the superscalar processor front-end for the BLISS ISA
and its benefits over a state-of-the-art approach that creates instruction
blocks without ISA support.

3.1 Front-End Architecture

The BLISS ISA suggests a superscalar front-end that fetches BBDs and the as-
sociated instructions in a decoupled manner. Figure 4 presents a BLISS-based
front-end that replaces the branch target buffer (BTB) with a BB-cache that
caches the block descriptors in programs. The basic block descriptors fetched
from the BB-cache provide the front-end with the architectural information nec-
essary for control-flow prediction in a compressed and accurate manner. Since
descriptors are stored separately from ordinary instructions, their information
is available for front-end tasks before instructions are fetched and decoded.
The sequential target of a basic block is always at address PC + 4, regardless of
the number of instructions in the block. The nonsequential target (PC + offset)
is also available through the offset field for all blocks terminating with PC-
relative control-flow instructions. For register-based jumps, the nonsequential
target is provided by the last regular instruction in the basic block through a
register specifier. Basic block descriptors provide the branch condition when
it is statically determined (all jumps, return, fall-through blocks). For condi-
tional branches, the descriptor provides type information (forward, backward,
loop) and hints, which can assist with dynamic prediction. The actual branch
conditional is provided by the last regular instruction in the basic block.

The BLISS front-end operation is simple. On every cycle, the BB-cache is
accessed using the PC. On a miss, the front-end stalls until the missing de-
scriptor is retrieved from the memory hierarchy (L2 cache). On a hit, the
BBD and its predicted direction/target are pushed in the basic block queue
(BBQ®). The BB-cache integrates a simple bimodal predictor (see Figure 4). The
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predictor provides a quick direction prediction along with the target prediction.
The simple prediction is verified one cycle later by a large, tagless, hybrid pre-
dictor. In the case of a mismatch, the front-end experiences a one-cycle stall. The
predicted PC is used to access the BB-cache in the following cycle. Instruction
cache accesses use the instruction pointer and length fields in the descriptors
available in the BBQ.

The offset field in each descriptor is stored in the BB-cache in an expanded
form that identifies the full target of the terminating branch. For PC-relative
branches and jumps, the expansion takes place on BB-cache refills from lower
levels of the memory hierarchy, which eliminates target mispredictions even
for the first time the branch is executed. For the register-based jumps, the
offset field is available after the first execution of the basic block. The BB-
cache stores eight sequential BBDs per cache line. Long BB-cache lines exploit
spatial locality in descriptor accesses and reduce the storage overhead for tags.
This is not the case with the BTB that describes a single target address per
cache line (one tag per one BTB entry) for greater flexibility with replacement.
The increased overhead for tag storage in BTB balances out the fact that the
BB-cache entries are larger due to the instruction pointer field. For the same
number of entries,! the BTB and BB-cache implementations require the same
number of SRAM bits.

The BLISS front-end alleviates all shortcomings of a conventional front-end.
The BBQ decouples control-flow prediction from instruction fetching. Multicycle
latency for large-instruction cache no longer affects prediction accuracy, as the
vital information for speculation is included in basic block descriptors available
through the BB-cache (block type, target offset). Since the PC in the BLISS ISA
always points to basic block descriptors (i.e., a control-flow instruction), the
hybrid predictor is only used and trained for PCs that correspond to branches.
With a conventional front-end, on the other hand, the PC may often point to
non-control-flow instructions, which causes additional interference and slower
training for the hybrid predictor. The contents of the BLISS BBQ also provide an
early view into the instruction address stream and can be used for instruction
prefetching and hide instruction cache misses [Chen and Baer 1994].

Compared to the pipeline for a conventional ISA, the BLISS-based microar-
chitecture adds one pipeline stage for fetching basic block descriptors. The ad-
ditional stage increases the misprediction penalty. This disadvantage of BLISS
is more than compensated for by improvements in prediction accuracy because
of reduced interference at the predictor and the BTB (see Section 5.3).

The availability of basic block descriptors also allows for energy optimiza-
tions in the processor front-end. Each basic block exactly defines the number
of instructions needed from the instruction cache. Using segmented word lines
[Ghose and Kamble 1999] for the data portion of the instruction cache, we can
fetch the necessary words while activating only the necessary sense-amplifiers,
in each case. As front-end decoupling tolerates higher instruction-cache la-
tency without loss in speculation accuracy, we can first access the tags for a

1Same number of entries means that the number of branches that BTB can store is equal to the
number of basic block descriptors the BB-cache can store.
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set-associative instruction cache, and in subsequent cycles, access the data only
in the way that hits [Reinman et al. 2002]. Furthermore, we can save decoding
and tag access energy in the instruction cache by merging instruction-cache ac-
cesses for sequential blocks in the BBQ that hit in the same instruction cache
line. Finally, the front-end can avoid the access to some or all prediction tables
for descriptors that are not conditional branches or for descriptors identified as
statically predictable by branch hints.

3.2 Hardware versus Software Basic Blocks

A decoupled front-end similar to the one in Figure 4 can be implemented with-
out the ISA support provided by BLISS. The FTB design [Reinman et al. 1999b,
2001] describes the latest of such design. The design uses a fetch target buffer
(FTB) as an enhanced basic block BTB [Yeh and Patt 1992]. Each FTB entry
describes a fetch block, a set of sequential instructions starting at a branch
target and ending with a strongly biased, taken branch or an unbiased branch
[Reinman et al. 1999a]. A fetch block may include several strongly biased, not-
taken branches. Apart from a tag that identifies the address of the first instruc-
tion in the fetch block, the FTB entry contains the length of the block, the type
of the terminating branch or jump, its predicted target, and its predicted direc-
tion. Fetch blocks are created in hardware by dynamically parsing the stream
of executed instructions.

The FTB is accessed each cycle using the program counter. On an FTB hit,
the starting address of the block (PC), its length, and the predicted direction
and target are pushed in the fetch target queue (FTQ). Similar to the BBQ, the
FTQ decouples control-flow prediction from instruction cache accesses. On an
FTB miss, the front-end injects into the FTQ maximum length, fall-through
fetch blocks starting at the miss address, until an FTB hit occurs or the back-
end of the processor signals a misfetch or a misprediction. A misfetch occurs
when the decoding logic detects a jump in the middle of a fetch block. In this
case, the pipeline stages behind decoding are flushed, a new FTB entry is allo-
cated for the fetch block terminating at the jump, and execution restarts at the
jump target. A misprediction occurs when the execution core retires a taken
branch in the middle of a fetch block or when the control-flow prediction for the
terminating branch (target or direction) proves to be incorrect. In either case,
the whole pipeline is flushed and restarted at the branch target. If the fetch
block was read from the FTB, the FTB entry is updated to indicate the shorter
fetch block or the change in target/direction prediction. Otherwise, a new FTB
entry is allocated for the block terminating at the mispredicted branch. Even
though both misfetches and mispredictions lead to creation of new fetch blocks,
no FTB entries are allocated for fall-through fetch blocks.

The FTB design encapsulates all the advantages of a decoupled, block-based
front-end. Nevertheless, the performance of the FTB-based design is limited by
inaccuracies introduced during fetch block creation and by the finite capacity
of the FTB. When a jump instruction is first encountered, a misfetch event will
flush the pipeline front-end in order to create the proper fetch block. When a
taken branch is first encountered, a full pipeline flush is necessary to generate
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the proper FTB entry. This is also the case when a branch switches from biased
not-taken to unbiased or taken, when we need to shorten the existing fetch
block. In addition, we lose accuracy at the predictor tables as the entry that
was used for the branch at the end of the old block, will now be used for the
branch that switched behavior. 2 The branch terminating the old block will need
to train new predictor entries. Moreover, the frequency of such problematic
events can be significant because of the finite capacity of the FTB. As new FTB
entries are created, older, yet useful, entries may be evicted because of capacity
or conflict misses. When an evicted block is needed again, the FTB entry must
be recreated from scratch leading to the misfetches, mispredictions, and slow
predictor training, highlighted above. In other words, an FTB miss can cost tens
of cycles, the time necessary to refill the pipeline of a wide processor after one or
more mispredictions. Finally, any erroneous instructions executed for the large,
fall-through fetch blocks injected in the pipeline on FTB misses lead to wasted
energy consumption.

The BLISS front-end alleviates the basic problems of the FTB-based de-
sign. First, the BLISS basic blocks are software defined. They are never split
or recreated by hardware as jumps are decoded or branches change their be-
havior. In other words, the BLISS front-end does not suffer from misfetches
or mispredictions because of block creation.? In addition, the PC used to index
prediction tables for a branch is always the address of the corresponding BBD.
This address never changes regardless of the behavior of other branches in the
program, which leads to fast predictor training. Second, when new descriptors
are allocated in the BB-cache, the old descriptors are not destroyed. As part of
the program code, they exist in main memory and in other levels of the memory
hierarchy (e.g., L2 cache). On a BB-cache miss, the BLISS front-end retrieves
missing descriptors from the L2 cache in order of ten cycles, in most cases. Given
a reasonable occupancy in the BBQ, the latency of the L2-cache access does not
drain the pipeline from instructions. Hence, the BLISS front-end can avoid the
mispredictions and the energy penalty associated with recreating fetch blocks
on an FTB miss.

The potential drawbacks of the BLISS front-end are the length of the ba-
sic blocks and the utilization of the BB-cache capacity. FTB fetch blocks can be
longer than BLISS basic blocks as they can include one or more biased not-taken
branches. Longer blocks allow the FTB front-end to fetch more instructions per
control-flow prediction. However, in Section 5.3, we demonstrate that the BLISS
front-end actually fetches more useful instructions per control-flow prediction.
The BLISS front-end may also underutilize the capacity of the BB-cache by
storing descriptors for fall-through blocks or blocks terminating with biased
not-taken branches. This can lead to higher miss rates for the BB-cache com-
pared to the FTB. In Section 5.6.1, we show that the BB-cache achieves good

2A fetch block is identified by the address of its first instruction and not by the address of the
terminating branch or jump. Hence, as the length of a fetch block changes, the branch identified
by its address also changes.

3There are still mispredictions because of incorrect prediction of the direction or target of the branch
terminating a basic block, but there are no mispredictions because of discovering or splitting fetch
blocks.
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hit rates for a variety of sizes and consistently outperforms an equally sized
FTB.

4. METHODOLOGY

For our experimental evaluation, we study 12 benchmarks from the Spec-
CPU2000 suite using their reference datasets [Henning 2000]. The rest of the
benchmarks in the SpecCPU2000 suite perform similarly and their results are
not shown for brevity. For benchmarks with multiple datasets, we run all of
them and calculate the average. The benchmarks are compiled with gec at the
-O3 optimization level. With all benchmarks and all front-ends, we skip the first
billion instructions in each dataset and simulate another billion instructions for
detailed analysis. We generate BLISS executables using a static binary trans-
lator, which can handle arbitrary programs from high-level languages like C
or Fortran. The translator consists of three passes. The first pass parses the
binary executable, identifies all basic blocks, and creates the basic block de-
scriptors. The second pass implements the code size optimizations discussed in
Section 2.2. The final pass outputs the new BLISS executable. The generation of
BLISS executable could also be done using a transparent, dynamic compilation
framework [Bala et al. 2000].

Our simulation framework is based on the Simplescalar/PISA 3.0 toolset
[Burger and Austin 1997], which we modified to add the FTB and BLISS front-
end models. For energy measurements, we use the Wattch framework with the
cc3 power model [Brooks et al. 2000] (nonideal, aggressive conditional clock-
ing). Energy consumption was calculated for a 0.10-um process with a 1.1-V
power supply. The reported Total Energy includes all the processor components
(front-end, execution core, and all caches). Access times for cache structures
were calculated using Cacti v3.2 [Shivakumar and Jouppi 2001].

Table I presents the microarchitecture parameters used with simulations.
The base model reflects a superscalar processor with a conventional BTB and
no decoupling. The pipeline of the base model consists of six pipeline stages:
fetch, decode, issue, execute, write-back, and commit stage. The FTB model
represents the decoupled front-end that creates fetch blocks in hardware
[Reinman et al. 1999b]. The BLISS model represents the modified front-end
introduced in Section 3 with software-defined basic blocks and the BB-cache as
the BTB replacement. The three models differ only in the front-end. All of the
other parameters are identical. Both of the BLISS and FTB designs have an
additional pipe stage. The extra stage in the BLISS design is for fetching BBDs
and in the FTB design is for accessing the FTB and pushing fetch-blocks into
the FTQ. We simulate both eight-way and four-way execution cores with all
three models. The eight-way execution core is generously configured to reduce
back-end stalls so that any front-end performance differences are obvious. The
four-way execution core represents a more practical implementation point.
In all comparisons, the number of blocks (entries) stored in BTB, FTB, and
BB-cache is the same so no architecture has an unfair advantage. Actually,
all three structures take approximately the same number of SRAM bits to
implement for the same number of entries. The BTB/FTB/BB-cache is always
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Table I. The Microarchitecture Parameters for the Simulations®

Base FTB BLISS
Fetch Width 8 instructions/cycle (4) | 1 fetch block/cycle 1 basic block/cycle
Target BTB: 2K entries FTB: 2K entries BB-cache: 2K entries
Predictor 4-way, 1-cycle access 4-way, 1-cycle access | 4-way, 1-cycle access
8 entries per cache line
Decoupling queue — FTQ: 4 entries BBQ: 4 entries
Common Processor Parameters
Hybrid gshare: 4K counters
predictor PAg L1: 1K entries, PAg L2: 1K counters
selector: 4K counters
RAS 32 entries with shadow copy

Instruction cache 32 KBytes, 4-way, 64B blocks, 1 port, 2-cycle access pipelined
Issue/commit width | 8 instructions/cycle (4)
IQ/RUU/LSQ size | 64/128/128 entries (32/64/64)

FUs 12 INT & 6 FP (6, 3)
Data cache 64 KB, 4-way, 64B blocks, 2 ports, 2-cycle access pipelined
L2 cache 1 MB, 8-way, 128B blocks, 1 port, 12-cycle access, 4-cycle repeat rate
Main memory 100-cycle access

“The common parameters apply to all three models (base, FTB, BLISS). Certain parameters vary between eight-
way and four-way processor configurations. The table shows the values for the eight-way core with the values for
the four-way core in parenthesis.

accessed in one cycle. The latency of the other caches in clock cycles is set
properly based on its relative size compared to BTB/FTB/BB-cache.

For the FTB and BLISS front-ends, we implement instruction prefetching
based on the contents of the FTQ and BBQ buffers [Reinman et al. 1999b].
When the instruction cache is stalled because of a miss or because the IQ is
full, the contents of FTQ/BBQ entries are used to look up further instructions
in the instruction cache. Prefetches are initiated when a potential miss is iden-
tified. The prefetch data go to a separate prefetch buffer to avoid instruction
cache pollution. The simulation results account for contention for the L2 cache
bandwidth between prefetches and regular cache misses.

For the case of BLISS, we present results with (BLISS-Hints) and without
(BLISS) the static prediction hints in each basic block descriptor. When avail-
able, static hints allow for judicious use of the hybrid predictor. Strongly biased
branches do not use the predictor and branches that exhibit strong local or
global correlation patterns use only one of its components.

5. EVALUATION

In this section, we present the evaluation results that demonstrate the advan-
tages of the BLISS front-end over the FTB and the base designs.

5.1 Static Code Size

Before we proceed with performance analysis, we first discuss code density.
Figure 5 presents the percentage of code size increase for BLISS over the MIPS
ISA that it is based on. Direct translation (Naive bar) of MIPS code introduces
one basic block descriptor every four instructions and leads to an average code
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Fig. 5. Static code size increase for BLISS over the MIPS ISA. Positive increase means that the
BLISS executables are larger. Negative increase means that the BLISS executables are smaller.

Table II. Dynamic Distribution of BBD Types for BLISS Code

FT BRF | BRB | JJR | RET | JAL-JALR | LOOP
gzip 19.8% | 45.5% 5.0% | 5.8% 4.4% 4.4% 15.1%
gce 54.9% | 21.3% | 11.3% | 3.1% 2.3% 2.3% 4.9%
crafty 8.2% | 25.0% 2.0% | 2.9% 4.4% 4.4% 53.1%
gap 29.1% | 34.0% 5.8% | 4.4% 4.2% 4.2% 18.3%
vortex 18.9% | 54.3% 0.5% | 1.7% | 10.3% 10.3% 3.8%
twolf 14.7% | 41.5% | 15.4% | 2.0% 7.1% 7.1% 12.1%
wupwise | 22.2% | 38.1% 53% | 3.9% | 13.2% 13.2% 4.2%
applu 30.7% 8.6% | 14.5% | 0.0% 0.0% 0.0% 46.1%
mesa 21.4% | 46.5% 2.1% | 5.9% 8.1% 8.1% 7.9%
art 8.8% | 33.8% 2.0% | 0.0% 0.0% 0.0% 55.4%
equake 20.0% | 23.7% | 20.5% | 4.2% 1.1% 1.1% 29.3%
apsi 22.8% | 31.4% 5.3% | 3.8% 6.1% 6.1% 24.5%

size increase of 25%. Basic optimization (BasicOpt bar) reduces the average code
size increase to 14%. The basic optimization includes the removal of redundant
jump instructions (see example in Figure 2).

The BranchRemove bar in Figure 5 shows that the BLISS handicap can be
reduced to 6.5% by removing conditional branch instructions that perform a
simple test (equal/not-equal to zero) to a register value produced within the
same basic block by a simple arithmetic or logical operation. Finally, block-
subsetting optimization allows the BLISS code size to be 18% smaller than the
original MIPS code. As shown in the example in Figure 3, all instructions for
a basic block can be removed if the exact instructions appear in the stream of
other instructions.

5.2 Dynamic BLISS Statistics

Table II presents the dynamic distribution of descriptor types for BLISS. Most
programs include a significant number of fall-through descriptors. For integer
applications, this is mostly because of the large number of labels in the origi-
nal MIPS code (potential targets of control-flow operations). For floating-point
applications, this is mostly because of the many basic blocks with 16 instruc-
tions or more in the original MIPS code. Such basic blocks use multiple BLISS
descriptors because each BBD can point to up to 15 instructions.
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Table III. Dynamic Distribution of BBD Lengths

for BLISS Code

0-3 4-7 8-11 12-15
gzip 58.3% | 25.6% | 12.2% 3.8%
gee 74.2% | 17.0% 6.9% 1.9%
crafty 29.7% | 62.0% 3.8% 4.5%
gap 52.7% | 21.3% 4.1% | 21.9%
vortex 63.7% | 11.8% | 14.2% | 10.3%
twolf 59.3% | 19.9% | 18.3% 2.6%
wupwisee | 63.2% | 11.0% 6.2% | 19.6%
applu 23.2% | 18.6% | 11.3% | 46.9%
mesa 54.9% | 23.7% 7.3% | 14.1%
art 52.4% | 20.7% 2.7% | 24.2%
equake 30.0% | 40.9% | 18.2% | 10.9%
apsi 46.5% | 28.4% 8.9% | 16.2%
Average 50.7% | 25.1% 9.5% | 14.7%

Table III shows the dynamic distribution of descriptor lengths. It is inter-
esting to notice that, even for integer applications, an average of 40% of the
executed basic blocks include more than four instructions. This implies that
making one prediction for every four instructions fetched from the instruction
cache is often wasteful. Overall, the average dynamic basic block length is 7.7
instructions (5.8 for integer, 9.7 for floating-point), while the static average
length is 3.7 instructions (3.5 for integer, 3.9 for floating-point).

5.3 Performance Comparison

Figure 6 compares the IPC achieved for the eight-way superscalar processor
configuration with the three front-ends. The graphs present both raw IPC and
percentage of IPC improvement over the base front-end. The FTB design pro-
vides a 7% average IPC improvement over the base, while the BLISS front-end
allows for 20 and 24% improvement over the base without and with branch
hints, respectively. The FTB front-end provides IPC improvements over the
base for 7 out of 12 benchmarks, while for the remaining benchmarks there is
either no benefit or a small slowdown. On the other hand, the BLISS front-end
improvement over the base is consistent across all benchmarks. Even without
static hints, BLISS outperforms FTB for all benchmarks except vortex. For
vortex, the FTB front-end is capable of forming long fetch blocks, which helps
in achieving a higher FTB hit rate (see Figure 9). The remaining of this section
provides a detailed analysis of BLISS performance advantage. We only present
data for a representative subset of benchmarks, but the average refers to all 12
benchmarks in this study.

Figure 7 compares the fetch and commit IPC for the FTB and BLISS front-
ends. The fetch IPC is defined as the average number of instructions described
by the blocks inserted in the FTQ/BBQ in each cycle. Looking at fetch IPC,
the FTB design fetches more instructions per cycle than BLISS (3.6 versus 2.8,
on average). The FTB advantage is because of the larger blocks and because
the front-end generates fall-through blocks on FTB misses, while the BLISS
front-end stalls on BB-cache misses and fetches the descriptors from the L2
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Fig. 6. Performance comparison for the 8-way processor configuration with the base, FTB, and
BLISS front-ends. The top graph presents raw IPC and the bottom one shows the percentage of
IPC improvement over the base for FTB and BLISS.
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Fig. 7. Fetch and commit IPC for the eight-way processor configuration with the FTB and BLISS
front-ends. We present data for a representative subset of benchmarks, but the average refers to
all benchmarks in this study. For BLISS, we present the data for the case without static branch
hints.

cache. Nevertheless, in terms of commit IPC (instructions retired per cycle), the
BLISS front-end has an advantage (1.9 versus 2.1). In other words, a higher
ratio of instructions predicted by the BLISS front-end turn out to be useful.
The long, fall-through fetch blocks introduced on FTB misses contain large
numbers of erroneous instructions that lead to misfetches, mispredictions, and
slow predictor training. On the other hand, the BB-cache in BLISS always
retrieves an accurate descriptor from the L2 cache.

Figure 8 further explains the basic performance advantage of BLISS over
the base and FTB designs. Compared to the base, BLISS reduces by 41% the
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a representative subset of benchmarks, but the average refers to all benchmarks in this study.

number of pipeline flushes because of target and direction mispredictions. These
flushes have a severe performance impact as they empty the full processor
pipeline. Flushes in BLISS are slightly more expensive than in the base design
because of the longer pipeline, but they are less frequent. The BLISS advan-
tage is because of the availability of control-flow information from the BB-cache
regardless of instruction-cache latency and the accurate indexing and judi-
cious use of the hybrid predictor. Although the FTB front-end achieves a higher
prediction accuracy compared to the base design, it has significantly higher
number of pipeline flushes compared to the BLISS front-end as dynamic block
recreation affects the prediction accuracy of the hybrid predictor because of
longer training and increased interference. When static branch hints are in use
(BLISS-Hints), the branch prediction accuracy is improved on average by 1.2%,
from 93.4% without hints to 94.6% with hints, and results in an additional 10%
reduction in the number of pipeline flushes.

Figure 9 evaluates the effectiveness of the BB-cache in delivering BBDs and
the FTB in forming fetch blocks by comparing their hit rates. Since the FTB
returns a fall-through block address even when it misses to avoid storing the
fall-through blocks, we define the FTB miss rate as the number of misfetches
divided by the number of FTB accesses. A misfetch occurs when the decoding
logic detects a jump in the middle of a fetch block. At the same storage capacity,
the BLISS BB-cache achieves a 2 to 3% higher hit rate than the FTB as the BB-
cache avoids block splitting and recreation that occur when branches change
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Fig. 10. Instruction cache comparison for the eight-way processor configuration with the base,
FTB, BLISS, and BLISS-HINTS front-ends. The top graph compares the normalize number of
instruction-cache accesses; the bottom one shows the normalized number of instruction-cache
misses. We present data for a representative subset of benchmarks, but the average refers to
all benchmarks in this study.

behavior or when the cache capacity cannot capture the working set of the
benchmark. The FTB has an advantage for programs like vortex that stress
the capacity of the target cache and include large fetch blocks. For vortex, the
FTB packs 9.5 instructions per entry (multiple basic blocks), while the BB-cache
packs 5.5 instructions per entry (single basic block).

Figure 10 compares the normalized number of instruction-cache accesses
and misses for the FTB and BLISS front-ends over the base design. Although
both of the FTB and BLISS designs enable prefetching based on the contents
of the decoupling queue, the BLISS design has fewer instruction-cache misses
and accesses. The BLISS advantage is because of the more accurate prediction
as shown in Figure 8 and the reduced number of instructions by the basic
optimizations described in Section 2.2. The BLISS front-end has 12% fewer
instruction-cache accesses and 27% fewer misses compared to the base design.
Even with prefetching and accurate prediction, the FTB front-end has 10%
higher number of instruction-cache accesses and 6% higher number of misses
compared to the base design. The increase is a result of the maximum length
fetch blocks that are inserted in the FTQ after an FTB miss.

Figure 11 compares the normalized number of the L2-cache accesses and
misses for the FTB and BLISS front-ends. As expected, both of the FTB
and BLISS front-ends have a higher number of L2-cache accesses because of
prefetching. Although the BLISS L2 cache serves the BB-cache misses in ad-
dition to the instruction-cache and data-cache misses, the number of L2-cache
accesses and misses are slightly better than the numbers for the FTB design.
BLISS design has a 10% higher average number of L2-cache accesses than the
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Fig.11. L2 cache comparison for the eight-way processor configuration with the base, FTB, BLISS,
and BLISS-HINTS front-ends. The top graph compares the normalize number of L2-cache accesses
and the bottom one shows the normalized number of L2-cache misses. We present data for a rep-
resentative subset of benchmarks, but the average refers to all benchmarks in this study.

base design, while the FTB design has a 12% higher average. FTB also exhibits
a 10% higher L2-cache misses; this is because of the large number of erroneous
instructions that are fetched by the FTB front-end, while it is forming the fetch
blocks dynamically. BLISS is slightly better than the base design with a 3%
fewer L2-cache misses. The BLISS advantage is mainly because of the better
and accurate prediction as shown in Figure 8.

5.4 Detailed Comparison to FTB

To further explain the performance advantage of the BLISS design, we evalu-
ated two FTB design variants. In the first design, biased not-taken branches
are not embedded in fetch blocks. Therefore, any branch in the middle of a
fetch block terminates the block and leads to a misfetch when first decoded.
We refer to this less aggressive FTB design as FTB-simple. This design fixes a
couple of the problems with the original FTB design. First the branch predic-
tor is accurately trained as fetch blocks are consistent over time and are not
shortened when branches change behavior. Second, all branches are predicted
by the hybrid predictor, eliminating the implicit not-taken prediction for the
branches embedded in the middle of the fetch blocks. This eliminates mispre-
dictions and pipeline flushes associated with those embedded branches when
there is a conflict with the branch predictor itself. Nevertheless, the advan-
tages of the FTB-simple design come at an additional cost. First, the increased
number of misfetches from the biased not-taken branches may have a negative
impact on performance. In addition, the fetch blocks are smaller than the blocks
created in the original FTB design as biased not-taken branches are no longer
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embedded in the fetch blocks. This increases the contention for the finite capac-
ity of the FTB and reduces the fetch bandwidth. Finally, the hybrid predictor is
now also used for the biased not-taken branches, which may lead to a different
interference patterns with the other branches.

The second FTB design allows for embedded branches in the middle of fetch
blocks only if their prediction is not-taken. If a branch in the middle of the
block is predicted taken, the decode stage will issue a misfetch. In this case, the
pipeline stages behind decoding are flushed and execution restarts at the branch
target. We refer to this design as FTB-smart. The advantage of this design over
the original FTB design is that some possible mispredictions caused by the
default not-taken policy on an FTB miss are converted to misfetches, which
are resolved in the decode stage. However, this is only true if the prediction is
accurate. If it is not, then this would cost an additional misfetch, mispredict,
and an extra fetch block that could cause increased contention for the finite
capacity of the FTB.

Figure 12 compares the normalized IPC, number of mispredictions, and
number of misfetches for the FTB-simple and the FTB-smart designs over the
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front-ends. The top graph presents the percentage of front-end energy improvement and the bottom
one shows the percentage of total energy improvement over the base for FTB and BLISS.

original FTB design. For FTB-simple, we present data with different fetch-block
lengths: 4, 8, and 16 instructions. The FTB-smart design uses a fetch-block
length of 16 instructions similar to the original FTB design. For FTB-simple,
we see a consistent IPC degradation as a result of the negative impact of the
additional misfetches that is not compensated for by the small change in the
prediction accuracy. Although the number of misfetches decreases with smaller
fetch-blocks, however, performance degrades as the average length of fetch-
blocks committed decreases from 8.3 instructions in the original FTB design to
7.5, 5.4, and 3.4 for FTB-simple-16, FTB-simple-8, and FTB-simple-4, respec-
tively. For FTB-smart, we get a consistent increase in the number of misfetches.
However, in terms of IPC and number of mispredictions we see a very small
change. The average fetch-block length for FTB-smart also slightly decreases to
8.2 instructions. Overall, the original FTB design outperforms all of the other
FTB configurations and, as shown in Figure 6, the BLISS-based design outper-
forms the original FTB design as it balances over- and underspeculation with
better utilization of the BB-cache capacity.

5.5 Energy Comparison

The top graph of Figure 13 compares the front-end energy consumption im-
provement achieved for the eight-way processor configuration with the three
front-ends. On average, 13% of the total processor energy is consumed in the
front-end engine itself as it contains a number of large SRAM structures (in-
struction cache, BTB, predictors). Both the BLISS and FTB front-end designs
significantly reduce the energy consumption in the front-end structures through
selective word accesses in the instruction cache and by providing a higher
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number of instructions per prediction. The FTB design saves 36% of the front-
end energy consumed by a conventional front-end design. The BLISS design
achieves even higher improvement (46%) as it reduces the number of mispre-
dicted instructions fetched from the instruction cache. When static branch hints
are in use (BLISS-Hints), BLISS saves some additional energy in the hybrid
predictor. On average, the static hints reduce the energy consumption in the
predictor by 50%.

The bottom graph of Figure 13 presents the total energy savings achieved for
the eight-way processor configuration using the FTB and BLISS front-ends over
the base design. As expected, the energy savings track the IPC improvements
shown in Figure 6. BLISS improves average energy consumption by 14 and 16%
with and without the static branch hints, respectively. BLISS energy advantage
over the base design is because of the significant reduction of the front-end
energy consumption and the reduction in the energy wasted for mispredicted
instructions as a result of the accurate prediction. By reducing execution time,
the BLISS front-end also saves on the energy consumed by the clock tree and the
processor resources even when they are stalling or idling. BLISS also provides
a 7% total energy advantage over FTB as dynamic fetch block creation in the
FTB front-end leads to the execution of misspeculated instructions that waste
energy. The energy advantage of BLISS over FTB is mainly the high ratio of
retired to fetched instructions. In other words, BLISS reduces overspeculation
in the front-end, which, in turn, reduces the energy wasted for mispredicted
instructions in the execution core.

5.6 Sensitivity Study

This section compares the performance for the FTB and BLISS designs when
key architectural parameters of the front-end are varied. In all configurations,
the FTB and the BB-cache are always accessed in one cycle. The latency of
the instruction cache in clock cycles is set properly based on its relative size
compared to the FTB or BB-cache.

5.6.1 BB-Cache/FTB Size and Associativity. The performance with both
of the decoupled front-ends depends heavily on the miss rate of the FTB and
BB-cache, respectively. As we showed in Figure 9, the high BB-cache miss rate
for vortex leads to a performance advantage for the FTB design. Figure 14
presents the average IPC across all benchmarks for the eight-way processor
configuration with the FTB and BLISS front-ends as we scale the size (number
of entries) and associativity of the FTB and BB-cache structures. The BB-cache
is organized with eight entries per cache lines in all cases.

Figure 14 shows that for all sizes and associativities, the BLISS front-end
outperforms FTB. The performance for both front-ends improves with larger
sizes up until 2K entries. The increasing number of entries eliminates stalls
because of BB-cache misses for BLISS and reduces the inaccuracies intro-
duced by fetch block recreation because of FTB misses in the FTB design.
Associativity is less critical for both front-ends. With 512 or 1K entries, four-
way associativity is preferred, but with a larger FTB or BB-cache, two-way is
sufficient.
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Fig. 14. Average IPC for the eight-way processor configuration with the FTB and BLISS front-

ends as we scale the size and associativity of the FTB and BB-cache structures. For the BLISS
front-end, we assume that static prediction hints are not available in this case.
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Fig. 15. Average percentage of IPC improvement with the FTB and BLISS front-ends over the
base design as we vary the size and associativity of the instruction cache. We simulate an eight-way
execution core, two-cycle instruction cache latency, and 2K entries in the BTB, FTB, and BB-cache,
respectively.

5.6.2 Instruction-Cache Size. The use of a small, fast instruction cache
was one of the motivations for the FTB front-end [Reinman et al. 2001]. The
instruction prefetching enabled by the FTQ can compensate for the increased
miss rate of a small instruction cache.

Figure 15 shows the IPC improvement with the FTB and BLISS front-ends
over the base design as we vary the size and associativity of the instruc-
tion cache in the eight-way processor configuration. Both decoupled front-ends
provide IPC advantages over the baseline for all instruction cache sizes. How-
ever, the IPC improvement drops as the instruction-cache size grows to 32KB
(from 12 to 7% for FTB, from 24 to 20% for BLISS). The BLISS front-end main-
tains a 13% IPC lead over the FTB design for all instruction-cache sizes and
associativities.
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Fig. 16. Average IPC with the FTB and BLISS front-ends as we vary the latency of the instruction
cache from 1 to 4 cycles. We simulate an 8-way execution core, 32KB pipelined instruction cache,
and 2K entries in the BTB, FTB, and BB-cache respectively.

5.6.3 Instruction-Cache Latency. Another advantage of a decoupled front-
end is the ability to tolerate higher instruction cache latencies. The
information in the FTB and the BB-cache allow for one control-flow prediction
per cycle even if it takes several cycles to fetch and decode the corresponding
instructions. Tolerance of high instruction-cache latencies can be useful with
decreasing the instruction-cache area and power for a fixed capacity or with
allowing for a larger instruction cache within a certain area and power budget.
Larger instruction caches are desirable for enterprise applications that tend to
have larger instruction footprints [Barroso et al. 1998].

Figure 16 presents the average IPC for the eight-way processor configuration
with the FTB and BLISS front-ends as we scale the instruction-cache latency
from one to four cycles. With both front-ends, IPC decreases approximately 5%
between the two end points, which shows good tolerance to instruction-cache
latency. The performance loss is mainly because of the higher cost of recovery
from mispredictions and misfetches. Increased instruction-cache latency does
not change the performance advantage of the BLISS front-end over the FTB
design.

5.6.4 Four-Way Processor Performance Comparison. The eight-way proces-
sor configuration analyzed in Section 5.3 and 5.5 represents an aggressive de-
sign point, where the execution core is designed for minimum number of back-
end stalls. Figure 17 shows the impact of the front-end selection on the four-way
execution core configuration described in Table I, which represents a practical
commercial implementation.

Figure 17 shows that the performance comparison with the four-way execu-
tion core is nearly identical to that with the eight-way core. FTB provides a 6%
performance advantage over the base design, while BLISS allows for 14 or 17%
IPC improvements without and with the static hints, respectively. The absolute
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Fig. 17. Performance comparison for the 4-way processor configuration with the base, FTB, and
BLISS front-ends. The top graph presents raw IPC and the bottom one shows the percentage of
IPC improvement over the base for FTB and BLISS.

values for the improvements are lower than with the eight-way core because of
some additional stalls in the execution core that mask stalls in the front-end.

The energy consumption comparison for the three front-ends with the four-
way execution core is virtually identical to the one for the eight-way core in
Section 5.5.

6. RELATED WORK

Some instruction sets allow for basic blocks descriptors, interleaved with
regular instructions within the application binary code. Prepare-to-branch
instructions specify the length and target of a basic block at its very beginning
[Wedig and Rose 1984; Kathail et al. 1994; Schlansker and Rau 1999]. They
allow for target address calculation and instruction prefetching a few cycles be-
fore the branch instruction is executed. The block-structured ISA (BSA) defines
basic blocks of reversed-ordered instructions in order to simplify instruction re-
naming and scheduling [Hao et al. 1996; Melvin and Patt 1995]. The proposed
instruction set goes a step further by separating basic block descriptors from
regular instructions. The separation allows for instruction delivery optimiza-
tions in addition to the basic benefits of BSA.

Certain instruction sets allow for compiler-generated hints with individual
branch and load/store instructions [Schlansker and Rau 1999]. BLISS provides
a general mechanism for software hints at basic block granularity. The mech-
anism can support a variety of software-guided optimizations, as discussed in
Section 2.3.

The decoupled control-execute (DCE) architectures use a separate instruc-
tion set with distinct architectural state for control-flow calculation [Topham
and McDougall 1995; Manohar and Heinrich 1999]. DCE instruction sets allow
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for the front-end to become an independent processor that can resolve control-
flow and prefetch instructions tens to hundreds of cycles ahead of the execution
core. However, DCE architectures are susceptible to deadlocks and have com-
plicated exception handling. The basic block descriptors in BLISS are not a
stand-alone ISA and do not define or modify any architectural state, hence
eliminating the deadlock scenarios with decoupled control-execute ISAs.

Block-based front-end engines were introduced by Yeh and Patt to improve
prediction accuracy [Yeh and Patt 1992], with basic block descriptors formed
by hardware without any additional ISA support. Decoupled front-end tech-
niques have been explored by Calder and Grunwald [1994] and Stark et al.
[1997]. Reinman et al. [1999a, 1999b, 2001] combined the two techniques in
a comprehensive front-end, which detects basic block boundaries and targets
dynamically in hardware and stores them in an advanced BTB called the fetch
target buffer (FTB). The FTB coalesces multiple continuous basic blocks into
a single fetch block in order to improve control-flow rate and better utilize the
FTB capacity. Our work simplifies the FTB design using explicit ISA support for
basic block formation. Despite the lack of block coalescing, BLISS outperforms
the FTB front-end design by 13% in performance and 7% in total energy con-
sumption. Ramirez et al. [2002] applied an FTB-like approach to long sequential
instructions streams created with code layout optimizations and achieved 4%
performance improvement.

Significant front-end research has also focused on trace caches [Rotenberg
et al. 1996; Friendly et al. 1997], trace predictors [Jacobson et al. 1997], and
trace construction [Patel et al. 1998]. Trace caches have been shown to work
well with basic blocks defined by hardware [Black et al. 1999; Jourdan et al.
2000]. One can form traces on top of the basic blocks in the BLISS ISA. BLISS
provides two degrees of freedom for code layout optimizations (blocks and in-
structions), which could be useful for trace formation and compaction. Exploring
such approaches is an interesting area for future work.

Other research in front-end architectures has focused on multiblock predic-
tion [Seznec et al. 1996, 2003], control-flow prediction [Pnevmatikatos et al.
1993; Dutta and Franklin 1995], and parallel fetching of no contiguous instruc-
tion streams [Oberoi and Sohi 2003; Santana et al. 2004]. Such techniques are
rather orthogonal to the block-aware ISA and can be used with a BLISS-based
front-end engine. An investigation of the issues and benefits of such an effort
is beyond the scope of this paper.

Several researchers have also worked on reducing power and energy con-
sumption in or through the front-end. Most techniques trade off a small per-
formance degradation for significant energy savings. Some of the techniques
focused on reducing the instruction cache energy [Powell et al. 2001; Albonesi
1999; Ghose and Kamble 1999]. Others have focused on reducing energy con-
sumption in predictors [Parikh et al. 2002; Baniasadi and Moshovos 2002] and
branch target buffer [Petrov and Orailoglu 2003; Shim et al. 2005]. Confidence
prediction and throttling [Aragon et al. 2003] has been proposed as a way to
control overspeculation to limit energy wasted on misspeculated instructions.
Our proposal reduces the energy consumption in the front-end and, at the same
time, improves the performance by increasing instruction fetch accuracy.
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7. CONCLUSIONS

This paper proposed a block-aware instruction set (BLISS) that addresses ba-
sic challenges in the front-end of wide-issue, high-frequency superscalar pro-
cessors. The ISA defines basic block descriptors in addition to and separately
from the actual instructions. The software-defined descriptors allow a decou-
pled front-end that removes the instruction-cache latency from the prediction
critical path, allows for instruction-cache prefetching, and allows for judicious
use and training of branch predictors. We demonstrate that BLISS leads to
20% performance improvement and 14% total energy savings over conventional
superscalar designs. Even though basic block formation and the resulting op-
timizations can be implemented in hardware without instruction set support,
we show that the proposed ISA leads to significant advantages. By providing a
balance between over and underspeculation, BLISS leads to 13% performance
improvements and 7% energy savings over an aggressive front-end that dynam-
ically builds fetch blocks in hardware. Finally, we show that the performance
advantages of our proposal are robust across a wide range of design parameters
for wide-issue processors.

Overall, this work demonstrates the advantages of using an expressive in-
struction set to address microarchitectural challenges in superscalar proces-
sors. Unlike techniques that rely solely on larger and more complex hardware
structures, BLISS attempts to strike a balance between hardware and software
features that optimize the critical metric for front-end engines: useful instruc-
tions predicted per cycle. Moreover, BLISS provides a flexible mechanism to
communicate software-generated hints in order to address a range of perfor-
mance, power consumption, and code density challenges.
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