
Energy-Efficient and High-Performance Instruction Fetch
using a Block-Aware ISA

Ahmad Zmily and Christos Kozyrakis
Electrical Engineering Department

Stanford University
zmily@stanford.edu, kozyraki@stanford.edu

ABSTRACT
The front-end in superscalar processors must deliver high applica-
tion performance in an energy-effective manner. Impediments such
as multi-cycle instruction accesses, instruction-cache misses, and
mispredictions reduce performance by 48% and increase energy
consumption by 21%. This paper presents a block-aware instruc-
tion set architecture (BLISS) that defines basic block descriptors in
addition to the actual instructions in a program. BLISS allows for
a decoupled front-end that reduces the time and energy spent on
misspeculated instructions. It also allows for accurate instruction
prefetching and energy efficient instruction access. A BLISS-based
front-end leads to 14% IPC, 16% total energy, and 83% energy-
delay-squared product improvements for wide-issue processors.

Categories and Subject Descriptors: C.1.1 [Processor Architec-
tures]: Single Data Stream Architectures — Pipeline processors

General Terms: Design, Performance

Keywords: instruction set architecture, instruction delivery, basic
blocks, decoupled architecture, energy efficiency.

1. INTRODUCTION
Modern high-end processors must provide high application per-

formance in an energy effective manner. Energy efficiency is es-
sential for dense server systems (e.g. blades), where thousands of
processors may be packed in a single colocation site. High en-
ergy consumption can severely limit the server scalability, its oper-
ational cost, and its reliability[1]. Furthermore, an energy-efficient
high performance design allows semiconductor vendors to use the
same processor core in chips for both server and notebook appli-
cations. For notebooks, energy consumption is directly related to
battery life.

The instruction fetch mechanism largely determines the perfor-
mance and energy efficiency for a superscalar processor [2]. The
rate and accuracy at which instructions enter the pipeline set an
upper limit to sustained performance and determine the efficiency
of energy use. Consequently, superscalar designs place increased
demands on the processor front-end, the engine responsible for
control-flow prediction and instruction fetching. Conservative in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA
Copyright 2005 ACM 1-59593-137-6/05/0008 ...$5.00.

0%

10%

20%

30%

40%

50%

Imperfect Predictor Imperfect I-Cache Imperfect Predictor +
Imperfect I-Cache

%
 L

os
s

Performance

Energy

Figure 1: The percentage of performance and energy loss
for a 4-way superscalar processor running SPEC CPU bench-
marks due to prediction accuracy and instruction cache la-
tency/misses.

struction delivery can severely limit the performance potential of
the processor by unnecessarily gating ILP (under-speculation). On
the other hand, overly aggressive instruction delivery wastes energy
on the execution of misspeculated instructions (over-speculation).
Aggressive speculation can also reduce performance by frequently
causing expensive pipeline flushes on mispredicted branches.

In its effort to balance performance and energy efficiency, the
front-end engine must handle three basic detractors: instruction
cache misses that cause instruction delivery stalls; target and direc-
tion mispredictions for branches that send erroneous instructions
to the execution core; and multi-cycle instruction cache accesses
that cause additional uncertainty about the existence and direction
of branches within the instruction stream. Figure 1 quantifies the
performance and overall energy penalty due to the three problems
for a 4-way superscalar processor running the SPEC CPU bench-
marks 1. Mispredictions alone cost 28% in performance and 15%
in energy consumption. Multi-cycle instruction cache accesses and
misses cost 22% in performance and 10% in energy consumption.
Combined, front-end challenges reduce performance efficiency by
up to 48% and overall energy efficiency by 21%.

In this paper, we address the front-end performance and en-
ergy challenges using a block-aware instruction set architecture
(BLISS). BLISS defines basic block descriptors in addition to and
separately from the actual instructions in each program. A descrip-
tor provides sufficient information for fast and accurate control-
flow prediction without accessing or parsing the instruction stream.
It describes the type of the control-flow operation that terminates
the basic block, its potential target, and the number of instructions

1See Section 4 for the processor configuration and the evaluation
methodology.

in the block. BLISS allows the processor front-end to access the
software defined block descriptors through a small cache that re-
places the common block target buffer (BTB).

BLISS enables significant performance and energy improve-
ments at the front-end engine compared to a conventional ISA.
The descriptors’ cache decouples control-flow speculation from in-
struction cache accesses. Hence, the instruction cache latency is
no longer in the critical path of accurate prediction. The fetched
descriptors can be used to prefetch instructions and eliminate the
impact of instruction cache misses. Furthermore, the control-flow
information available in descriptors allows for judicious use of pre-
dictors, which reduces interference and training time and improves
overall prediction accuracy. Finally, BLISS facilitates energy opti-
mizations in the instruction cache, such as selective way/word ac-
cess [3, 4] and serial access to data and tags [4], without sacrificing
performance.

We demonstrate that a BLISS-based front-end design allows for
a 14% performance improvement with a 4-way superscalar proces-
sor, while reducing its energy consumption by 16%. BLISS im-
proves both performance and energy consumption. Moreover, we
show that BLISS compares favorably to advanced, hardware-only
schemes for decoupled front-ends. Overall, this work demonstrates
the performance and energy potential of software-assisted super-
scalar execution using an expressive ISA.

2. BLOCK-AWARE ISA
Our proposal is based on a block-aware instruction set (BLISS)

that explicitly describes basic blocks. A basic block (BB) is a
sequence of instructions starting at the target or fall-through of a
control-flow instruction and ending with the next control-flow in-
struction or before the next potential branch target.

BLISS stores the definitions for basic blocks in addition to and
separately from the ordinary instructions they include. The code
segment for a program is divided in two distinct sections. The first
section contains descriptors that define the type and boundaries of
blocks, while the second section lists the actual instructions in each
block. Figure 2 presents the format of a basic block descriptor
(BBD). Each BBD defines the type of the control-flow operation
that terminates the block. The BBD also includes an offset field to
be used for blocks ending with a branch or a jump with PC-relative
addressing. The actual instructions in the basic block are identified
by the pointer to the first instruction and the length field. The last
BBD field contains optional compiler-generated hints. In this study,
we make limited use of this field to convey branch prediction hints
generated through profiling [5]. The overall BBD length is 32 bits.

BLISS treats each basic block as an atomic unit of execution.
There is a single program counter and it only points within the
code segment for BBDs. The execution of all instructions asso-
ciated with each descriptor updates the PC so that it points to the
descriptor for the next basic block in the program order (PC+4 or
PC+offset). Precise exceptions are supported similar to [6].

The BBDs provide the processor front-end with architectural in-
formation about the program control-flow in a compressed and ac-
curate manner. Since BBDs are stored separately from instructions,
their information is available for front-end tasks before instructions
are fetched and decoded. The sequential block target is always at
PC+4, regardless of the number of instructions in the block. The
non-sequential target (PC+offset) is also available through the off-
set field for all blocks terminating with a PC-relative control-flow
instructions (branches – BR B and BR F, jumps – J and JAL, loop
– LOOP). For the remaining cases (jump register – JR and JALR,
return – RET), the non-sequential target is provided by the last in-
struction in the block through a register. BBDs provide the branch

Hints

2

Length

4

Offset

9

Type

4

Instruction Pointer

13

Type : Basic Block type (type of terminating branch):
 - fall-through (FT)
 - backward conditional branch (BR_B)
 - forward conditional branch (BR_F)
 - jump (J)
 - jump-and-link (JAL)
 - jump register (JR)
 - jump-and-link register (JALR)
 - call return (RET)
 - zero overhead loop (LOOP)

Offset: displacement for PC-relative branches and jumps.
Length: number of instruction in the basic block (0..15)
Instruction pointer: address of the 1st instruction in the block
 bits [14:2]. bits [31:15] are stored in the TLB
Hints: optional compiler-generated hints used for static
 branch hints in this study

Figure 2: The 32-bit basic block descriptor format in BLISS.

condition when it is statically determined (all jumps, return, fall-
through blocks). For conditional branches, the BBD provides type
information (forward, backward, loop) and hints which can assist
with dynamic prediction. The actual branch condition is provided
by the last instruction in the block. Finally, the instruction pointer
and length fields can be used for instruction prefetching.

Figure 3 presents an example program that counts the number of
zeros in array a and calls foo() for each non-zero element. With
a RISC ISA like MIPS, the program requires 8 instructions (Fig-
ure 3.b). The 4 control-flow operations define 5 basic blocks. All
branch conditions and targets are defined by the branch and jump
instructions. With the BLISS equivalent of MIPS (Figure 3.c), the
program requires 5 basic block descriptors and 7 instructions. All
PC-relative offsets for branch and jump operations are available in
BBDs. Compared to the original code, we have eliminated the j
instruction. The corresponding descriptor (BBD3) defines both the
control-flow type (J) and the offset, hence the jump instruction it-
self is redundant. However, we cannot eliminate either of the two
conditional branches (bneqz, bne). The corresponding BBDs
provide the offsets but not the branch conditions, which are still
specified by the regular instructions. However, the regular branch
instructions no longer need an offset field, which frees a large num-
ber of instruction bits. Similarly, we have preserved the jalr in-
struction because it allows reading the jump target from register r3
and writing the return address in register r31.

Note that function pointers, virtual methods, jump tables, and
dynamic linking are implemented in BLISS using jump-register
BBDs and instructions in an identical manner to how they are im-
plemented with conventional ISAs. For example, the target register
(r3) for the jr instruction in Figure 3 could be the destination
register of a previous load instruction.

3. BLISS DECOUPLED FRONT-END
The BLISS ISA suggests a superscalar front-end that fetches

BBDs and the associated instructions in a decoupled manner. Fig-
ure 4 presents a BLISS-based front-end that replaces branch target
buffer (BTB) with a BB-cache that caches the block descriptors in
programs. The offset field in each descriptor is stored in the BB-
cache in an expanded form that identifies the full target of the termi-
nating branch. For PC-relative branches and jumps, the expansion

BB descriptors

BBD1 : FT, __, 1,

BBD2 : BR_F, BBD4, 2,

BBD3 : J, BBD5, 1,

BBD4 : JALR, __, 1,

BBD5 : BR_B, BBD2, 2,

Instructions

addu r4, r0, r0

lw r6, 0(r1)

bneqz r6

addui r4, r4, 1

jalr r3

addui r1, r1, 4

bneq r1, r2

C code

numeqz=0;
for (i=0; i<N; i++)
 if (a[i]==0)
 numeqz++;
 else
 foo();

MIPS code

 addu r4, r0, r0

L1: lw r6, 0(r1)

 bneqz r6, L2

 addui r4, r4, 1

 j L3

L2: jalr r3

L3: addui r1, r1, 4

 bneq r1, r2, L1

BLISS code

(b) (c)(a)

Figure 3: Example program in (a) C source code, (b) MIPS assembly code, and (c) BLISS assembly code. With both (b) and (c), the
instructions in each basic block are identified with dotted-line boxes. Register r3 contains the address for the first instruction (b)
or first basic block descriptor (c) of function foo. For illustration purposes, the instruction pointers in basic block descriptors are
represented with arrows.

Schedule
&

Execute

I-Cache
Pipelined

D
e

co
d

e

BB-Cache

RAS

Hybrid
Predictor

P
C

call return target

basic block target

branch type

<basic block>

mipredicted branch target

L2 Cache

i-
ca

ch
e

m
is

s

BBQ IQ

D-Cache

BB-cache Entry Format: tag length
(4b)

type
(4b)

target
(30b)

hints
(2b)

I-
ca

ch
e

pr
ef

e
tc

h

BB-cache misses

instr. pointer
(13b)

bimod
(2b)

Figure 4: A decoupled front-end for a superscalar processor based on the BLISS ISA.

takes place on BB-cache refills from lower levels of the memory
hierarchy, which eliminates target mispredictions even for the first
time the branch is executed. For the register-based jumps, the off-
set field is available after the first execution of the basic block. The
BB-cache stores eight sequential BBDs per cache line. Long BB-
cache lines exploit spatial locality in descriptor accesses and reduce
the storage overhead for tags.

The BLISS front-end operation is simple. On every cycle, the
BB-cache is accessed using the PC. On a miss, the front-end stalls
until the missing descriptor is retrieved from the memory hierarchy
(L2 cache). On a hit, the BBD and its predicted direction/target
are pushed in the basic block queue (BBQ). The direction is also
verified by a tag-less, hybrid predictor. The predicted PC is used to
access the BB-cache in the following cycle. Instruction cache ac-
cesses use the instruction pointer and length fields in the descriptors
available in the BBQ.

The BLISS front-end alleviates all performance and energy
shortcomings of a conventional front-end. The BBQ decouples
control-flow prediction from instruction fetching. Multi-cycle la-
tency for large instruction cache no longer affects prediction accu-
racy, as the vital information for speculation is included in basic-
block descriptors available through the BB-cache (block type, tar-
get offset). Hence, there is no performance motivation for a single-
cycle I-cache, which would be energy wasteful. Since the PC in the

BLISS ISA always points to basic block descriptors (i.e. a control-
flow instruction), the hybrid predictor is only used and trained for
PCs that correspond to branches. With a conventional front-end,
on the other hand, the PC may often point to non control-flow in-
structions which causes additional interference and slower training
for the hybrid predictor. The contents of the BLISS BBQ also pro-
vide an early, yet accurate, view into the instruction address stream
and can be used for instruction prefetching [7] that hides instruc-
tion cache misses without wasting energy on unnecessary L2-cache
accesses.

The availability of basic block descriptors also allows for energy
optimizations in the instruction cache. Each basic block defines
exactly the number of instructions needed from the I-cache. Us-
ing segmented word lines [3] for the data portion of the I-cache,
we can fetch the necessary words while activating only the neces-
sary sense-amplifiers in each case. Furthermore, front-end decou-
pling tolerates higher I-cache latency without loss in speculation
accuracy. Hence, we can access first the tags for a set associative I-
cache, and in subsequent cycles, access the data only in the way that
hits [4]. Our results indicate the two optimizations combined save
up to 40% of energy in the front-end compared to a conventional
superscalar design. Finally, we can merge the I-cache accesses for
sequential block in the BBQ that hit in the same I-cache line, in
order to save decoding and tag access energy.

Base FTB BLISS
Fetch Width 4 Inst./cycle 1 FB/cycle 1 BB/cycle
Target BTB: FTB: BB-cache:
Predictor 1K entries 1K entries 1K entries

4-way 4-way 4-way
1-cycle access 1-cycle access 1-cycle access

8 entries/line
Decoupling – FTQ: BBQ:
Queue 8 entries 8 entries
I-cache Latency 2-cycle pipelined 3-cycle pipelined

Common Processor Parameters
Hybrid gshare: 4K counters
Predictor PAg L1: 1K entries, PAg L2: 1K counters

selector: 4K counters
RAS 32 entries with shadow copy
I-cache 16 KBytes, 4-way, 64B blocks, 1 port
Issue/Commit 4 instructions/cycle
IQ/RUU/LSQ 32/64/64 entries
FUs 6 INT & 3 FP
D-cache 32 KBytes, 4-way, 64B blocks, 2 ports,

2-cycle access pipelined
L2 cache 1 MByte, 8-way, 128B blocks, 1 port

12-cycle access, 4-cycle repeat rate
Main memory 100-cycle access

Table 1: The microarchitecture parameters for the simulations.
The common parameters apply to all three models (base, FTB,
BLISS).

A decoupled front-end similar to the one in Figure 4 can be im-
plemented without the ISA support provided by BLISS. The FTB
design [8, 9, 4] describes the latest of such design. The FTB de-
tects basic block boundaries and targets dynamically in hardware
and stores them in an advanced BTB called the fetch target buffer
(FTB). Block boundaries are discovered by introducing large in-
struction sequential blocks which are later shortened when jumps
are decoded (misfetch) or branches are taken (mispredict) within
the block. The FTB enables I-cache energy optimizations and al-
lows for instruction fetch decoupling and prefetching as described
above. Furthermore, the FTB coalesces multiple continuous basic
blocks into a single long fetch block in order to improve control-
flow rate and better utilize the FTB capacity. Nevertheless, the
simpler BLISS front-end outperforms the aggressive FTB design
by providing a better balance between over- and under-speculation.
With BLISS, block formation is statically done in software and it
never introduces misfetches. In addition, the PC used to access the
hybrid predictor for each block (branch) is the same. With FTB,
as fetch blocks shrink dynamically when branches switch behav-
ior, the PC used to index in the predictor and FTB for each branch
changes dynamically, causing slower predictor training and addi-
tional interference.

4. METHODOLOGY
We simulate a 4-way superscalar processor to compare the

BLISS-based front-end to conventional (base) and FTB-based
front-ends. Table 1 summarizes the key architectural parameters.
Note that the target prediction buffers in the three front-ends (BTB,
FTB, and BB-cache) have exactly the same capacity for fairness.
All other parameters are identical across the three models. We
have also performed detailed experiments varying several of these
parameters and the results are consistent (BTB size, I-cache size,
etc.). For BLISS, we fully model contention for the L2-cache band-
width between BB-cache misses and I-cache or D-cache misses.
Our graphs present two sets of results for BLISS: without (BLISS)
and with (BLISS-hints) the prediction hints in the BBDs. We do
not discuss BLISS-hints in details due to space limitations.

We study 12 SPEC CPU2000 benchmarks using their reference
datasets and compiled at the -O3 optimization level. We skip the
first billion instructions and simulate another billion instructions for
detailed analysis. We generated BLISS executables using a static
binary translator, which can handle arbitrary programs written in
any language. The generation of BLISS executable could also be
done using a transparent, dynamic compilation framework. Despite
introducing the block descriptors, BLISS executables are actually
up to 16% smaller than the original binaries, as BLISS allows ag-
gressive code size optimizations such as branch removal and com-
mon block elimination. The evaluation of code size optimizations
is omitted due to space limitations.

Our simulation framework is based on the Simplescalar/PISA
3.0 toolset [10], which we modified to add the FTB and BLISS
front-end models. For energy measurements, we use the Wattch
framework with the cc3 power model [11] (non-ideal, aggressive
conditional clocking). Energy consumption was calculated for a
0.10�m process with a 1.1V power supply. The reported Front-end
Energy includes I-cache, predictors, and BTB/FTB/BB-Cache. To-
tal Energy includes all the processor components (front-end, execu-
tion core, and all caches). The BTB/FTB/BB-cache are always ac-
cessed in one cycle. The latency of the other caches in clock cycles
is set properly based on its relative size compared to BTB/FTB/BB-
cache using CACTI 3.0.

5. EVALUATION
Figure 5 compares the IPC, front-end energy consumption, to-

tal energy consumption, and energy-delay-squared product (ED2P)
improvements achieved for the 4-way processor configuration with
the three front-ends. BLISS outperforms the base front-end for all
benchmarks with an average IPC improvement of 14% as it allows
for more accurate prediction and instruction prefetching. Com-
pared to the base, BLISS reduces by 36% the number of pipeline
flushes due to target and direction mispredictions. These flushes
have a severe performance impact as they empty the full processor
pipeline. Flushes in BLISS are slightly more expensive than in the
base design due to the longer pipeline, but they are less frequent.
The BLISS advantage is due to the availability of control-flow in-
formation from the BB-cache regardless of I-cache latency and the
accurate indexing and judicious use of the hybrid predictor. BLISS
also enables I-cache prefetching though the BBQ which reduces the
number of I-cache misses by 10% on average for the benchmarks
studied. The remaining performance improvement suggested in
Figure 1 can only be achieved with a much better branch predic-
tor. The hardware-based FTB front-end outperforms the base for
only half of the benchmarks and most of the 5% average IPC im-
provement is due to vortex. BLISS outperforms FTB for all
benchmarks but vortex, with an average IPC advantage of 9%
(up to 12% with BLISS-hints). Although FTB allows similar front-
end decoupling with instruction prefetching, it suffers from higher
number of control-flow mispredictions due to its aggressive over-
speculation.

On average, 13% of the total processor energy is consumed in
the front-end engine itself as it contains a number of large SRAM
structures (cache, BTB, predictors). Both of the BLISS and FTB
front-ends designs reduce significantly the energy consumption in
the front-end structures through selective way/word accesses and
serial data/tag accesses in the instruction cache. The FTB design
saves 52% of the front-end energy consumed by a conventional
front-end design. The BLISS design achieves even higher improve-
ment (65%) as it reduces the number of mispredicted instructions
fetched from the instruction cache.

-5%

5%

15%

25%

35%

gzip gcc crafty gap vortex twolf wupwise applu mesa art equake apsi AVG

%
IP

C
Im

pro
ve

me
nt

FTB BLISS BLISS-Hints50%38%

0%

20%

40%

60%

80%

gzip gcc crafty gap vortex twolf wupwise applu mesa art equake apsi AVG

%
FE

 En
erg

y S
avi

ngs

0%

10%

20%

30%

gzip gcc crafty gap vortex twolf wupwise applu mesa art equake apsi AVG

%
 T

ot
al

En
er

gy
 S

av
ing

s 32%

-10%

20%

50%

80%

110%

gzip gcc crafty gap vortex twolf wupwise applu mesa art equake apsi AVG%
 E

D2
P

Im
pr

ov
em

en
t

23
8%

19
9%

22
5%

34
4%

17
0%

19
8%

22
8%

Figure 5: Evaluation of the 4-way processor configuration with the FTB and BLISS front-ends over the base design.

BLISS offers a 16% total energy advantage over the base de-
sign by significantly reducing front-end energy consumption and
controlling over-speculation to limit the energy wasted for mispre-
dicted instructions. BLISS-based design actually achieves 75% of
the total energy improvement suggested in Figure 1. BLISS also
provides a 7% total energy advantage over FTB as dynamic fetch
block creation in the FTB front-end leads to execution of mis-
speculated instructions that waste energy. BLISS compares even
more favorably to FTB if one considers composite efficiency met-
rics such as the energy-delay-squared product, which is appropriate
for high-performance, energy-efficient processors. The BLISS de-
sign achieves an 83% improvement in ED2P, while the FTB design
has only 35% overall ED2P improvement over the base.

Figure 6 explains the basic difference in efficiency between the
hardware-only approach (FTB) and our software-assisted approach
(BLISS). It compares the fetch and commit IPC for the FTB and
BLISS front-ends. The fetch IPC is defined as the average number
of instructions described by the blocks inserted in the BBQ/FTQ in
each cycle. Looking at fetch IPC, the FTB design fetches more in-
structions per cycle than BLISS (3.83 versus 2.30 on the average).
The FTB advantage is due to the larger blocks and because the
front-end generates fall-through blocks on FTB misses, while the
BLISS front-end stalls on BB-cache misses. Nevertheless, in terms
of commit IPC (instructions retired per cycle), the BLISS front-
end has an advantage(1.64 versus 1.78). In other words, a higher
ratio of instructions predicted by the BLISS front-end turn out to
be useful. The long, fall-through fetch blocks introduced on FTB
misses contain large number of erroneous instructions that lead to
misfetches, mispredictions, and slow predictor training. The im-
pact of mispredicted instructions is negative on both performance
and energy consumption, especially in the back-end of the proces-
sor. Vortex is one of the few benchmarks for which the FTB design
outperforms BLISS. This is due to the longer fetch blocks that the

FTB front-end is capable of forming (8.1 instructions per FTB en-
try versus 5.0 instructions per BB-cache entry).

Although the BLISS L2-cache serves the BB-cache misses in
addition to the I-cache and D-Cache misses, the number of L2-
cache accesses and misses are slightly better than the numbers for
the FTB design. BLISS has an 8% higher number of L2-cache
accesses and a 3% lower number of L2-cache misses compared to
the base design for the benchmarks studied. The increased number
of L2-cache accesses for BLISS and FTB designs is mainly due to
instruction prefetching.

0

1

2

3

4

5

6

FTB BLISS FTB BLISS FTB BLISS FTB BLISS FTB BLISS FTB BLISS

gzip vortex twolf mesa equake average

IP
C

Fetch IPC Commit IPC

Figure 6: Fetch and commit IPC with the FTB and BLISS
front-ends. We present data for a few representative cases, but
the average refers to all 12 benchmarks. For BLISS, we present
the data for the case without static branch hints.

6. RELATED WORK
Several researchers have worked on reducing power and energy

consumption in or through the front-end. Most techniques trade
off a small performance degradation for significant energy savings.
Some of the techniques include reducing the instruction cache en-
ergy by way prediction[12], selective cache way access [13], and

sub-banking [3]. Others have focused on reducing energy con-
sumption in predictors by using multi-banking [14] or selective pre-
diction[15]. Confidence prediction and throttling [16] has been pro-
posed as a way to control over-speculation to limit energy wasted
on misspeculated instructions. Our proposal reduces the energy
consumption in front-end and at the same time improves the per-
formance by increasing instruction fetch accuracy.

Certain ISAs allow for basic blocks descriptors, interleaved with
regular operations in the instruction stream (e.g. prepare-to-branch
instructions in [17, 18]). They allow for target address calculation
and instruction prefetching a few cycles before the branch instruc-
tion is decoded. The block-structured ISA (BSA) by Patt et al. [6]
defines basic blocks of reversed ordered instructions as atomic exe-
cution units in order to simplify instruction renaming and schedul-
ing. BLISS goes a step further by separating basic block descriptors
from regular instructions which allows for instruction fetch band-
width improvements. The benefits from BSA and BLISS are com-
plimentary.

Block-based front-end architectures were introduced by Yeh and
Patt [19], with basic block descriptors formed by hardware with-
out any additional architectural support. Decoupled front-end tech-
niques have been explored by Calder and Grunwald [20] and Stark
et al. [21]. Reinman et al. combined the two techniques in a com-
prehensive front-end with prefetching capabilities [8, 9]. Our work
improves their design using explicit ISA support for basic block
formation. Significant amount of front-end research has also fo-
cused on trace caches [22, 23]. Trace caches have been shown to
work well with basic blocks defined by hardware [24]. One can
form streams or traces on top of the basic blocks in the BLISS ISA.
BLISS provides two degrees of freedom for code layout optimiza-
tions (blocks and instructions), which could be useful for stream or
trace formation. Exploring such approaches is an interesting area
for future work.

7. CONCLUSIONS
This paper proposed block-aware instruction set to address per-

formance and energy challenges in the front-end of high-end su-
perscalar processors. The ISA defines basic block descriptors in
addition to and separately from the actual instructions. Software-
defined basic blocks allow a decoupled front-end to avoid the
wasteful over-speculation during hardware creation of fetch blocks
and to achieve highly accurate control-flow speculation. They
also allow energy optimizations in the instruction cache access.
Through detailed simulation, we have shown that the proposed ISA
allows for a 14% performance, 16% total energy, and 83% ED2P
improvements over a conventional superscalar design. The ISA-
supported front-end also outperforms (9% IPC, 7% energy, and
48% ED2P) advanced decouple front-ends that dynamically build
fetch blocks in hardware. Overall, this work establishes the poten-
tial of using expressive ISAs to address difficult hardware problems
in modern processors in ways that benefit both performance and
energy consumption.

8. ACKNOWLEDGEMENTS
We would like to acknowledge Earl Kilian for his valuable input.

This work was supported by a Stanford OTL grant.

9. REFERENCES
[1] W. M. Felter et al. On The Performance and Use of Dense Servers.

IBM J. RES. and DEV., 47(5/6), September 2003.
[2] R. Ronen, A. Mendelson, et al. Coming Challenges in

Microarchitecture and Architecture. Proceedings of the IEEE, 89(3),
March 2001.

[3] Kanad Ghose and Milind B. Kamble. Reducing Power in Superscalar
Processor Caches Using Subbanking, Multiple Line Buffers and
Bit-line Segmentation. In Intl. Symposium on Low Power Electronics
and Design, San Diego, CA, August 1999.

[4] Glenn Reinman, Brad Calder, and Todd M. Austin. High
Performance and Energy Efficient Serial Prefetch Architecture. In
Intl. Symposium on High Performance Computing, Kansai Science
City, Japan, May 2002.

[5] A. Ramirez, J. Larriba-Pey, and M. Valero. Branch Prediction Using
Profile Data. In EuroPar Conference, Manchester, UK, August 2001.

[6] S. Melvin and Y. Patt. Enhancing Instruction Scheduling with a
Block-structured ISA. Intl. Journal on Parallel Processing, 23(3),
June 1995.

[7] T. Chen and J.L. Baer. A Performance Study of Software and
Hardware Data Prefetching Schemes. In Intl. Symposium on
Computer Architecture, Chicago, IL, April 1994.

[8] G. Reinman, B. Calder, and T. Austin. Fetch Directed Instruction
Prefetching. In Intl. Symposium on Microarchitecture, Haifa, Israel,
November 1999.

[9] G. Reinman, C. Calder, and T. Austin. Optimizations Enabled by a
Decoupled Front-End Architecture. IEEE TC, 50(40), April 2001.

[10] D. Burger and M. Austin. Simplescalar Tool Set, Version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin,
Madison, June 1997.

[11] D. Brooks, V. Tiwari, , and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Intl.
Symposium on Computer Architecture, Vancouver, BC, Canada, June
2000.

[12] M. Powell et al. Reducing Set-Associative Cache Energy via Way
Prediction and Selective Direct-Mapping. In Intl. Symposium on
Microarchitecture, Austin, Texas, December 2001.

[13] David H. Albonesi. Selective Cache Ways: On-Demand Cache
Resource Allocation. In Intl. Symposium on Microarchitecture,
Haifa, Israel, November 1999.

[14] Dharmesh Parikh, Kevin Skadron, Yan Zhang, Marco Barcella, and
Mircea R. Stan. Power Issues Related To Branch Prediction. In Intl.
Symposium on High-Performance Computer Architecture, Boston,
MA, February 2001.

[15] A. Baniasadi and A. Moshovos. Branch Predictor Prediction: A
Power-Aware Branch Predictor for High-Performance Processors. In
Intl. Conference on Computer Design, Freiburg, Germany,
September 2002.

[16] J. Aragon, J. Gonzalez, and A. Gonzalez. Power-Aware Control
Speculation Through Selective Throttling. In Intl. Symposium on
High-Performance Computer Architecture, Anaheim, CA, February
2003.

[17] R. Wedig and M. Rose. The Reduction of Branch Instruction
Execution Overhead Using Structured Control Flow. In Intl.
Symposium on Computer Architecture, Ann Arbor, MI, June 1984.

[18] V. Kathail, M. Schlansker, and B. Rau. HPL PlayDoh Architecture
Specification. Technical Report HPL-93-80, HP Labs, 1994.

[19] T. Yeh and Y. Patt. A Comprehensive Instruction Fetch Mechanism
for a Processor Supporting Speculative Execution. In Intl.
Symposium on Microarchitecture, Portland, OR, December 1992.

[20] B. Calder and D. Grunwald. Fast and Accurate Instruction Fetch and
Branch Prediction. In Intl. Symposium on Computer Architecture,
Chicago, IL, April 1994.

[21] J. Stark, P. Racunas, and Y. Patt. Reducing the Performance Impact
of Instruction Cache Misses by Writing Instructions into the
Reservation Stations Out-of-Order. In Intl. Symposium on
Microarchitecture, Research Triangle Park, NC, December 1997.

[22] D. Friendly, S. Patel, and Y. Patt. Alternative Fetch and Issue
Techniques from the Trace Cache Mechanism. In Intl. Symposium on
Microarchitecture, Research Triangle Park, NC, December 1997.

[23] S. Patel, M. Evers, and Y. Patt. Improving Trace Cache Effectiveness
with Branch Promotion and Trace Packing. In Intl. Symposium on
Computer Architecture, Barcelona, Spain, June 1998.

[24] S. Jourdan et al. Extended Block Cache. In Intl. Symposium on
High-Performance Computer Architecture, Toulouse, France,
January 2000.

