
Scalable Vector Media-processors

for Embedded Systems

Christoforos Kozyrakis

Ph.D. Dissertation Seminar

May 2nd, 2002

2

Exploiting Parallelism

• The main job of computer architects

– Exploit parallelism to design efficient architectures

• Best practice

– First pick the best solution at each level

– Then make these solutions work well together

Instruction Level

Thread Level

Task Level SMP, NUMA, Clusters, DSM

MT, CMP, SMT

Superscalar, VLIW

Data Level ??

• How about data level parallelism ?

– Can we do something efficient about it?

3

Multimedia Applications

• The killer-app for current and future systems

– 3D graphics, animation, speech and visual recognition,

image and video processing, encryption

• Plenty of data-level parallelism

– They repeat same function over sequences of data

– Parallelism is explicit in the applications

• Characteristics to keep in mind

– Need high performance with real-time response

– Narrow data types (8 bit, 16 bit, 32 bit)

– Streaming IO data with little temporal locality

4

Multimedia on Embedded Systems

• Embedded and portable systems

– PDAs, set-top-boxes, game consoles,

digital cameras, cellular phones

• Mobile-personal computing

– E.g. PDA with speech recognition

• Realities of consumer electronics

– Low cost

– Small code size, low power consumption

– Low energy consumption for portable devices

– Short hardware and software development cycles

• Processor should be easy to design, scale, and program

– Integration is often the key for new applications

5

Technology Constraints

• Processor-memory performance gap

• Latency scaling of very long wires

• Exponentially increasing design and verification

complexity

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005

P
e
rf

o
rm

a
n
c
e

Memory

Processor

6

Thesis

• It is possible to design efficient microprocessors for

embedded multimedia systems with

– High performance

– Low energy/power consumption

– Low design complexity

– High scalability

• Basic arguments

– A vector architecture can exploit efficiently the data-

level parallelism in multimedia applications

– We can design on-chip, cost-effective memory systems

that provide high bandwidth

7

Outline

• Motivation and thesis

• The VIRAM instruction set for multimedia processing

• The VIRAM-1 vector microarchitecture and prototype

media-processor

• The CODE vector microarchitecture

• Conclusions and future work

[David Martin, Krste Asanovic, Dave Judd, Rich Fromm]

[Sam Williams, Joe Gebis]

8

VIRAM Instruction Set

• Vector load-store instruction set

– Coprocessor extension to MIPS-64 ISA

• Architecture state

– 32 general-purpose vector registers

– 16 flag registers

– Scalar registers for control, addresses, strides, etc

• Vector instructions

– Arithmetic: integer, floating-point, logical

– Load-store: unit-stride, strided, indexed

– Misc: vector processing (pack/unpack), flag processing

(pop count)

– 90 unique instructions, 660 opcodes

9

VIRAM ISA Enhancements

• Multimedia processing

– Support for multiple data-types (64b/32b/16b)

• Element/operation width specified with control register

– Saturated and fixed-point arithmetic

• Flexible multiply-add model without accumulators

– Simple element permutations for reductions and FFTs

– Conditional execution using the flag registers

• General-purpose systems

– TLB-based virtual memory

• Separate TLB for vector memory accesses

– Hardware support for reduced context switch overhead

• Valid/dirty bits for vector registers

• Support for “lazy” save/restore of vector state

10

VIRAM Compiler

• Based on Cray PDGCS compiler

– Extensive vectorization capabilities including outer-loop

– Automatic vectorization of narrow operations and

reductions

– Lacks back-end optimizations

• Code motion, basic block scheduling

Optimizer

C

Fortran95

C++

Frontends Code Generators

Cray’s

PDGCS

T3D/T3E

SV2/VIRAM

C90/T90/SV1

11

EEMBC: Vectorization

0

25

50

75

100

Rgb2cmyk Rgbyiq Filter Cjpeg Djpeg Autocor Convenc Bital Fft Viterbi

EEMBC Benchmarks

%
 o

f
V

e
c

to
ri

z
a

ti
o

n

Consumer Telecommunications

• % of dynamic operations specified by vector instructions

12

EEMBC: Code Size

1.4

1.1
1.0

2.0

0.6

0.3

1.0 1.1

0.8

1.0

4.1 12.3

0

0.5

1

1.5

2

2.5

VIRAM-cc VIRAM-

opt

x86 MIPS VLIW VLIW-opt

R
e

la
ti

v
e

 C
o

d
e

 S
iz

e

Consumer Telecommunications

• Average code size, normalized to the x86 architecture

13

Outline

• Motivation and thesis

• The VIRAM instruction set for multimedia processing

• The VIRAM-1 vector microarchitecture and prototype

media-processor

• The CODE vector microarchitecture

• Conclusions and future work

14

VIRAM-1 Block Diagram

15

Modular Vector Unit Design

• Single 64b “lane” design replicated multiple times

– Reduces design and testing time

– Provides a simple scaling model (up or down) without major
control or datapath redesign

• Most instructions require only intra-lane interconnect

– Tolerance to interconnect delay scaling

256b

Control

64b

Xbar IF

Integer
Datapath 0

Flag Reg. Elements
& Datapaths

Vector Reg.
Elements

FP Datapath

Integer
Datapath 1

64b

Xbar IF

Integer
Datapath 0

Flag Reg. Elements
& Datapaths

Vector Reg.
Elements

FP Datapath

Integer
Datapath 1

64b

Xbar IF

Integer
Datapath 0

Flag Reg. Elements
& Datapaths

Vector Reg.
Elements

FP Datapath

Integer
Datapath 1

64b

Xbar IF

Integer
Datapath 0

Flag Reg. Elements
& Datapaths

Vector Reg.
Elements

FP Datapath

Integer
Datapath 1

16

VIRAM-1 Chips Statistics

• Technology: 0.18µm CMOS from IBM

– 6 layers copper, trench DRAM cell

• 335 mm2 die area

– 140mm2 DRAM, 70 mm2 logic

– 10mm2 per vector lane

• 120M transistors

– 112.5M DRAM, 7.5M logic

• 200 MHz, 2 Watts

• Peak vector performance

– Integer: 1.6/3.2/6.4 Gop/s
(64b/32b/16b)

– Fixed-point: 2.4/4.8/9.6 Gop/s
(64b/32b/16b)

– Floating-point: 1.6 Gflop/s (32b)

17

EEMBC: Consumer

81.2

201.4

34.2

122.6

23.3

110.0

0

60

120

180

240

VIRAM-1 VIRAM-1 K6-III+ MPC7455 TM1300 TM1300

Vector-cc Vector-opt OOO OOO VLIW VLIW+SIMD

200MHz 200MHz 550MHz 1GHz 166MHz 166MHz

E
E

M
B

C
 C

o
n

s
u

m
e

rM
a

rk

18

EEMBC: Telecommunications

12.4

61.7

8.7

27.2

6.8

44.6

0

20

40

60

80

VIRAM-1 VIRAM-1 K6-III+ MPC7455 TMS320C6203 TMS320C6203

Vector-cc Vector-opt OOO OOO VLIW VLIW-opt

200MHz 200MHz 550MHz 1GHz 300MHz 300MHz

E
E

M
B

C
 T

e
le

M
a

rk

19

EEMBC: Scalability

83.9

134.3

201.4

271.3

23.7

40.8

61.7

85.5

0

60

120

180

240

300

1 Lane 2 Lanes 4 Lanes 8 Lanes

ConsumerMark

TeleMark

• Same clock frequency (200 MHz), same memory system

20

Outline

• Motivation and thesis

• The VIRAM instruction set for multimedia processing

• The VIRAM-1 vector microarchitecture and prototype

media-processor

• The CODE vector microarchitecture

• Conclusions and future work

21

The CODE Microarchitecture

• Goal: improve on VIRAM-1

– Simplify the vector register file design

• Reduce the number of access ports per register

• Allow for more functional units per lane

– Tolerate higher memory latency

• Allow for higher clock frequency or slower processor-

memory interconnect

• Approach: reorganize vector lanes

– Composite organization

• Assign a small vector register file to each functional unit

– Decoupled execution

• Decouple instruction execution in each functional unit

using instruction and data queues

22

From VIRAM-1 to CODE (1)

• Vector lane in VIRAM-1

• Centralized vector register file feeds all FUs

• Deeply pipelined functional units

0

Vector Registers

ALU1

LSU

31

ALU0

FPU

23

From VIRAM-1 to CODE (2)

• Associate a few vector registers with each FU

• Local register file has fixed number of access ports

0
Vector Registers

7

ALU1ALU0

0
Vector Registers

7

FPU

0
Vector Registers

7

LSU

0
Vector Registers

7

Vector Core

24

From VIRAM-1 to CODE (3)

• Network for inter-core vector register transfers

• It can be a bus, a ring, a crossbar, etc…

0
Vector Registers

7

ALU1ALU0

0
Vector Registers

7

FPU

0
Vector Registers

7

LSU

0
Vector Registers

7

Inter-core Network

25

From VIRAM-1 to CODE (4)

• Data and instruction queues for decoupling

• Decoupling of both memory & inter-core transfers

0
Vector Registers

7

ALU1ALU0

0
Vector Registers

7

FPU

0
Vector Registers

7

LSU

0
Vector Registers

7

Inter-core Network

26

From VIRAM-1 to CODE (5)

• Use vector registers for data queues

• Saves area, simplifies design and control

0
Vector Registers

7

ALU1ALU0

0
Vector Registers

7

FPU

0
Vector Registers

7

LSU

0
Vector Registers

7

Inter-core Network

27

CODE Issue Logic

• Operation

– Issue instructions to vector cores

– Allocate core registers for instruction operands

– Indicate necessary inter-core register transfers

• Data structures

– Renaming table

• Maintains the physical location for each architectural

registers

– A free-list for the local vector registers in each core

• It is very simple because

– It handles one vector instruction per cycle

– Everything is in-order

28

CODE Block Diagram

29

CODE vs. VIRAM-1

• Same area, same clock frequency (200 MHz), same

memory system

83.9

134.3

201.4

271.3

114.4

179.8

247.2

330.1

0

70

140

210

280

350

1 Lane 2 Lanes 4 Lanes 8 Lanes

C
o

n
s
u

m
e
rM

a
rk

 S
c
o

re

VIRAM-1 CODE

30

CODE: Latency Tolerance

• Slowdown over memory system with1 cycle memory latency

• Memory latency in processor cycles

0

20

40

60

80

100

0 16 32 48 64 80 96 112 128

Memory Latency (Cycles)

S
lo

w
d

o
w

n
 (

%
)
Filter Djpeg

31

CODE: Precise Virtual Memory Exceptions

• Approach: use unallocated registers to maintain old register

values until exception behavior is known

• It requires changes to the issue logic only

• History file for updates to the renaming table

15

13

7

4 4

9

0 0

16

2

0

4

0 0

6

1 1
0 0

1
0

0

-2 -2

-4

0

4

8

12

16

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Avg

S
lo

w
d

o
w

n
 (

%
)

r=4 r=8 r=12 r=16

32

CODE: Scalability

0

100

200

300

400

500

0 4 8 12 16

Vector Cores

C
o

n
s

u
m

e
rM

a
rk

 S
c

o
re

1 Lane 2 Lanes 4 Lanes 8 Lanes

• 200 MHz clock frequency

33

Conclusions

• It is possible to design efficient microprocessors for

embedded multimedia systems with

– High performance

– Low energy/power consumption

– Low design complexity

– High scalability

• Thesis contributions

– Demonstrated the efficiency of the VIRAM architecture with

multimedia tasks

– Presented & analyzed the VIRAM-1 media-processor

– Presented & analyzed the CODE vector microarchitecture

– Demonstrated that embedded DRAM is an appropriate

technology for high bandwidth memory systems

34

Future Work

• Further application development

• Languages & compilers for multimedia processing

• Improved memory systems for CODE

• Architectures for data-level & thread-level parallelism

• Specialized hardware engines for complicated tasks

• Exploit modularity for yield & reliability improvements

35

Acknowledgements

• The U.C. Berkeley IRAM Group

– Advisors: David Patterson, Kathy Yelick

– Hardware: Sam Williams, Joe Gebis, Hiro Hamasaki, Iakovos

Mavroidis, Ioannis Mavroidis

– Software: Dave Martin, Dave Judd, Rich Fromm, Brian

Gaeke, Mani Narayanan

– Others: Krste Asanovic, Jim Beck, John Wawrzynek

• Help from:

– IBM, MIPS Technologies, Cray, Avanti

• Funding from:

– DARPA, California State, DoE

– IBM Research Fellowship

