
IMPROVING RESOURCE EFFICIENCY IN CLOUD COMPUTING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Christina Delimitrou

August 2015

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/mz539pv2699

© 2015 by Christina Delimitrou. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/mz539pv2699

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christos Kozyrakis, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

John Ousterhout

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mendel Rosenblum

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Cloud computing is at a critical juncture. An increasing amount of computation

is now hosted in private and public clouds. At the same time, datacenter resource

efficiency, i.e., the effective utility we extract from system resources has remained

notoriously low, with utilization rarely exceeding 20-30%. Low utilization coupled

with the lack of scaling in hardware due to technology limitations poses threatening

scalability roadblocks for cloud computing.

At a high level, two main reasons hinder efficient scalability in datacenters. First,

the reservation-based interface through which resources are currently allocated is

fundamentally flawed. Users must determine how many resources a new application

requires to meet its quality of service (QoS) constraints. Unfortunately this is ex-

tremely difficult for users that tend to overprovision their reservations, resulting in

mostly-allocated, but lightly-utilized systems. Second, underutilization is aggravated

by performance unpredictability; the result of heterogeneity in hardware platforms,

interference between applications contending in shared resources, and spikes in input

load. Unpredictability results in further resource overprovisioning by users.

The focus of this dissertation is to enable efficient, scalable and performance-

aware datacenters with tens to hundreds of thousands of machines by improving

cluster management. To this end, we present contributions that address both the

system-user interface, and the complexity of resource management at scale. These

techniques are directly applicable to current systems, with modest design alterations.

We first present a new declarative interface between users and cluster manager that

centers around performance, instead of resource reservations. This enables users to

focus on the high level performance objectives an application must meet, as opposed

iv

to the intrinsics on how these objectives should be achieved using low level resources.

On the system side, we make two fundamental contributions. First, we design a

practical system that leverages data mining to quickly understand the resource re-

quirements of incoming applications in an online manner. We establish that resource

management at this scale cannot be solved with the traditional trial-and-error ap-

proach of conventional architecture and system design. We show that instead we can

introduce data mining principles which leverage the knowledge the system accumu-

lates over time from incoming applications, to significantly benefit both performance

and efficiency. We first use this approach in Paragon to tackle the platform hetero-

geneity and workload interference challenges in datacenter management. The cluster

manager relies on collaborative filtering to identify the most suitable hardware plat-

form for a new, unknown application and its sensitivity to interference in various

shared resources. We then extend a similar approach to address the larger prob-

lem of resource assignment and resource allocation with Quasar. To ensure minimal

management overheads, we decompose the problem to four dimensions; platform het-

erogeneity, application interference, resource scale-up and scale-out. This enables

the majority of applications to meet their QoS targets, while operating at 70% uti-

lization, on a cluster with several hundred servers. In contrast, a reservation-based

system rarely exceeds 15-20% utilization, with worse per-application performance.

Our second contribution pertains to designing scalable scheduling techniques that

use the information from Paragon and Quasar to perform efficient and QoS-aware

resource allocations. We develop Tarcil, a scalable scheduler that reconciles the high

quality of sophisticated centralized schedulers with the low latency of distributed

sampling-based systems. Tarcil relies on a simple analytical framework to sample

resources is a way that provides statistical guarantees on a job meeting its QoS con-

straints. It incurs a few milliseconds of scheduling overhead, making it appropriate for

highly-loaded clusters, servicing both short- and long-running applications. Finally,

we design HCloud, a resource provisioning system for public cloud providers. HCloud

leverages the information on the resource preferences of applications to determine the

type (e.g., reserved versus on-demand) and size of required instances. The system

guarantees high application performance, while securing significant cost savings.

v

Acknowledgements

Many people are responsible for supporting me in completing this dissertation. First

and foremost, I want to thank my advisor, Christos Kozyrakis, for his advice not only

on research, but career paths and life in general. Working on a topic you are passionate

about is one of the most important aspects of graduate studies, and Christos’ support

on selecting a project I found compelling has been invaluable; even if it had a lot of

math. On a more personal note, I also want to thank him for being on several

occasions family away from family.

I am also thankful to all the faculty members of the Stanford Experimental Data-

center Lab (SEDCL) and the Pervasive Parallelism Lab (PPL), and especially Mendel

Rosenblum and John Ousterhout for their advice, feedback and inspiration over the

years, and for taking the time to be on my reading committee. I am also grateful to

Bill Dally and Kunle Olukotun for their help and advice for my future endeavors, and

to Nick Bambos and Olivier Gevaert for being on my defense committee. Finally, I

want to thank Nectarios Koziris, my undergraduate advisor, for introducing me to

research, and encouraging me to pursue graduate studies.

I have been truly lucky to interact with many brilliant people at Stanford. Thanks

to all the members of the MAST group, past and current, for all I learned from them:

Jacob Leverich, Daniel Sanchez, David Lo, Richard Yoo, Ana Klimovic, Grant Ayers,

Mingyu Gao, Adam Belay, Felipe Munera, Camilo Moreno, Sam Grossman, Raghu

Prabhakar, Rakesh Ramesh, Greg Kehoe, Tomer London, Asaf Cidon, Shingo Tanaka,

Kenta Yasufuku, Woongki Baek, Michael Dalton, and Hari Kannan. Also thanks to

George Michelogiannakis, John Brunhaver, Andrew Danowitz, Mario Flajslik, Kr-

ishna Malladi, and Nicole Rodia for all the technical, and non-technical discussions.

vi

Special thanks to my officemates Grant and Richard for putting up with my occa-

sional grumpiness, and our great cluster admins, Jacob and David for making sure my

experiments would finish in time for each deadline. I also want to thank our wonderful

admins Sue and Teresa for ensuring I never had to worry about anything adminis-

trative. Finally, I am grateful to Nick Arvanitidis and Facebook for supporting my

Ph.D. studies financially through fellowships.

My years at Stanford have been made better by the many wonderful friends I

met here and by the support of my friends back in Greece. I have certainly missed

listing some below, but they can be identified as members of the Greek, Spanish,

Belgian and other mafia organizations around the world. Thanks to George, Idoia,

Mikel (and Naroa), Eleftheria, Peggy, Konstantinos, Gemma, Borja, Carlos, Yian-

nis, Sotiria, Nicholas, Stephanie, Nadine, Olivier, Leen, Lynn, Adrian, Felix, Manu,

George, Yorgos, Alexandros, Ioanna, Nicole, John, Sam, Andrew, Mario, Laura, TY,

Kshipra, Cristina, Karthika, Diego, Daniel, and many others for the fun memories.

Finally, I want to thank Daniel, for his love, advice and for being there, even

when “there” was in the other end of the world. Last but not least, my parents and

family (especially my nephews and nieces) for always encouraging me to continue my

studies and follow a career path I loved, and for “stoically” putting up with me being

ten timezones away, although given the distance, they have certainly regretted the

encouragement.

“Have Ithaka always in your mind.

Your arrival there is what you are destined for.

But don’t in the least hurry the journey... ”

C.P. Cavafy

vii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Resource Efficiency Challenges . 2

1.2 Contributions . 3

1.3 Thesis Organization . 8

2 Background & Motivation 9

2.1 Cloud Computing Background . 9

2.2 Datacenter Scalability Challenges . 11

2.3 Cluster Management . 13

2.3.1 Understanding Resource Requirements 14

2.3.2 Resource Management Decisions 19

2.4 Data Mining in Systems . 22

3 Paragon: QoS-Aware Scheduling in Heterogeneous Datacenters 24

3.1 Introduction . 24

3.2 Fast & Accurate Classification . 27

3.2.1 Collaborative Filtering Background 28

3.2.2 Classification for Heterogeneity 30

3.2.3 Classification for Interference 33

3.2.4 Putting It All Together . 35

viii

3.3 Paragon . 36

3.3.1 Overview . 36

3.3.2 Greedy Server Selection . 37

3.3.3 Statistical Framework for Server Selection 39

3.3.4 Discussion . 42

3.4 Methodology . 43

3.5 Evaluation . 46

3.5.1 Comparison of Schedulers: Small Scale 46

3.5.2 Comparison of Schedulers: Large Scale 52

3.6 Related Work . 56

3.7 Conclusions . 58

4 Quasar: QoS-Aware and Resource Efficient Cluster Management 60

4.1 Introduction . 60

4.2 Motivation . 65

4.2.1 Cluster Management Overview 65

4.2.2 The Case for Coordinated Cluster Management 66

4.3 Quasar . 68

4.3.1 Overview . 68

4.3.2 Fast and Accurate Classification 70

4.3.3 Greedy Allocation and Assignment 77

4.3.4 Putting it All Together . 78

4.4 Implementation . 80

4.4.1 Dynamic Adaptation . 80

4.4.2 Side Effect Free Profiling . 81

4.4.3 Stragglers . 82

4.4.4 Discussion . 82

4.5 Methodology . 83

4.6 Evaluation . 86

4.6.1 Single Batch Job . 86

4.6.2 Multiple Batch Frameworks 88

ix

4.6.3 Low-Latency Service . 89

4.6.4 Stateful Latency-Critical Services 90

4.6.5 Large-Scale Cloud Provider 92

4.7 Conclusions . 93

5 iBench: Quantifying Interference in Datacenter Workloads 95

5.1 Introduction . 95

5.2 Related Work . 98

5.3 iBench Workloads . 99

5.3.1 Overview . 99

5.3.2 Designing the SoIs . 100

5.4 Validation . 105

5.4.1 Individual SoIs Validation . 105

5.4.2 SoI Impact on Applications 106

5.4.3 Correlation between SoIs . 108

5.5 Use Cases . 109

5.5.1 Datacenter Scheduling . 109

5.5.2 Server Provisioning . 112

5.5.3 Application Development/Testing 113

5.5.4 Scheduling in Heterogeneous CMPs 115

5.6 Conclusions . 117

6 ARQ: QoS-Aware Admission Control 119

6.1 Introduction . 119

6.2 Background . 120

6.3 Admission Control . 121

6.3.1 Overview . 121

6.3.2 Waiting Time versus Resource Quality 123

6.4 Methodology . 126

6.5 Evaluation . 128

6.5.1 Small-scale Experiments . 128

6.6 Related Work . 131

x

6.7 Conclusions . 133

7 Tarcil: Reconciling Scheduling Speed and Quality in Large Shared

Clusters 134

7.1 Introduction . 134

7.2 Background . 138

7.3 The Tarcil Scheduler . 140

7.3.1 Overview . 140

7.3.2 Analytical Framework . 140

7.3.3 Sampling-based Scheduling with Guarantees 143

7.4 Admission Control . 146

7.4.1 Pre-scheduling Queueing . 146

7.4.2 Post-scheduling Queueing . 148

7.5 Tarcil Implementation . 149

7.5.1 Tarcil Components . 149

7.5.2 Adjusting Allocations . 151

7.5.3 Fairness . 152

7.6 Evaluation . 153

7.6.1 Tarcil Analysis . 153

7.6.2 Comparison with Other Schedulers 156

7.6.3 Large-Scale Evaluation . 160

7.7 Conclusions . 163

8 HCloud: Optimizing Resource Provisioning in Public Clouds 165

8.1 Introduction . 165

8.2 Cloud Workloads and Systems . 169

8.2.1 Workload Scenarios . 169

8.2.2 Cloud Instances . 170

8.2.3 Cloud Pricing . 171

8.3 Provisioning Strategies . 172

8.3.1 Statically Reserved Resources (SR) 172

8.3.2 Dynamic On-Demand Resources (OdF, OdM) 173

xi

8.3.3 The Importance of Resource Preferences 174

8.3.4 Provisioning Strategies Comparison 176

8.4 Hybrid Provisioning Strategies . 178

8.4.1 Provisioning Strategies . 179

8.4.2 Application Mapping Policies 179

8.4.3 Provisioning Strategies Comparison 183

8.5 Discussion . 185

8.5.1 Sensitivity to Job/System Parameters 185

8.5.2 Provisioning Overheads . 188

8.5.3 Different Pricing Models . 188

8.5.4 Resource Efficiency . 190

8.5.5 Additional Provisioning Considerations 193

8.5.6 Sensitivity to Workload Characteristics 194

8.5.7 Cost Impact of Information from Quasar 195

8.6 Related Work . 196

8.7 Conclusions . 197

9 Conclusions and Future Work 199

A Storage Modeling of Datacenter Workloads 201

A.1 Introduction . 201

A.2 Related Work . 203

A.3 Modeling and Generation Process . 205

A.3.1 Basic State Diagram Model 205

A.3.2 Hierarchical State Diagram Model 206

A.3.3 Storage Activity Fluctuation 207

A.3.4 Generation Tool Design - DiskSpd 208

A.4 Characterization and Validation . 212

A.4.1 Original DC Workloads . 212

A.4.2 Generating Models from Traces 213

A.4.3 DC Application Characterization 213

A.4.4 Validation . 215

xii

A.4.5 Comparison with IOMeter . 218

A.5 Use Cases . 221

A.5.1 SSD caching . 221

A.5.2 Defragmentation . 222

A.6 Conclusions . 224

B BLOC: Bandwidth-Aware Storage Consolidation 225

B.1 Introduction . 225

B.2 BLOC Design . 228

B.2.1 System Overview . 228

B.3 Quantifying Storage Interference . 230

B.3.1 Motivation . 230

B.3.2 Application Models . 231

B.3.3 Trimming the Search Space 232

B.3.4 Profiling . 232

B.3.5 Validation . 233

B.4 Bin Packing . 234

B.4.1 Limiting Storage Resource Usage 234

B.4.2 Bin Packing Algorithm . 235

B.4.3 Consolidation Granularity . 236

B.4.4 Dynamic Demands . 237

B.5 Dynamic Adaptation . 238

B.5.1 Predicting User Load . 239

B.5.2 Dynamic Updates to Bin Packing 240

B.5.3 Migration Costs . 240

B.5.4 Performance and Efficiency Trade-offs 242

B.6 Implementation . 243

B.7 Evaluation . 245

B.7.1 Comparison of Consolidation Schemes 246

B.7.2 BLOC Behavior . 248

B.8 Discussion . 250

xiii

B.9 Related Work . 252

B.10 Conclusions . 254

C ECHO: Network Modeling of Datacenter Workloads 255

C.1 Introduction . 255

C.2 Related Work . 257

C.3 Single Server Temporal Model . 259

C.4 Temporal and Spatial Network Traffic Characterization 261

C.5 System-Wide Spatial Model . 265

C.5.1 Overview . 265

C.5.2 Design . 266

C.5.3 Validation . 271

C.6 Conclusions . 281

Bibliography 282

xiv

Chapter 1

Introduction

Cloud computing is at a critical junction. Its popularity has increased drastically

over the past decade, with a growing number of applications and data hosted both on

public and private clouds. At a high level, cloud computing offers three premises, both

from the perspective of datacenter operators and end users: flexibility as resources

can easily be obtained and released, high performance, and cost efficiency, as the

infrastructure is shared across multiple users.

Despite its prevalence, cloud computing today faces significant scalability chal-

lenges. Traditionally, to scale a datacenter, operators would improve its cost efficiency

or improve its compute capabilities. With respect to cost efficiency, two approaches

have prevailed: switching from the specialized machines that used to populate these

systems to commodity computing, and reducing the cost of power delivery and cool-

ing. With most datacenters already consisting of commodity servers, and power

delivery and cooling introducing less than 10% cost overheads, both approaches are

reaching the point of diminishing returns. On the other hand, we can improve scal-

ability by increasing the compute capabilities of a datacenter. This requires either

building more datacenters, which requires a capital investment of hundreds of millions

of dollars [31, 136], increasing the number of servers in each datacenter, albeit with

bounded benefits, given the provisioning constraints of power delivery and cooling, or

relying on the process technology to provide higher performance for the same power

consumption. Unfortunately, process technology in microprocessors has slowed down

1

CHAPTER 1. INTRODUCTION 2

with the end of voltage (or Dennard) scaling, and with Moore’s Law projected to end

in the next five to ten years, relying on hardware alone to improve datacenter scala-

bility is not a viable option. This underlines the importance of operating datacenters

at high utilization.

Unfortunately, while the large-scale datacenters that host cloud computing ser-

vices have grown in number and size, the utilization at which they operate has re-

mained prohibitively low [31, 79]. Even at the high end of the spectrum of production

datacenters, utilizations rarely exceed 20-30% [31, 79], with most systems operating at

even lower utilizations. This is the case even for systems that use virtualization [177]

for multi-tenancy, and employ sophisticated systems to manage resources across ap-

plications. In the rest of this Section, we highlight the reasons behind low datacenter

utilization, and the contributions of this thesis towards improving datacenter resource

efficiency.

1.1 Resource Efficiency Challenges

At a high level, datacenter underutilization stems from two interacting factors. The

first is the current interface between the users that submit applications to clusters and

the system that must schedule these applications. Resources in datacenters today are

allocated using a reservation-based API, where the user has to determine how many

resources an application needs. Unfortunately this is extremely difficult for users, that

tend to request a lot more resources than their applications truly require, resulting

in grossly underutilized clusters.

The second reason behind datacenter underutilization justifies these exaggerated

resource reservations. Performance unpredictability is the result of resource con-

tention between applications sharing the system, platform heterogeneity as machines

get progressively replaced over the provisioned lifetime of a datacenter, and fluctu-

ations in user load. Unpredictability becomes even more of a challenge for user-

interactive applications, like search, which have millions of users, experience spikes

in their traffic and are provisioned for future growth. The performance metric of

interest for such services is tail latency, which is much more difficult to satisfy than

CHAPTER 1. INTRODUCTION 3

average performance [73]. The risk of unpredictable performance together with the

complexity of resource management leads users to significantly overprovisioning their

resource reservations.

1.2 Contributions

The focus of this dissertation is to improve datacenter scalability, by increasing re-

source efficiency. While inefficiencies exist across the hardware and software stack,

application performance and datacenter utilization are to a large extent determined by

the cluster manager; the system that orchestrates resource allocation and application

scheduling in large-scale systems. To this end, our contributions focus on increasing

datacenter-wide utilization, by improving cluster management, while guaranteeing

that each scheduled application satisfies its performance requirements.

To achieve this goal, we use three main insights. First, we take a top-down ap-

proach that bridges the different layers of the system stack from the user interface, to

the cluster scheduler and down to hardware issues. Tackling the problem of datacen-

ter efficiency cannot be addressed in a single level of the system stack, for example in

hardware or software only. It requires in-depth understanding of the challenges and

opportunities that each layer presents as well as their interactions. To this end, this

work spans several levels of the stack from high-level distributed system design, to

low-level architectural considerations.

Second, we introduce a high-level, declarative interface between users and system

that focuses on performance, not resource reservations. We demonstrate that the

existing reservation-based interface is poorly formalized and overly complex, leading

to low system utilization. Instead, by simplifying the interface, the user is tasked

with specifying what performance an application must achieve, not how to achieve it

with low-level, raw resources.

Third, we show that the traditional, trial-and-error approach used in computer

architecture and systems is prohibitively impractical at datacenter scale. We instead

propose a new approach that leverages the knowledge on application behavior the

system accumulates through data collection over time. By applying data mining

CHAPTER 1. INTRODUCTION 4

principles to these datasets in a mindful fashion we significantly improve both the

quality and practicality of large-scale scheduling.

Using the insights described before, we have designed and built several systems,

which together improve the performance and resource efficiency of cloud computing.

Below, we provide a brief overview of each system.

Paragon: QoS-aware application assignment. Paragon is an online datacenter

manager that, given a resource reservation, accounts for platform heterogeneity and

workload interference in scheduling decisions [76, 80, 77, 78]. Paragon leverages two

main insights.

First, Paragon takes into account the various shared resources where interference

may occur, including the CPU, memory and I/O subsystems. To measure the sen-

sitivity of an application to different sources of interference we designed iBench [74],

a suite that consists of a set of benchmarks that put progressively more pressure on

a specific resource, and can be used to determine how much interference a workload

can tolerate in shared resources and how much pressure it itself creates.

Second, Paragon does not require detailed application profiling to extract its plat-

form and interference preferences. Instead, it leverages the knowledge the system

already has from previously-scheduled workloads. To this end, we designed an online

recommender system, based on matrix factorization (SVD) and latent-factor models,

that determines which platforms, and co-scheduled workloads will allow the job to

satisfy its QoS constraints. The system is similar to the recommender systems used

in sites like Netflix or e-commerce, where a sparse information signal for a new user

is projected against the rich information from previous users to provide the new user

with accurate movie or item recommendations.

Paragon is a practical system: the profiling and data mining techniques add min-

imal scheduling overheads. Using the information from the recommender system

allows the scheduler to improve performance, and because applications are packed

more tightly it also improves system utilization. In a 5,000 application scenario run-

ning on 1,000 servers on Amazon EC2, Paragon achieves performance within 4%

of the optimal for that cluster. In comparison, a heterogeneity- and interference-

agnostic scheduler degrades performance by 48% on average and violates QoS for

CHAPTER 1. INTRODUCTION 5

97% of workloads.

Quasar: Resource-efficient cluster management. Quasar takes the approach

in Paragon one step further to address the more general problem of cluster manage-

ment in datacenters [79]. Paragon has one limitation. While it can determine where

to place an application in a large-scale system, it lacks the ability to determine how

many resources that application needs to satisfy its performance constraints. This

means that the user is still tasked with requesting an appropriate resource amount

for a new job. However, because resource allocation is a complex, multi-dimensional

problem, users rarely estimate their resource needs correctly. More often they over-

provision their reservations, hurting system utilization. During a study of Twitter’s

datacenters, we verified that reservations often exceed usage by an order of magnitude.

Quasar addresses this issue through two main contributions.

First, Quasar shifts from the traditional reservation-based interface between user

and system to a high-level declarative interface, which draws from the concept of

Domain-Specific Languages (DSLs) and SQL. Now, instead of the user specifying

the low-level, raw resources (e.g., memory, cores, storage) he expects an application

to need, he simply specifies the performance target the new application must meet,

for example tail latency. This simplifies the responsibility of the user, and gives

enough flexibility to the cluster manager to better place jobs on available resources.

Subsequently the cluster manager translates this performance goal to resources.

To perform this translation, Quasar leverages fast data mining techniques in a

similar way to Paragon. The difference is that the system must also provide rec-

ommendations on the amount of resources a job needs, specifically the resources per

node and the number of nodes across which the workload should be distributed. At

first glance this adds significant complexity to the recommender system, posing the

question: can we maintain all this information, but solve a much simpler problem?

We address this question by decomposing the problem to the four dimensions of re-

source allocation that affect application performance: platform heterogeneity, work-

load interference, scale-up (resources per node) and scale-out (number of nodes). This

dramatically reduces the scheduling overheads, without sacrificing scheduling quality.

Importantly, Quasar enables common datacenter application functionality, including

CHAPTER 1. INTRODUCTION 6

both distributed batch workloads and user-interactive services that are more sensitive

to unpredictability.

Quasar is practical. The information required for the cluster manager’s decisions

adds negligible overheads to application execution. These overheads can be further re-

duced as more sophisticated data mining techniques are designed. In a 200-server EC2

cluster Quasar meets the QoS requirements of 95% out of 1,200 applications, while

increasing system utilization by more than 2x. In contrast, a traditional reservation-

based cluster manager with a baseline least-loaded scheduler violates QoS for most

workloads, despite system utilization rarely exceeding 25%. The approach proposed

with Quasar has had some early adoption in real production systems, with both

Twitter and AT&T adopting similar approaches in their latest system designs.

Tarcil: Improving scheduling scalability. The structure of the scheduler itself

and the algorithms it employs are critical components of a cluster manager. Tradition-

ally there has been a disparity in cluster scheduling. On one hand there are sophisti-

cated, centralized schedulers, that examine all (or most) of the cluster state to improve

scheduling quality (e.g., Quasar). On the other hand there are distributed, typically

sampling-based, schedulers that make fast decisions by only examining a small subset

of resources. Unfortunately, neither approach achieves both high scheduling quality

and high scheduling speed. To bridge this gap we developed Tarcil [81, 82], a cluster

scheduler designed both for short and long jobs. Tarcil is built on two insights: first,

it accounts for the resource preferences of incoming workloads, to keep scheduling

quality high. Second, it uses adaptive resource sampling to reduce the latency of

each scheduling decision. The sample size is set based on how strictly QoS must be

met, following a simple analytical framework that provides statistical guarantees on

scheduling quality. Tarcil also uses admission control that takes action when load is

very high to avoid overloading the system. Admission control determines how long

applications should be queued for before being scheduled [72]. Finally, Tarcil is struc-

tured as a distributed system with multiple concurrent scheduling agents making task

placement decisions.

In EC2 clusters with several hundred machines, Tarcil improves performance

by 41% on average for short tasks over state-of-the-art distributed schedulers, and

CHAPTER 1. INTRODUCTION 7

scheduling latency by 1-2 orders of magnitude compared to sophisticated, centralized

systems.

Cost-efficient cloud provisioning strategies. So far we assume that the clus-

ter manager has full control over the entire system. In practice, many systems are

deployed in public cloud providers where the visibility an external scheduler has is

limited. In this case, apart from deciding the amount of needed resources, the user

must also decide between on-demand, reserved and spot instances, each of which has

different advantages and challenges. In this work, we present a set of provisioning

techniques that, based on the characteristics of incoming workloads, determine the

most appropriate type and size of instances that should be purchased. They also de-

termine how long resources should be retained for once idle, to prevent re-instantiation

overheads during periods of high load.

We have evaluated the system on a large Google Compute Engine cluster with

several hundred instances, and showed that a hybrid configuration with both reserved

and on-demand instances improves performance by 2.1× over a fully on-demand sys-

tem, and reduces cost by 46% over a fully-reserved system [75].

Other contributions: Finally, a major roadblock in datacenter research in academia

is the lack of representative, open-source datacenter applications. To address this is-

sue, we designed analytically-driven models that capture the temporal and spatial

characteristics of datacenter application storage and network activity and can gener-

ate representative access patterns [83, 84, 85, 86, 87, 88]. These models are validated

against real datacenter applications running in Microsoft’s cloud facilities and used for

troubleshooting and to identify hardware and software inefficiencies, such as imbal-

anced data sharding and suboptimal SSD caching without the need for a full system

deployment.

CHAPTER 1. INTRODUCTION 8

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides relevant back-

ground and motivation. Chapter 3 presents Paragon, a QoS-aware datacenter sched-

uler that accounts for platform heterogeneity and application interference. Chapter 4

discusses Quasar, a new cluster manager that introduces a high-level declarative in-

terface between users and system, and leverages data mining to provide efficient, and

high-quality resource allocations. In Chapter 5 we present iBench, a benchmark suite

that quantifies the impact of interference in the various shared system resources. In

Chapter 6 we describe ARQ, a multi-class admission control protocol that prevents

the system from becoming oversubscribed. Chapter 7 discusses Tarcil, a scalable and

low-latency sampling-based datacenter scheduler, and Chapter 8 presents resource

provisioning strategies in the presence of hybrid resources, i.e., when part of the sys-

tem resides on a public cloud provider. Finally, Chapter 9 concludes this dissertation.

Appendices A and B discuss an analytical model for the storage activity of datacenter

workloads, and a bandwidth-aware storage consolidation system that leverages this

model. Appendix C presents a similar analytical approach for the network activity

of distributed datacenter applications.

Chapter 2

Background & Motivation

2.1 Cloud Computing Background

Datacenters, the large-scale infrastructures that host cloud computing services, have

experienced a rapid increase in both their number and size in the past ten years [31].

Cloud computing has become an essential tool and a catalyst for innovation in all

aspects of endeavor, including healthcare, education and science [217]. Both private

and public datacenters with tens of thousand of machines now host popular services,

such as search, social networking, email, video streaming, enterprise management

tools, maps, natural language processing, big-data analytics and general purpose

storage platforms [13, 279, 45, 218, 110, 65]. We have come to expect that these

services provide us with real-time, personalized, and contextual access to terabytes

of data.

The popularity of cloud computing services has led to significant work on analyzing

these workloads and the infrastructure that supports them. Researchers have charac-

terized the behavior of webserving environments [5, 42, 216], search engines [30, 220],

distributed computing frameworks like MapReduce [57, 157, 69], memory-based stor-

age services [23, 70], and large-scale storage systems [9, 156, 129, 85]. Recent studies

have used datacenter traces to extract observations on the duration, CPU and memory

usage, and variability of cloud workloads [222, 89, 223, 179, 295]. These observations

are particularly important in guiding scheduling decisions. Finally, researchers have

9

CHAPTER 2. BACKGROUND & MOTIVATION 10

Figure 2.1: (a) Breakdown of the total cost of ownership (TCO) of a 10MW datacenter
assuming 3 year server amortization and 15 year facility amortization [262, 136].

developed guidelines on how to study and benchmark these workloads at scale [233].

Datacenter services fall in one of two main categories; batch analytics work-

loads [69, 288], and latency-critical online services [30, 107, 49, 51]. Analytics optimize

for computation throughput as they process vasts amounts of data, for example user

preferences for advertisements or movies. Online services, on the other hand, are

user-interactive applications, such as search and email, and they must meet strict

latency (or response time) constraints. Additionally, due to the organization of these

distributed services, latency requirements are formalized with respect to tail latency,

for example 99th percentile, instead of average response time [68]. This puts increased

pressure on the system to behave in a high-performant and predictable way.

In general, cloud computing offers three main premises, both to end users and

datacenter operators; resource flexibility, high performance, and cost efficiency. Users

can increase or decrease the resources they use at runtime according to the needs

of their applications, and only pay for resources used at each point in time. Addi-

tionally, hosting applications in the cloud is less costly for users than setting up and

maintaining a local infrastructure, even for large-scale services that require thousands

of machines, such as Netflix [202]. At the same time, datacenter operators achieve

cost benefits by sharing their infrastructure across multiple tenants.

The primary cost metric in datacenters is the total cost of ownership (TCO). The

TCO includes both the capital expenditures to build a datacenter and populate it

with servers (CAPEX), and its operational expenses in terms of power consumption,

CHAPTER 2. BACKGROUND & MOTIVATION 11

cooling and maintenance (OPEX). Figure 2.1 shows a breakdown of the TCO of a

large-scale datacenter [136]. The capital expenses for purchasing the servers accounts

for 61% of the total cost of the system, while the energy to power the machines

amounts to another 18%. This places a particular emphasis on how well datacenter

resources are being used. The next section details the scalability challenges that stem

from poor datacenter utilization.

2.2 Datacenter Scalability Challenges

In the past ten years, operators have scaled the capabilities of cloud services by

building larger datacenters that can host tens to hundreds of thousands of multi-core

servers [137]. The servers are connected by networks with high-speed links (e.g.,

10Gbps Ethernet) and advanced topologies that support high bandwidth between

any two servers [11, 122]. At the same time, operators leveraged two approaches to

improve cost efficiency. First, they switched from the specialized machines that used

to populate datacenters to commodity servers that benefit from economies of scale.

Second, they reduced the cost and energy overheads of the power delivery and cooling

infrastructure [137]. While a few years ago the power usage effectiveness (PUE) of

datacenters was as high as 3.0, the PUE of modern facilities is as low as 1.1, reaching

the point of diminishing returns1.

Unfortunately, we have reached the end of the road for these scaling techniques.

Datacenters are already consuming tens of MWatts, stressing the capabilities of power

generation facilities and making it difficult to continuously increase the number of

servers per facility [137, 262]. At the same time, the end of voltage (or Dennard)

scaling, and the projected end of Moore’s Law mean that hardware alone can no

longer provide improved performance for the same power budget [142, 96, 158, 64].

To achieve further improvements in datacenter scalability, we must improve their

1PUE of 3.0 indicates that for every 1W consumed by the servers, another 2W are consumed
by the power delivery and cooling infrastructure. PUE of 1.1 indicates that the overhead of power
delivery and cooling is merely 10%.

CHAPTER 2. BACKGROUND & MOTIVATION 12

0 20 40 60 80 100
CPU Utilization (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
F

ra
c
ti
o
n

o
f
T

im
e

Figure 2.2: Probability distribution functions (PDF) of the CPU utilization in a
production datacenter at Twitter (left) [79] and Google (right) [31].

resource efficiency, i.e., we must extract as much compute as possible from the re-

sources available in these systems today [29]. Figure 2.2 shows the probability distri-

bution function of CPU utilization in a production datacenter at Twitter (left) and

Google (right) [79, 31]. Both systems consist of several thousand machines servicing

user-interactive and analytics jobs, and enable resource sharing across applications

with techniques like containerization and virtualization. Nevertheless, utilization is

quite low, typically ranging from 10% to 30% of the system’s nominal compute capa-

bilities, and wasting a significant fraction of capital expenses invested towards pur-

chasing the server infrastructure. Hence the obvious path forward is to increase the

utilization of datacenter servers. High server utilization is also beneficial for energy

efficiency. Since most servers are not energy proportional, consuming 40% to 60% of

their peak power when idling [32, 29, 31, 170, 191], they operate more efficiently at

high utilization.

Nevertheless, there are several challenges towards achieving resource efficiency

through high server utilization.

First, datacenter operators must plan for diurnal usage patterns, unexpected

spikes in user demands, and future growth. This results in significantly overpro-

visioned resource allocations, leaving servers underutilized for most of the time.

Second, datacenters are inherently heterogeneous, both in an effort to match the

requirements of widely diverse applications, and due to the progressive server replace-

ment during the typical 15-year lifetime of a datacenter infrastructure [31, 136, 137,

CHAPTER 2. BACKGROUND & MOTIVATION 13

163, 186, 199]. At any point in time, a datacenter may host 3-5 server generations

with a few hardware configurations per generation, in terms of the specific speeds

and capacities of the processor, memory, storage and networking subsystems. Hence,

it is common to have 10 to 40 configurations throughout the datacenter. Ignoring

heterogeneity can lead to significant inefficiencies, as some workloads are sensitive to

the hardware configuration.

Third, and most important, increasing server utilization by scheduling multiple

services on each server leads to performance loss due to interference. Even when using

different processor cores, co-scheduled applications can interfere on shared caches,

memory channels, storage and networking devices [120, 188, 200].

Interference is particularly detrimental for latency-critical, user-facing services

with strict quality-of-service (QoS) guarantees. For instance, updating a social net-

working news feed involves queries for the user’s connections and recent status up-

dates; ranking, filtering, and formatting updates; retrieving related media files; and

selecting and formatting relevant advertisements and recommendations. Since tens

of servers are involved in each user query, low average latency is not sufficient. The

requirement is for low tail latency (e.g., low 95th or 99th percentile) so that latency

variability does not impact a significant percentage of user requests. Assigning addi-

tional workloads to each server to raise utilization typically leads to higher latency and

higher variability. Latency-critical requests may be queued for milliseconds if other

tasks occupy processing cores. But even if cores are available, the latency-critical

requests may underperform due to interference and contention on shared resources.

Hence, it is common for latency-critical services to be deployed on dedicated machines,

which are underutilized for the majority of time.

2.3 Cluster Management

Datacenters are commonly orchestrated by systems called cluster managers. Cluster

managers are primarily responsible for scheduling incoming applications and manag-

ing system resources [232, 139, 267]. They also have additional responsibilities that

pertain to fault tolerance [174, 115, 139], reliability [259, 299], enforcement of security

CHAPTER 2. BACKGROUND & MOTIVATION 14

Users
App

Determine

resource

requirements

Allocate

resources

Figure 2.3: Cluster manager structure.

constraints [146], and various monitoring capabilities [62, 139]. In the context of this

dissertation we focus on the responsibilities of cluster managers with respect to the

management of applications and system resources.

Figure 2.3 shows a simplified overview of the functionality of a cluster manager

with respect to managing system resources. This functionality can be divided to

two main components: first, the system must understand the resource requirements

incoming, potentially-unknown applications have. This includes determining both the

amount of resources an application needs, and the specific configuration of resources

required. Second, the system must make and enforce resource allocation decisions in

a way that satisfies the resource requirements of incoming jobs. For both components

there is a wide spectrum of designs and implementations. The following sections

provide an overview of related work in each area.

2.3.1 Understanding Resource Requirements

Cloud services are widely diverse with respect to their resource requirements. While

certain applications, such as websearch, require the latest platforms to deliver low

end-to-end request latencies, other services, such as background analytics and log-

ging operations are less sensitive to allocated resources. Current cluster management

interfaces are reservation-based, tasking users with specifying the resources a new,

potentially-unknown job should receive. However, determining the appropriate re-

sources for a new application is a very complex, multidimensional problem. Consider,

for example, a single service whose required resources we want to establish. For the

CHAPTER 2. BACKGROUND & MOTIVATION 15

purpose of the example, we select memcached, a low-latency, in-memory key-value

store [107]. We first need to determine how the performance for memcached scales as

we increase the number of cores allocated to the application in a single node (scale-

up). For simplicity memory is unconstrained. We are interested in the maximum

throughput, in queries per second (QPS) that memcached can achieve, such that its

99th percentile latency is below 200usec. Figure 2.4a shows this scaling experiment.

Since memcached is memory-bound, increasing the number of cores beyond a certain

point does not benefit performance. The experiment is conducted on a 12 core In-

tel Xeon server (CPU E5-2630 @ 2.30GHz) with 64GB of RAM. Since datacenters

consist of several hardware platforms, we need to repeat this experiment on each of

them. Figure 2.4b shows the different scaling curves for servers ranging from low-end

Clovertown-based servers to high-end Haswell-based machines. Performance varies

widely, as the low-end platforms become saturated much faster. In addition to the

type of platform, a user must also know how the performance of a job scales as the load

becomes distributed across an increasing number of servers (scale-out). Figure 2.4c

shows the throughput of memcached in QPS when scaling out from a single Xeon

server to 8 servers of the same type. Since there is limited communication between

servers, performance is almost linear for memcached. This, however, is not the case

in general, especially for applications sharing common state.

So far we have maintained the characteristics of the input load constant, i.e.,

same key-value distributions. In real datacenter settings load fluctuates widely as

user traffic is higher during the day, and drops during the night. This is mostly the

case for user-interactive services, such as search, email, and social networks. Batch

applications, like analytics, also experience variations in the size and characteristics

of their input datasets. Figure 2.4d shows how performance changes, as we vary the

read:write request ratio and the size of keys and values. As expected when requests

are write-dominated (L3), the throughput is significantly lower.

Finally, a principal objective of the cluster manager is to increase system uti-

lization, by sharing resources across applications. Unfortunately, resource sharing

incurs interference due to contention. Understanding the sensitivity of an applica-

tion to different types and intensities of interference is a critical dimension in cluster

CHAPTER 2. BACKGROUND & MOTIVATION 16

0 2 4 6 8 10 12

Cores

0

100

200

300

400

500

600

700

800

A
c
h
ie

ve
d

k
Q

P
S

Scale Up

0 2 4 6 8 10 12

Cores

0

200

400

600

800

1000

1200

A
c
h
ie

ve
d

k
Q

P
S

Heterogeneity

A

B

C

D

E

F

G

0 1 2 3 4 5 6 7 8

Servers

0

1000

2000

3000

4000

5000

6000

A
c
h
ie

ve
d

k
Q

P
S

Scale Out

(a) (b) (c)

0 2 4 6 8 10 12

Cores

0

100

200

300

400

500

600

700

800

900

A
c
h
ie

ve
d

k
Q

P
S

Input Load

L1

L2

L3

0 20 40 60 80 100

Contention Intensity (%)

0

100

200

300

400

500

600

700

800

900

A
c
h
ie

ve
d

k
Q

P
S

Interference

I1

I2

I3

I4

I5

I6

(d) (e)

A: E5-2630@2.3GHz, 64GB

B: E5-2658@2.2GHz, 128GB

C: E5-2630@2.0GHz, 64GB

D: E5649@2.53GHz, 48GB

E: E5335@2.0GHz, 16GB

F: E3-1220@3.1GHz, 32GB

G: E5-2640@2.5GHz, 64GB

L1: 90%rd,k:40B,val:200B

L2: 90%rd,k:40B,val:1kB

L3: 40%rd,k:40B,val:200B

I1: Last level cache

I2: Memory bw

I3: L1 i-cache

I4: CPU

I5: Network

I6: Disk I/O

Figure 2.4: The steps needed to determine the appropriate resources for a new, un-
known workload.

management. Figure 2.4e shows how the performance of memcached changes with

increasing amounts of interference in various resources. Moreover, since most of these

dimensions are affected by the application itself and the system setup, the explo-

ration must be repeated upon application updates, operating system upgrades, or

the introduction of new hardware platforms.

This analysis highlights the fact that understanding the resource requirements of

a potentially new application is a challenging problem. This is, however, the task

that most cluster management frameworks require users to perform. These interfaces

foster underutilization, as conservative users overprovision their reservations to avoid

insufficient resources, and performance unpredictability.

There has been significant work on determining the amount of resources needed

by an application in both virtualized and non-virtualized systems [50, 54, 61, 93, 99,

118, 119, 124, 238, 248, 261, 276, 298, 300]. Rightscale [224], for example, uses a

load threshold to automatically scale out 3-tier applications to react to changes in

CHAPTER 2. BACKGROUND & MOTIVATION 17

the load in Amazon’s cloud service [13]. CloudScale identifies application resource

requirements using online demand prediction and prediction error handling, without

a priori assumptions on application behavior [240]. Dejavu serves a similar goal

by identifying a few workload classes and based on them, reuses previous resource

allocations to minimize reallocation overheads [266]. Dominant Resource Fairness

(DRF) [114] provides a generalization of max-min fairness across multiple resources

that disincentivizes users from lying about their requirements, and preventing resource

sharing. Zhu et al. [300] present a resource management scheme for virtualized

datacenters that preserves service level agreements (SLAs), and Gmach et al. [117]

present a resource allocation scheme for datacenter applications that relies on the

ability to predict their behavior a priori. Finally, there is a lot of work on determining

allocation requirements in virtualized environments [3, 284, 249, 250], and reclaiming

unused resources that can service new load [1, 48, 274, 272].

Resource assignment, i.e., determining the appropriate type of allocated resources,

is equally critical to resource sizing. Given the fact that platforms vary considerably

in modern datacenters, and that interference in shared resources is detrimental to

performance, understanding how application behavior changes with platform hetero-

geneity and workload interference is essential.

Recent work on datacenter management has highlighted the importance of these

two factors. Mars et al.[186, 187] have shown that the performance of Google work-

loads can vary by up to 40% due to heterogeneity even when considering only two

server configurations and up to 2x due to interference even when considering only two

colocated applications. In [186], they present a system that uses combinatorial opti-

mization to select the proper server configuration for a given workload. In [187], they

present a two-step method to characterize the sensitivity of workloads to memory

pressure and the stress each application exercises to the memory subsystem. In the

same spirit Yang et al. [285] apply a dynamic interference sensitivity detection scheme

to preserve the performance of batch and latency-critical applications under coloca-

tion scenarios. Govindan et al. [120] also present a scheme to quantify the effects

of cache interference between consolidated workloads, although they require access

to physical memory addresses. Zhang et al. [296] use cycles-per-instruction (CPI)

CHAPTER 2. BACKGROUND & MOTIVATION 18

as a proxy for interference between workloads and throttle the offending co-runners

such that the applications return to their expected behavior. Quincy [149] formulates

resource assignment as a graph optimization problem, accounting for fairness, and

placement constraints application may have. Finally, Nathuji et al. [200] present a

control-based resource allocation scheme that mitigates the effects of cache, mem-

ory and hardware prefetching interference between co-scheduled workloads. While

these systems highlight the importance of factoring heterogeneity and interference

in scheduling decisions, they incur significant profiling overheads, and are limited to

capturing interference in a small number of shared resources.

The problem of resource assignment is well-established in systems using virtual-

ization. VM management systems such as vSphere [273], XenServer [4] or the VM

platforms on EC2 [13] and Windows Azure [279] can schedule diverse workloads sub-

mitted by a large number of users on the available servers. In general, these platforms

account for application resource requirements which they learn over time by monitor-

ing workload execution. VMWare’s Distributed Resources Scheduler (DRS) [271] for

example accounts for CPU and memory requirements when scheduling applications.

Recently, DeepDive [204] proposed a black-box system for management of virtual

machines which accounts for interference, while minimizing migration overheads.

Finally, resource management in heterogeneous CMPs shares some concepts and

challenges with datacenter management. Fedorova et al. [102] discuss OS level schedul-

ing for heterogeneous multi-cores as having the following three objectives: optimal

performance, core assignment balance and response time fairness. Shelepov et al.

[239] present a resource manager that exhibits some of these features and is sim-

ple and scalable, while Craeynest et al. [263] use performance statistics to estimate

which workload-to-core mapping is likely to provide the best performance. Datacen-

ter management also has similar requirements as applications should observe their

QoS, resource allocation should follow application requirements closely and fairness

between co-scheduled workloads should be preserved.

CHAPTER 2. BACKGROUND & MOTIVATION 19

2.3.2 Resource Management Decisions

Once the cluster manager has been given, or has determined itself, the resource re-

quirements of a new application, it must perform a scheduling decision. Ideally,

datacenter management should have three desirable properties. First, each workload

should receive the resources that enable it to achieve high and predictable performance.

Second, jobs should be tightly packed on available servers to achieve high cluster uti-

lization. Third, scheduling overheads should be minimal to allow the scheduler to

scale to large clusters and high job arrival rates. With these three objectives in mind,

cluster schedulers follow a diverse set of designs.

Cluster managers can be examined along two dimensions with respect to their

scheduling decisions: scheduling concurrency (throughput) and scheduling speed (la-

tency).

With respect to scheduling concurrency, there are two groups of work. In the first,

scheduling is serialized, with a centralized scheduler making all decisions [149, 79].

However, application scheduling in clusters with thousands of servers and high work-

load churn becomes a bottleneck. The second group of work addresses this problem

by scheduling multiple jobs in parallel through two-level, distributed or shared-state

designs [139, 232]. Two-level schedulers, such as Mesos and YARN, use a central-

ized coordinator to divide resources between frameworks like Hadoop, Spark and

MPI [139, 267]. Each framework uses its own scheduler to assign resources to tasks.

Since neither the coordinator nor the framework schedulers have a complete view of

the cluster state and all task characteristics, scheduling is suboptimal [232]. Shared-

state schedulers like Omega [232] allow multiple scheduling agents to concurrently

access the whole cluster state using atomic transactions. As long as these agents

rarely attempt to schedule work to the same servers (infrequent conflicts), concur-

rency comes with a low performance cost. Finally, Sparrow uses multiple concurrent,

stateless schedulers to sample and allocate resources [209].

With respect to the speed at which scheduling decisions happen, there are again

two groups of work. The first group examines most of (or all) the cluster state to

determine the most suitable resources for incoming tasks, in a way that addresses

CHAPTER 2. BACKGROUND & MOTIVATION 20

the performance impact of hardware heterogeneity and interference in shared re-

sources [76, 120, 285, 200, 186, 296, 241]. For instance, Quincy [149] formulates

scheduling as a cost optimization problem that accounts for job preferences with

respect to locality, fairness and starvation-freedom. Similarly, Tetris [121] uses a

greedy algorithm to pack machines in a way that matches the resource requirements

of tasks to the resource availability of a particular machine. These schedulers make

high-quality decisions that lead to high application performance and high cluster uti-

lization. However, they inspect the full cluster state on every scheduling event. Their

decision overhead can be prohibitively high for large clusters, and in particular for

the very short jobs of real-time analytics (100ms–10 s) [209, 288]. Using multiple

greedy schedulers improves scheduling throughput but not latency, and terminating

the greedy search early hurts decision quality, especially at high cluster loads.

The second group leverages results from randomized load balancing [193, 212],

to design sampling-based cluster schedulers [52, 91, 209]. Sampling the state of just

a few servers reduces the latency of each scheduling decision and the probability

of conflicts between concurrent agents, and is likely to find available resources in

non heavily-loaded clusters. The recently-proposed Sparrow scheduler uses batch

sampling and late binding [209]. Batch sampling examines the state of two servers

for each of m required cores by a new job and selects the m best cores. If the selected

cores are busy, tasks are queued locally in the sampled servers and assigned to the

machine where resources become available first. While sampling-based schedulers

improve scheduling speed, their decisions can be poor because they ignore the resource

preferences of jobs. Typically concurrent schedulers follow sampling schemes, while

centralized systems are paired with sophisticated algorithms. In Section 7 we present

a cluster scheduler that bridges the disparity between the high quality and low speed

centralized schedulers and the high speed and low quality of distributed, sampling-

based systems.

Public clouds becoming the platform of choice for many cloud services users has

also motivated a large body of work on optimizing cloud provisioning for both perfor-

mance and cost. For example, Deelman et al. [71] discuss cost-efficient provisioning

strategies for specific astronomy applications on a cloud provider. Li et al. [172]

CHAPTER 2. BACKGROUND & MOTIVATION 21

compare the resource pricing of several cloud providers to help users provision their

applications. There are also studies that analyze resource pricing strategies in public

clouds, and contest whether pricing is indeed market-driven, for example for spot

instances on Amazon EC2, compared to alternative strategies [36]. Finally, Guevara

et al. [127] and Zahed et al. [290] have incorporated the economics of heterogeneous

resources in market-driven and game-theoretic strategies for resource allocation in

shared environments.

While cloud providers are suitable for several online services, there are others that

due to security and privacy concerns or cost limitations are still hosted on private

systems. Trying to achieve the best of both worlds, many cloud computing users now

deploy hybrid clouds, which consist of both privately-owned and publicly-rented ma-

chines [20, 44, 143, 159, 294]. Hybrid clouds raise additional provisioning challenges,

as a user must now determine not only the type and configuration of resources rented

on a public cloud, but in addition how to partition the load (and data) between pri-

vate and public machines. Breiter et al. [44], for example, have described a framework

that allows service integration in hybrid cloud environments, including actions such

as overflowing in on-demand resources during periods of high load. Farahabady et

al. [143] also present a resource allocation strategy for hybrid clouds that attempts to

predict the execution times of incoming jobs and based on these predictions generate

Pareto-optimal resource allocations. Finally, Annapureddy et al. [20] and Zhang et

al. [294] discuss the security challenges of hybrid environments, and propose ways to

leverage the private portion of the infrastructure for privacy-critical computation. In

such settings, where the options for resource offerings are plentiful, understanding the

requirements of scheduled applications becomes even more critical. In Section 8 we

show that by accounting for the resource preferences of incoming workloads, a hybrid

provisioning system can improve over the performance of public resources, and the

cost efficiency of private, reserved servers.

CHAPTER 2. BACKGROUND & MOTIVATION 22

2.4 Data Mining in Systems

The conventional design approach in architecture and systems has several drawbacks

for large-scale datacenters. For example, while in a traditional desktop or mobile

system, exhaustively characterizing the behavior of the handful of applications of

interest would be a viable solution, the scale at which datacenters operate do not allow

for such best-effort designs. Specifically, because instead of a few cores or servers, we

now have tens to hundreds of thousands of machines running diverse applications with

a high churn, we need practical solutions, that quickly and accurately determine the

resource requirements of new workloads, and can provide guarantees on performance

and system efficiency. Unfortunately, the empirical approach adopted so far cannot

provide such practical designs, and instead results in overly complex solutions with

poor predictability, leading to overprovisioning and underutilization.

A major contribution of this thesis is the introduction of a new approach in solving

large-scale systems problems that relies on data mining. While machine learning tech-

niques have been previously applied in system management [135, 152, 278, 41, 190],

they were designed for small-scale systems, making their computational overheads

when scaling to the hundreds of thousands of servers in modern datacenters imprac-

tical. Instead, in this dissertation we focus on simple data mining techniques that

leverage the massive amounts of monitoring data, including information on the be-

havior of scheduled applications, datacenters collect today. We show that by mining

this data in a mindful fashion we can not only get rich insights on the resource re-

quirements of previously-unseen applications, but also produce practical solutions

for cluster management that can be deployed in real-world environments and benefit

both performance and resource efficiency. Specifically, with Paragon we show that

data mining can help the scheduler determine which hardware platform is most suit-

able for a given workload, as well as the sensitivity an application has to different

types of interference. With Quasar we generalize this insight to solve the more gen-

eral cluster management problem, where the system must also determine the amount

of resources needed by an application, without burdening the user with specifying

CHAPTER 2. BACKGROUND & MOTIVATION 23

resource reservations. This enables not only high and predictable application perfor-

mance, but allows datacenters to operate at 2-3x higher utilizations than before.

Chapter 3

Paragon: QoS-Aware Scheduling in

Heterogeneous Datacenters

3.1 Introduction

An increasing amount of computing is performed in the cloud, primarily due to cost

benefits for both the end-users and the operators of datacenters (DC) that host cloud

services [31]. Large-scale providers such as Amazon EC2 [13], Microsoft Windows

Azure [279], Rackspace [218] and Google Compute Engine [110] host tens of thou-

sands of applications on a daily basis. Several companies also organize their IT infras-

tructure as private clouds, using management systems such as VMware vSphere [273]

or Citrix XenServer [4].

The operator of a cloud service must schedule the stream of incoming applications

on available servers in a manner that achieves both fast execution (user’s goal) and

high resource efficiency (operator’s goal), enabling better scaling at low cost. This

scheduling problem is particularly difficult as cloud services must accommodate a

diverse set of workloads in terms of resource and performance requirements [31].

Moreover, the operator often has no a priori knowledge of workload characteristics.

In this chapter, we focus on two basic challenges that complicate scheduling in

large-scale DCs: hardware platform heterogeneity and workload interference.

Heterogeneity occurs because servers are gradually provisioned and replaced over

24

CHAPTER 3. PARAGON 25

0 1000 2000 3000 4000 5000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Alone on Best Platform
No Heterogeneity

No Interference
Least Loaded

Figure 3.1: Performance degradation for 5,000 applications on 1000 EC2 servers
with heterogeneity-oblivious, interference-oblivious and baseline least-loaded sched-
ulers compared to ideal scheduling (application runs alone on best platform). Results
are ordered from worst to best-performing workload.

the typical 15-year lifetime of a DC [31, 136, 163, 188, 199]. At any point in time, a

DC may host 3-5 server generations with a few hardware configurations per genera-

tion, in terms of the specific speeds and capacities of the processor, memory, storage

and networking subsystems. Hence, it is common to have 10 to 40 configurations

throughout the DC. Ignoring heterogeneity can lead to significant inefficiencies, as

some workloads are sensitive to hardware configurations. Figure 3.1 shows that a

heterogeneity-oblivious scheduler will slow applications down by 22% on average, with

some running nearly 2x slower (see Section 3.4 for methodology). This is not only

suboptimal from the user’s perspective, but also for the DC operator as workloads

occupy servers for significantly longer.

Interference is the result of co-scheduling multiple workloads on a single server

to increase utilization and achieve better cost efficiency. By co-locating applications

a given number of servers can host a larger set of workloads (better scalability).

Alternatively, by packing workloads in a small number of servers when the overall load

is low, the rest of the servers can be turned off to save energy. The latter is needed

because modern servers are not energy-proportional and consume a large fraction of

peak power even at low utilization [29, 31, 171, 191]. Co-scheduled applications may

interfere negatively even if they run on different processor cores because they share

CHAPTER 3. PARAGON 26

caches, memory channels, storage and networking devices [120, 187, 200]. Figure 3.1

shows that an interference-oblivious scheduler will slow workloads down by 34% on

average, with some running more than 2x slower. Again, this is undesirable for

both users and operators. Finally, a baseline scheduler that is both interference

and heterogeneity-oblivious and schedules applications to least-loaded servers is even

worse (48% average slowdown), causing some workloads to crash due to resource

exhaustion on the server.

Previous work has showcased the potential of heterogeneity and interference-aware

scheduling [188, 187]. However, techniques that rely on detailed application charac-

terization cannot scale to large DCs that receive tens of thousands of potentially

unknown workloads every day [45]. Most cloud management systems have some no-

tion of contention or interference-awareness [139, 200, 266, 2, 283, 4]. However, they

either use empirical rules for interference management or assume long-running work-

loads (e.g., online services), whose repeated behavior can be progressively modeled.

In this work, we target both heterogeneity and interference and assume no a priori

analysis of the application. Instead, we leverage information the system already has

about the large number of applications it has previously seen.

We present Paragon, an online and scalable datacenter scheduler that is hetero-

geneity and interference-aware. The key feature of Paragon is its ability to quickly

and accurately classify an unknown application with respect to heterogeneity (which

server configurations it will perform best on) and interference (how much interference

it will cause to co-scheduled applications and how much interference it can tolerate

itself in multiple shared resources). Paragon’s classification engine exploits existing

data from previously scheduled applications and offline training and requires only a

minimal signal about a new workload. Specifically, it is organized as a low-overhead

recommendation system similar to the one deployed for the Netflix Challenge [34],

but instead of discovering similarities in users’ movie preferences, it finds similarities

in applications’ preferences with respect to heterogeneity and interference. It uses sin-

gular value decomposition to perform collaborative filtering and identify similarities

between incoming and previously scheduled workloads.

Once an incoming application is classified, a greedy scheduler assigns it to the

CHAPTER 3. PARAGON 27

server that is the best possible match in terms of platform and minimum nega-

tive interference between all co-scheduled workloads. Even though the final step

is greedy, the high accuracy of classification leads to schedules that satisfy both user

requirements (fast execution time) and operator requirements (efficient resource use).

Moreover, since classification is based on robust analytical methods and not merely

empirical observation, we have strong guarantees on its accuracy and strict bounds

on its overheads. Paragon scales to systems with tens of thousands of servers and

tens of configurations, running large numbers of previously unknown workloads.

We implemented Paragon and evaluated its efficiency using a wide spectrum of

workload scenarios (light, high, and oversubscribed). We use Paragon to schedule ap-

plications on a private cluster with 40 servers of 10 different configurations and on 1000

exclusive servers on Amazon EC2 with 14 configurations. We compare Paragon to a

heterogeneity-oblivious, an interference-oblivious and a state-of-the-art least-loaded

scheduler, which ignores both heterogeneity and interference. For the 1000-server

experiments and a scenario with 2500 workloads, Paragon maintains QoS for 91% of

workloads (within 5% of their performance running alone on the best server). The

heterogeneity-oblivious, interference-oblivious and least-loaded schedulers offer such

QoS guarantees for only 14%, 11%, and 3% of applications respectively. The results

are more striking in the case of an oversubscribed workload scenario, where efficient

resource use is even more critical. Paragon provides QoS guarantees for 52% of work-

loads and bounds the performance degradation to less than 10% for an additional

33% of workloads. In contrast, the least-loaded scheduler dramatically degrades per-

formance for 99.9% of applications. We also evaluate Paragon on a Windows Azure

and a Google Compute Engine cluster and show similar gains. Finally, we validate

that Paragon’s classification engine achieves the accuracy and bounds predicted by

the analytical methods and evaluate various parameters of the system.

3.2 Fast & Accurate Classification

The key requirement for heterogeneity and interference-aware scheduling is to quickly

and accurately classify incoming applications. First, we need to know how fast an

CHAPTER 3. PARAGON 28

application will run on each of the tens of server configurations available. Second, we

need to know how much interference it can tolerate from other workloads in each of

several shared resources without significant performance loss and how much interfer-

ence it will generate itself. Our goal is to perform online scheduling for large-scale DCs

without any a priori knowledge about incoming applications. Most previous schemes

address this issue with detailed but offline application characterization or long-term

monitoring and modeling approaches [187, 200, 266]. Instead, Paragon takes a differ-

ent perspective. Its core idea is that, instead of learning each new workload in detail,

the system leverages information it already has about applications it has seen to ex-

press the new workload as a combination of known applications. For this purpose we

use collaborative filtering techniques that combine a minimal profiling signal about

the new application (e.g., a minute’s worth of profiling data on two servers) with the

large amount of data available from previously scheduled applications. The result is

fast and highly accurate classification of incoming applications with respect to both

heterogeneity and interference. Within a minute of its arrival, an incoming workload

can be scheduled efficiently on a large-scale cluster.

3.2.1 Collaborative Filtering Background

Collaborative filtering techniques are frequently used in recommendation systems.

We will use one of their most publicized applications, the Netflix Challenge [34], to

provide a quick overview of the two analytical methods we rely upon, Singular Value

Decomposition (SVD) and PQ-reconstruction (PQ) [219]. In this case, the goal is to

provide valid movie recommendations for Netflix users given the ratings they have

provided for various other movies.

The input to the analytical framework is a sparse matrix A, the utility matrix,

with one row per user and one column per movie. The elements of A are the ratings

that users have assigned to movies. Each user has rated only a small subset of movies;

this is especially true for new users who may only have a handful of ratings or even

none. While there are techniques that address the cold start problem, i.e., providing

recommendations to a completely fresh user with no ratings, here we focus on users

CHAPTER 3. PARAGON 29

for which the system has some minimal input. If we can estimate the values of the

missing ratings in the sparse matrix A, we can make movie recommendations: suggest

that users watch the movies for which the recommendation system estimates that they

will give high ratings with high confidence.

The first step is to apply singular value decomposition (SVD), a matrix factoriza-

tion method used for dimensionality reduction and similarity identification. Factoring

A produces the decomposition to matrices U , V and Σ.

Am,n =















a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n















= U · Σ · V T

where

Um×r =















u11 · · · u1r

u21 · · · u2r

...
. . .

...

um1 · · · umr















, Vn×r =









v11 v12 · · · v1r
...

...
. . .

...

vn1 vn2 · · · vnr









Σr×r =









σ1 · · · 0
...

. . .
...

0 · · · σr









are the matrices of left and right singular vectors and the diagonal matrix of singular

values.

Dimension r is the rank of matrix A and it represents the number of similarity

concepts identified by SVD. For instance, one similarity concept may be that certain

movies belong to the drama category, while another may be that most users that

liked the movie “Lord of the Rings 1” also liked “Lord of the Rings 2”. Similarity

concepts are represented by singular values (σi) in matrix Σ and the confidence in

a similarity concept by the magnitude of the corresponding singular value. Singular

values in Σ are ordered by decreasing magnitude. Matrix U captures the strength

of the correlation between a row of A and a similarity concept. In other words, it

expresses how users relate to similarity concepts such as the one about liking drama

CHAPTER 3. PARAGON 30

movies. Matrix V captures the strength of the correlation of a column of A to a

similarity concept. In other words, to what extent does a movie fall in the drama

category. The complexity of performing SVD on a m× n matrix is min(n2m,m2n).

SVD is robust to missing entries and imposes relaxed sparsity constraints to provide

accuracy guarantees. Density less than 1% does not reduce the recommendation

accuracy [253].

Before we can make accurate score estimations using SVD, we need the full utility

matrix A. To recover the missing entries in A, we use PQ-reconstruction. Building

from the decomposition of the initial, sparse A matrix we have Qm×r = U and P T
r×n =

Σ · V T . The product of Q and P T gives matrix R which is an approximation of A

with the missing entries. To improve R, we use Stochastic Gradient Descent (SGD),

a scalable and lightweight latent factor model [43, 161, 153, 281] that iteratively

recreates A:

∀rui, where rui an element of the reconstructed matrix R

ǫui = rui − qi · puT

qi ← qi + η(ǫuipu − λqi)

pu ← pu + η(ǫuiqi − λpu)

until |ǫ|L2
=

√

∑

u,i |ǫui|2 becomes marginal.

In the process above η is the learning rate and λ is the regularization factor. The

complexity of PQ is linear with the number of rui and in practice takes up to a few ms

for matrices with m,n ∼ 1, 000. Once the dense utility matrix R is recovered we can

make movie recommendations. This involves applying SVD to R to identify which

of the reconstructed entries reflect strong similarities that enable making accurate

recommendations with high confidence.

3.2.2 Classification for Heterogeneity

Overview: We use collaborative filtering to identify how well an incoming appli-

cation will run on the different hardware platforms available. In this case, the rows

in matrix A represent applications, the columns server configurations (SC) and the

ratings represent normalized application performance on each server configuration.

CHAPTER 3. PARAGON 31

As part of an offline step, we select a small number of applications, a few tens,

and profile them on all different server configurations. We normalize the performance

results and fully populate the corresponding rows of A. This only needs to happen

once. If a new configuration is added in the DC, we need to profile these applications

on it and add a column in A. In the online mode, when a new application arrives, we

profile it for a period of 1 minute on any two server configurations, insert it as a new

row in matrix A and use the process described in Section 3.2.1 to derive the missing

ratings for the other server configurations.

In this case, Σ represents similarity concepts such as the fact that applications

that benefit from SC1 will also benefit from SC3. U captures how an application

correlates to the different similarity concepts and V how a server platform correlates

to them. Collaborative filtering identifies similarities between new and known appli-

cations. Two applications can be similar in one characteristic (they both benefit from

high clock frequency) but different in others (only one benefits from a large L3 cache).

This is especially common when scaling to large application spaces and several hard-

ware configurations. SVD addresses this issue by uncovering hidden similarities and

filtering out the ones less likely to have an impact on the application’s behavior.

The size of the offline training set is important as a certain number of ratings is

necessary to satisfy the sparsity constraints of SVD. However, over that number the

accuracy quickly levels off and scales well with the number of applications thereafter

(smaller fractions for training sets of larger application spaces). For our experiments

we use 20 and 50 offline workloads for a 40 and 1,000-server cluster respectively. Ad-

ditionally, as more incoming applications are added in A the density of the matrix

increases and the recommendation accuracy further improves. Note that online train-

ing is performed only on two server configurations. This not only reduces the training

overhead compared to exhaustive search but since training requires dedicated servers,

it also reduces the number of servers necessary for it. In contrast, if we attempted to

classify applications through exhaustive profiling, the number of profiling runs would

equal the number of server configurations (e.g., 40). For a cloud service with high

workload arrival rates, this would be infeasible to support, underlining the importance

of keeping training overheads low, something that Paragon does.

CHAPTER 3. PARAGON 32

Metric
Applications (%)

ST MT MP IO
Selected best SC 86% 86% 83% 89%
Selected SC within 5% of best 91% 90% 89% 92%
Correct SC ranking (best to worst) 67% 62% 59% 43%
90% correct SC ranking 78% 71% 63% 58%
50% correct SC ranking 93% 91% 89% 90%
Training & best SC match 28% 24% 18% 22%
Table 3.1: Validation metrics for heterogeneity classification.

Classification is very fast. On a production-class Xeon server, this takes 10-30

msec for thousands of applications and tens of server platforms. We can perform

classification for one application at a time or for small groups of incoming applications

(batching) if the arrival rate is high without impacting accuracy or speed.

Performance scores: We populate A with normalized scores that represent how

well an application performs on a server configuration. We use the following perfor-

mance metrics based on application type:

(a) Single-threaded workloads: We use instructions committed per second (IPS)

as the initial performance metric. Using execution time would require running ap-

plications to completion in the profiling servers, increasing the training overheads.

We have verified that using IPS leads to similar classification accuracy as using full

execution time. For multi-programmed workloads we use aggregate IPS.

(b) Multithreaded workloads: In the presence of spin-locks or other synchroniza-

tion schemes that introduce active waiting, aggregate IPS can be deceiving [12, 277].

We address this by periodically polling low-overhead performance counters, to de-

tect changes in the register file (read and writes that would denote regular operations

other than spinning) and weight-out of the IPS computation such execution segments.

We have verified that scheduling with this ”useful” IPS leads to similar classification

accuracy as using full execution time. When workloads are not known, or multiple

workload types are present ”useful” IPS is used to drive the scheduling decisions.

The choice of IPS as the base of performance metrics is influenced by our current

evaluation which focuses on single-node CPU, memory and I/O intensive programs.

CHAPTER 3. PARAGON 33

The same methodology holds for higher-level metrics, such as queries per second

(QPS), which cover complex multi-tier workloads as well.

Validation: We evaluate the accuracy of heterogeneity classification on a 40-server

cluster with 10 server configurations. We use a large set of single-threaded, multi-

threaded, multi-programmed and I/O-bound workloads. For details on workloads and

server configurations, see Section 3.4. The offline training set includes 20 applications

selected randomly from all workload types. The recommendation system achieves 24%

performance improvement for single-threaded, 20% for multi-threaded, 38% for multi-

programmed, and 40% for I/O workloads on average, while some applications have a

2x performance difference. Table 3.1 summarizes key statistics on the classification

quality. Our classifier correctly identifies the best server platform for 84% of workloads

and a platform within 5% of optimal for 90%. The predicted ranking of platforms is

exactly correct for 58% and almost correct (single reordering) for 65% of workloads. In

almost all cases 50% of server configurations are ranked correctly by the classification

scheme. Finally, it is important to note that the accuracy does not depend on the two

platforms selected for training. The training platform matched the top performing

configuration only for 20% of workloads.

We also validate the analytical methods. We compare performance predicted by

the recommendation system to performance obtained through experimentation. The

deviation is less than 3.8% on average.

3.2.3 Classification for Interference

Overview: There are two types of interference we are interested in: interference

that an application can tolerate from pre-existing load on a server and interference

the application will cause on that load. We detect interference due to contention on

shared resources and assign a score to the sensitivity of an application to a type of

interference. To derive sensitivity scores we develop several microbenchmarks, each

stressing a specific shared resource with tunable intensity. We run an application

concurrently with a microbenchmark and progressively tune up its intensity until

the application violates its QoS, which is set at 95% of the performance achieved in

CHAPTER 3. PARAGON 34

Metric Percentage (%)
Average sensitivity error across all SoIs 5.3%
Average error for sensitivities < 30% 7.1%
Average error for sensitivities < 60% 5.6%
Average error for sensitivities > 60% 3.4%
Apps with < 5% error ST: 65% MT: 58%
Apps with < 10% error ST: 81% MT: 63%
Apps with < 20% error ST: 90% MT: 89%
SoI with highest error

for ST: L1 i-cache 15.8%
for MT: LLC capacity 7.8%

Frequency L1 i-cache used as offline SoI 14.6%
Frequency LLC cap used as offline SoI 11.5%
SoI with lowest error

for ST: network bandwidth 1.8%
for MT: storage bandwidth 0.9%

Table 3.2: Validation metrics for interference classification.

isolation. Applications with high tolerance to interference (e.g., sensitivity score over

60%) are easier to co-schedule than applications with low tolerance (low sensitivity

score). Similarly, we detect the sensitivity of a microbenchmark to the interference

the application causes by increasing its intensity and recording when the performance

of the microbenchmark degrades by 5% compared to its performance in isolation. In

this case, high sensitivity scores, e.g., over 60% correspond to applications that cause

a lot of interference in the specific shared resource.

Identifying sources of interference (SoI): Co-scheduled applications may con-

tend on a large number of shared resources. We identified ten such sources of interfer-

ence (SoI) and designed a tunable microbenchmark for each one. SoIs span resources

such as memory (bandwidth and capacity), cache hierarchy (L1/L2/L3 and TLBs)

and network and storage bandwidth. The same methodology can be expanded to any

shared resource.

Collaborative filtering for interference: We classify applications for interfer-

ence tolerated and caused, using twice the process described in Section 3.2.1. The two

utility matrices have applications as rows and SoIs as columns. The elements of the

CHAPTER 3. PARAGON 35

matrices are the sensitivity scores of an application to the corresponding microbench-

mark (sensitivity to tolerated and caused interference respectively). Similarly to

classification for heterogeneity, we profile a few applications offline against all SoIs

and insert them as dense rows in the utility matrices. In the online mode, each new

application is profiled against two randomly chosen microbenchmarks for one minute

and its sensitivity scores are added in a new row in each of the matrices. Then, we use

SVD and PQ reconstruction to derive the missing entries and the confidence in each

similarity concept. This process performs accurate and fast application classification

and provides information to the scheduler on which applications should be assigned

to the same server (see Section 3.3.2).

Validation: We evaluated the accuracy of interference classification using the single-

threaded and multi-threaded workloads and the same systems as for the heterogeneity

classification. Table 3.2 summarizes some key statistics on the classification quality.

Our classifier, achieves an average error of 5.3% between estimated and measured

sensitivity both for tolerated and caused interference across all SoIs. For high values

of sensitivity, i.e., applications that tolerate and cause a lot of interference, the error

is even lower (3.4%), while for most applications (both single-threaded and multi-

threaded) the errors are lower than 5%. The SoIs with the highest errors are the L1

instruction cache for single-threaded workloads and the LLC capacity (L2 or L3) for

multi-threaded workloads. The high errors are not a weakness of the classification,

since both resources are profiled adequately, but rather of the difficulty to consistently

characterize contention in certain shared resources [187]. On the other hand, network

and storage bandwidth have the lowest errors, primarily due to the fact that we used

CPU and memory intensive workloads for this evaluation.

3.2.4 Putting It All Together

Overall, Paragon requires two short runs (∼1 minute) on two server configurations to

classify incoming applications for heterogeneity. Another two short runs against two

microbenchmarks on a high-end server configuration are needed for interference clas-

sification. We use a high-end platform to decouple server features from interference

CHAPTER 3. PARAGON 36

analysis. Running for 1 minute provides some signal on the new workload without

introducing significant profiling overheads. In Section 3.3.4 we discuss the issue of

workload phases, i.e., transient effects that do not appear in the 1 minute profiling

period. Next, we use collaborative filtering to classify the application in terms of

heterogeneity and interference, tolerated and caused. This cumulatively requires a

few msec even when considering thousands of applications and several tens of plat-

forms or sources of interference. The classification for heterogeneity and interference

is performed in parallel. For the applications we considered, the overall profiling and

classification overheads are 1.2% and 0.09% on average.

Using analytical methods for classification has two benefits; first, we have strong

analytical guarantees on the quality of the information used for scheduling, instead

of relying mainly on empirical observations. The analytical framework provides low

and tight error bounds on the accuracy of classification, statistical guarantees on the

quality of colocation candidates and detailed characterization of system behavior.

Moreover, the scheduler design is workload independent, which means that the ana-

lytical or statistical properties the scheme provides hold for any workload. Second,

these methods are computationally efficient, scale well with the number of applica-

tions and server configurations, do not introduce significant training and decision

overheads and enable exact complexity evaluation.

3.3 Paragon

3.3.1 Overview

Once an incoming application is classified with respect to heterogeneity and interfer-

ence, Paragon schedules it on one of the available servers. The scheduler attempts to

assign each workload to the server of the best SC and colocate it with applications

so that interference is minimized for workloads running on the same server. The

scheduler is online and greedy so we cannot make holistic claims about optimality.

Nevertheless, the fact that we start with highly accurate classification helps achieve

CHAPTER 3. PARAGON 37

very efficient schedules. The interference information allows Paragon to pack applica-

tions on a subset of servers without significant performance loss1. The heterogeneity

information allows Paragon to assign to each SC only applications that will benefit

from its characteristics. Both these properties lead to faster execution, hence re-

sources are freed as soon as possible, making it easier to schedule future applications

(more unloaded servers) and perform power management (more idling servers that

can be placed in low-power modes).

Figure 3.2 presents an overview of Paragon and its components. The scheduler

maintains per-application and per-server state. Per-application state includes infor-

mation for the heterogeneity and interference classification of every submitted work-

load. For a DC with 10 SCs and 10 SoIs, we store 64B per application. The per-server

state records the IDs of applications running on a server and the cumulative sensitiv-

ity to interference (roughly 64B per server). The per-server state needs to be updated

as applications are scheduled and, later on, complete. Paragon also needs some stor-

age for the intermediate and final utility matrices and temporary storage for ranking

possible candidate servers for an incoming application. Overall, state overheads are

marginal and scale logarithmically or linearly with the number of applications (N)

and servers (M). In our experiments with thousands of applications and servers, a

single server could handle all processing and storage requirements of scheduling2.

We present two methods for selecting candidate servers; a fast, greedy algorithm

that searches for the optimal candidate, and a statistical scheme of constant runtime

that provides strong guarantees on the quality of candidates as a function of examined

servers.

3.3.2 Greedy Server Selection

In examining candidates, the scheduler considers two factors: first, which assignments

minimize negative interference between the new application and existing load and

second, which servers have the best SC for this workload. Decisions are made in this

1Packing applications with minimal interference should be a property exhibited by any optimal
schedule.

2Additional scheduling servers can be used for fault-tolerance.

CHAPTER 3. PARAGON 38

37

Selection of Colocation Candidates

2x

State: M*16B

Per-server state

(~64B)

Per-app state

(~64B)

Step 2: Server Selection

App

arrival

Scheduling
1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

U’ ∑’ V’ 1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

Classification for heterogeneity (SVD+PQ)

Classification for interference (SVD+PQ)

State: ((SCs+2)*N*4B)

State: (2*(SoIs+2)*N*4B)

Step 1: Application Classification

U ∑ V

1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

U’ ∑’ V’ 1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

U ∑ V

Heterogeneity

scores

Interference

scores

S

S

DC servers

S

S

S

S

S

S

S

Figure 3.2: The components of Paragon and the state maintained by each component.
Overall, the state requirements are marginal and scale linearly or logarithmically with
the number of applications (N), servers (M) and configurations.

order; first identifying servers that do not violate QoS and then selecting the best SC

between them. This is based on the observation that interference typically leads to

higher performance loss than suboptimal SCs.

The greedy scheduler strives to minimize interference, while also increasing server

utilization. The scheduler searches for servers whose load can tolerate the inter-

ference caused by the new workload and vice versa, the new workload can tolerate

the interference caused by the server load. Specifically it evaluates two metrics,

D1 = tserver − cnewapp and D2 = tnewapp − cserver, where t is the sensitivity score for

tolerated and c for caused interference for a specific SoI. The cumulative sensitivity

of a server to caused interference is the sum of sensitivities of individual applications

running on it, while the sensitivity to tolerated interference is the minimum of these

values. The optimal candidate is a server for which D1 and D2 are exactly zero for

all SoIs. This implies that there is no negative impact from interference between

new and existing applications and that the server resources are perfectly utilized.

In practice, a good selection is one for which D1 and D2 are bounded by a positive

and small ǫ for all SoIs. Large, positive values for D1 and D2 indicate suboptimal

resource utilization. Negative D1 and/or D2 imply violation of QoS and identify poor

candidates that should be avoided.

We examine candidate servers for an application in the following way. The process

is explained for interference tolerated by the server and caused by the new workload

CHAPTER 3. PARAGON 39

(D1) and is exactly the same for D2. Given the classification of an application, we

start from the resource that is most difficult to satisfy (highest sensitivity score to

caused interference). We query the server state and select the server set for which D1

is non-negative for this SoI. Next, we examine the second SoI in order of decreasing

sensitivity scores, filtering out any servers for which D1 is negative. The process con-

tinues until all SoIs have been examined. Then, we take the intersection of candidate

server sets for D1 and D2. We now consider heterogeneity. From the set of candidates

we select servers that correspond to the best SC for the new workload and from their

subset we select the server with min(||D1 +D2||L1).
As we filter out servers, it is possible that at some point the set of candidate

servers becomes empty. This implies that there is no single server for which D1 and

D2 are non-negative for some SoI. In practice this event is extremely unlikely, but is

supported for completeness. We handle this case with backtracking. When no candi-

dates exist the algorithm reverts to the previous SoI and relaxes the QoS constraints

until the candidate set becomes non empty, before it continues. If still no candidate

is found backtracking is extended to more levels. Given M servers, the worst-case

complexity of the algorithm is O(M · SoI2), since theoretically backtracking might

extend all the way to the first SoI. In practice, however, we observe that for a 1000-

server system, 89% of applications were scheduled without any backtracking. For 8%

of these, backtracking led to negative D1 or D2 for a single SoI and for 3% for mul-

tiple SoIs. Additionally, we bound the runtime of the greedy search using a timeout

mechanism, after which the best server from the ones already examined is selected

in the way previously described (best SC and minimum interference deviation). In

our experiments timeouts occurred in less than 0.1% of applications and resulted in

a server within 10% of optimal.

3.3.3 Statistical Framework for Server Selection

The greedy algorithm selects the best server for an application - or a near-optimal

server. However, for very large DCs, e.g., 10-100k servers, the overhead from exam-

ining the server state in the first step of the search might become high. Additionally,

CHAPTER 3. PARAGON 40

the results depend on the active workloads and do not allow strict guarantees on the

server quality under any scenario. We now present an alternative, statistical frame-

work for server selection in very large DCs based on sampling, which has constant

runtime and enables such guarantees.

Instead of examining the entire server state we sample a small number of servers.

We use cryptographic hash functions to introduce randomness in the server selection.

We hash the scores of tolerated interference of each server using variations of SHA-

1 [153] as different hash functions (hj) for each SoI to increase entropy. The input

to a hj is a sensitivity score for an SoI and the output a hashed value of that score.

Outputs have the same precision as inputs (14bits). This process is done once, unless

the load of a server changes. When a new application arrives, we obtain candidate

servers by hashing its sensitivity scores to caused interference for each SoI. For ex-

ample, the input to h1 for SoI 1 is a. The output will be a new number, b which

corresponds to server ID u. Re-hashing b obtains additional IDs of candidate servers.

This produces a random subset of the system’s servers. After a number of re-hashes

the algorithm ranks the examined servers and selects the best one. Candidates are

ranked by colocation quality, which is a metric of how suitable a given server is for a

new workload. For candidate i, colocation quality is defined as:

Qi = [sign(
SoIs
∑

(t− c)i)]|1−||t−c||1| = [sign(
SoIs
∑

k=1

(t(k)− c(k))i)]|1−
SoIs
∑

k=1

|t(k)− c(k)|i|

t is the original, unhashed sensitivity to tolerated interference for a server and c

the original sensitivity to caused interference for the new workload. The sign in Qi

reflects whether a server preserves (positive) or violates QoS (negative). The L1 norm

of (t− c) reflects how closely the server follows the application’s requirements and is

normalized to its maximum value, 10, which happens when for all ten SoIs t = 100%

and c = 0. High and positive Qi values reflect better candidates, as the deviation

between t and c is small for all SoIs. Poor candidates have small Qi or even negative

when they violate QoS in one or more SoIs. Quality is normalized to the range [0, 1].

For example, for unnormalized qualities in the range [−1.2, 0.8] and a candidate with

Q = −1.0, the normalized quality will be: (−1.0+|min|)
|max|+|min|

= 0.2/2 = 0.1.

CHAPTER 3. PARAGON 41

0.0 0.2 0.4 0.6 0.8 1.0
Colocation quality

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

0.0 0.2 0.4 0.6 0.8 1.0
Colocation quality

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Uniformity Assum. R=16
Experimental R=16

Uniformity Assum. R=64
Experimental R=64

Uniformity Assum. R=128
Experimental R=128

Q
=

0.
6,

 s
te

ps
=

43

Q
=

0.
7,

 s
te

ps
=

18

Q
=

0.
9,

 s
te

ps
=

87

Figure 3.3: Colocation quality distribution (F (x) = xR, where R = 16, 64 and 128).
Figure 3.3b shows the comparison between the greedy algorithm and the statistical
scheme for three colocation candidates of Q = 0.6, 0.7 and 0.9.

We now make an assumption on the distribution of quality values, which we verify

in practice. Because of the way candidate servers are selected and the independence

between initial workloads, Qi’s approximate a uniform distribution, for problems

with tens of thousands of servers and applications. Figure 3.3a shows the CDF

of measured quality for 16, 64 and 128 candidates and the corresponding uniform

distributions (F (x) = xR, where R the number of candidates examined) in a system

with 1,000 servers. In all cases, the assumption of uniformity holds in practice with

small deviations. When we exceed 128 candidates (1/8 of the cluster) the distribution

starts deviating from uniform. We have observed that for even larger systems, e.g., a

5,000-server Windows Azure cluster, uniform distributions extend to larger numbers

of candidates (up to 512) as well. The probability of a candidate having quality a

is Pr(a) = aR. For example, for 128 candidates there is a 10−6 probability that no

candidate will have quality over 0.9.

We now compare the statistical scheme with the greedy algorithm (Figure 3.3b).

While the latter finds a server with quality Q after a random number of steps, the

statistical scheme provides strong guarantees on the number of candidates required

for the same quality. For example, for a candidate with Q = 0.9, the greedy algorithm

needs 87 steps, but cannot provide ad hoc guarantees on the quality of the result,

while the statistical scheme guarantees that for the same requirements, with 64 can-

didates, there is a 10−3 chance that no server has Q ≥ 0.9. The guarantees become

CHAPTER 3. PARAGON 42

stricter as the distribution gets skewed towards 1 (more candidates). Therefore, al-

though the statistical scheme cannot guarantee optimality, it shows that examining a

small number of servers provides strict guarantees on the obtained quality and makes

scheduling efficiency workload independent.

In our 1,000-server experiments, the overhead of executing the greedy algorithm is

marginal compared to application execution time (less than 0.1% in most cases), while

the statistical scheme induces 0.5-2% overheads due to the computation required for

hashing. Because at this scale the greedy algorithm is faster, all results in this work

are obtained using greedy search. However, for problems of larger scale the statistical

scheme can be more efficient.

3.3.4 Discussion

Workload phases: Application classification in Paragon is performed once for each

new workload, using the information from its 1 minute profiling. It is possible that

some applications will go through various phases that are not captured during profil-

ing. Hence, the schedule will be suboptimal. We detect such workloads by monitoring

their performance scores (e.g., IPS) during execution. If the monitored performance

deviates significantly and for long periods of time from the performance predicted by

the classification engine, the application may have changed behavior. Upon detection

we do one of the following. First, we can avoid scheduling a large number of other

workloads on the same server as the interference information for this workload is

likely incorrect. Second, if there is a migration mechanism available (process or VM

migration), we can clone the workload, repeat the classification from its current exe-

cution point and evaluate whether re-scheduling to another server is beneficial. Note

that migration can involve significant overheads if the application operates on signif-

icant amounts of state. Section 3.5 includes an experiment where workload behavior

experiences different phases. We assume that there exists an underlying mechanism,

such as vSphere [273], that performs the live migration.

CHAPTER 3. PARAGON 43

Suboptimal scheduling: A second concern apart from application phases is sub-

optimal scheduling, either due to the greedy selection algorithm which assigns ap-

plications to servers in a per-workload fashion, or due to pathological behavior in

application arrival patterns. Suboptimal scheduling can be detected exactly as the

problem of workload phases and can potentially be resolved by re-scheduling several

active applications. Although re-scheduling was not needed for the examined applica-

tions, Paragon provides a general methodology to detect such deviations and leverage

mechanisms like VM migration to re-schedule the sub-optimally scheduled workloads.

Latency-critical applications and workload dependencies: Finally, Paragon

does not explicitly consider latency-critical applications or dependencies between ap-

plication components, e.g., a multi-tier service, such as search or webmail, where

tiers communicate and share data. One differentiation in this case comes from the

metrics the scheduler must consider. It is possible that the interference classification

should use microbenchmarks that aim to degrade the per-query latency as opposed

to the workload’s throughput. Another differentiation comes from the possible work-

load scenarios. One scenario can involve a latency-critical application running as

the primary process, e.g., memcached, and the remaining server capacity being al-

located to best-effort applications, such as analytics or background processes using

Paragon. A different scenario is one where a throughput-bound distributed workload,

e.g., MapReduce runs with high priority and the remaining server capacity is used

by instances of a latency-critical application. Paragon does not currently enforce

fine-grain priorities between application components or user requests, or optimize for

shared data placement, which might be beneficial for these scenarios.

3.4 Methodology

Server systems: We evaluated Paragon on a small local cluster and three major

cloud computing services. Our local cluster includes servers of ten different config-

urations shown in Table 6.1. We also show how many servers of each type we use.

Note that these configurations range from high-end Xeon systems to low-power Atom-

based boards. There is a wide range of core counts, clock frequencies and memory

CHAPTER 3. PARAGON 44

Server Type GHz sockets cores L1(KB) LLC(MB) mem(GB) #

Xeon L5609 1.87 2 8 32/32 12 24 DDR3 1
Xeon X5650 2.67 2 12 32/32 12 24 DDR3 2
Xeon X5670 2.93 2 12 32/32 12 48 DDR3 2
Xeon L5640 2.27 2 12 32/32 12 48 DDR3 1

Xeon MP 3.16 4 4 16/16 1 8 DDR2 5
Xeon E5345 2.33 1 4 32/32 8 32 FB-DIMM 8
Xeon E5335 2.00 1 4 32/32 8 16 FB-DIMM 8
Opteron 240 1.80 2 2 64/64 2 4 DDR2 7

Atom 330 1.60 1 2 32/24 1 4 DDR2 5
Atom D510 1.66 1 2 32/24 1 8 DDR2 1

Table 3.3: Main characteristics of the servers of the local cluster. The total core
count is 178 for 40 servers of 10 different server configurations.

capacities and speeds present in the cluster.

For the cloud-based clusters we used exclusive (reserved) server instances, i.e.,

no other users had access to these servers. We verified that no external scheduling

decisions or actions such as auto-scaling or workload migration are performed during

the course of the experiments. We used 1,000 servers on Amazon EC2 [13] with 14

different server configurations, ranging from small, low-power, dual-core machines to

high-end, quad-socket, multi-core servers with hundreds of GBs of memory. All 1,000

machines are private, i.e., there is no interference in the experiments from external

workloads. We also conducted experiments with 500 servers on Windows Azure [279]

with 8 different server configurations and 100 servers on Google Compute Engine [110]

with 4 server configurations.

Schedulers: We compared Paragon to three alternative schedulers. First, we evalu-

ate a baseline scheduler that preserves an application’s core and memory requirements

but ignores both its heterogeneity and interference profiles. In this case, applications

are assigned to the least-loaded (LL) machine. Second, we examine a heterogeneity-

oblivious (NH) scheme that uses the interference classification in Paragon to assign

applications to servers without visibility in their server platforms. Finally, we eval-

uate an interference-oblivious (NI) scheme that uses the heterogeneity classification

in Paragon but has no insight on workload interference. The overheads for the het-

erogeneity and interference-oblivious schemes are the corresponding classification and

CHAPTER 3. PARAGON 45

server selection overheads.

Workloads: We used 29 single-threaded (ST), 22 multi-threaded (MT) and 350

multi-programmed (MP) workloads and 25 I/O-bound workloads. We use the full

SPEC CPU2006 suite and workloads from PARSEC [40] (blackscholes, bodytrack,

facesim, ferret, fluidanimate, raytrace, swaptions, canneal), SPLASH-2 [282] (barnes,

fft, lu, ocean, radix, water), BioParallel [150] (genenet, svm), Minebench [198] (sem-

phy, plsa, kmeans) and SPECjbb (2, 4 and 8-warehouse instances). For multipro-

grammed workloads, we use 350 mixes of 4 applications, based on the methodology

in [228]. The I/O-bound workloads are data mining applications, such as clustering

and recommender systems [219], in Hadoop and Matlab running on a single-node.

Workload durations range from minutes to hours. For workload scenarios with more

than 426 applications we replicated these workloads with equal likelihood (1/4 ST,

1/4 MT, 1/4 MP, 1/4 I/O) and randomized their interleaving.

Workload scenarios: To explore a wide range of behaviors, we used the applica-

tions listed above to create multiple workload scenarios. Scenarios vary in the number,

type and inter-arrival times of submitted applications. The load is classified based on

its relation to available resources; low: the required core count is significantly lower

than the available processor resources; high: the required core count approaches the

load the system can support but does not surpass it; and oversubscribed: the re-

quired core count often exceeds the system’s capabilities, i.e., certain machines are

oversubscribed.

For the small-scale experiments on the local cluster we examine four workload

scenarios. First, a low load scenario with 178 applications, selected randomly from

the pool of workloads, which are submitted with 10 sec inter-arrival times. Second,

a medium load scenario with 178 applications, randomly selected as before and sub-

mitted with inter-arrival times that follow a Gaussian distribution with µ = 10 sec

and σ2 = 1.0. Third, a high load scenario with 178 workloads, each corresponding

to a sequence of three applications with varying memory loads. Each application

goes through three phases; first medium, then high and again medium memory load.

Workloads are submitted with 10 sec intervals. Finally, we examine a scenario, where

CHAPTER 3. PARAGON 46

178 randomly-chosen applications arrive with 1 sec intervals. Note that the last sce-

nario is an over-subscribed one. After a few seconds, there are not enough resources

in the system to execute all applications concurrently, and subsequent submitted

applications are queued.

For the large-scale experiments on EC2 we examine three workload scenarios; a low

load scenario with 2,500 randomly-chosen applications submitted with 1 sec intervals,

a high load scenario with 5,000 applications submitted with 1 sec intervals and an

oversubscribed scenario where 7,500 workloads are submitted with 1 sec intervals and

an additional 1,000 applications arrive in burst (less than 0.1 sec intervals) after the

first 3,750 workloads.

3.5 Evaluation

3.5.1 Comparison of Schedulers: Small Scale

QoS guarantees: Figure 3.4 summarizes the performance results across the 178

workloads on the 40-server cluster for the medium load scenario where application

arrivals follow a Gaussian distribution. Applications are ordered in the x-axis from

worst to best-performing workload. The y-axis shows the performance (execution

time) normalized to the performance of an application when it is running in the

best platform in isolation (without interference). Each line corresponds to the per-

formance achieved with a different scheduler. Overall, Paragon (P) outperforms the

other schedulers, in terms of preserving QoS (95% of optimal performance), and

bounding performance degradation when QoS requirements cannot be met. 78% of

workloads maintain their QoS with Paragon, while the heterogeneity-oblivious (NH),

interference-oblivious (NI) and least-loaded (LL) schedulers provide similar guaran-

tees only for 23%, 19% and 7% of applications respectively. Even more, for the

case of the least-loaded scheduler some applications failed to complete due to mem-

ory exhaustion on the server. Similarly, while the performance degradation with

Paragon is smooth (94% of workloads have less than 10% degradation), the other

three schedulers dramatically degrade performance for most applications, in almost

CHAPTER 3. PARAGON 47

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sp

ee
du

p
ov

er
 A

lo
ne

 o
n

Be
st

 P
la

tfo
rm

Alone on Best Platform
No Heterogeneity (NH)
No Interference (NI)

LeastLoaded(LL)
Paragon (P)

-- QoS

Figure 3.4: Performance impact from
scheduling with Paragon for medium
load, compared to heterogeneity and/or
interference-oblivious schedulers. Appli-
cation arrival times follow a Gaussian
distribution. Applications are ordered
from worst to best.

LL NH NI P0

20

40

60

80

100

Ap
pl

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

No degradation
< 10% degradation

< 20% degradation
> 20% degradation

LL NH NI P
0

20

40

60

80

100

Figure 3.5: Breakdown of decision qual-
ity for heterogeneity (left) and interfer-
ence (right) for the medium load on the
local cluster. Applications are divided
based on performance degradation in-
duced by the decisions made by each of
the schedulers.

linear fashion with the number of workloads. For this scenario, the heterogeneity

and interference-oblivious schedulers perform almost identically, although ignoring

interference degrades performance slightly more. This is due to workloads that arrive

at the peak of the Gaussian distribution, when the cluster’s resources are heavily

utilized. For the same workloads, Paragon limits performance degradation to less

than 10% in most cases. This figure also shows that a small number of workloads

experience speedups compared to their execution in isolation. This is a result of cache

effects or instruction prefetching between similar co-scheduled workloads. We expect

positive interference to be less prevalent for a more diverse application space.

Scheduling decision quality: Figure 3.5 explains why Paragon achieves better per-

formance. Each bar represents a percentage of applications based on the performance

degradation they experience due to the quality of decisions of each of the four sched-

ulers in terms of platform selection (left) and impact from interference. Blue bars

reflect good and red bars poor scheduling decisions. In terms of platform decisions,

the least-loaded scheduler (LL) maps applications to servers with no heterogeneity

considerations, thus it significantly degrades performance for most applications. The

CHAPTER 3. PARAGON 48

Alone on Best Platform No Heterogeneity (NH) No Interference (NI) Least Loaded (LL) Paragon (P)

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sp

ee
du

p
ov

er
 A

lo
ne

 o
n

Be
st

 P
la

tf. Low load

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Oversubscribed

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tf. Workloads with Phases

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g

Sp
ee

du
p

ov
er

 O
pt

im
al

Phase 2 Phase 3

Figure 3.6: Performance comparison between the four schedulers for three work-
load scenarios: low, oversubscribed and workloads with phases (Figure 3.6(a, b, c))
and performance over time for the scenario where workloads experience phases (Fig-
ure 3.6d).

heterogeneity-oblivious (NH) scheduler assigns more than 40% of workloads to sub-

optimal server platforms, although fewer than LL, as it often steers workloads to

high-end server platforms that tend to tolerate more interference. However, as these

servers become saturated, applications that would benefit from them are scheduled

suboptimally and NH ends up making poor quality assignments afterwards. On the

other hand, the schedulers that account for heterogeneity explicitly (interference-

oblivious (NI) and Paragon (P)) have much better decision quality. NI induces no

degradation to 47% of workloads and less than 10% for an additional 38%. The rea-

son why NI does not behave better in terms of platform selection is that it has no

input on interference, therefore it assigns most workloads to the best server configu-

rations. As these machines become saturated, destructive interference increases and

CHAPTER 3. PARAGON 49

performance degrades, although, unlike NH, which selects a random server configu-

ration next, NI selects the server configurations that is ranked second for a workload.

Finally, Paragon outperforms the other schedulers and assigns 84% of applications to

their optimal server configuration.

The right part in Figure 3.5 shows decision quality with respect to interference.

LL behaves the worst for similar reasons, while NI is slightly better than LL since

it assigns more applications to high-end server configuration, that are more likely

to tolerate interference. NH outperforms NI as expected, since NI ignores inter-

ference altogether. Paragon assigns 83% of applications to servers that induce no

negative interference. Considering both graphs establishes why Paragon significantly

outperforms the other schedulers, as it has better decision quality both in terms of

heterogeneity and interference.

Other workload scenarios: Figure 3.6 compares Paragon to the three schedulers

for the other three scenarios; low load, oversubscribed, and workloads with phases.

For low load, performance degradation is small for all schedulers, although LL de-

grades performance by 46% on average. Since the cluster can easily accommodate the

load of most workloads, classifying incoming applications has a smaller performance

impact. Nevertheless, Paragon outperforms the other three schedulers and achieves

99% of optimal performance on average. It also improves resource efficiency during

low load by completing the scenario 15% faster than the least-loaded scheduler. For

the oversubscribed scenario, Paragon guarantees QoS for the largest workload frac-

tion, 75% and bounds degradation to less than 10% for 99% of workloads. In this case,

accounting for interference is much more critical than accounting for heterogeneity as

the system’s resources are fully utilized.

Finally, for the case where workloads experience phases, we want to validate two

expectations. First, Paragon should outperform the other schedulers, since it accounts

for heterogeneity and interference (66% of workloads preserve their QoS). Second,

Paragon should adapt to the changes in workload behavior, by detecting deviations

from the expected IPS, re-classifying the offending workloads and re-scheduling them

if a more suitable server is available. To verify this, in Figure 3.6d we show the

average performance for each scheduler over time. The points where workloads start

CHAPTER 3. PARAGON 50

0

50

100

150

200

250

Co
re

 C
ou

nt

Required
Used

Time (s)
 5000 10000 15000 20000 25000 0

50

100

150

200

250

Co
re

 C
ou

nt

Required
Used

Time (s)
 5000 10000 15000 20000 25000 0

50

100

150

200

250

Co
re

 C
ou

nt

Required
Used

Time (s)
 5000 10000 15000 20000 25000

(a) Paragon (b) Interference-Oblivious (c) Least-Loaded

Figure 3.7: Comparison of resource activity between Paragon, the interference-
oblivious and the least-loaded scheduler. Plots show the required and allocated core
count at each moment.

changing phases are denoted with vertical lines. First, at phase change, Paragon

induces much less degradation than the other schedulers, because applications are

assigned to appropriate servers to begin with. Second, Paragon recovers much faster

and better from the phase change. Performance rebounces to values close to 1 as the

deviating workloads are re-scheduled to appropriate servers, while the other schedulers

achieve progressively worse average performance.

Resource allocation: Ideally, the scheduler should closely follow application re-

source requirements (cores, cache capacity, memory bandwidth, etc.) and provide

them with the minimum number of servers. This improves performance (applications

execute as fast as possible without interference) and reduces overprovisioning (number

of servers used, periods for which they are active). The latter particularly benefits the

DC operator, as it reduces both capital and operational expenses. A smaller number

of servers needs to be purchased to support a certain load (capital savings). During

low load, many servers can be turned off to save energy (operational savings).

Figure 3.7a shows how Paragon follows the resource requirements for the medium

load scenario shown in Figure 3.4. The green line shows the ideally required core

count of active applications based on arrival rate and ideal execution time and the

blue line the allocated core count by Paragon. Because the scheduler tracks appli-

cation behavior in terms of heterogeneity and interference it is able to follow their

requirements with minimal deviation (less than 3.5%), excluding periods when the

CHAPTER 3. PARAGON 51

0

5

10

15

20

25

30

35

40

Se
rv

er
s

0
10
20
30
40
50
60
70
80
90
100

Se
rv

er
 U

til
iz

at
io

n
(%

)

Time (s)
 5000 10000 15000 20000 25000 0

5

10

15

20

25

30

35

40

Se
rv

er
s

0
10
20
30
40
50
60
70
80
90
100

Se
rv

er
 U

til
iz

at
io

n
(%

)

Time (s)
 5000 10000 15000 20000 25000

Figure 3.8: Comparison of server utilization for Paragon (left) and the interference-
oblivious scheduler (right). Darker colors correspond to higher CPU utilization.

system is oversubscribed and the required cores exceed the total number of cores in

the system. In comparison, NI (Figure 3.7b) and similarly for NH, either overprovi-

sions or oversubscribes servers, resulting in increased execution time; per-application

and for the overall scenario. Finally, Figure 3.7c shows the resource allocation for

the least-loaded scheduler. There is significant deviation, since the scheduler ignores

both heterogeneity and interference. All cores are used but in a suboptimal manner.

Hence, execution times are increased for individual workloads and the overall sce-

nario. Total execution time increases by 15%, but more importantly per-application

time degrades (Figure 3.4), which is harmful both for users and DC operators.

Server utilization: In Figure B.9 we plot heat maps of the server utilization over

time for Paragon and the interference-oblivious (NI) scheduler. Server utilization

is defined as average CPU utilization across the cores of a server. For Paragon,

utilization is high in the middle of the scenario when many applications are active

(47% higher than without colocation), and returns to zero when the scenario finishes.

In this case, resource usage improves compared to the interference-oblivious scheduler

without performance degradation due to interference. On the other hand, NI keeps

server utilization high in some servers and underutilizes others, while violating per-

application QoS and extending the scenario’s execution time. This is undesirable

both for the user who gets lower performance and for the DC operator, since the high

utilization in certain servers does not translate to faster execution time, adhering

scalability to servicing more workloads.

CHAPTER 3. PARAGON 52

L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P L
L

N
H N
I P

0.0

0.5

1.0

1.5

2.0

Execution Time Training Classification Greedy

E
xe

c
T

im
e

+
O

ve
rh

e
a
d
s

//

//

//

perlbench gcc mcf leslie-3d gobmk soplex povray calculix blkscholes bodytrack fldanimate canneal genenet svm specjbb-8

Figure 3.9: Execution time breakdown for selected single-threaded and multi-
threaded applications in the medium load scenario.

Scheduling overheads: Finally, we evaluate the total scheduling overheads for

the various schemes. These include the overheads of offline training, classification

and server selection using the greedy algorithm. Figure 3.9 shows the execution

time breakdown for selected single-threaded and multi-threaded applications. These

applications are representative of workloads submitted throughout the execution of

the medium load scenario. All bars are normalized to the execution time of the

application in isolation in the best server configuration. Training and classification

for heterogeneity and interference are performed in parallel so there is a single bar

for each, for every workload. There is no bar for the least-loaded scheduler for mcf,

since it was one of the benchmarks that did not terminate successfully. Paragon

achieves lower execution times for the majority of applications and close to optimal.

The overheads of the recommendation system are low; 1.2% for training and 0.09%

for classification. The overheads of the greedy algorithm are less than 0.1% in most

cases with the exceptions of soplex and genenet that required extensive backtracking

which was handled with a timeout. Overall, Paragon performs accurate classification

and efficient scheduling within 1 minute of the application’s arrival, which is marginal

for most workloads.

3.5.2 Comparison of Schedulers: Large Scale

Performance impact: Figure 3.10 shows the performance for the three workload

scenarios on the 1,000-server EC2 cluster. Similar to the results on the local cluster,

the low load scenario, in general, does not create significant performance challenges.

CHAPTER 3. PARAGON 53

Alone on Best Platform No Heterogeneity (NH) No Interference (NI) Least Loaded (LL) Paragon (P)

0 500 1000 1500 2000 2500
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Low load

0 1000 2000 3000 4000 5000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

High load

0 1000 2000 3000 4000 5000 6000 7000 8000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Oversubscribed

Figure 3.10: Performance comparison between the four schedulers, for three workload
scenarios on 1,000 EC2 servers.

Nevertheless, Paragon outperforms the other three schemes, it maintains QoS for 91%

of workloads and achieves on average 0.96 of the performance of a workload running

in isolation in the best server configuration. When moving to the case of high load,

the difference between schedulers becomes more obvious. While the heterogeneity

and interference-oblivious schemes degrade performance by an average of 22% and

34% and violate QoS for 96% and 97% of workload respectively, Paragon degrades

performance only by 4% and guarantees QoS for 61% of workloads. The least-loaded

scheduler degrades performance by 48% on average, while some applications do not

terminate (crash). The differences in performance are larger for workloads submitted

when the system is heavily loaded and becomes oversubscribed. Although, we simply

queue applications in FIFO order until resources become available, Paragon bounds

performance degradation (only 0.6% of workloads degrade more than 20%), since it

co-schedules workloads that minimize destructive interference. We plan to incorporate

a better admission control protocol in the scheduler in future work.

Finally, for the oversubscribed case, NH, NI and LL dramatically degrade perfor-

mance for most workloads, while the number of applications that do not terminate

successfully increases to 10.4%. Paragon, on the other hand, provides strict QoS

guarantees for 52% of workloads, while the other schedulers provide similar guaran-

tees only for 5%, 1% and 0.09% of workloads respectively. Additionally, Paragon

CHAPTER 3. PARAGON 54

LL NH NI P LL NH NI P LL NH NI P0

20

40

60

80

100

Ap
pl

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

No degradation < 10% degradation < 20% > 20%

LL NH NI P

LL NH NI P LL NH NI P0

20

40

60

80

100

Ap
pl

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

Low load High load Oversubscribed Low load High load Oversubscribed

Figure 3.11: Breakdown of decision quality in terms of heterogeneity (left) and
interference for the three EC2 scenarios.

limits degradation to less than 10% for an additional 33% of applications and main-

tains performance degradation moderate (no cliffs in performance such as for NH in

applications [1-1000]).

Decision quality: Figure 3.11 shows a breakdown of the decision quality of the

different schedulers for heterogeneity (left) and interference (right) across the three

experiments. LL induces more than 20% performance degradation to most applica-

tions, both in terms of heterogeneity and interference. NH has low decision quality

in terms of platform selection, while NI causes performance degradation by colocat-

ing unsuitable applications. The errors increase as we move to scenarios of higher

load. Paragon decides optimally for 65% of applications for heterogeneity and 75%

for interference on average, significantly higher than the other schedulers. It also con-

strains decisions that lead to larger than 20% degradation due to interference to less

than 8% of workloads. The results are consistent with the findings for the small-scale

experiments.

Resource allocation: Figure 3.12 shows why this deviation exists. From left to

right we show the graphs for low, high, and oversubscribed load. The yellow line

represents the required core count based on the applications running at a snapshot

of the system, while the other four lines show the allocated core count by each of the

schedulers. Since Paragon optimizes for increased utilization within QoS constraints,

it follows the application requirements closely. It only deviates when the required

CHAPTER 3. PARAGON 55

Required NH NI LL Paragon

0

1000

2000

3000

4000

5000

6000

7000

Co
re

 C
ou

nt

Low load

Time (s)
 4000 8000 12000 16000 20000 0

1000

2000

3000

4000

5000

6000

7000

Co
re

 C
ou

nt

High load

Time (s)
 6000 12000 18000 24000 30000 0

1000

2000

3000

4000

5000

6000

7000

Co
re

 C
ou

nt

Oversubscribed load

Time (s)
 10000 20000 30000 40000 50000

Figure 3.12: Comparison of required and performed core allocation between Paragon
and the other three schedulers for the three workload scenarios on EC2. The total
number of cores in the system is 4960.

core count exceeds the resources available in the system. NH has mediocre accuracy,

while NI and LL either significantly overprovision the number of allocated cores,

or oversubscribe certain servers. There are two important points in these graphs:

first, as the load increases the difference in execution time exceeds the optimal one,

which Paragon approximates with minimal deviation. Second, for higher loads, the

errors in core allocation increase dramatically for the other three schedulers, while

for Paragon the average deviation remains constant, excluding the part where the

system is oversubscribed.

Windows Azure & Google Compute Engine: We validate our results on

a 500-server Azure and a 100-server Compute Engine (GCE) cluster (Figure 3.13).

We run a scenario with 2,500 and 500 workloads respectively. In Azure, Paragon

achieves 94.3% of the performance in isolation and maintains QoS for 61% of work-

loads, while the other three schedulers provide the same guarantees for 1%, 2% and

0.7% of workloads. Additionally, this was the only time where NI outperformed NH,

most likely due to the wide variation between server configurations which increases

the importance of accounting for heterogeneity. In the GCE cluster, which has only 4

server configurations, workloads exhibit mediocre benefits from heterogeneity-aware

scheduling (7% over random), while the majority of gains comes from accounting

for interference. Overall, Paragon achieves 96.8% of optimal performance and NH

CHAPTER 3. PARAGON 56

Alone on Best Platform No Heterogeneity (NH) No Interference (NI) Least Loaded (LL) Paragon (P)

0 500 1000 1500 2000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
e
d
u
p

o
ve

r
A

lo
n
e

o
n

B
e
s
t
P

la
tf
o
rm Azure

0 100 200 300 400
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
e
d
u
p

o
ve

r
A

lo
n
e

o
n

B
e
s
t
P

la
tf
o
rm GCE

Figure 3.13: Performance comparison between the schedulers on the Windows Azure
and Google Compute Engine (GCE) clusters.

90%. The consistency between experiments, despite the different cluster configura-

tions and underlying hardware, shows the robustness of the analytical methods that

drive Paragon.

3.6 Related Work

We discuss work relevant to Paragon in the areas of DC scheduling, VM manage-

ment and workload rightsizing. We also present related work from scheduling for

heterogeneous multi-core chips.

Datacenter scheduling: Recent work on DC scheduling has highlighted the im-

portance of platform heterogeneity and workload interference. Mars et al. [188, 187]

showed that the performance of Google workloads can vary by up to 40% due to

heterogeneity even when considering only two SCs and up to 2x due to interference

even when considering only two colocated applications. In [188], they present an

offline scheme that used combinatorial optimization to select the proper SC for each

workload. In [187], they present an offline, two-step method to characterize the sen-

sitivity of workloads to memory pressure and the stress each application exercises to

the memory subsystem. Govindan et al. [120] also present a scheme to quantify the

effects of cache interference between consolidated workloads, although they require

CHAPTER 3. PARAGON 57

access to physical memory addresses. Finally, Nathuji et al. [200] present a control-

based resource allocation scheme that mitigates the effects of cache, memory and

hardware prefetching interference of co-scheduled workloads. In Paragon, we extend

the concepts of heterogeneity and interference-aware DC scheduling in several ways.

We provide an online, highly-accurate and low-overhead methodology that classifies

applications for both heterogeneity and interference across multiple resources. We

also show that our classification engine allows for efficient, online scheduling without

using computationally intensive techniques which require exhaustive search between

colocation candidates.

VM management: VM management systems such as vSphere [273], XenServer [4]

or the VM platforms on EC2 [13] and Windows Azure [279] can schedule diverse

workloads submitted by a large number of users on the available servers. In general,

these platforms account for application resource requirements which they learn over

time by monitoring workload execution. Paragon can complement such systems by

making efficient scheduling decisions based on heterogeneity and interference and

detecting when an application should be considered for migration (re-scheduling).

Resource management and rightsizing: There has been significant work on re-

source allocation in virtualized and non-virtualized large-scale DCs, including Mesos [139],

Rightscale [224], resource containers [26], Dejavu [266] and the work by Chase et

al. [54]. Mesos performs resource allocation between distributed computing frame-

works like Hadoop or Spark [139]. Rightscale automatically scales out 3-tier applica-

tions to react to changes in the load in Amazon’s cloud service [24]. Dejavu serves a

similar goal by identifying a few workload classes and based on them, reuses previous

resource allocations to minimize reallocation overheads [266]. Zhu et al. [300] present

a resource management scheme for virtualized DCs that preserves SLAs and Gmach

et al. [117] a resource allocation scheme for DC applications that relies on the ability

to predict their behavior a priori. In general, Paragon is complementary to resource

allocation and rightsizing systems. Once such a system determines the amount of

resources needed by an application (e.g., number of servers, memory capacity, etc.),

Paragon can classify and schedule it on the proper hardware platform in a way that

minimizes interference. Currently, Paragon focuses on online scheduling of previously

CHAPTER 3. PARAGON 58

unknown workloads. We will consider how to integrate Paragon with a rightsizing

system for scheduling long running, 3-tier services in future work.

Scheduling for heterogeneous multi-core chips: Finally, scheduling in hetero-

geneous CMPs shares some concepts and challenges with scheduling in heterogeneous

DCs, therefore some of the ideas in Paragon can be applied in heterogeneous CMP

scheduling as well. Fedorova et al. [102, 101] discuss OS level scheduling for hetero-

geneous multi-cores as having the following three objectives: optimal performance,

core assignment balance and response time fairness. Shelepov et al. [239] present

a scheduler that exhibits some of these features and is simple and scalable, while

Craeynest et al. [263] use performance statistics to estimate which workload-to-core

mapping is likely to provide the best performance. DC scheduling also has similar

requirements as applications should observe their QoS, resource allocation should

follow application requirements closely and fairness between co-scheduled workloads

should be preserved. Given the increasing number of cores per chip and co-scheduled

tasks, techniques such as those used for the classification engine of Paragon can be

applicable when deciding how to schedule applications to heterogeneous cores as well.

3.7 Conclusions

In this chapter, we have presented Paragon, a scalable scheduler for DCs that is both

heterogeneity and interference-aware. Paragon is derived from validated analytical

methods, such as collaborative filtering to quickly and accurately classify incoming

applications with respect to platform heterogeneity and workload interference. Clas-

sification uses minimal information about the new application and relies mostly on

information from previously scheduled workloads. The output of classification is used

by a greedy scheduler to assign workloads to servers in a manner that maximizes ap-

plication performance and optimizes resource usage. We have evaluated Paragon with

both small and large-scale systems. Even for very demanding scenarios, where het-

erogeneity and interference-agnostic schedulers degrade performance for up to 99.9%

of workloads, Paragon maintains QoS guarantees for 52% of the applications and

bounds degradation to less than 10% for an additional 33% out of 8500 applications

CHAPTER 3. PARAGON 59

on a 1,000-server cluster. Paragon preserves QoS guarantees while improving server

utilization, hence it benefits both the DC operator, who achieves perfect resource use

and the user, who gets the best performance. In the following chapter we discuss

how a similar approach can be applied towards resource provisioning in large-scale

datacenters.

Chapter 4

Quasar: QoS-Aware and Resource

Efficient Cluster Management

4.1 Introduction

In the previous chapter, we discussed how fast data mining techniques can be used to

manage platform heterogeneity and workload interference to improve performance in

datacenter workloads. Nevertheless, managing the type of resources assigned to a new

application is not sufficient the resolve the underutilization problem in datacenters.

In fact, most cloud facilities operate at very low utilization, even when using clus-

ter management frameworks that enable cluster sharing across workloads [29, 223].

In this chapter we discuss the reasons behind underutilization, and propose a new

cluster management approach that significantly improves resource efficiency. In Fig-

ure 4.1, we present a utilization analysis for a production cluster at Twitter with

thousands of servers, managed by Mesos [139] over one month. The cluster mostly

hosts user-facing services. The aggregate CPU utilization is consistently below 20%,

even though reservations reach up to 80% of total capacity (Figure 4.1.a). Even

when looking at individual servers, their majority does not exceed 50% utilization

on any week (Figure 4.1.c). Typical memory use is higher (40-50%) but still differs

from the reserved capacity. Figure 4.1.d shows that very few workloads reserve the

right amount of resources (compute resources shown here, similar for memory); most

60

CHAPTER 4. QUASAR 61

0 100 200 300 400 500 600
Time (hr)

0

20

40

60

80

100
CPU used vs. reserved

Used Reserved

A
g
g
re

g
a
te

 C
P

U
 (

%
)

0 100 200 300 400 500 600 700
Time (hr)

0

20

40

60

80

100
Memory used vs. reserved

Used Reserved

A
g
g
re

g
a
te

 M
e
m

o
ry

 (
%

)
0 20 40 60 80 100

CPU Utilization (%)
0

20

40

60

80

100

Se
rv

er
s

(%
)

1st week

2nd week

3rd week

4th week

5th week

0 20 40 60 80 100
Workloads (%)

0

2

4

6

8

10

12

Re
se

rv
ed

/U
se

d
Ra

tio
 (
¢x

)

u
n
d
e
r-

si
ze

d

ri
g
h
t-

s
iz

e
d over-sized

Figure 4.1: Resource utilization over 30 days for a large production cluster at Twitter
managed with Mesos. (a) and (b): utilization vs reservation for the aggregate CPU
and memory capacity of the cluster; (c) CDF of CPU utilization for individual servers
for each week in the 30 day period; (d) ratio of reserved vs used CPU resources for
each of the thousands of workloads that ran on the cluster during this period.

workloads (70%) overestimate reservations by up to 10x, while many (20%) underes-

timate reservations by up to 5x. Similarly, Reiss et al. showed that a 12,000-server

Google cluster managed with the more mature Borg system consistently achieves ag-

gregate CPU utilization of 25-35% and aggregate memory utilization of 40% [223]. In

contrast, reserved resources exceed 75% and 60% of available capacity for CPU and

memory respectively.

Twitter and Google are in the high end of the utilization spectrum. Utilization

estimates are even lower for cloud facilities that do not colocate workloads the way

Google and Twitter do with Borg and Mesos respectively. Various analyses estimate

industry-wide utilization between 6% [63] and 12% [265, 109]. A recent study esti-

mated server utilization on Amazon EC2 in the 3% to 17% range [177]. Overall, low

utilization is a major challenge for cloud facilities. Underutilized servers contribute

to capital expenses and, since they are not energy proportional [169, 191], to opera-

tional expenses as well. Even if a company can afford the cost, low utilization is still

a scaling limitation. With many cloud DCs consuming 10s of megawatts, it is difficult

to add more servers without running into the limits of what the nearby electricity

facility can deliver.

We focus on increasing resource utilization in datacenters through better cluster

management. The manager is responsible for providing resources to various workloads

in a manner that achieves their performance goals, while maximizing the utilization

of available resources. The manager must make two major decisions; first allocate the

CHAPTER 4. QUASAR 62

right amount of resources for each workload (resource allocation) and then select the

specific servers that will satisfy a given allocation (resource assignment). While there

has been significant progress in cluster management frameworks [98, 139, 232, 270],

there are still major challenges that limit their effectiveness in concurrently meeting

application performance and resource utilization goals. First, it is particularly dif-

ficult to determine the resources needed for each workload. The load of user-facing

services varies widely within a day, while the load of analytics tasks depends on their

complexity and their dataset size. Most existing cluster managers side-step allocation

altogether, requiring users or workloads to express their requirements in the form of

a reservation. Nevertheless, the workload developer does not necessarily understand

the physical resource requirements of complex codebases or the variations in load

and dataset size. As shown in Figure 4.1.d, only a small fraction of the workloads

submitted to the Twitter cluster provided a right-sized reservation. Undersized reser-

vations lead to poor application performance, while oversized reservations lead to low

resource utilization.

Equally important, resource allocation and resource assignment are fundamentally

linked. The first reason is heterogeneity of resources, which is quite high as servers get

installed and replaced over the typical 15-year lifetime of a DC [29, 76]. A workload

may be able to achieve its current performance goals with ten high-end or twenty low-

end servers. Similarly, a workload may be able to use low-end CPUs if the memory

allocation is high or vice versa. The second reason is interference between colocated

workloads that can lead to severe performance losses [188, 285]. This is particularly

problematic for user-facing services that must meet strict, tail-latency requirements

(e.g., low 99th percentile latency) under a wide range of traffic scenarios ranging from

low load to unexpected spikes [68]. Näıvely colocating these services with low-priority,

batch tasks that consume any idling resources can lead to unacceptable latencies, even

at low load [188]. This is the reason why cloud operators deploy low-latency services

on dedicated servers that operate at low utilization most of the time. In facilities

that share resources between workloads, users often exaggerate resource reservations

to side-step performance unpredictability due to interference. Finally, most cloud

facilities are large and involve thousands of servers and workloads, putting tight

CHAPTER 4. QUASAR 63

constraints on the complexity and time that can be spent making decisions [232]. As

new, unknown workloads are submitted, old workloads get updated, new datasets

arise, and new server configurations are installed, it is impractical for the cluster

manager to analyze all possible combinations of resource allocations and assignments.

We present Quasar, a cluster manager that maximizes resource utilization while

meeting performance and QoS constraints for each workload. Quasar includes three

key features. First, it shifts from a reservation-centric to a performance-centric ap-

proach for cluster management. Instead of users expressing low-level resource requests

to the manager, Quasar allows users to communicate the performance constraints of

the application through a high-level, declarative interface. Performance constraints

are expressed in terms of throughput and/or latency, depending on the application

type. This high-level interface allows Quasar to determine the least amount of the

available resources needed to meet performance constraints at any point, given the

current state of the cluster in terms of available servers and active workloads. The

allocation varies over time to adjust to changes in the workload or system state. The

performance-centric approach simplifies both the user and cloud manager’s roles as

it removes the need for exaggerated reservations, allows transparent handling of un-

known, evolving, or irregular workloads, and provides additional flexibility towards

cost-efficient allocation.

Second, Quasar uses fast classification techniques to determine the impact of dif-

ferent resource allocations and assignments on workload performance. This problem

is much more complex than the one addressed in Chapter 3, since apart from het-

erogeneity and interference, the system must also determine the amount of resources

an application should receive within a node, the ratio of resources in the allocation,

the number and topology of nodes in the case of distributed applications, and the

way parameters in frameworks such as Hadoop and Spark should be configured. Ex-

haustively exploring the space would require billions of profiling runs for clusters with

a few hundred nodes. Instead in Quasar, by combining a small amount of profiling

information from the workload itself with the large amount of data from previously-

scheduled workloads, we can quickly and accurately generate the information needed

for efficient resource assignment and allocation without the need for a priori analysis

CHAPTER 4. QUASAR 64

of the application and its dataset. Applying classification to cluster management as

a whole is also impractical. To solve the problem in a practical way, Quasar performs

four parallel classifications on each application to evaluate the four main aspects of

resource allocation and assignment: the impact of scale-up (amount of resources per

server), the impact of scale-out (number of servers per workload), the impact of server

configuration, and the impact of interference (which workloads can be colocated).

Third, Quasar performs resource allocation and assignment jointly. The classifi-

cation results are used to determine the right amount and specific set of resources

assigned to the workload. Hence, Quasar avoids overprovisioning workloads that

are currently at low load and can compensate for increased interference or the un-

availability of high-end servers by assigning fewer or lower-quality resources to them.

Moreover, Quasar monitors performance throughout the workload’s execution. If

performance deviates from the expressed constraints, Quasar reclassifies the work-

load and adjusts the allocation and/or assignment decisions to meet the performance

constraints or minimize the resources used.

We have implemented and evaluated a prototype for Quasar managing a local 40-

server cluster and a 200-node cluster of dedicated EC2 servers. We use a wide range

of workloads including analytics frameworks (Hadoop, Storm, Spark), latency-critical

and stateful services (memcached, Cassandra), and batch workloads. We compare

Quasar to reservation-based resource allocation coupled with resource assignment

based on load or similar classification techniques. Quasar improves server utilization

at steady state by 47% on average at high load in the 200-server cluster, while also

improving performance of individual workloads compared to the alternative schemes.

We show that Quasar correctly determines the amount of resources needed by analyt-

ics and latency-critical workloads better than built-in schedulers of frameworks like

Hadoop, or auto-scaling systems. It also selects assignments that take heterogeneity

and interference into account so that throughput and latency constraints are closely

met.

CHAPTER 4. QUASAR 65

4.2 Motivation

4.2.1 Cluster Management Overview

A cluster management framework provides various services including security, fault

tolerance, and monitoring. This work focuses on the two tasks most relevant to re-

source efficiency: resource allocation and resource assignment of incoming workloads.

Previous work has mostly treated the two separately.

Resource allocation: Allocation refers to determining the amount of resources

used by a workload: number of servers, number of cores and amount of memory

and bandwidth resources per server. Managers like Mesos [139], Torque [259], and

Omega [232] expect workloads to make resource reservations. Mesos processes these

requests and, based on availability and fairness issues [114], makes resource offers

to individual frameworks (e.g., Hadoop) that the framework can accept or reject.

Dejavu identifies a few workload classes and reuses previous resource allocations for

each class to minimize reallocation overheads [266]. CloudScale [240], PRESS [118],

AGILE [203] and the work by Gmach et al. [117] perform online prediction of resource

needs, often without a priori workload knowledge. Finally, auto-scaling systems such

as Rightscale [224] automatically scale the number of physical or virtual instances

used by webserving workloads to react to observed changes in server load.

Resource assignment: Assignment refers to selecting the specific resources that

satisfy an allocation. The two biggest challenges of assignment are server heterogene-

ity and interference between colocated workloads [188, 199, 285], when servers are

shared to improve utilization. The most closely related work to Quasar is Paragon [76].

Given a resource allocation for an unknown, incoming workload, Paragon uses classifi-

cation techniques to quickly estimate the impact of heterogeneity and interference on

performance. Paragon uses this information to assign each workload to server type(s)

that provide the best performance and colocate workloads that do not interfere with

each other. Nathuji et al. [200] developed a feedback-based scheme that tunes re-

source assignment to mitigate interference effects. Yang et al. developed an online

scheme that detects memory pressure and finds colocations that avoid interference

CHAPTER 4. QUASAR 66

A B C D E F G H I J
Server Configurations

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

Heterogeneity Impact

A B C D E F G H I
Interference Pattern

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
e
d
u
p

Interference Impact (Server A)

1 2 3 4 5 6 7 8
Number of Nodes

0

5

10

15

20

25

S
p
e
e
d
u
p

Scale-out Impact (Server A)

A B C
Input Dataset

0.0

0.5

1.0

1.5

2.0

S
p
e
e
d
u
p

Dataset Impact (Server A)

0 50 100 150 200 250 300 350 400 450
Achieved kQPS

0

500

1000

1500

2000

2500

3000

L
a
te

n
c
y

(u
s
)

Heterogeneity Impact

B

D

E

F

G

I

J

0 50 100 150 200 250 300 350 400
Achieved kQPS

0

500

1000

1500

2000

2500

3000
L
a
te

n
c
y

(u
s
)

Interference Impact (Server D)

A

B

C

D

E

F

0 100 200 300 400 500 600 700 800 900
Achieved kQPS

0

500

1000

1500

2000

2500

3000

3500

4000

L
a
te

n
c
y

(u
s
)

Scale-up Impact (Server D)

2 cores

4 cores

8 cores

16 cores

24 cores

0 50 100 150 200 250 300 350 400
Achieved kQPS

0

500

1000

1500

2000

2500

3000

L
a
te

n
c
y

(u
s
)

Dataset Impact (Server D)

A

B

C

Figure 4.2: The impact of heterogeneity, interference, scale-out, scale-up, and dataset
on the performance of Hadoop (top row) and memcached (bottom row). Server
configurations, interference patterns, and datasets are summarized in Table 4.1. For
Hadoop, the variability in the violin plots is due to scaling-up the resource allocations
within a server (cores and/or memory).

on latency-sensitive workloads [285]. Similarly, DeepDive detects and manages inter-

ference between co-scheduled applications in a VM system [204]. Finally, CPI2 [296]

throttles low-priority workloads that induce interference to important services. In

terms of managing heterogeneity, Nathuji et al. [199] and Mars et al. [186] quantified

its impact on conventional benchmarks and Google services and designed schemes to

predict the most appropriate server type for each workload.

4.2.2 The Case for Coordinated Cluster Management

Despite the progress in cluster management technology, resource utilization is quite

low in most private and public clouds (see Figure 4.1 and [63, 109, 177, 223, 265]).

There are two major shortcomings current cluster managers have. First, it is partic-

ularly difficult for a user or workload to understand its resource needs and express

them as a reservation. Second, resource allocation and assignment are fundamentally

linked. An efficient allocation depends on the amount and type of resources available

and the behavior of other workloads running on the cluster.

Figure 4.2 illustrates these issues by analyzing the impact of various allocations,

CHAPTER 4. QUASAR 67

platforms A B C D E F G H I J

cores 2 4 8 8 8 8 12 12 16 24
memory(GB) 4 8 12 16 20 24 16 24 48 48

interference A B C D E F G H I
pattern - memory L1I $ LL $ disk I/O network L2 $ CPU prefetch

input A B C

hadoop netflix: 2.1GB mahout: 10GB wikipedia: 55GB
memcached 100B reads 2KB reads 100B reads-100B writes

Table 4.1: Server platforms (A-J), interference patterns (A-I) and input datasets
(A-C) used for the analysis in Figure 4.2.

assignments, and workload aspects on two representative applications, one batch and

one latency-critical: a large Hadoop job running a recommendation algorithm on the

Netflix dataset [34] and a memcached service under a read-intensive load. For Hadoop,

we report speedup over a single node of server configuration A using all available cores

and memory. Server configurations, interference settings and datasets are summarized

in Table 4.1. The variability in each violin plot is due to the different amounts of

resources (cores and memory) allocated within each server. For memcached, we report

the latency-throughput graphs. Real-world memcached deployments limit throughput

to achieve 99th-percentile latencies between 0.2ms and 1ms.

The first row of Figure 4.2 illustrates the behavior of Hadoop. The heterogeneity

graph shows that the choice of server configuration introduces performance variability

of up to 7x, while the amount of resources allocated within each server introduces

variability of up to 10x. The interference graph shows that for server A, depend-

ing on the amount of resources used, Hadoop may be insensitive to certain types of

interference or slowdown by up to 10x. Similarly, the scale-out graph shows that

depending on the amount of resources per server, scaling may be sublinear or super-

linear. Finally, the dataset graph shows that the dataset complexity and size can have

3x impact on Hadoop’s performance. Note that in addition to high variability, the

violin plots show that the probability distributions change significantly across differ-

ent allocations. The results are similar for memcached, as shown in the second row of

Figure 4.2. The position of the knee of the throughput-latency curve depends heavily

on the type of server used (3x variability), the interference patterns (7x variability),

the amount of resources used per server (8x variability), and workload characteristics

CHAPTER 4. QUASAR 68

such as data size and read/write mixes (3x variability).

It is clear from Figure 4.2 that it is quite difficult for a user or workload to trans-

late a performance goal to a resource reservation. To right-size an allocation, we

need to understand how scale-out, scale-up, heterogeneity in the currently available

servers, and interference from the currently running jobs affect a workload with a

specific dataset. Hence, separating resource allocation and assignment through reser-

vations is bound to be suboptimal, either in terms of resource efficiency or in terms

of workload performance (see Figure 4.1). Similarly, performing first allocation and

then assignment in two separate steps is also suboptimal. Cluster management must

handle both tasks in an integrated manner.

4.3 Quasar

4.3.1 Overview

Quasar differs from previous work in three ways. First, it shifts away from resource

reservations and adopts a performance-centric approach. Quasar exports a high-

level interface that allows users or the schedulers integrated in some frameworks

(e.g., Hadoop or Spark) to express the performance constraint the workload should

meet. The interface differentiates across workload types. For latency-critical work-

loads, constraints are expressed as a queries per second (QPS) target and a latency

QoS constraint. For distributed frameworks like Hadoop, the constraint is execution

time. For single node, single-threaded or multi-threaded workloads the constraint is

a low-level metric of instructions-per-second (IPS). Once performance constraints are

specified, it is up to Quasar to find a resource allocation and assignment that satisfies

them.

Second, Quasar uses fast classification techniques to quickly and accurately esti-

mate the impact different resource allocation and resource assignment decisions have

on workload performance. Upon admission, an incoming workload and dataset is

profiled on a few servers for a short period of time (a few seconds up to a few minutes

CHAPTER 4. QUASAR 69

- see Section 4.3.2). This limited profiling information is combined with informa-

tion from the few workloads characterized offline and the many workloads that have

been previously scheduled in the system using classification techniques. The result of

classification is accurate estimates of application performance as we vary the type or

number of servers, the amount of resources within a server, and the interference from

other workloads. In other words, we estimate graphs similar to those shown in Fig-

ure 4.2. This classification-based approach eliminates the need for exhaustive online

characterization and allows efficient scheduling of unknown or evolving workloads, or

new datasets. Even with classification, exhaustively estimating performance for all

allocation-assignment combinations would be infeasible. Instead, Quasar decomposes

the problem to the four main components of allocation and assignment: resources

per node and number of nodes for allocation, and server type and degree of interfer-

ence for assignment. This dramatically reduces the complexity of the classification

problem.

Third, Quasar uses the result of classification to jointly perform resource allocation

and assignment, eliminating the inherent inefficiencies of performing allocation with-

out knowing the assignment challenges. A greedy algorithm combines the result of

the four independent classifications to select the number and specific set of resources

that will meet (or get as close as possible to) the performance constraints. Quasar

also monitors workload performance. If the constraint is not met at some point or

resources are idling, either the workload changed (load or phase change), classification

was incorrect, or the greedy scheme led to suboptimal results. In any case, Quasar

adjusts the allocation and assignment if possible, or reclassifies and reschedules the

workload from scratch.

Quasar uses similar classification techniques as those introduced in Paragon [76].

Paragon handles only resource assignment. Hence, its classification step can only

characterize workloads with respect to heterogeneity (server type) and interference.

In contrast, Quasar handles both resource allocation and assignment. Hence, its

classification step also characterizes scale-out and scale-up issues for each workload.

CHAPTER 4. QUASAR 70

Moreover, the space of allocations and assignments that Quasar must explore is signif-

icantly larger than the space of assignments explored by Paragon. Finally, Quasar in-

troduces an interface for performance constraints in order to decouple user goals from

resource allocation and assignment. In Section 4.6, we compare Quasar to Paragon

coupled with current resource allocation approaches to showcase the advantages of

Quasar.

4.3.2 Fast and Accurate Classification

Collaborative filtering techniques are often used in recommendation systems with

extremely sparse inputs [219]. One of their most publicized uses was the Netflix

Challenge [34], where techniques such as Singular Value Decomposition (SVD) and

PQ-reconstruction [43, 161, 219, 281] were used to provide movie recommendations

to users that had only rated a few movies themselves, by exploiting the large number

of ratings from other users. The input to SVD in this case is a very sparse matrix A

with users as rows, movies as columns and ratings as elements. SVD decomposes A

to the product of the matrix of singular values Σ that represents similarity concepts

in A, the matrix of left singular vectors U that represents correlation between rows of

A and similarity concepts, and the matrix of right singular vectors V that represents

the correlation between columns of A and similarity concepts (A = U · Σ·V T). A

similarity concept can be that users that liked “Lord of the Rings 1” also liked “Lord

of the Rings 2”. PQ-reconstruction with Stochastic Gradient Descent (SGD), a simple

latent-factor model [43, 281], uses Σ, U , and V to reconstruct the missing entries in A.

Starting with the SVD output, P T is initialized to ΣV T and Q to U which provides

an initial reconstruction of A. Subsequently, SGD iterates over all elements of the

reconstructed matrix R=Q·P T until convergence.

For each element rui of R:

ǫui = rui − µ− bu − qi · puT

qi ← qi + η(ǫuipu − λqi)

pu ← pu + η(ǫuiqi − λpu)

CHAPTER 4. QUASAR 71

until |ǫ|L2
=

√

∑

u,i |ǫui|2 becomes marginal. η is the learning rate and λ the regu-

larization factor of SGD and their values are determined empirically. In the above

model, we also include the average rating µ and a user bias bu that account for the

divergence of specific users from the norm. Once the matrix is reconstructed, SVD

is applied once again to generate movie recommendations by quantifying the correla-

tion between new and existing users. The complexity of SVD is O(min(N2M,M2N)),

where M , N the dimensions of A, and the complexity of PQ-reconstruction with SGD

is O(N ·M).

In Paragon [76], collaborative filtering was used to quickly classify workloads with

respect to interference and heterogeneity. A few applications are profiled exhaustively

offline to derive their performance on different servers and with varying amounts of

interference. An incoming application is profiled for one minute on two of the many

server configurations, with and without interference in two shared resources. SVD and

PQ-reconstruction are used to accurately estimate the performance of the workload

on the remaining server configurations and with interference on the remaining types

of resources. Paragon showed that collaborative filtering can quickly and accurately

classify unknown applications with respect to tens of server configurations and tens

of sources of interference.

The classification engine in Quasar extends the one in Paragon in two ways.

First, it uses collaborative filtering to estimate the impact of resource scale-out (more

servers) and scale-up (more resources per server) on application performance. These

additional classifications are necessary for resource allocation. Second, it tailors clas-

sifications to different workload types. This is necessary because different types for

workloads have different constraints and allocation knobs. For instance, in a web-

server we can apply both scale-out and scale-up and we must monitor queries per

second (QPS) and latency. For Hadoop, we can also configure workload parameters

such as the number of mappers per node, heapsize, and compression. For a single-

node workload, scaling up might be the only option while the metric of interest can

be instructions per second. The performance constraints interface of Quasar allows

users to specify the type of submitted applications.

Overall, Quasar classifies for scale-up, scale-out, heterogeneity, and interference.

CHAPTER 4. QUASAR 72

The four classifications are done independently and in parallel to reduce complexity

and overheads. The greedy scheduler combines information from all four. Because of

the decomposition of the problem the matrix dimensions decrease, and classification

becomes fast enough that it can be applied on every workload submission, even if the

same workload is submitted multiple times with different datasets. Hence there is no

need to classify for dataset sensitivity.

Scale-up classification: This classification explores how performance varies with

the amount of resources used within a server. We currently focus on compute cores,

memory and storage capacity. We will address network bandwidth in future work. We

perform scale-up classification on the highest-end platform, which offers the largest

number of scale-up options. When a workload is submitted, we profile it briefly with

two randomly-selected scale-up allocations. The parameters and duration of profiling

depend on workload type. Latency-critical services, like memcached are profiled for

5-10 seconds under live traffic, with two different core/thread counts and memory

allocations (see the validation section for a sensitivity analysis on the number of

profiling runs). For workloads like Hadoop, we profile a small subset (2-6) of map tasks

with two different allocations and configurations of the most important framework

parameters (e.g., mappers per node, JVM heapsize, block size, memory per task,

replication factor, and compression). Profiling lasts until the map tasks reach at least

20% of completion, which is typically sufficient to estimate the job’s completion time

using its progress rate [289] and assuming uniform task duration [139]. Section 4.4.3

addresses the issue of non-uniform task duration distribution and stragglers. Finally,

for stateful services like Cassandra [49], Quasar waits until the service’s setup is

complete before profiling the input load with the different allocations. This takes at

most 3-5 minutes, which is tolerable for long-running services. Section 4.4.2 discusses

how Quasar guarantees side-effect free application copies for profiling runs.

Profiling collects performance measurements in the format of each application’s

performance goal (e.g., expected completion time or QPS) and inserts them into a ma-

trix A with workloads as rows and scale-up configurations as columns. A configuration

includes compute, memory, and storage allocations or the values of the framework

parameters for a workload like Hadoop. To constrain the number of columns, we

CHAPTER 4. QUASAR 73

quantize the vectors to integer multiples of cores and blocks of memory and storage.

This may result into somewhat suboptimal decisions, but the deviations are small in

practice. Classification using SVD and PQ-reconstruction then derive the workload’s

performance across all scale-up allocations.

Scale-out classification: This type of classification is only applicable to workloads

that can use multiple servers, such as distributed frameworks (e.g., Hadoop or Spark),

stateless (e.g., webserving) or stateful (e.g., memcached or Cassandra) distributed ser-

vices, and distributed computations (e.g., MPI jobs). Scale-out classification requires

one more run in addition to single-node runs done for scale-up classification. To get

consistent results, profiling is done with the same parameters as one of the scale-up

runs (e.g., JVM heapsize) and the same application load. This produces two entries

for matrix A, where rows are again workloads and columns are scale-out allocations

(numbers of servers). Collaborative filtering then recovers the missing entries of per-

formance across all node counts. Scale-out classification requires additional servers

for profiling. To avoid increasing the classification overheads when the system is on-

line, applications are only profiled on one to four nodes for scale-out classification. To

accurately estimate the performance of incoming workloads for larger node counts,

in offline mode, we have exhaustively profiled a small number of different workload

types (20-30) against node counts 1 to 100. These runs provide the classification en-

gine with dense information on workload behavior for larger node counts. This step

does not need to repeat unless there are major changes in the cluster’s hardware or

application structure.

Heterogeneity classification: This classification requires one more profiling run

on a different and randomly-chosen server type using the same workload parameters

and for the same duration as a scale-up run. Collaborative filtering estimates workload

performance across all other server types.

Interference classification: This classification quantifies the sensitivity of the

workload to interference caused and tolerated in various shared resources, including

the CPU, cache hierarchy, memory capacity and bandwidth, and storage and network

bandwidth. This classification does not require an extra profiling run. Instead, it

leverages the first copy of the scale-up classification to inject, one at a time, two

CHAPTER 4. QUASAR 74

microbenchmarks that create contention in a specific shared resource [74]. Once

the microbenchmark is injected, Quasar tunes up its intensity until the workload

performance drops below an acceptable level of QoS (typically 5%). This point is

recorded as the workload’s sensitivity to this type of interference in a new row in

the corresponding matrix A. The columns of the matrix are the different sources of

interference. Classification is then applied to derive the sensitivities to the remaining

sources of interference. Once the profiling runs are complete the different types of

classification reconstruct the missing entries and provide recommendations on efficient

allocations and assignments for each workload. Classification typically takes a few

msec even for thousands of applications and servers.

Multiple parallel versus single exhaustive classification: Classification is

decomposed to the four components previously described for both accuracy and ef-

ficiency reasons. The alternative design would consist of a single classification that

examines all combinations of resource allocations and resource assignments at the

same time. Each row in this case is an incoming workload, and each column is an

allocation-assignment vector. Exhaustive classification addresses pathological cases

that the four simpler classifications estimate poorly. For example, if TCP incast oc-

curs for a specific allocation, only on a specific server platform that is not used for

profiling, its performance impact will not be identified by classification. Although

these cases are rare, they can result in unexpected performance results. On the other

hand, the exponential increase in the column count in the exhaustive scheme increases

the time required to perform classification [281, 161, 219] (note that this occurs at

every application arrival). Moreover, because the number of columns now exceeds

the number of rows, classification accuracy decreases, as SVD finds fewer similarities

with high confidence [213, 275, 112].

To address this issue without resorting to exhaustive classification, we introduce a

simple feedback loop that updates the matrix entries when the performance measured

at runtime deviates from the one estimated through classification. This loop addresses

such misclassifications, and additionally assists with scaling to server counts that

exceed the capabilities of profiling, i.e., more than 100 nodes.

Validation: Table A.4 summarizes a validation of the accuracy of the classification

CHAPTER 4. QUASAR 75

Default density constraint: 2 entries per row, per classification

scale-up scale-out heterogeneity interference

Classification err. avg 90th max avg 90th max avg 90th max avg 90th max

Hadoop (10 Jobs) 5.2% 9.8% 11% 5.0% 14.5% 17% 4.1% 4.6% 5.0% 1.8% 5.1% 6%

Memcached (10) 6.3% 9.2% 11% 6.6% 10.5% 12% 5.2% 5.7% 6.5% 7.2% 9.1% 10%
Webserver (10) 8.0% 10.1% 13% 7.5% 11.6% 14% 4.1% 5.1% 5.2% 3.2% 8.1% 9%
Single-node (413) 4.0% 8.1% 9% - - - 3.5% 6.9% 8.0% 4.4% 9.2% 10%

Table 4.2: Validation of Quasar’s classification engine. We present average, 90th

percentile and maximum errors between estimated values and actual values obtained
with detailed characterization.

8 entries per row

exhaustive classification

Classification error avg 90th %ile max

Hadoop (10 Jobs) 14.1% 15.8% 16%
Memcached (10) 14.1% 16.5% 18%
Webserver (10) 16.5% 17.6% 18%
Single-node (413) 11.6% 12.1% 13%

Table 4.3: We also compare the classification errors of the four parallel classification
to a single, exhaustive classification that accounts for all combinations of resource
allocation and resource assignment jointly.

engine in Quasar. We use a 40-server cluster and applications from Hadoop (10 data-

mining jobs), latency-critical services (10 memcached jobs, and 10 Apache webserver

loads), and 413 single-node benchmarks from SPEC, PARSEC, SPLASH-2, BioPar-

allel, Minebench and SpecJbb. The memcached and webserving jobs differ in their

query distribution, input dataset and/or incoming load. Hadoop jobs additionally dif-

fer in terms of the application logic. Details on the applications and systems can be

found in Section 4.5. We show average, 90th percentile and maximum errors for each

application and classification type. The errors show the deviation between estimated

and measured performance or sensitivity to interference. On average, classification

errors are less than 8% across all application types, while maximum errors are less

than 17%, guaranteeing that the information that drives cluster management deci-

sions is accurate. Table A.4 also shows the corresponding errors for the exhaustive

classification. In this case, average errors are slightly higher, especially for applica-

tions arriving early in the system [213], however, the deviation between average and

maximum errors is now lower, as the exhaustive classification can accurately predict

performance for the pathological cases that the four parallel classifications miss.

CHAPTER 4. QUASAR 76

100 101 102

Input Matrix Density (%)

0

20

40

60

80

100

9
0
 %

ile
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

(%
) Scale-Up

Hadoop

Memcached

Single node

100 101 102

Input Matrix Density (%)

0

20

40

60

80

100

9
0
 %

ile
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

(%
) Scale-Out

Hadoop

Memcached

101 102

Input Matrix Density (%)

0

20

40

60

80

100

9
0
 %

ile
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

(%
) Heterogeneity

Hadoop

Memcached

Single node

100 101 102

Input Matrix Density (%)

0

20

40

60

80

100

9
0
 %

ile
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

(%
) Interference

Hadoop

Memcached

Single node

Figure 4.3: Sensitivity of classification accuracy to input matrix density constraints
(Figure 4.3(a-d)).

100 101 102
Input Matrix Density (%)

10-3
10-2
10-1
100
101
102
103

9
0

 %
ile

 O
v
e

rh
e

a
d

 (
s
e

c
)

Overhead

Hadoop

Memcached

Single node

4 parallel

exhaustive

Figure 4.4: The profiling and decision overheads for different density constraints of
the input matrices, assuming constant hardware resources for profiling.

We also validate the selected number of profiling runs, i.e., how classification ac-

curacy changes with the density of the input matrices. Figure 4.3(a-d) shows how the

90th percentile of errors from classification changes as the density of the correspond-

ing input matrix increases. For clarity, we omit the plots for Webserver, which has

similar patterns to memcached. For all four classification types, a single profiling run

per classification results in high errors. Two or more entries per input row result in

decreased errors, although the benefits reach the point of diminishing returns after

4-5 entries. This behavior is consistent across application types, although the exact

values of errors may differ. Unless otherwise specified, we use 2 entries per row in

subsequent experiments. Figure 4.4 shows the overheads (profiling and classification)

for the three application classes (Hadoop, memcached, single node) as input ma-

trix density increases. Overheads are calculated with respect to the useful execution

time for each workload. We assume that the hardware resources used towards pro-

filing and classification are kept constant. Obviously as the number of profiling runs

CHAPTER 4. QUASAR 77

increases the overheads increase significantly, without equally important accuracy im-

provements. The figure also shows the overheads from classification only (excluding

profiling) for the four parallel classifications (4 parallel) and the exhaustive scheme

(exhaustive). As expected, the increase in column count corresponds in an increase

in decision time, often by two orders of magnitude.

4.3.3 Greedy Allocation and Assignment

The classification output is given to a greedy scheduler that jointly determines the

amount, type, and exact set of allocated resources. The scheduler’s objective is to

allocate the least amount of resources needed to satisfy a workload’s performance

target. This greatly reduces the space the scheduler traverses, allowing it to examine

higher quality resources first, as smaller quantities of them will meet the performance

constraint. This approach also scales well to many servers.

The scheduler uses the classification output, to first rank the available servers by

decreasing resource quality, i.e., high performing platforms with minimal interference

first. Next, it sizes the allocation based on available resources until the performance

constraint is met. For example, if a webserver must meet a throughput of 100K QPS

with 10msec 99th percentile latency and the highest-ranked servers can achieve at most

20K QPS, the workload would need five servers to meet the constraints. If the number

of highest-ranked servers available is not sufficient, the scheduler will also allocate

lower-ranked servers and increase their number. The feedback between allocation and

assignment ensures that the amount and quality of resources are accounted for jointly.

When sizing the allocation, the algorithm first increases the per-node resources (scale-

up) to better pack work in few servers, and then distributes the load across machines

(scale-out). Nevertheless, alternative heuristics can be used based on the workload’s

locality properties or to address fault tolerance concerns.

The greedy algorithm has O(M · logM+S) complexity, where the first component

accounts for the sorting overhead and the second for the examination of the top

S servers, and in practice takes a few msec to determine an allocation/assignment

even for systems with thousands of servers. Despite its greedy nature, we show in

CHAPTER 4. QUASAR 78

Section 4.6 that the decision quality is quite high, leading to both high workload

performance and high resource utilization. This is primarily due to the accuracy of

the information available after classification. A potential source of inefficiency is that

the scheduler allocates resources on a per-application basis in the order workloads

arrive. Suboptimal assignments can be detected by sampling a few workloads (e.g.,

based on job priorities if they are available) and adjusting their assignment later on

as resources become available when other workloads terminate. Finally, the scheduler

employs admission control to prevent oversubscription when insufficient resources are

available.

4.3.4 Putting it All Together

Figure 4.5 shows the different steps of cluster management in Quasar. Upon arrival

of a workload, Quasar collects profiling data for scale-out and scale-up allocations,

heterogeneity, and interference. This requires up to four profiling runs that happen

in parallel. All profiling copies are sandboxed (as explained in Section 4.4.2), the two

platforms used are A and B (two nodes of A are used for the scale-out classification)

and each profiling type produces two points in the corresponding speedup graph of

the workload. The profiling runs happen with the actual dataset of the workload.

The total profiling overhead depends on the workload type and is less than 5 min in

all cases we examined. For non-stateful services, e.g., small batch workloads that are

a large fraction of DC workloads [232], the complete profiling takes 10-15 seconds.

Note that for stateful services, e.g., Cassandra, where setup is necessary, it only

affects one of the profiling runs. Once the service is warmed-up, subsequent profiling

only requires a few seconds to complete. Once the profiling results are available,

classification provides the full workload characterization (speedup graph). Next, the

greedy scheduler assigns specific servers to the workload. Overall, Quasar’s overheads

are quite low even for short-running applications (batch, analytics) or long running

online services.

Quasar maintains per-workload and per-server state. Per-workload state includes

CHAPTER 4. QUASAR 79

Quasar

A

QoS

cgroup

B

cgroup

A

cgroup

A

cgroup

P
ro

fi
lin

g

S
p

a
rs

e
 i
np

ut

 d
a

ta

1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

C
la

ss
if

ic
a

ti
o
n

4

U ∑ V

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

U ∑ V

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

U ∑ V

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

U ∑ V

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

Select best available

G
re

e
d
y
 S

e
le

ct
io

n
D

e
ns

e

 o
ut

p
ut

QoS

In
cr

e
a

se
 u

nt
il

Q
o
S

In
cr

e
a

se
 u

nt
il

Q
o
S

(optional)

Figure 4.5: The steps for cluster management with Quasar. Starting from the top,
short runs using sandboxed workload copies produce the initial profiling signal that
classification techniques expand to information about relationship between perfor-
mance and scale-up, scale-out, heterogeneity, and interference. Finally, the greedy
scheduler uses the classification output to find the number and type of resources that
maximize utilization and application performance.

CHAPTER 4. QUASAR 80

the classification output. For a cluster with 10 server types and 10 sources of inter-

ference, we need roughly 256 bytes per workload. The per-server state includes infor-

mation on scheduled applications and their cumulative resource interference, roughly

128B in total. The per-server state is updated on each workload assignment. Quasar

also needs some storage for the intermediate classification results and for server rank-

ing during assignment. Overall, state overheads are marginal and scale linearly with

the number of workloads and servers. In our experiments, a single server was suffi-

cient to handle the total state and computation of cluster management. Additional

servers can be used for fault-tolerance.

4.4 Implementation

We implemented a prototype for Quasar in about 6KLOC of C, C++, and Python.

It runs on Linux and OS X and currently supports applications written in C/C++,

Java, and Python. The API includes functions to express the performance constraints

and type of submitted workloads, and functions to check job status, revoke it, or

update the constraints. We have used Quasar to manage analytics frameworks such

as Hadoop, Storm, and Spark, latency-critical services such as NoSQL workloads, and

conventional single-node workloads. There was no need to change any applications or

frameworks. The framework-specific code in Quasar is 100-600 LOC per framework.

In the future, we plan to merge the Quasar classification and scheduling algorithms

in a cluster management framework like OpenStack or Mesos.

4.4.1 Dynamic Adaptation

Some workloads change behavior during their runtime, either due to phase changes

or due to variation in user traffic. Quasar detects such changes and adjusts resource

allocation and/or assignment to preserve the performance constraints.

Phase detection: Quasar continuously monitors the performance of all active

workloads in the cluster. If a workload runs below its performance constraint, it

either went through a phase change or was incorrectly classified or assigned. In

CHAPTER 4. QUASAR 81

any case, Quasar reclassifies the application at its current state and adjusts its re-

sources as needed (see discussion below). We also proactively test for phase changes

and misclassifications/misscheduling by periodically sampling a few active workloads

and injecting interfering microbenchmarks to them. This enables partial interference

classification in place. If there is a significant change compared to the original clas-

sification results, Quasar signals a phase change. Proactive detection is particularly

useful for long-running workloads that may affect colocated workloads when entering

a phase change. We have validated the phase detection schemes with workloads from

SPECCPU2006, PARSEC, Hadoop and memcached. With the reactive-only scheme,

Quasar detects 94% of phase changes. By sampling 20% of active workloads every 10

minutes, we detect 78% of changes proactively with 8% probability of false positives.

Allocation adjustment: Once the phase has been detected or load increases

significantly for a user-facing workload, Quasar changes the allocation to provide more

resources or reclaim unused resources. Quasar adjusts allocations in a conservative

manner. It first scales up or down the resources given to the workload in each of

the servers it currently occupies. If needed, best-effort (low priority) workloads are

evicted from these servers. If possible, a scale-up adjustment is the simplest option as

it typically requires no state migration. If scale-up is not possible or cannot address

the performance needs, scale-out and/or migration to other servers is used. For

stateless services (e.g., adding/removing workers to Hadoop or scaling a webserver),

scale-out is straight-forward. For stateful workloads, migration and scale-out can be

expensive. If the application is organized in microshards [68], Quasar will migrate a

fraction of the load from each server to add capacity at minimum overhead. At the

moment, Quasar does not employ load prediction for user-facing services [118, 203]. In

future work, we will use such predictors as an additional signal to trigger adjustments

for user-facing workloads.

4.4.2 Side Effect Free Profiling

To acquire the profiling data needed for classification, we must launch multiple copies

of the incoming application. This may cause inconsistencies with intermediate results,

CHAPTER 4. QUASAR 82

duplicate entries in databases, or data corruption on file systems. To eliminate such

issues, Quasar uses sandboxing for the training copies during profiling. We use Linux

containers [26] with chroot to sandbox profiling runs and create a copy-on-write

filesystem snapshot so that files (including framework libraries) can be read and

written as usual [291]. Containers enable full control over how training runs interact

with the rest of the system, including limiting resource usage through cgroups. Using

virtual machines (VMs) for the same purpose is also possible [204, 269, 270, 283], but

we chose containers as they incur lower overheads for launching.

4.4.3 Stragglers

In frameworks like Hadoop or Spark, individual tasks may take much longer to com-

plete for reasons that range from poor work partitioning to network interference and

machine instability [16]. These straggling tasks are typically identified and relaunched

by the framework to ensure timely job completion [7, 15, 16, 69, 108, 176, 289]. We

improve straggler detection in Hadoop in the following manner. Quasar calls the

TaskTracker API in Hadoop and checks for underperforming tasks (at least 50%

slower than the median). Straggling tasks are typically stalling in specific resources,

which would alter the original interference profile. To detect this, Quasar injects two

contentious microbenchmarks in the corresponding servers and reclassifies the under-

performing tasks with respect to interference caused and tolerated. If the results of

the in-place classification differ from the original by more than 20%, we signal the task

as a straggler and notify the Hadoop JobTracker to relaunch it on a newly assigned

server. This allows Quasar to detect stragglers 19% earlier than Hadoop, and 8%

earlier than LATE [289] for the Hadoop applications described in the first scenario in

Section 4.5.

4.4.4 Discussion

Cost target: Apart from a performance target, a user could also specify a cost

constraint, priorities, and utility functions for a workload [238]. These can either

serve as a limit for resource allocation or to prioritize allocations during very high

CHAPTER 4. QUASAR 83

load.

Resource partitioning: Quasar does not explicitly partition hardware resources.

Instead, it reduces interference by colocating workloads that do not contend on the

shared resources. Resource partitioning is orthogonal. If mechanisms like cache par-

titioning or rate limiting at the NIC are used, interference can be reduced and more

workload colocations will be possible using Quasar. In that case, Quasar will have

to determine the settings for partitioning mechanisms, in the same way it determines

the number of cores to use for each workload. We will consider these issues in future

work.

Fault tolerance: We use master-slave mirroring to provide fault-tolerance for the

server that runs the Quasar scheduler. All system state (list of active applications, al-

locations, QoS guarantees) is continuously replicated and can be used by hot-standby

masters. Quasar can also leverage frameworks like ZooKeeper [21] for more scalable

schemes with multiple active schedulers. Quasar does not explicitly add to the fault

tolerance of frameworks like MapReduce. In the event of a failure, the cluster man-

ager relies on the individual frameworks to recover missing worker data. Our current

resource assignment does not account for fault zones. However, this is a straight

forward extension for the greedy algorithm.

4.5 Methodology

Clusters: We evaluated Quasar on a 40-server local cluster and a 200-server cluster

on EC2. The ten platforms of the local cluster range from dual core Atom boards to

dual socket 24 core Xeon servers with 48GB of RAM. The EC2 cluster has 14 server

types ranging from small to x-large instances. All servers are dedicated and managed

only by Quasar, i.e., there is no interference from external workloads.

The following paragraphs summarize the workload scenarios used to evaluate

Quasar. Scenarios include batch and latency-critical workloads and progressively

evaluate different aspects of allocation and assignment. Unless otherwise specified

experiments are run 7 times for consistency and we report the average and standard

deviation.

CHAPTER 4. QUASAR 84

Single Batch Job: Analytics frameworks like Hadoop [134], Storm [252], and

Spark [288] are large consumers of resources on private and public clouds. Such

frameworks have individual schedulers that set the various framework parameters

(e.g., mappers per node and block size) and determine resource allocation (number

of servers used). The allocations made by each scheduler are suboptimal for two

reasons. First, the scheduler does not have full understanding of the complexity of

the submitted job and dataset. Second, the scheduler is not aware of the details

of available servers (e.g., heterogeneity), resulting in undersized or overprovisioned

allocations. In this first scenario, a single Hadoop job is running at a time on the

small cluster. This simple scenario allows us to compare the resource allocation

selected by Hadoop to the allocation/assignment of Quasar on a single job basis. We

use ten Hadoop jobs from the Mahout library [184] that represent data mining and

machine learning analyses. The input datasets vary between 1 and 900GB. Note that

there is no workload co-location in this scenario.

Multiple Batch Jobs: The second scenario represents a realistic setup for batch

processing clusters. The cluster is shared between jobs from multiple analytics frame-

works (Hadoop, Storm, and Spark). We use 16 Hadoop applications running on top of

the Mahout library, four workloads for real-time text and image processing in Storm,

and four workloads for logical regression, text processing and machine learning in

Spark. These jobs arrive in the cluster with 5 sec inter-arrival times. Apart from the

analytics jobs, a number of single-server jobs are submitted to the cluster. We use

workloads from SPECCPU2006, PARSEC [40], SPLASH-2 [282], BioParallel [150],

Minebench [198] and 350 multiprogrammed 4-app mixes from SPEC [228]. These

single-server workloads arrive with 1 second inter-arrival times and are treated as

best-effort (low priority) load that fills any cluster capacity unused by analytics jobs.

There are not guarantees on performance of best-effort tasks, which may be migrated

or killed at any point to provide resources for analytics tasks.

We compare Quasar to allocations done by the frameworks themselves (Hadoop,

Spark, Storm schedulers) and assignments by a least-loaded scheduler that accounts

for core and memory use but not heterogeneity or interference.

Low-Latency Service: Latency-critical services are also major tenants in cloud

CHAPTER 4. QUASAR 85

facilities. We constructed a webserving scenario using the HotCRP conference man-

agement system [144], which includes the Apache webserver, application logic in PHP,

and data stored in MySQL. The front- and back-end run on the same machine, and

the installation is replicated across several machines. The database is kept purpose-

fully small (5GB) so that it is cached in memory and emphasis is placed on compute,

cache, memory and networking issues, and not on disk performance. HotCRP traffic

includes requests to fill in paper abstracts, update author information, and upload

or read papers. Apart from throughput constraints, HotCRP requires a 100msec

per-request latency.

We use three traffic scenarios: flat, fluctuating, and large spike. Apart from

satisfying HotCRP constraints, we want to use any remaining cluster capacity for

single-node, best-effort tasks (see description in previous scenario). We compare

Quasar to a system that uses an auto-scaling approach to scale HotCRP between 1

and 8 servers based on the observed load of the servers used [24]. Auto-scale allocates

an additional, least-loaded server for HotCRP when current load exceeds 70% [25] and

redirects a fair share of the traffic to the new server instance. Load balancing happens

on the workload generator side. Best-effort jobs are assigned by a least-loaded (LL)

scheduler. Quasar deals with load changes in HotCRP by either scaling-up existing

allocations or scaling-out (more servers) based on how the two affect performance.

Stateful Latency-Critical Services: This scenario extends the one above in two

ways. First, there are multiple low-latency services. Second, these services involve

significant volumes of state. Specifically, we examine the deployment of memory-based

memcached [107] and disk-based Cassandra [49], two latency-critical NoSQL services.

Memcached (1TB state) is presented with load that fluctuates following a diurnal

pattern with maximum aggregate throughput target of 2.4M QPS and a 200usec

latency constraint. The disk-bound Cassandra (4TB state) has a lower load of 60K

QPS of maximum aggregate throughput and a 30 msec latency constraint. Any cluster

capacity unused by the two services is utilized for best-effort workloads which are

submitted with 10sec inter-arrival times. To show the fluctuation of utilization with

load, and since scaling now involves state migration, this scenario runs over 24 hours

and is repeated 3 times for consistency. Similarly to the previous scenario, we compare

CHAPTER 4. QUASAR 86

Quasar with the auto-scaling approach and measure performance (throughput and

latency) for the two services and overall resource utilization. Scale-out in this case

involves migrating one (64MB) or more microshards to a new instance, which typically

takes a few msec.

Large-Scale Cloud Provider: Finally, we bring everything together in a gen-

eral case where 1200 workloads of all types (analytics batch, latency-critical, and

single-server jobs) are submitted in random order to a 200-node cluster of dedicated

EC2 servers with 1 sec inter-arrival time. All applications have the same priority

and no workload is considered best-effort (i.e., all paying customers have equal im-

portance). The scenario is designed to use almost all system cores at steady-state,

without causing oversubscription, under ideal resource allocation. We do, however,

employ admission control to prevent machine oversubscription, when allocation is

imperfect [72]. Wait time due to admission control counts towards scheduling over-

heads. Quasar handles allocation and assignment for all workloads. For comparison,

we use an auto-scale approach for resource allocation of latency-critical workloads.

For frameworks like Hadoop and Storm, the framework estimates its resource needs

and we treat that as a reservation. For resource assignment, we use two schedulers:

a least-loaded scheduler that simply accounts for core and memory availability and

Paragon that, given a resource allocation, can do heterogeneity- and interference-

aware assignment. The latter allows us to demonstrate the benefits of jointly solving

allocation and assignment over separate (although optimized) treatment of the two.

4.6 Evaluation

4.6.1 Single Batch Job

Performance: Figure 4.6 shows the reduction in execution time of ten Hadoop

jobs when resources are allocated by Quasar instead of Hadoop itself. We account for

all overheads, including classification and scheduling. Quasar improves performance

for all jobs by an average of 29% and up to 58%. This is significant given that these

CHAPTER 4. QUASAR 87

H1 H2 H3 H4 H5 H6 H7 H8 H9H10
Hadoop Job

0

10

20

30

40

50

60

70

S
p
e
e
d
u
p
 (

%
)

Figure 4.6: Performance of the ten
Hadoop jobs with Quasar.

Parameter Quasar Hadoop

Block size 64MB 64MB

Compression rate/algorithm 7.6(gzip) 5.1(lzo)
Heapsize 0.75GB 1GB

Replication factor 2 2
Mappers per node 12 8

Server type E-F A-E

Figure 4.7: Parameter settings for
Hadoop job H8 by Quasar and the default
Hadoop scheduler.

0 5 10 15 20 25 30

Time (min)

T
a

s
k
s

Quasar

0 5 10 15 20 25 30

Time (min)

T
a

s
k
s

Hadoop Scheduler

Figure 4.8: Straggler detection by Quasar versus the default Hadoop JobTracker.

Hadoop jobs take two to twenty hours to complete. The yellow dots show the exe-

cution time improvement needed to meet the performance target the job specified at

submission. Targets are set to the best performance achieved after a parameter sweep

on the different server platforms. Quasar achieves performance within 5.8% of the

constraint on average, leveraging the information of how resource allocation and as-

signment impact performance. When resources are allocated by Hadoop, performance

deviates from the target by 23% on average.

Efficiency: Table 4.7 shows the different parameter settings selected by Quasar

and by Hadoop for the H8 Hadoop job, a recommendation system that uses Mahout

with a 20GB dataset [184]. Apart from the block size and replication factor, the two

frameworks set job parameters differently. Quasar detects that interference between

mappers is low and increases the mappers per node to 12. Similarly, it detects that

CHAPTER 4. QUASAR 88

1 2 3 4 5 6 7 8 9 10111213141516 1 2 3 4 1 2 3 4
0

10

20

30

40

50

60

70

80

S
p

e
e

d
u

p
 (

%
)

Mahout Storm Spark

Figure 4.9: Performance speedup for the Hadoop, Storm and Spark jobs with Quasar.

0

5

10

15

20

25

30

35

40

S
e
rv

e
rs

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

U
ti
liz

a
ti
o
n
 (

%
)

Time (s)
3600 7200 10800 14400 18000 0

5

10

15

20

25

30

35

40

S
e
rv

e
rs

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

U
ti
liz

a
ti
o
n
 (

%
)

Time (s)
3600 7200 10800 14400 18000

Figure 4.10: Cluster utilization with Quasar (left) and the framework schedulers
(right). Darker colors correspond to higher CPU utilizations.

heap size is not critical for this job and reduces its size, freeing resources for other

workloads. Moreover, Quasar allocates tasks to the two most suitable server types

(E and F), while Hadoop chooses from all available server types.

4.6.2 Multiple Batch Frameworks

Performance: Figure 4.9 shows the reduction in execution times for Hadoop,

Storm, and Spark jobs when Quasar manages resource allocation and assignment.

On average, performance improves by 27% and comes within 5.3% of the provided

constraint, a significant improvement over the baseline. Apart from sizing and config-

uring jobs better, Quasar can aggressively colocate them. For example, it can detect

when two memory-intensive Storm and Spark jobs interfere and when they can effi-

ciently share a system. Quasar allows the remaining cluster capacity to be used for

best-effort jobs without disturbing the primary jobs because it is interference-aware.

Best-effort jobs come within 7.8% on average of the peak performance each job could

achieve if it was running alone on the highest performing server type.

Utilization: Figure 4.10 shows the per-server CPU utilization (average across

CHAPTER 4. QUASAR 89

0 50 100 150 200 250 300 350 400
Time (min)

0

20

40

60

80

100

120
Flat Load

Target Load

Autoscale

QuasarQ
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
Q

P
S

)

0 50 100 150 200 250 300 350 400
Time (min)

0

100

200

300

400

500

Q
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
Q

P
S

)

Fluctuating Load

Target Load

Autoscale

Quasar

0 50 100 150 200 250 300 350 400
Time (min)

0

10

20

30

40

50

60

70

A
llo

c
a

te
d

 C
o

re
s

HotCrp

Best Effort

Figure 4.11: Throughput for HotCRP under (a) flat input load, and (b) fluctuating
load. Figure 4.12(c) shows the core allocation in Quasar for the fluctuating load.

0 50 100 150 200 250 300 350 400
Time (min)

0

100

200

300

400

500
Load Spike

Target Load

Autoscale

Quasar

Q
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
Q

P
S

)

0 50 100 150 200 250 300 350 400
Time (min)

50

60

70

80

90

100

Target

Autoscale

QuasarQu
er

ie
s

m
ee

tin
g

Qo
S

(%
)

Figure 4.12: Throughput for HotCRP under (a) load with spikes. Figure 4.12(b)
shows the fraction of queries meeting the latency constraint for the load with spikes.

all cores) over time in the form of a heatmap. Utilization is sampled every 5 sec.

In addition to improving individual job performance, Quasar increases utilization,

achieving 62% on average versus 34% with the individual framework schedulers (right

heatmap). Because performance is now higher the whole experiment completes faster.

Workloads after t = 14400 are mostly best-effort jobs that take longer than the main

analytics workloads to complete.

4.6.3 Low-Latency Service

Performance: Figure 4.11a shows the aggregate throughput for HotCRP achieved

with Quasar and the auto-scaling system when the input traffic is flat. While the

absolute differences are small, it is important to note that the auto-scaling manager

causes frequent QPS drops due to interference from best-effort workloads using idling

resources. With Quasar, HotCRP runs undisturbed and the best-effort jobs achieve

runtimes within 5% of minimum, while with auto-scale, they achieve runtimes within

24% of minimum. When traffic varies (Figure 4.11b), Quasar tracks target QPS

CHAPTER 4. QUASAR 90

0 5 10 15 20
Time (hr)

0

500

1000

1500

2000

2500
Memcached

Target Load

Autoscale

Quasar

Q
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
k
Q

P
S

)

0 20 40 60 80 100
Queries (%)

0

500

1000

1500

2000

2500

3000

3500

L
a
te

n
c
y
 (

u
s
e
c
)

Memcached

Autoscale

Quasar

0 5 10 15 20
Time (hr)

0

10

20

30

40

50

60

Q
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
k
Q

P
S

) Cassandra

Target Load

Autoscale

Quasar

0 20 40 60 80 100
Queries (%)

0

10

20

30

40

50

60

L
a
te

n
c
y
 (

m
s
e
c
)

Cassandra

Autoscale

Quasar

Figure 4.13: Throughput and latency for memcached and Cassandra in a cluster
managed by Quasar or an auto-scaling system.

closely, while autoscale provides 18% lower QPS on average, both due to interference

and suboptimal scale-up configuration. Quasar’s smooth behavior is due to the use

of both scale-out and scale-up to best meet the new QPS target, leaving the highest

number of cores possible for best-effort jobs (Figure 4.11c). For the load with the

sharp spike, Quasar tracks QPS within 4% on average (Figure 4.12a) and meets the

latency QoS for nearly all requests (Figure 4.12b). When the spike arrives, Quasar

first scales up each existing allocation, and then only uses two extra servers of suitable

type to handle remaining traffic. The auto-scaling system observes the load increase

when the spike arrives and allocates four more servers. Due to the higher latency of

scale-out and the fact that auto-scaling is not aware of heterogeneity or interference, it

fails to meet the latency guarantees for over 20% of requests around the spike arrival.

4.6.4 Stateful Latency-Critical Services

Performance: Figure 4.13 shows the throughput of memcached and Cassandra over

time and the distribution of query latencies. Quasar tracks throughput targets closely

for both services, while the auto-scaling manager degrades throughput by 24% and

CHAPTER 4. QUASAR 91

0 5 10 15 20 25 30 35 40
Servers

0

20

40

60

80

100
0:00-06:00

CP
U

Ut
il.

 %

0 5 10 15 20 25 30 35 40
Servers

0

20

40

60

80

100
06:00-12:00

CP
U

Ut
il.

 %

0 5 10 15 20 25 30 35 40
Servers

0

20

40

60

80

100
12:00-18:00

CP
U

Ut
il.

 %

0 5 10 15 20 25 30 35 40
Servers

0

20

40

60

80

100
18:00-24:00

CP
U

Ut
il.

 %

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
0:00-06:00

M
em

or
y

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
06:00-12:00

M
em

or
y

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
12:00-18:00

M
em

or
y

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
18:00-24:00

M
em

or
y

Ut
il.

 %

Servers

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
0:00-06:00

St
or

ag
e

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
06:00-12:00

St
or

ag
e

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
12:00-18:00

St
or

ag
e

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
18:00-24:00

St
or

ag
e

Ut
il.

 %

Servers

Figure 4.14: Average resource usage across all servers for four 6-hour snapshots.
The cluster is running memcached (green), Cassandra (blue), and best-effort tasks
(yellow) and is managed by Quasar.

12% on average for memcached and Cassandra respectively. The differences in latency

are larger between the two managers. Quasar meets latency QoS for memcached

for 98.8% of requests, while auto-scaling only for 80% of requests. For Cassandra,

Quasar meets the latency QoS for 98.6% of requests, while the auto-scaling for 93% of

requests. Memcached is memory-based and has an aggressive latency QoS, making it

more sensitive to suboptimal resource allocation and assignment on a shared cluster.

Utilization: Figure 4.14 shows the utilization of CPU, memory capacity, and disk

bandwidth across the cluster servers when managed by Quasar over 24h. Each column

is a snapshot of average utilization over 6 hours. Since memcached and Cassandra

have low CPU requirements, excluding the period 18:00-24:00 when Cassandra per-

forms garbage collection, most of the CPU capacity is allocated to best-effort jobs.

The number of best-effort jobs varies over time because the exact load of memcached

and Cassandra changes. Most memory is used to satisfy the requirements of mem-

cached, with small amounts needed for Cassandra and best-effort jobs. Cassandra

is the nearly exclusive user of disk I/O. Some servers do not exceed 40-50% utiliza-

tion for most of the experiment’s duration. These are low-end machines, for which

higher utilization dramatically increases the probability of violating QoS constraints

for latency-critical services. In general, the cluster utilization is significantly higher

CHAPTER 4. QUASAR 92

0 200 400 600 800 1000 1200
Workload

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
e
d
u
p
 n

o
rm

 t
o
 T

a
rg

e
t

Target Performance

Reservation+LL

Reservation+Paragon

Quasar

0 200 400 600 800 1000 1200

Workload

0

5

10

15

20

O
v
e
rh

e
a
d
 (
%

)

Figure 4.15: (a) Performance across the 1200 workloads on 200 EC2 servers
with Quasar, the Reservation+Paragon, and the Reservation+LL scheduler. Fig-
ure 4.15(b) shows the cluster management overheads.

than if each service was running in dedicated machines.

4.6.5 Large-Scale Cloud Provider

Performance: Figures 4.15 and 4.16 present the overall evaluation of Quasar man-

aging a 200-node cluster running all previously-discussed types of workloads. We

compare to resource allocation based on reservations (e.g., expressed by the Hadoop

scheduler or an auto-scaling system) and resource assignment on least-loaded ma-

chines (LL) or based on the interference and heterogeneity-aware Paragon. Figure

4.15a shows the performance of the 1,200 workloads ordered from worst- to best-

performing, normalized to their performance target. Quasar achieves 98% of the

target on average, while the reservation-based system with Paragon achieves 83%.

This shows the need to perform allocation and assignment together; the intelligent

resource assignment by Paragon is not sufficient. Using reservations and LL assign-

ment performs quite poorly, only achieving 62% of the target on average.

Cluster management overheads: Figure 4.15b shows the cluster management

overheads across the 1200 workloads. For most applications the overheads of Quasar

from profiling, classification, greedy selection and adaptation are low, 4.1% of exe-

cution time on average. For short-lived batch workloads, overheads are up to 9%.

The overheads are negligible for any long-running service, and even for jobs lasting

a few seconds, they only induce single-digit increases in execution time. In contrast

with reservation+LL, Quasar does not introduce any wait time overheads due to

CHAPTER 4. QUASAR 93

0

50

100

150

200

S
e
rv

e
rs

Quasar

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

U
ti
liz

a
ti
o
n
 (

%
)

Time (sec)
5000 10000 15000 20000 25000 0

50

100

150

200

S
e
rv

e
rs

Reservation+LL

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

U
ti
liz

a
ti
o
n
 (

%
)

Time (sec)
5000 10000 15000 20000 25000 0 50 100 150 200 250 300 350

Time (min)

0

20

40

60

80

100

used Quasar alloc Quasar Reservation

CP
U

Us
ag

e
(%

)

Figure 4.16: Cluster utilization for 1200 workloads on 200 EC2 servers with (a)
Quasar and (b) the reservation+LL system. Figure 4.16(c) shows the allocated versus
used resources for Quasar and allocated for reservation+LL.

oversubscription.

Utilization: Figures 4.16a-b show the per-server CPU utilization throughout the

scenario’s execution for Quasar and the reservation+LL system. Average utiliza-

tion is 62% with Quasar, while meeting performance constraints for both batch and

latency-critical workloads. The reservation+LL manager achieves average utiliza-

tion of 15%, 47% lower than Quasar. Figure 4.16c shows the allocated and used

resources for Quasar compared to the resources reserved by the reservation+LL man-

ager over time. Overprovisioning with Quasar is low, with the difference between

allocated and used being roughly 10%. This is significantly lower than the resources

reserved by the reservation-based manager, which exceed the capacity of the cluster

during most of the scenario. Because Quasar has detailed information on how differ-

ent allocations/assignments affect performance, it can rightsize the allocations more

aggressively, while meeting the performance constraints without QoS violations.

4.7 Conclusions

We have presented Quasar, a cluster management system that performs coordinated

resource allocation and assignment. Quasar moves away from the reservation-based

standard for cluster management. Instead of users requesting raw resources, they

specify a performance target the application should meet and let the manager size

resource allocations appropriately. Quasar leverages robust classification techniques

CHAPTER 4. QUASAR 94

to quickly analyze the impact of resource allocation (scale-up and scale-out), resource

type (heterogeneity), and interference on performance. A greedy algorithm uses this

information to allocate the least amount of resources necessary to meet performance

constraints. Quasar currently supports distributed analytics frameworks, web-serving

applications, NoSQL datastores, and single-node batch workloads. We evaluated

Quasar over a variety of workload scenarios and compared it to reservation/auto-

scaling-based resource allocation systems and schedulers that use similar classifica-

tion techniques for resource assignment (but not resource allocation). We showed

that Quasar improves aggregate cluster utilization and individual application perfor-

mance.

Chapter 5

iBench: Quantifying Interference

in Datacenter Workloads

5.1 Introduction

In the previous two chapters we discussed the challenges that interference in shared

resources poses to both performance and efficiency. We also presented a fast technique

to estimate the sensitivity of a new application to different types of interference. In

this chapter we expand on this analysis, and present a new benchmark suite that

enables this characterization.

Resource requirements vary widely across application types. Figure 5.1 for exam-

ple, shows the memory capacity and memory bandwidth requirements of a wide set

of application types, including single-threaded (ST) and multi-threaded (MT) bench-

mark suites such as SPECCPU2006, PARSEC [40], SPLASH-2 [282], BioParallel [150]

and MineBench [198], multiprogrammed (MP) mixes of these workloads, distributed

batch (Hadoop) and latency-critical (memcached) applications, as well as traditional

relational database workloads (MySQL). Capacity and bandwidth demands are nor-

malized to the provisioned system values. The size of each bubble corresponds to the

size of each job (number of tasks or clients). It becomes obvious that even when look-

ing only at memory requirements, demands vary widely. Therefore, understanding

the sensitivity workloads have to contention is critical towards reducing and managing

95

CHAPTER 5. IBENCH 96

Memory capacity (%)

M
e

m
o

ry
 b

a
n

d
w

id
th

 (
%

)

0

20

40

60

80

100

20 40 60 80 100

 ST MT MP
 Hadoop memcached MySQL

Figure 5.1: Pressure in memory capacity and memory bandwidth from a wide set of
applications, as measured by iBench. The bubble size is proportional to the number
of tasks (for Hadoop) or clients (for memcached) of the corresponding application.

interference in a way that enables QoS-aware operation at high utilization.

Previous work has shown the importance of accounting for interference in data-

center scheduling [76, 187] and has developed hardware and software mechanisms to

minimize interference effects. Mars et al. [187] show that ignoring the interference

characteristics of large cloud applications in the memory subsystem can cause signifi-

cant performance degradations that violate the workloads’ QoS constraints. Typically,

determining the interference profile of a workload involves either retroactively observ-

ing which co-scheduled applications contend in shared resources and annotating the

offending workloads [296] or profiling the workload against a carefully-crafted bench-

mark that puts pressure on a specific shared resource [76, 187]. The disadvantage of

the first approach is that interference is determined after performance degradation has

occurred, and, currently, requires manual annotation of contending workloads. The

second approach is less invasive, enables interference detection before this reflects

into performance degradation, but requires effort in designing targeted benchmarks

that put pressure on specific resources. Currently, there is no open-source benchmark

suite that enables fast characterization of the interference an application tolerates

and causes in various subsystems.

In this chapter we present iBench, a novel benchmark suite that helps quantify

CHAPTER 5. IBENCH 97

the sensitivity of datacenter (and conventional) applications to interference. iBench

consists of a set of carefully-crafted benchmarks that generate contention of tunable

intensity in various shared resources which include the core, the cache and memory

hierarchy, and the storage and networking subsystems. iBench workloads are called

SoIs (sources of interference). Injecting an SoI in a machine hosting an application

identifies the interference that application can tolerate in the corresponding shared

resource before it violates its QoS, and the interference it itself creates in the same

resource. We validate iBench against a set of datacenter applications that range

from distributed frameworks such as Hadoop [134], latency-critical online services

like memcached [107] and conventional single-threaded, multithreaded and multipro-

grammed single-node applications, and verify the accuracy and consistency of the

interference measurements.

We have used iBench in various system studies, and specifically in this work we

show that it improves decision quality in four use cases that extend to cloud and chip

multiprocessor (CMP) systems and span hardware and software challenges. First,

we use the benchmark suite to quantify the interference sensitivity of a large set

of applications resembling a cloud provider mix and use this information to make

resource-efficient scheduling decisions. Second, we use iBench to guide the hardware

configuration of datacenter servers, such that the system is appropriately provisioned

to tolerate the pressure workloads put in different resources. Third, we move the

interference characterization one step in advance and use it to guide application soft-

ware development, before the workload’s full deployment. iBench here is used to

determine the resources where an application induces contention, and to assist the

software developer to design more resource-efficient code. Given the speed of inter-

ference characterization, using iBench significantly accelerates the iterative testing

process of application software. Finally, we show that iBench is applicable to studies

outside datacenters and use the interference characterization to guide scheduling deci-

sions in a large-scale heterogeneous CMP. Note that in this case characterization needs

to also account for the different core designs, while being lightweight and transparent

to the workload. In all cases, using iBench significantly improves the system’s ability

to preserve QoS guarantees in a resource-efficient manner. Specifically, scheduling in

CHAPTER 5. IBENCH 98

a datacenter using iBench preserves performance for the majority of workloads, while

significantly increasing utilization, by 42%. Also, by revising code regions, based on

indications from iBench, we managed to reduce the application footprint of a large,

data mining application by 49%, while speeding up the workload by 35%.

5.2 Related Work

DC benchmark suites: A major roadblock when studying DC applications is the

unavailability of representative workloads and input loads. Given this challenge, there

is extensive work on characterization and modeling of DC applications [23, 85, 84, 87,

86, 88, 83, 151, 234] that leads to generated workloads with characteristics that closely

resemble those of the original application. The generated workloads can then be used

in system studies without the limitation of needing access to real DC workloads. While

this is a viable approach in some cases, modeling has limitations; there are workload

aspects that are not captured in the model to preserve simplicity. However omitting

these aspects can cause the generated workload to deviate from its expected behavior.

Additionally, modeling is more applicable to large, long-running applications that can

be characterized in detail to provide some input to the model, but is less beneficial

in systems like Amazon’s EC2 or Windows Azure where submitted workloads are

typically unknown and no a priori assumptions can be made about their behavior.

A different track to side-step DC workload unavailability is the design of open-

source versions of popular applications, which resemble their behavior and struc-

ture. Examples of such workloads are Lucene [182] and Nutch [205] for Websearch,

Roundcube [226] for Webmail, or Hadoop [134] for MapReduce [69]. In the same

spirit, CloudSuite [106] is an open-source benchmark suite that aggregates a set of

such applications, including data analytics, media streaming and web serving. While

open-source applications cannot be exact replicas of production-class workloads, they

provide a reasonable approximation of their behavior.

Interference-related workloads: Recent work has shown that reducing inter-

ference is critical to preserving application performance in DCs [76, 120, 187, 255].

Govindan et al. [120] designed a synthetic cache loader to profile an application’s

CHAPTER 5. IBENCH 99

cache behavior and the pressure it would put on co-scheduled workloads. Similarly,

to demonstrate the impact of interference in the memory subsystem, Mars et al. [187]

designed two microkernels that create tunable contention in memory capacity and

memory bandwidth. These kernels are then used to quantify the sensitivity of a

workload to memory interference. Additionally, Tang et al. [255] designed Smash-

Bench, a benchmark suite for cache and memory contention. Benchmarks include

operations on binary search trees (BSTs), arrays and 3D arrays.

With iBench we extend the resources in which interference is quantified to the

core, the memory hierarchy, and the storage and networking subsystems. This en-

ables iBench to provide critical insights on the sensitivity of applications to resource

contention that can guide both software (e.g., scheduling) and hardware (e.g., server

provisioning) system studies.

5.3 iBench Workloads

5.3.1 Overview

The goal of iBench is to identify the shared resources an application creates contention

to, and similarly the type and amount of contention the application is sensitive to. For

this purpose, all iBench workloads have tunable intensity that progressively puts more

pressure on a specific shared resource until the behavior of the application changes

(i.e., performance degrades). A similar technique has been shown to provide accurate

estimations on sensitivity to contention in the memory subsystem [187, 255]. In total,

iBench consists of 15 carefully-crafted workloads, which we call sources of interference

(SoIs), each for a different shared resource. The following section describes each one

of them in detail. To provide some proportionality between the intensity of the

benchmark and its impact on the corresponding resource, SoIs are designed such that

their impact increases almost linearly with the intensity of the benchmark. Finally,

we try to ensure that the impact of the different iBench workloads is not overlapping,

e.g., that the memory bandwidth SoI does not cause significant contention in memory

capacity and vice versa. Section 5.4 validates that this is indeed the case across SoIs.

CHAPTER 5. IBENCH 100

5.3.2 Designing the SoIs

Memory capacity (SoI1): This kernel progressively accesses larger memory foot-

prints until it takes over the entire memory capacity. The access pattern of addresses

in this case is random, but can also be set to perform strided memory accesses. The

following snippet shows the basic operation of SoI1:

t = 0;

while (t < duration) {
ts = time(NULL);

while (coverage < x%) {
// SSA: to increase ILP

access[0] += data[r] << 1;

access[1] += data[r] << 1;

...

access[30] += data[r] << 1;

access[31] += data[r] << 1;

wait(tx/accx);

}
x++;

t += time(NULL) - ts;

}

The kernel identifies automatically the size of memory available in the system and

scales its footprint “almost” proportionately with time. From the snippet above, t is

the total time the SoI will run for. The benchmark uses single static assignment (SSA)

to increase the ILP in memory accesses, and launches as many requests as necessary

to guarantee the appropriate capacity coverage at each point during its execution,

e.g., at 8% intensity, capacity coverage should be 8%. The memory addresses r are

selected randomly with a low-overhead random generator function. For low intensities

the kernel may switch to an idle state between memory requests. tx is the time the

kernel spends at a specific intensity level, and is a function of the benchmark duration

CHAPTER 5. IBENCH 101

t and the intensity level x. accx is the number of accesses required to reach a specific

coverage level and is also a function of the intensity x. The time the kernel can remain

idle is proportional to tx and inversely proportional to accx. As the kernel moves to

higher intensities, the fraction of time the kernel remain idle reduces as more accesses

are required to achieve a certain memory coverage. By default all kernels run for

10msec, however duration is a configurable parameter.

Memory bandwidth (SoI2): The benchmark in this case performs streaming

(serial) memory accesses of increasing intensity to a small fraction of the address

space. The intensity increases until the SoI consumes 100% of the sustained memory

bandwidth of the specific machine. The intensity of accesses increases linearly with

the memory bandwidth used. The reason why accesses happen to a relatively small

fraction of memory (e.g., 10%) is to decouple the effects of contention in memory

bandwidth from contention in memory capacity. The following snippet captures the

main operation of the streaming kernel:

t = 0;

while (t < duration) {
ts = time(NULL);

for (int cnt = 0; cnt < accx; cnt++) {
access[cnt] = data[cnt]*data[cnt+4];

wait(tx/accx);

}
x++;

calculate accx;

t += time(NULL) - ts;

}

The definition of tx and accx is the same as before. In the subsequent SoIs we

skip the code snippets in the interest of space, and describe their main operation.

Storage capacity (SoI3): Storage corresponds to the non-volatile secondary de-

vices, e.g., disk drives or flash that store data. We assume these are disk drives for

simplicity. The microbenchmark accesses random data segments across the disk’s

CHAPTER 5. IBENCH 102

sectors. The amount of accessed data increases linearly with the SoI’s intensity, i.e.,

at 20% intensity close to 20% of disk capacity is accessed by the SoI.

Storage bandwidth (SoI4): This benchmark creates traffic of increasing intensity

to the hard drives of the system. Disk accesses in this case are serial and the consumed

disk bandwidth increases almost linearly with the intensity of the SoI, e.g., at 100%

intensity, the SoI uses close to 100% of the sustained disk bandwidth of the system.

Network bandwidth (SoI5): This SoI is of interest to workloads with network con-

nectivity, e.g., online services or distributed frameworks like MapReduce. It operates

by issuing network requests of increasing intensity (size and frequency of requests) to

a remote host. We currently do not deploy rate limiting mechanisms, therefore the

SoI can take over 100% of the available network bandwidth, essentially starving any

co-scheduled application.

Last level cache (LLC) capacity (SoI6): The benchmark mines the /proc/cpuinfo

of the system and adjusts its footprint, access pattern and the pace that its intensity

increases based on the size and associativity of the specific LLC. The kernel issues

random accesses that cover an increasing size of the LLC capacity. Because caches

are structured in sets, it is easy to mathematically prove and practically guarantee

that the footprint of the benchmark increases linearly with the intensity of the SoI

and that its accesses are uniformly distributed. We skip the proof in the interest of

space. Finally, to guarantee that accesses are not intercepted in the lower levels of

the hierarchy (L1, L2) we concurrently run small tests that sweep the smaller caches

(without introducing additional misses) to ensure that all accesses from the SoI go to

the LLC.

LLC bandwidth (SoI7): This benchmark is similar to the SoI for memory band-

width in that it performs streaming data accesses to the LLC. In this case the size

and peak bandwidth the SoI targets are tuned to the parameters of the specific last

level cache. Because accesses are streaming over a fraction of the cache, the lower

levels of the hierarchy do not play as important a role as with random accesses. We

have found that running the sweep tests for L1 and L2 does not make a significant

difference when measuring sensitivity to contention in LLC bandwidth.

CHAPTER 5. IBENCH 103

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
a
p
a
c
it
y

(%
)

SoI1:: Mem Cap

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
a
n
d
w

id
th

(%
)

SoI2:: Mem Bw

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
a
p
a
c
it
y

(%
)

SoI3:: Storage Cap

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
a
n
d
w

id
th

(%
)

SoI4:: Storage Bw

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
a
n
d
w

id
th

(%
)

SoI5:: Network Bw

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
a
p
a
c
it
y

(%
)

SoI6:: LLC Cap

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
a
n
d
w

id
th

(%
)

SoI7:: LLC Bw

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
a
p
a
c
it
y

(%
)

SoI8:: L1 i-cache

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
a
p
a
c
it
y

(%
)

SoI9:: L1 d-cache

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

T
L
B

m
is

s
e
s

(%
)

SoI10:: TLBs

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

U
ti
liz

a
ti
o
n

(%
)

SoI11:: Int Unit

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

U
ti
liz

a
ti
o
n

(%
)

SoI12:: FP Unit

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

P
re

fe
tc

h
M

is
s
e
s

(%
)

SoI13:: Prefetchers

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
a
n
d
w

id
th

(%
)

SoI14:: Interconnection Network

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

U
ti
liz

a
ti
o
n

(%
)

SoI15:: Vector Unit

Figure 5.2: The iBench workloads. For each benchmark we show the system impact
for increasing SoI intensity. We do not include the graphs for the L2 capacity and
bandwidth SoIs. These are similar to the ones for LLC capacity and bandwidth.

CHAPTER 5. IBENCH 104

L2 capacity (SoI6’): This is a similar benchmark to SoI6 (LLC Capacity), and

is applicable in systems with 3+ levels of cache hierarchy. The footprint in this case

grows up to the L2 cache size and the L2 associativity is used to tune how intensity

changes over the kernel’s duration.

L2 bandwidth (SoI7’): Similar to SoI7 (LLC bandwidth), but tuned to the size

and associativity of the L2. Accesses in this case are streaming.

L1 i-cache (SoI8): A simple kernel that sweeps through increasing fractions of the

i-cache, until it populates its full capacity. Accesses in this case are again random.

L1 d-cache (SoI9): A copy of the previous SoI, tuned to the specific structure and

size of the d-cache (typically the same as the i-cache).

Translation lookahead buffer (TLB) (SoI10): This benchmark fetches pages

from memory at increasing rates until it occupies all the TLB entries. This forces long

page walks for any co-scheduled application, inducing high performance degradations.

Again, because of the structure of TLBs it is easy to compute the pace at which SoI

intensity should increase to guarantee a linear relation with the occupied entries.

Integer processing units (SoI11): While the core can be approached as a single

shared resource, we decide to separate the different types of operations to integer,

floating point (and an optional vector SoI when SSE extensions are available). All

three SoIs are assembly-level benchmarks that issue an increasing number of the

corresponding type of instructions. For SoI11 these are instructions between integers.

FP processing units (SoI12): Similarly here, floating point instructions are

issued at an increasing rate. SoIs 11 and 12 (and 15 when applicable) can run both

on the same hardware thread and on different threads sharing the same core.

Prefetchers (SoI13): This benchmark tries to inject unpredictability in the instruc-

tions the prefetcher brings from memory, and decrease its effectiveness. This may

seem similar to the operation of the L1 i-cache benchmark, however the prefetcher

SoI employs a different access pattern than SoI8. Instead of simply sweeping through

the L1 and evicting the co-runner’s instructions, the SoI here is a small program

that only takes up a fraction of the L1 i-cache, but interleaves its instructions with

the examined application’s instructions. This way the prefetcher gets tricked into

CHAPTER 5. IBENCH 105

bringing the SoI’s next “expected” instructions from memory instead of the primary

application’s. Intensity here translates to the time the SoI is non-idle. This SoI also

interacts in part with the system’s branch predictor.

Interconnection network (SoI14): This benchmark is designed using message

passing primitives between cores. As the SoI intensity goes up the number and

fanout of messages sent by the kernel increases. For high intensities the injected

traffic becomes adversarial, leading the remaining system cores to starvation.

Vector processing units (SoI15): This SoI is only applicable in systems with

SIMD ISA extensions, e.g., SSE3/4. It takes advantage of these extensions to launch

256-wide SIMD instructions with increasing frequency. Instructions are issued on a

small data set to avoid interfering with the cache/memory hierarchy. None of the

systems we tested uses extensive memoization techniques therefore operating on the

same data does not reduce the load to the vector units.

5.4 Validation

We want to validate three aspects of iBench; first that the benchmarks indeed induce

contention in their corresponding resources, and that their impact increases almost

linearly with their intensity. Second, we want to evaluate the impact of iBench on

conventional and DC applications and verify that the SoIs can be used to detect

sensitivity to interference. Finally, we want to verify that the different SoIs do not

overlap with each other in a way that voids the insights drawn about an applica-

tion’s behavior, e.g., that the memory bandwidth SoI does not introduce significant

contention in memory capacity.

5.4.1 Individual SoIs Validation

Figure 5.2 shows the impact of the 15 SoIs across their intensity spectrum (0-100%).

For capacity-related benchmarks we show their cache, memory or disk footprint.

For the bandwidth-related SoIs we show the fraction of bandwidth they consume

normalized to the provisioned sustained cache, memory or disk bandwidth. For the

CHAPTER 5. IBENCH 106

core-related SoIs we show the utilization they induce in the corresponding functional

units (int, fp or vector). Finally, for the TLB benchmark we show TLB misses and

for the prefetcher benchmark, prefetch misses. All measurements are collected using

performance counters on a dual-socket, 8-core Nehalem server with private L1s and

L2s and a shared 8MB L3 cache and 32GB of RAM. The server has a 1GB NIC and

4 500GB hard drives. Each SoI runs for 10msec on its own and covers its full range

of 0 to 100% of intensity. Each SoI automatically detects the system parameters

that it needs in order to adjust its operation, e.g., cache or TLB size, core count

or NIC type. From Figure 5.2 we see that for all benchmarks the impact to the

corresponding resource increases almost linearly with their intensity. The only SoIs

that slightly deviate from linear are the core-related benchmarks Int and FP. This

happens because correlating the number of issued instructions to the eventual system

utilization is harder than correlating the number of cache accesses to the capacity

used. We plan to further refine these workloads to better approach linear load increase

as part of future work.

5.4.2 SoI Impact on Applications

iBench is aimed to detect and quantify the sensitivity of DC and conventional work-

loads to various sources of interference. Here we validate that this operation is ac-

curate. We inject iBench workloads in a conventional application (mcf from the

SPECCPU2006 suite) and in a DC latency-critical application (memcached [107])

and measure their sensitivity to interference in the corresponding resources. Each ap-

plication runs on a single server, and memcached is set up with 1000 clients launching

40,000 QPS in total, with a target per-request latency of 200usec. mcf is profiled for

10msec against the LLC capacity SoI, and memcached against the network bandwidth

SoI. Both SoIs inflate to full intensity (100%). Figure 5.3a, b shows the results for

mcf and Figure 5.3c, d for memcached. Figure 5.3a shows the performance impact

of contention in LLC capacity for mcf and the corresponding miss rate curve as the

intensity of the SoI increases. Comparing the two shows that the SoI indeed induces

significant performance degradation to the application due to cache contention. The

CHAPTER 5. IBENCH 107

0 20 40 60 80 100
SoI Intensity (%)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

n
o
rm

Is
o
la

ti
o
n

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

M
is

s
R

a
te

(%
)

0 20 40 60 80 100
SoI Intensity (%)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

n
o
rm

Is
o
la

ti
o
n

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
a
n
d
w

id
th

n
o
rm

Is
o
la

ti
o
n

(%
)

Figure 5.3: Validation of the impact contention generated using iBench has on mcf
and memcached. Figure 5.3a shows the performance of mcf when co-scheduled with
the LLC capacity SoI, while Figure 5.3b shows its new miss rate curve as SoI intensity
increases. Figure 5.3c shows the performance of memcached when running with the
network bandwidth SoI and Figure 5.3d shows its bandwidth share compared to when
running alone.

point when performance gets a significant hit coincides with the moment when the

miss rate increases rapidly, therefore the SoI is correctly stressing its target resource.

Similarly, for memcached we show the performance impact from increased contention

in the network and the bandwidth fraction memcached manages to extract compared

to the target fraction it needs to preserve its performance requirements. Again there

is a direct correlation between performance degradation and its cause. As SoI inten-

sity increases, the goodput of memcached (fraction of requests that meet their target

latency) rapidly decreases. Figure 5.3d shows the reason behind this degradation. For

high SoI intensities, the bandwidth share of memcached becomes increasingly smaller,

introducing queueing delays to incoming requests. At the same time, examining its

cache miss rate or memory behavior does not show significant variations compared

to when memcached is running alone. This verifies that the SoI is confined to its

specific resource and does not violently disrupt the utilization of other subsystems.

We further validate this observation in the following subsection. We have also verified

CHAPTER 5. IBENCH 108

0 2 4 6 8 10
Time (msec)

0

20

40

60

80

100

In
te

n
s
it
y

(%
)

alone

with SoI2

0 2 4 6 8 10
Time (msec)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IP
C

n
o
rm

Is
o
la

ti
o
n

SoI1:: Memory Capacity

0 2 4 6 8 10
Time (msec)

0

20

40

60

80

100

In
te

n
s
it
y

(%
)

alone

with SoI1

0 2 4 6 8 10
Time (msec)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IP
C

n
o
rm

Is
o
la

ti
o
n

SoI2:: Memory Bandwidth

Figure 5.4: Validation of the impact SoIs have on each other. Figure 5.4a shows the
intensity of SoI1 when co-scheduled with SoI2 and similarly for SoI2 (Figure 5.4c).
Figure 5.4b, d show the achieved IPC normalized to target when the two SoIs run
together. Overall, interference between benchmarks is minimal.

that these results are consistent across the different SoIs for various workload types.

5.4.3 Correlation between SoIs

Finally, we verify that different sources of interference (SoIs) do not overlap and

interfere with each other. For this purpose we co-schedule two SoIs at a time in

the same core of the 8-core system previously used. Figure 5.4 shows the increase

in intensity and corresponding performance normalized to isolation for a co-schedule

of the memory capacity and memory bandwidth SoIs. As shown in the figure, for

high system loads, there is a small impact in the ability of each SoI to reach its

full intensity. Similarly there is a slight degradation in performance compared to

running in isolation. However, for both SoIs degradations are mild, which means that

the different benchmarks do not induce significant contention outside their target

resource. This is important to both obtain accurate interference measurements, and

make valid assumptions on their causes. We have performed this experiment with

different SoI combinations with similar results.

CHAPTER 5. IBENCH 109

5.5 Use Cases

5.5.1 Datacenter Scheduling

Currently, DC operators often disallow application co-scheduling in shared servers to

preserve QoS guarantees. However, this leads to serious resource underutilization. On

the other hand, co-scheduling applications can induce interference due to contention

in shared resources. We use iBench to quantify the tolerance a workload has to various

sources of interference, and similarly the interference it causes in shared resources.

Given this information, a scheduler determines the applications that can be safely

co-scheduled without performance degradation from interference. For this use case,

the scheduler simply tries to minimize:

||it − ic||L1
(5.1)

where it and ic the tolerated and caused interference for two examined applications.

The tolerated interference is calculated as described in Section 5.4. The caused inter-

ference is similarly calculated, by quantifying the impact the examined workload has

on the performance of an SoI. The L1 norm is calculated across the different SoIs.

More sophisticated scheduling techniques can be deployed to take better advantage

of the information provided by iBench [76]. Obviously applications can change be-

havior during their execution. This is especially true for DC workloads [31, 191].

The scheduler adapts to these changes to preserve QoS throughout an application’s

execution. If at any point in time it detects that an application is running under

its QoS, the scheduler injects iBench workloads to the system to construct a new

interference profile. Any further scheduling decisions use the new interference profile.

Required migrations due to behavior changes are handled by a low-overhead live mi-

gration system present in the cluster. In the event where migration is not possible,

the scheduler disallows additional applications to be placed on the same machine as

the affected workload.

We design three scenarios; first a cloud workload mix that resembles a system

like EC2, where 200 applications are submitted in a 40-machine cluster with 1 sec

CHAPTER 5. IBENCH 110

0 50 100 150 200
Workload number

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
e
d
u
p

o
ve

r
Is

o
la

ti
o
n

In isolation

w/o iBench

w/ iBench
0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
e
d
u
p

o
ve

r
T
a
rg

e
t

w/o iBench w/ iBench

Hadoop BE hmean

0 5000 10000 15000 20000 250000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
p
e
e
d
u
p

o
ve

r
Is

o
la

ti
o
n

In isolation w/o iBench w/ iBench

Time (s)

Figure 5.5: Performance achieved by a scheduler that accounts for interference using
iBench compared to a system that ignores interference in scheduling decisions. Results
are shown for three scenarios: a cloud workload mix (Figure 5.5a), a distributed
workload (Figure 5.5b) and a latency-critical application (Figure 5.5c).

inter-arrival times. All nodes are dual socket, 4-12 core machines with private L1

and L2 caches and shared L3 caches, and 16-48GB of RAM. All applications are se-

lected randomly from a pool consisting of the full SPECCPU2006 suite, 22 workloads

from PARSEC [40], SPLASH-2 [282], BioParallel [150] and Minebench [198], 140

multiprogrammed workloads of 4 SPEC applications each, based on the methodology

in [228], and 10 I/O-bound data mining workloads [219]. The second scenario involves

a Hadoop workload running distributed on 40 nodes with low-priority best-effort (BE)

applications occupying the remaining server capacity, and the third scenario involves

a 40-node installation of memcached, running as the primary process and best-effort

applications using the remaining resources. Figure 5.5a compares application per-

formance for the first scenario when quantifying interference using iBench, against a

baseline scheduler that only considers the CPU and memory requirements of an ap-

plication and assigns workloads to least-loaded (LL) servers (w/o iBench). The latter

is common practice in many cloud providers today [271]. Performance is normalized

to running in isolation and applications are ordered from worst- to best-performing.

CHAPTER 5. IBENCH 111

0

20

40

60

80

100

U
ti
liz

a
ti
o
n
(%

)

w/o iBench

w/ iBench

Time (s)
5000 10000 15000 20000 25000 0

5

10

15

20

25

30

35

40

S
e
rv

e
rs

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

U
ti
liz

a
ti
o
n

(%
)

Time (s)
3600 7200 10800 14400 18000

0

20

40

60

80

100

U
ti
liz

a
ti
o
n

(%
)

w/o iBench w/ iBench
0

20

40

60

80

100

U
ti
liz

a
ti
o
n
(%

)

w/o iBench

w/ iBench

Time (s)
5000 10000 15000 20000 25000

Figure 5.6: Utilization achieved by a scheduler that uses iBench compared to
a system that ignores interference in scheduling decisions. For the first scenario
fewer machines are needed (and for less time) (Figure 5.6a, b), while for the sec-
ond (Figure 5.6c) and third scenarios (Figure 5.6d) more best-effort applications are
co-scheduled with the primary workload.

Using iBench to quantify the pressure applications put on various system resources

improves performance, by 15.7% on average and up to 25%. Similarly, performance

improves in the second and third scenario both for the primary workloads (Hadoop

and memcached respectively) and the best-effort applications. Managing interference

is beneficial to utilization as well, since more applications can be scheduled on the

same machine. Figure 5.6 shows the utilization for each of the three scenarios when ac-

counting for interference using iBench and when using the baseline least-loaded (LL)

scheduler. The benefits are twofold; first utilization increases, improving resource-

efficiency for the DC operator (Figure 5.6a). Second, the duration of the scenario

reduces because applications are running near their target performance. Figure 5.6b

offers a closer look at utilization across the different servers in the cluster throughout

the scenario’s execution. The increase in utilization is also consistent for the other

two scenarios (35.6% and 27.1% respectively on average). There is still some perfor-

mance degradation in these scenarios, which iBench cannot prevent. This is due to

CHAPTER 5. IBENCH 112

S
o
I1

S
o
I2

S
o
I3

S
o
I4

S
o
I5

S
o
I6

S
o
I7

S
o
I8

S
o
I9

S
o
I1

0

S
o
I1

1

S
o
I1

2

S
o
I1

3

S
o
I1

4

S
o
I1

50

20

40

60

80

100

C
a
u
s
e
d

in
te

rf
e
re

n
c
e

(%
)

before after

CPI

0

2

4

6

8

10

S
a
m

p
le

P
e
rc

e
n
ta

g
e

(%
) before after

1 1.5 2 2.5 3 0 20 40 60 80 100
Time (%)

0

20

40

60

80

100

C
P

U
U

ti
liz

a
ti
o
n

(%
)

before

after

Figure 5.7: Using iBench to provision a server that hosts a specific workload improves
performance and reduces resource contention. Figure 5.7a compares the old and new
interference profiles of the workload. Figure 5.7b shows the CPI distribution for
memcached in the original system configuration and after reconfiguring the system
based on the interference profile from iBench, and Figure 5.7c shows that utilization
decreases, as resources are appropriately balanced to reduce contention.

fast-changing workloads, complex applications that introduce inaccuracies in inter-

ference measurements, or workloads that have pathologies when co-scheduled with

specific applications. Additional mechanisms can be used to address these issues.

5.5.2 Server Provisioning

Provisioning servers is especially difficult for cloud providers that have to accommo-

date any - possibly unknown - submitted workload. Even in the case of well-studied,

long-running applications the datacenter architect must deal with evolving application

code and varying user patterns. Here we use the output of iBench to guide the way

system resources are balanced in a DC server running memcached [107]. The work-

load runs with 1000 clients launching a total of 40,000QPS with a latency constraint

of 200usec. Figure 5.7a shows the interference profile of the application running on

a default server configuration (4 cores, 8MB L3, 16GB RAM, 1GB NIC) across the

CHAPTER 5. IBENCH 113

different SoIs. It is evident that the application puts significant pressure on the cache

hierarchy and the network and memory subsystems (SoI2: memory bandwidth, SoI5:

network bandwidth, SoI7: LLC bandwidth and SoI11-12: core). Based on this infor-

mation we adjust the parameters of the system. To alleviate the contention in the

memory hierarchy we switch to a triple-memory channel server with 24GB of total

memory capacity. Similarly, we move from a server with a 1GB to a 10GB NIC to

accommodate the application’s network demands. We maintain the core count and

the rest of the system parameters the same. Figure 5.7a also shows the new inter-

ference profile, where both the contention in the cache/memory hierarchy and the

network subsystem are now significantly reduced. Figure 5.7b shows the distribution

of CPI in the default server configuration and in the server provisioned based on the

output of iBench, while Figure 5.7c compares the CPU utilization in the two systems.

In both cases accounting for contention when provisioning the system improves ap-

plication performance (the CPI curve is shifted to the left in the new system) and

reduces CPU throttling due to memory stalls. Similarly, we can use the informa-

tion on resource contention to guide the microarchitecture design (cache hierarchy,

pipeline organization, etc.) of hardware aimed to service a particular application.

5.5.3 Application Development/Testing

An important reason behind resource inefficiency is poor application design. Work-

loads are often written without sufficient considerations of sensible resource usage,

resulting in unnecessarily bloated code, huge memory footprints, and high CPU uti-

lization. This problem is even more prominent in DC workloads, which are often

complex, multi-tier applications with several interdependent components. Despite the

long testing periods devoted to these workloads, robustness and performance are typ-

ically the main optimization objectives, with resource-efficiency being less important.

Here we show that using iBench to identify code regions that cause high contention

not only improves efficiency by eliminating unnecessary resource consumption, but is

also beneficial to performance by reducing resource contention.

CHAPTER 5. IBENCH 114

0 20 40 60 80 100
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
IP

C

Original

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

C
P

U
U

ti
liz

a
ti
o
n

(%
)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

M
e
m

o
ry

B
a
n
d
w

id
th

(%
)

0 20 40 60 80 100
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

After 1st iteration

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

C
P

U
U

ti
liz

a
ti
o
n

(%
)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

M
e
m

o
ry

B
a
n
d
w

id
th

(%
)

0 20 40 60 80 100
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

After 2nd iteration

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

C
P

U
U

ti
liz

a
ti
o
n

(%
)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

M
e
m

o
ry

B
a
n
d
w

id
th

(%
)

0 20 40 60 80 100
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

After 3rd iteration

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

C
P

U
U

ti
liz

a
ti
o
n

(%
)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

M
e
m

o
ry

B
a
n
d
w

id
th

(%
)

Figure 5.8: Performance (IPC), CPU utilization and memory bandwidth utilization
for the testing application across three optimization iterations using iBench. While
performance for the original application is low, with the CPU being saturated, identi-
fying contentious regions in the code progressively improves throughput and decreases
resource utilization, improving resource efficiency.

CHAPTER 5. IBENCH 115

For this purpose we start with an unoptimized data mining application that per-

forms collaborative filtering on a large dataset of sparse data. The data are movie

ratings from 180k users. Running the original version of the code, which relies on

Singular Value Decomposition and PQ-reconstruction [219, 43] results in very high

contention in LLC capacity, bandwidth, L1 d-cache and L2 cache capacity and band-

width, memory bandwidth and FP computation. Running the program to completion

takes approximately 1.6h. The performance of the original code is shown in Figure 5.8

(first row, leftmost figure). The second and third figures in the first row show the CPU

and memory bandwidth utilization of the program (normalized to sustained memory

bandwidth for the server). After detecting the points of contention using iBench, we

optimize parts of the code to make better use of system resources. In the first code

iteration we switch to SIMD operations using SSE4 [201]. As shown in the second row

in Figure 5.8 both performance and resource efficiency benefit. The boost in perfor-

mance comes from leveraging spatial locality in matrix accesses, while the decrease in

required resources comes from performing fewer operations on larger chunks of data

and reducing the misses to the cache hierarchy. We now repeat the interference char-

acterization for the new program. iBench again helps identify remaining inefficiencies

in the code that induce resource contention. We progressively address these with

optimizations such as reordering of operations to the matrix elements or memoizing

intermediate results. After each iteration we reevaluate the application’s performance

and resource utilization. As shown in the last row of Figure 5.8 the final code runs

in 35% less time than the original unoptimized version while requiring fewer system

resources. While the code optimizations shown here are relatively straightforward,

we believe that given the speed of obtaining the interference profile, using signals

from iBench can significantly facilitate the development and testing process of large

applications.

5.5.4 Scheduling in Heterogeneous CMPs

Finally, we show that iBench is applicable outside DC system studies. CMPs today

consist of tens of - often - heterogeneous cores [263, 239, 280, 301]. Scheduling for these

CHAPTER 5. IBENCH 116

systems is challenging because in addition to the interference between applications

that share resources, the scheduler should account for system heterogeneity. Similarly

to the first use case, we design a simple scheduler that takes the interference profile

obtained by iBench and identifies how each application from a multiprogrammed

mix should be mapped to heterogeneous cores. When the mix is submitted to the

system, each workload is briefly profiled against the iBench workloads to obtain its

interference profile. Each SoI requires at most 10msec and runs can be done in par-

allel by replicating and sandboxing the application binary. Profiling can additionally

leverage classification techniques to reduce the training overhead, by only profiling

against a subset of SoIs and deriving the missing entries based on similarities with

previous applications [34, 76]. We first create 40 4-SPECCPU2006 application mixes

and schedule them on a simulated 4-core CMP [228] with 2 Xeon-like and 2 Atom-like

cores from different generations each. The simulator captures contention in the cache

and memory hierarchy, therefore the same process as before is used to quantify the

impact of interference on application performance. The examined workloads do not

exhibit storage or network activity hence we do not use the SoIs creating contention

in those resources (SoI3-5). SPEC workloads are classified with regards to their cache

demands as insensitive (n), friendly (f), fitting (t) and streaming (s), and mixes are

created based on the methodology in [228]. Cores differ in their frequency, private

cache hierarchy and microarchitectural details (e.g., pipeline, prefetchers, branch pre-

dictors, issue width). All cores share an 8MB last level cache (LLC) and 16GB of

memory. The scheduler uses iBench to identify the type of core and co-scheduled

applications that constrain interference and selects the mapping that minimizes the

average interference across workloads. Although this is not necessarily a global opti-

mum it is good enough that performance does not degrade and utilization increases.

The scheduler can also take advantage of workload signatures [263] to further refine

the application-to-core mapping search space. We also create 60 16-application mixes

and schedule them in a similar system with 16 cores. The variability in frequencies

and cache hierarchies here is more widespread. Figure 5.9 shows the performance ob-

tained when using iBench to guide the scheduling decisions. The upper figures show

the performance of the 4-app mixes ordered from worst to best-performing compared

CHAPTER 5. IBENCH 117

0 5 10 15 20 25 30 35 40
Workload mix

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
e
d
u
p

o
ve

r
Is

o
la

ti
o
n

4 app mixes

fnss0 fnnt0 tffn0 nsst1 fttt1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
e
d
u
p

o
ve

r
Is

o
la

io
n

App 1

App 2

App 3

App 4

0 10 20 30 40 50 60
Workload mix

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
e
d
u
p

o
ve

r
Is

o
la

ti
o
n

16 app mixes

B A B A B A B A
0

20

40

60

80

100

C
y
c
le

s
(%

)

Exec

LLC

Net

L2

Memory

f4s3t5n4 f2s7t4n3 f4s4t4n4 f2s3t6n5

Figure 5.9: Scheduling in heterogeneous CMPs. The upper figures show performance
across the 4-application mixes and a per-application breakdown for selected mixes.
The lower figures show the performance for the 16-application mixes and a breakdown
of execution time to various subsystems for select mixes, before (B) and after (A) the
use of iBench for scheduling.

to isolated runs, and the breakdown to per-application performance for selected mixes.

Performance degradations are marginal for most workloads. The lower figures show

the performance across the 16-app mixes and the breakdown of clock cycles to the

various subsystems for selected mixes. While without the use of iBench several mixes

spend significant fractions waiting in memory instead of executing instructions, by

minimizing interference larger fractions of time are devoted to useful execution. We

plan to perform a more detailed study of scheduling tradeoffs in heterogeneous CMPs

as part of future work.

5.6 Conclusions

We presented iBench, a benchmark suite that measures the tolerated and caused in-

terference of a workload in various shared resources. iBench is geared towards DC

applications, but can also be applied to conventional workloads. It consists of 15

CHAPTER 5. IBENCH 118

benchmarks (SoIs) that induce pressure over a wide range of shared resources that

span the core, cache hierarchy, memory, storage and networking subsystems. iBench

quantifies the type and degree of interference that an application generates in this

set of shared resources. Similarly, it measures the type and intensity of interference

an application can tolerate before violating its QoS across the same resources. We

have validated the accuracy and consistency of iBench against a number of DC ap-

plications, ranging for conventional single-node applications, to distributed Hadoop

workloads, and latency-critical online services. We have also evaluated a number of

use cases for iBench. First, we use the interference information obtained with iBench

to schedule workloads in an EC2-like environment in a way that minimizes interfer-

ence between co-scheduled applications and improves system utilization. Second, we

have shown how iBench can assist towards making informed decisions on the hard-

ware specifications of a chip aimed for DC workloads, or on the provisioning of a

DC server. Third, we have shown how iBench can be used by software developers

to design more resource-efficient applications during testing. Finally, we have shown

that iBench is applicable outside the context of DCs, and have used it for scheduling

in large-scale heterogeneous CMPs. In all cases, using iBench significantly improves

the decision quality, performance, and resource efficiency of the system.

Chapter 6

ARQ: QoS-Aware Admission

Control

6.1 Introduction

An increasing amount of computing is performed in the cloud, primarily due to cost

benefits for both the end-users and the operators of datacenters (DC) that host cloud

services [31]. The operator of a cloud service must schedule the stream of incoming

applications on available servers in a resource-efficient manner, i.e., achieving fast

execution (user’s goal) at high resource utilization (operator’s goal). This schedul-

ing problem is particularly difficult for several reasons, including diverse application

characteristics [31, 163], insufficient workload knowledge, co-scheduled application in-

terference and platform heterogeneity. An additional challenge occurs during periods

of adversarial traffic, i.e., intervals with very high load, when the system can become

oversubscribed, resulting in poor performance. Most DCs employ some admission

control to minimize such effects.

DC users are interested in two performance metrics; how fast the application starts

running (waiting time) and how fast it completes thereafter (execution time). While

recent work has shown how to improve execution time in the presence of unknown

workloads, varying interference sensitivities and heterogeneous servers [76], it does not

solve the “head of line blocking” problem [232]. Additionally, some applications have

119

CHAPTER 6. ARQ 120

strict scheduling deadlines, while others can tolerate delays in order to be assigned

to preferred servers. In all cases, resource requirements should be taken into account

at admission point [47].

We propose ARQ (Admission control with Resource Quality-awareness), a QoS-

aware admission control protocol that builds on Paragon and accounts for the re-

source quality an application needs to preserve its QoS. Resource quality reflects the

additional load a server can support without violating application QoS, given its con-

figuration and the applications it currently hosts. For example, a server hosting a

low-latency key-value store and a relational database has high resource quality for a

Spark job, if it can accommodate it without any performance violations for the new or

previous applications. ARQ divides workloads into multiple classes and directs them

to different queues. This way demanding workloads do not block easy-to-satisfy ap-

plications, as they wait for an appropriate server to become available. On the other

hand, since DC applications have strict QoS guarantees, they can only be queued

for limited amounts of time, while waiting for an appropriate server. ARQ detects

when an application is about to violate its performance requirements and re-directs

it to a different queue before the QoS violation occurs. We explore the trade-off be-

tween waiting time and quality of resources and solve the corresponding optimization

problem to find the optimal switching point.

We evaluate ARQ both in small and large-scale experiments. First, we compare

the system without and with ARQ in a local cluster with 40 machines and show the

benefits in performance and efficiency. We also evaluate ARQ on a 1000-server cluster

on Amazon EC2. For an oversubscribed scenario with 8500 applications, Paragon with

ARQ guarantees that 99% of workloads have less than 10% performance degradation,

while improving utilization by 46%.

6.2 Background

As we described in Chapter 3, Paragon is a QoS-aware scheduler that accounts for

server platform heterogeneity and interference between co-scheduled applications.

CHAPTER 6. ARQ 121

While accounting for these factors allows Paragon to improve application perfor-

mance, and cluster utilization, the scheduler has no logic to decide when applications

should be admitted and scheduled. Paragon accounts for workload characteristics to

decide where to assign a workload, but it does not solve the “head of line blocking”

problem that can cause high waiting times. By default, applications are scheduled in

a simple FIFO order. This has two shortcomings; first, easy-to-satisfy workloads can

get trapped behind demanding applications, e.g., workloads that require exclusive in-

stances of high-end, multi-socket servers to preserve their QoS. Second, in the event

of an oversubscribed scenario, i.e., when the required resources are more than the

total resources available in the system, Paragon implements an application-agnostic

admission control protocol. It queues applications in a single queue until the first

server becomes available, and then resumes FIFO-ordered scheduling. This ignores

the fact that applications need resources of a certain quality to meet their QoS, and

can result in performance degradation.

6.3 Admission Control

6.3.1 Overview

Large cloud providers such as Amazon EC2 and Windows Azure, typically deploy

some admission control protocol. This prevents machine oversubscription, i.e., the

same core servicing more than one application, resulting in high interference and QoS

violations.

We design ARQ, a QoS-aware admission control protocol that queues and sched-

ules applications based on the quality of resources they need. This solves two prob-

lems; first, applications that demand few, easy-to-satisfy resources are not blocked

behind demanding workloads. Second, if no suitable servers are available for a given

application, the workload waits for a server of appropriate quality to be freed. Alter-

natively, the application would be directed to the first free server to avoid queueing

delays, with the risk of performance losses.

Resource quality: The resource demands of a workload reflect the load a server

CHAPTER 6. ARQ 122

…

Q1: [90,100]

Q2: [80,90]

Q3: [70,80]

Q10: [0,10]

Qi

P1

P2

P10

P3 Higher
resource

quality

Figure 6.1: ARQ design. Each queue corresponds to applications with different
resource quality requirements.

should support for the application to meet its QoS. This is a function of the interfer-

ence the server can tolerate from the new application, and the interference the new

workload can tolerate from applications already running on the machine. We use the

classification engine of Paragon to derive the interference each server tolerates (tk)

and the interference each application causes (ck) on a set of shared resources. Shared

resources include the cache and memory hierarchy, CPU modules and storage and

network devices. Details on how ck’s and tk’s are obtained can be found in Chapter 3.

The interference profile of a server is updated upon initiation or completion of an

application’s execution. This information guides scheduling decisions by assigning

applications to suitable servers. Given the interference profile of application i, we

define resource quality as:

Qi =
∑

k

ck (6.1)

Similarly, resource quality for a server is defined as the sum of tk over the different

shared resources. Qis are normalized in 0 to 100%. Conceptually, high Qi reflects

applications sensitive to interference, that need high quality resources. Low Qi on

the other hand, corresponds to workloads that are insensitive to interference, and

can satisfy their QoS even when assigned to servers of poor resource quality, e.g.,

CHAPTER 6. ARQ 123

highly-loaded machines, or machines with few cores.

Multi-class admission control: We design ARQ as an admission control protocol

with multiple classes of “customers” [22, 39, 138, 164, 192], where customers in this

case correspond to applications. The class an application belongs to is determined

by its Qi value. Applications with Qi values that fall in the same range are assigned

to the same class. We assume ten classes of applications for now, and justify this

selection in the evaluation section (see sensitivity study in Section 6.5). Figure 6.1

shows an overview of ARQ. Each queue corresponds to applications of a specific

class. From top to bottom we move from more to less demanding applications. Upon

arrival, the cluster manager determines the class an application belongs to and queues

it appropriately. Each class has a corresponding server pool of appropriate resource

quality. Separating applications based on their resource quality requirements helps

ARQ resolve bottlenecks where applications that are sensitive to interference block

workloads that are not. On the other hand, applications cannot be queued indefinitely

waiting for the perfect server. We address this issue by diverting workloads to queues

with better or worse resource qualities.

6.3.2 Waiting Time versus Resource Quality

Diverging an application to a different queue creates a trade-off between the time an

application is waiting in a queue, and the quality of resources it is allocated. We

approach this trade-off as an optimization problem.

Queue bypassing: When there is no available server in the pool of a class, queued

workloads should be diverted to another queue. There are two possible options for

where a workload can be redirected. First, it can be diverted to a higher queue. If

the queue directly above the queue the workload was originally placed in is empty,

the workload is assigned to one of its servers. This hurts utilization, since resources

of higher quality than necessary are allocated, but preserves the workload’s QoS

requirements. In the opposite case the workload is diverted to a lower queue. In

that case, performance may be degraded, since the application receives resources of

lower quality than required. However, the scheme guarantees that in all cases the

CHAPTER 6. ARQ 124

0 500 1000 1500 2000 2500 3000 3500 4000
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Se
rv

er
s

Server Pool [Q1]

60% of servers
freed in < 2700 sec

0 20 40 60 80 100 120
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
[>

=
1

fre
e

se
rv

er
 a

t t
im

e
x]

Server Pool [Q1]

Pr=60% for at lea-
st 1 free server

Figure 6.2: CDF of server busy times and CDF of the probability that there will be
at least one free server within a specific time window from an application’s arrival.

application will be assigned to a server within the time window dictated by its QoS

constraints.

Free-server probability distributions: ARQ needs to know the likelihood that a

server of a specific class will become available within the time an application can be

queued for, to decide when the workload should be diverted to the next queue. We

statistically analyze the server busy time periods for each server pool to obtain these

probability distributions. Busy periods are defined as the per-server time intervals

from the moment a server is assigned a workload, until that workload completes.

We first use distribution fitting to represent the per-pool server busy time in a

closed form using known distributions. Figure 6.2a shows the CDF of server busy time

for the first server pool (highest quality servers) in a 1,000 server experiment. More

details on the methodology can be found in Section 6.4. We show the experimental

data (dots) and the closed form representation, derived from distribution fitting. In

this case, the data is fitted to a curve resembling a normal distribution. The CDF

reflects the fraction of servers that are freed within some time after they have been

allocated to an application. For example, 60% of servers in this server pool are freed

within 2700 sec from the time an application is scheduled to them.

Using this closed form CDF we easily derive the free-server CDF, which reflects

the probability that within a time interval from an application’s arrival, at least one

server of the corresponding pool will be available. Figure 6.2b shows the free-server

probability CDF for the first server pool. The highlighted point shows that there is a

CHAPTER 6. ARQ 125

60% probability that within 56 sec from an application’s arrival to that queue, there

will be at least one free server in the pool. Free-server CDFs are updated during

workload execution to capture changes in application behavior.

Switching between queues: ARQ determines the switching point between queues

with the objective to maximize the probability that a server becomes available within

a certain window from an application’s arrival. For simplicity of explanation we

assume that an application’s QoS is defined at 0.95x of the application’s optimal

performance. This means that the workload can tolerate at most a 5% performance

degradation. Scheduling deadlines or queries-per-second (QPS) can also serve as

queueing constraints. Given the free-server CDFs for each server pool, ARQ solves

the following optimization problem for application a, switching between queues i and

j:

max {(Sa − wti(t)) ·Qi · Pri[t], (Sa − wtj(t)) ·Qj · Prj[t]}
s.t. (wti(t) + wtj(t) + Pa) < 0.05 · CTa

where Pri[t] is the probability that there is a free server in queue i, Qi is the

resource quality of queue i, CTa is the optimal execution time for application a, Pa

is the classification overhead of Paragon, and Sa = 1.05 · CTa − Pa is the available

“slack” that can be used for queueing, before the application violates its QoS con-

straints. ARQ finds the switching time that maximizes the probability that a server

of either queue i or j will become available such that the application preserves its

QoS guarantees. It also promotes waiting longer for a server of the same class rather

than eagerly switching to the next queue (Qi > Qj).

In our analysis we assume batch, single-node applications. In the case of interac-

tive or transactional workloads additional care must be taken to accommodate load

changes, e.g., through VM migration. The scheduler detects such changes and ad-

justs workload placement to preserve QoS. Detection is based on SoI injection and

application reclassification.

CHAPTER 6. ARQ 126

Server Type GHz sockets cores L1(KB) LLC(MB) mem(GB) #

Xeon L5609 1.87 2 8 32/32 12 24 DDR3 1
Xeon X5650 2.67 2 12 32/32 12 24 DDR3 2
Xeon X5670 2.93 2 12 32/32 12 48 DDR3 2
Xeon L5640 2.27 2 12 32/32 12 48 DDR3 1

Xeon MP 3.16 4 4 16/16 1 8 DDR2 5
Xeon E5345 2.33 1 4 32/32 8 32 FB-DIMM 8
Xeon E5335 2.00 1 4 32/32 8 16 FB-DIMM 8
Opteron 240 1.80 2 2 64/64 2 4 DDR2 7

Atom 330 1.60 1 2 32/24 1 4 DDR2 5
Atom D510 1.66 1 2 32/24 1 8 DDR2 1

Table 6.1: Main characteristics of the servers of the local cluster. The total core
count is 178 for 40 servers of 10 different SCs.

6.4 Methodology

Server systems: We evaluated Paragon on a 40-machine local cluster (Table 6.1)

and a 1000-machine cluster with 14 server types on EC2. We used exclusive (reserved)

server instances, i.e., there is no interference from external workloads. We also verified

that no external scheduling decisions or actions such as auto-scaling or migration are

performed during the course of the experiments.

Schedulers: We compared Paragon with ARQ to four schedulers. First, Paragon

without admission control, second, a heterogeneity-oblivious scheme that only ac-

counts for interference but not heterogeneity. Third, an interference-oblivious scheme

and finally, a scheduler that is both heterogeneity and interference-agnostic, and as-

signs applications to least-loaded machines.

Workloads: We used 29 single-threaded, 22 multithreaded, 350 multi-programmed

and 12 I/O-bound workloads. We use the full SPEC CPU2006 suite and work-

loads from PARSEC [40], SPLASH-2 [282], BioParallel [150], Minebench [198] and

SPECjbb. For multiprogrammed workloads, we use 350 mixes of 4 applications

each [228]. The I/O-bound workloads are data mining applications in Hadoop and

Matlab. For scenarios with more than 413 applications we replicated these workloads

with equal likelihood and randomized their interleaving.

Workload scenarios: For the small-scale experiments we examine three workload

CHAPTER 6. ARQ 127

Alone on Best Platform
No Heterogeneity

No Interference
Least Loaded

Paragon
Paragon + ARQ

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sp

ee
du

p
ov

er
 A

lo
ne

 o
n

Be
st

 P
la

tf.

Workloads with Phases

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tf.

Oversubscribed

Figure 6.3: Performance comparison of Paragon and ARQ, across two workload
scenarios, against Paragon without admission control, a heterogeneity-oblivious, an
interference-oblivious and a least-loaded scheduler.

LL

NH

NI
 P

P+
A LL

NH

NI
 P

P+
A LL

NH

NI
 P

P+
A LL

NH

NI
 P

P+
A LL

NH

NI
 P

P+
A LL

NH

NI
 P

P+
A LL

NH

NI
 P

P+
A LL

NH

NI
 P

P+
A LL

NH

NI
 P

P+
A LL

NH

NI
 P

P+
A0.0

0.5

1.0

1.5

2.0

ExecTime
Training
Classification
Greedy
Queueing

Ex
ec

Ti
m

e
+

 O
ve

rh
ea

ds

//
//
//

//
//
//

perlbench gcc mcf soplex calculix blkscholes fldanimate canneal svm specjbb-8

Figure 6.4: Overheads from classification, queueing and scheduling compared to
useful execution time. Overall, the overheads in Paragon with ARQ are less than 5%
for most applications.

scenarios. First, we examine a low-load scenario with 178 applications, selected ran-

domly from the workload pool, and submitted with 10 sec inter-arrival times. Second,

a high-load scenario where 178 applications arrive following a Gaussian distribution

(µ=10, σ2=1) that experience significant phases during their execution. Finally, we

examine a scenario, where 178 applications arrive with 1 sec intervals. This is an

oversubscribed scenario, since after a few seconds there are not enough resources to

execute all applications concurrently. For the large-scale experiments on EC2 we ex-

amine an oversubscribed scenario where 7,500 workloads arrive with 1 sec intervals

and an additional 1,000 applications arrive in burst after the first 3,750 workloads.

CHAPTER 6. ARQ 128

0.80 0.85 0.90 0.95 1.00 1.05 1.10
Performance

0.90

0.95

1.00

1.05

1.10

Ut
ili
za

tio
n

Figure 6.5: Required versus allocated core count for the oversubscribed scenario in
the small-scale system and sensitivity of ARQ to the number of queues. Performance
and utilization are normalized to the values for 10 queues.

6.5 Evaluation

6.5.1 Small-scale Experiments

Performance: Figure 6.3 shows the performance comparison between the different

schedulers for the second and third scenarios in the small-scale cluster. The differences

for the low-load scenario where resources are plentiful are small. We focus on the

differences between Paragon without and with the use of ARQ. Applications are

ordered from worst to best performing. For the scenario with workload phases the

applications that preserve their QoS increase from 66% to 91%, and the average

performance improves to 99.3%. For the oversubscribed system, while without ARQ

only 64% of applications maintain their QoS, with ARQ 88% of workloads preserve

their performance requirements. This shows that accounting for resource quality at

admission point drains the backlog of queued workloads much faster.

Overheads: ARQ limits waiting time to preserve QoS. Figure 6.4 shows the break-

down of execution time for selected applications in the oversubscribed scenario. Time

is divided in useful execution time, overheads from training and classification, over-

heads from the greedy server selection [76] and overheads from queueing. mcf and

blackscholes do not have a bar for the least-loaded (LL) scheduler because they did not

complete successfully due to memory exhaustion in the server. In all cases overheads

are very low and execution time for most workloads is very close to one (optimal).

The overheads from queueing are less than 5% at all times. The cases where queueing

CHAPTER 6. ARQ 129

is high correspond to workloads that had to be diverged to queues of lower resource

quality, in which case useful execution time is also suboptimal.

Resource allocation: Figure 6.5a shows the required versus allocated core count

for Paragon with and without ARQ for the oversubscribed scenario. Once the system

enters the oversubscribed phase ([9000-17000]sec), Paragon without ARQ allocates

all available cores and then queues applications, while Paragon with ARQ will only

dispatch applications if an appropriate server is freed. This drains the backlog faster

since, even though applications are queued for longer, they run in higher quality

platforms.

Server utilization: We also measure server utilization before and after the use of

ARQ. We focus on the oversubscribed scenario where ARQ has the highest impact.

Paragon without ARQ improves utilization by 47% compared to a LL scheduler.

Adding ARQ slightly reduces this improvement since applications are queued instead

of being dispatched immediately. Despite this, utilization still improves by 45.5%.

This means that the performance benefits of ARQ do not incur an efficiency penalty.

Sensitivity to design parameters: Figure 6.5b shows the performance - utiliza-

tion tradeoff for different numbers of queues. Both metrics are normalized to the

values for 10 queues. More queues result in fewer cases of workloads being blocked

behind demanding applications, therefore they improve performance, but reduce the

number of servers in the corresponding pools, hurting utilization. In contrast, few

queues revert to the default scheduler where many applications are scheduled in FIFO

order, increasing utilization and hurting performance. 10 queues achieve both high

performance and efficiency.

Additional policies: Finally, we evaluate ARQ when computation time and prior-

ities are taken into account in the admission control. Table 6.2 shows the harmonic

mean (hmean) and standard deviation of the difference between the expected and

achieved computation time when ARQ implements Shortest Job First (SJF). Work-

loads are grouped based on their ideal computation time from most short-running

to most long-running. SJF prioritizes short over long running applications for all

workload classes, with the additional constraint that long applications should still

maintain their QoS, therefore cannot be indefinitely bypassed. Results are shown for

CHAPTER 6. ARQ 130

Workloads hmean standard deviation

Shortest 5% 0.20% 0.15%
Shortest 10% 0.30% 0.08%

Shortest 25% 1.20% 0.30%

Shortest 50% 1.45% 0.34%
Shortest 75% 1.78% 0.26%

Shortest 90% 2.31% 0.55%
Shortest 95% 2.32% 0.57%

All 2.28% 0.53%

Table 6.2: Deviation between expected and achieved computation time for workloads
in the oversubscribed scenario when ARQ implements SJF. Applications are ranked
by increasing expected computation time.

Workloads hmean standard deviation

High-priority (20%) 0.80% 0.06%
Low-priority (80%) 2.74% 0.32%

Table 6.3: Deviation between expected and achieved completion time for workloads
in the oversubscribed scenario when ARQ implements priorities. Applications are
grouped in high priority and low priority ones.

the oversubscribed scenario. As shown in the table, short running jobs experience

minimal performance degradation, while the long running applications have higher

degradations, but still within their QoS requirements (5% execution time increase).

Additionally, we evaluate ARQ in the presence of workload priorities. We increase

the priorities of 20% of workloads in the oversubscribed scenario and compare the

expected and achieved completion time for them (see Table 6.3). As seen in the

table, the high-priority workloads complete within 2% of their ideal completion time.

Low-priority applications also complete within their QoS constraints, in most cases,

but experience higher performance degradations than high priority workloads.

Large-scale experiments: Figure 6.6 compares the performance of the different

schedulers for the large-scale scenario. While Paragon without ARQ only preserves

QoS for 61% of workloads, introducing admission control increases that fraction to

83%. Additionally, it bounds degradation to less than 10% for 99% of workloads.

This shows that the protocol scales well with the number of servers and applications,

CHAPTER 6. ARQ 131

Alone on Best Platform
No Heterogeneity

No Interference
Least Loaded

Paragon
Paragon + ARQ

0 1000 2000 3000 4000 5000 6000 7000 8000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
e
d
u
p

o
ve

r
A

lo
n
e

o
n

B
e
s
t
P

la
tf
o
rm

Oversubscribed

Figure 6.6: Performance for the different schedulers in the oversubscribed scenario
on 1,000 EC2 machines.

while maintaining overheads similar to the ones for the small-scale experiments.

6.6 Related Work

We discuss work related to ARQ in terms of admission control in computer systems

and analysis of multi-class queueing networks.

Admission control systems: A lot of work has highlighted the importance of ad-

mission control in computer systems, including datacenters (DCs). Cherkasova et

al. [59, 60] propose a predictive and a session-based admission control scheme re-

spectively for overloaded web servers. The schemes monitor the utilization and QoS

achieved at runtime and preemptively adjust the admission policy to more or less ag-

gressive, such that QoS is preserved. In the same spirit, Bartolini et al. [33] propose a

self-configurable overload control policy that adjusts the rate of admitted sessions to

preserve SLAs and improve utilization. Liu et al. [178] propose an adaptive scheme

based on queueing theory to control the performance of multi-tier web applications.

Carlstrom et al. [47] also design a session-based admission control protocol for web

servers that leverages generalized processor sharing (GPS) [211] to maximize a reward

function that corresponds to the rate of completed jobs. Similarly, Salehi et al. [227]

propose a preemption-aware admission control system for virtualized systems, where

CHAPTER 6. ARQ 132

the system services both internal and external requests, with the internal requests

having preemptive priority over external requests. The scheme maximizes the rate

of admitted requests, subject to preserving per-application SLAs. Cheng et al. [58]

also divide the application space to high and low-priority workloads and partition the

server’s capacity to service workloads with different priorities. The authors propose

a threshold-based admission control algorithm where thresholds depend on the appli-

cation’s priority, and rewards are higher for critical versus non-critical applications.

Finally, Guitart et al. [128] consider the problem of admission control in the context

of a secure web application and propose an adaptive overload control strategy based

on SSL connection differentiation.

Techniques such as predictive admission control [59, 178], protection against DoS

attacks, or schemes that additionally account for application security at admission

control [128], are orthogonal to the design of ARQ, and can be incorporated in the

scheme if the corresponding functionality is desired.

Multi-class queueing networks: Multiclass queueing networks have applications

in a wide spectrum of systems ranging from banks, to product lines and network sys-

tems. Miller [192] analyzes a multi-class queueing network that optimizes the rewards

obtained by accepting or rejecting customers in a system with multiple customer

classes. Bertsimas et al. [39] study the distribution of steady-state queue lengths

for a multi-class markovian queueing network and propose a methodology based on

Lyapunov functions for the performance analysis of MCs with infinite states, includ-

ing multi-class queueing networks. Kulkarni et al. [164] examine an admission control

protocol for multi-class traffic with service priorities in high-speed networks. They as-

sign different size buffers to each class and derive policies to guarantee per-class QoS.

Stolyar [251] discusses the stability of multi-class queueing networks, whose stochastic

process is a continuous time MC. He shows that the sequence of underlying stochastic

processes converges to a fluid process with sample paths defined as fixed points of a

special operator and defines the conditions under which the network is stable. In the

same context, Chen [56] studies the fluid approximation and stability of a multi-class

queueing network.

CHAPTER 6. ARQ 133

Gurvich [133] provides an overview of the design and control of multi-class queue-

ing networks (M/M/N queues with multiple types of customers and many servers).

He analyzes the V-Model of skills-based routing, and examines how different customer

classes are scheduled to servers and how many servers are required to minimize staffing

and waiting costs. Sethuraman et al. [235] propose that globally optimal scheduling

for a multi-class system with parallel queues reduces to finding the optimal routing

matrix under the assumption that the optimal sequencing strategy for each server is

a simple static priority policy. Atar et al. [22] also consider asymptotic optimality in

a multi-class queueing system with many exponential servers, under the presence of

heavy traffic.

In the context of computer systems, Gemikonakli et al. [111] model the perfor-

mance of a virtualized server using a multi-class M/M/1 queueing model, where

applications of different rates arrive in each queue. They analyze the stability, back-

log and throughput of the system using an MC model. In a system that resembles

a multi-class queue, Yolken et al. [286] propose a game-based capacity allocation

system, where each client receives service rate proportional to the bid on resources

he submitted to the system operator. Each client has a flow of jobs and although

applications are serviced in a FCFS manner, service rates vary across jobs.

6.7 Conclusions

We have presented ARQ, a QoS-aware admission control protocol for heterogeneous

datacenters. ARQ divides applications to classes based on their resource quality re-

quirements and queues them separately in a multi-class network. ARQ is derived from

validated queueing models, and it improves system throughput by reducing applica-

tion waiting time, and diverging workloads to different queues when necessary. In an

oversubscribed scenario with 8,500 applications on 1,000 servers, 99% of workloads

experience less than 10% degradation compared to 79% of workloads without ARQ.

Chapter 7

Tarcil: Reconciling Scheduling

Speed and Quality in Large Shared

Clusters

7.1 Introduction

In the previous chapters we have presented practical systems that accurately deter-

mine the resource requirements of new, previously-unknown cloud applications. Once

these requirements are identified, the cluster scheduler must decide where in a cluster

to place a new workload. The large size of these clusters (up to tens of thousands of

servers) and the high arrival rate of jobs (up to millions of tasks per second) make

cluster scheduling quite challenging. The scheduler must determine which specific

hardware resources, e.g., servers and cores, should be used by each job. Ideally,

scheduling decisions lead to three desirable properties. First, each workload receives

resources that enable it to achieve predictably high performance. Second, jobs are

packed tightly on available servers, achieving high cluster utilization. Third, deci-

sions introduce minimal scheduling overheads, allowing the scheduler to handle large

clusters and high job arrival rates.

Recent research on cluster scheduling can be examined along two dimensions;

scheduling concurrency (throughput) and scheduling speed (latency).

134

CHAPTER 7. TARCIL 135

With respect to scheduling concurrency, there are two groups of work. In the first

scheduling is serialized, with a centralized scheduler making all decisions [149, 79]. In

the second group, decisions are parallelized through two-level, distributed or shared-

state designs. Two-level schedulers, such as Mesos and YARN, use a centralized

coordinator to divide resources between frameworks like Hadoop and MPI [139, 267].

Each framework uses its own scheduler to assign resources to incoming tasks. Since

neither the coordinator nor the framework schedulers have a complete view of the

cluster state and all task characteristics, scheduling is suboptimal [232]. Shared-state

schedulers like Omega [232] allow multiple schedulers to concurrently access the whole

cluster state using atomic transactions. Finally, Sparrow uses multiple concurrent,

stateless schedulers to sample and allocate resources [209].

With respect to the speed at which scheduling decisions happen, there are again

two groups of work. The first group examines most of (or all) the cluster state to

determine the most suitable resources for incoming tasks, in a way that addresses

the performance impact of hardware heterogeneity and interference in shared re-

sources [76, 120, 186, 200, 285, 296]. For instance, Quasar [79] uses classification

to determine the resource preferences of incoming jobs. Then, it uses a greedy sched-

uler to search the cluster state for resources that meet the application’s demands on

servers with minimal contention. Similarly, Quincy [149] formulates scheduling as a

cost optimization problem that accounts for preferences with respect to locality, fair-

ness and starvation-freedom. Such schedulers make high quality decisions that lead to

high application performance and high cluster utilization. Unfortunately, they need

to greedily inspect the cluster state on every scheduling event. Their decision over-

head can be prohibitively high for large clusters, and in particular for the very short

jobs of real-time analytics (100ms - 10s) [209, 288]. Using multiple greedy schedulers

improves scheduling throughput but not latency, and terminating the greedy search

early typically lowers the decision quality, especially at high cluster loads.

The second group improves the speed of each scheduling decision by only examin-

ing a small number of machines. Sparrow reduces scheduling latency through resource

sampling [209]. The scheduler examines the state of two randomly-selected servers

for each required core and selects the one that becomes available first. While Sparrow

CHAPTER 7. TARCIL 136

0 20 40 60 80 100
Performance norm. to Ideal (%)

0.00

0.05

0.10

0.15

0.20

F
ra

c
ti
o
n
 o

f
J
o
b
s Short

Medium
Long

Figure 1a: Sampling-based scheduling.

0 20 40 60 80 100
Performance norm. to Ideal (%)

0.00

0.05

0.10

0.15

0.20

F
ra

c
ti
o
n
 o

f
J
o
b
s Short

Medium
Long

Figure 1b: Centralized scheduling.

0 20 40 60 80 100
Performance norm. to Ideal (%)

0.00

0.05

0.10

0.15

0.20

F
ra

c
ti
o
n
 o

f
J
o
b
s Short

Medium
Long

Figure 1c: Tarcil.

Figure 7.1: Distribution of job performance on a 200-server cluster with concurrent,
sampling-based [209] and centralized greedy [76] schedulers and Tarcil for three sce-
narios: 1) short, homogeneous Spark [288] tasks (100ms average duration), 2) Spark
tasks of medium duration (1s–10s), and 3) long Hadoop analytics tasks (10s–10min).
The ideal performance (100%) assumes no scheduling overheads and no performance
degradation due to interference. The cluster utilization is 80%.

CHAPTER 7. TARCIL 137

improves scheduling speed, its decisions can be poor because it ignores the hetero-

geneity and interference preferences of jobs. Typically concurrent schedulers follow

sampling schemes, while centralized systems are paired with sophisticated scheduling

algorithms.

Figure 7.1 illustrates the tradeoff between scheduling speed and quality. Fig-

ure 7.1a shows the probability distribution function (PDF) of application performance

for three scenarios of variable job duration using Sparrow [209] on a 200-server EC2

cluster. For very short jobs (100ms), fast scheduling allows most workloads to achieve

80% to 95% of the ideal performance on this cluster. In contrast, jobs with medium

(1s–10s) or long duration (10s–1min) suffer significant degradation and achieve 50%

to 30% of ideal performance. As duration increases, jobs become more heterogeneous

in their resource requirements (e.g., preference for high-end cores), and interference

between jobs sharing a server matters. In contrast, the scheduling decision speed is

not as critical.

Figure 7.1b shows the PDF of job performance using the Quasar scheduler that

accounts for heterogeneity and interference [79]. The centralized scheduler leads to

near-optimal performance for long jobs. In contrast, medium and short jobs are

penalized by the latency of scheduling decisions, which can exceed the execution time

of the shortest jobs. Even if we use multiple schedulers to increase the scheduling

throughput [232], the per-job overhead remains prohibitively high.

We propose Tarcil, a scheduler that achieves the best of both worlds: high qual-

ity and high speed decisions, making it appropriate for large, highly-loaded clusters

that host both short and long jobs. Similar to Quasar [76, 79], Tarcil starts with

rich information on the resource preferences and interference sensitivity of incoming

jobs. Similar to Sparrow [209], it uses sampling to avoid examining the whole cluster

state on every decision. However, there are two key differences in Tarcil’s architec-

ture. First, Tarcil uses sampling not merely to find available resources but to identify

resources that best match a job’s resource preferences. The sampling scheme is de-

rived using analytical methods that provide statistical guarantees on the quality of

scheduling decisions. Tarcil additionally adjusts the sample size dynamically based

on the quality of available resources. Second, Tarcil uses admission control to avoid

CHAPTER 7. TARCIL 138

scheduling a job that is unlikely to find appropriate resources. To handle the tradeoff

between long queueing delays and suboptimal allocations, Tarcil uses a small amount

of coarse-grain information on the quality of available resources.

We use two clusters of 100 and 400 servers on Amazon EC2 to show that Tar-

cil leads to low scheduling overheads and predictably high performance for a wide

range of workload scenarios. For a heavily-loaded, heterogeneous cluster running

short Spark jobs, Tarcil improves average performance by 41% over Sparrow [209],

with some jobs running 2-3x faster. For a cluster running a wide range of applications

from short Spark tasks to long Hadoop jobs and low-latency services, Tarcil achieves

near-optimal performance for 92% of jobs, in contrast with only 22% of jobs with

a distributed, sampling-based scheduler and 48% with a centralized greedy sched-

uler [79]. Finally, Figure 7.1c, shows that Tarcil enables close to ideal performance

for the vast majority of jobs of the three scenarios.

7.2 Background

Our work draws from related efforts to improve scheduling speed and quality in large,

shared datacenters:

Concurrent scheduling:

Scheduling becomes a bottleneck for clusters with thousands of servers and high

workload churn. An obvious solution is to schedule multiple jobs in parallel [139, 232].

We assume a structure similar to Google’s Omega [232], where multiple scheduling

agents can access the whole cluster state. As long as these agents rarely attempt

to assign work to the same servers (infrequent conflicts), they proceed concurrently

without additional delays. Section 7.5 discusses conflict resolution.

Sampling-based scheduling:

Based on results from randomized load balancing [193, 212], we can design sampling-

based cluster schedulers [52, 91, 209]. Sampling the state of just a few servers reduces

CHAPTER 7. TARCIL 139

the latency of scheduling decisions and the probability of conflicts between concurrent

scheduling agents, and is likely to find available resources in lightly- or medium-

loaded clusters. The recently-proposed Sparrow scheduler uses batch sampling and

late binding [209]. Batch sampling examines the state of two servers for each of m

required cores by an incoming job and selects the m best cores. If the selected cores

are busy, tasks are queued locally in the sampled servers and assigned to the machine

where resources become available first. In our evaluation we compare Tarcil with

Sparrow.

Heterogeneity & interference-aware scheduling:

Hardware heterogeneity occurs in large clusters because servers are populated and re-

placed over time [76, 285]. Moreover, the performance of tasks sharing a server may

degrade significantly due to interference on shared resources such as caches, memory

and I/O channels [76, 120, 186, 204]. A scheduler can improve task performance

significantly by taking into consideration its resource preferences. For instance, a

particular task may perform much better on 2.3GHz Ivy-Bridge cores compared to

2.6GHz Nehalem cores, while another task may be particularly sensitive to interfer-

ence from cache-intensive workloads executing on the same server.

The key challenge in heterogeneity and interference-aware scheduling is knowing

the preferences of incoming jobs. We start with a system like Quasar that automat-

ically estimates resource preferences and interference sensitivity [76, 79]. Quasar

profiles each incoming job for a few seconds on two server types, while two mi-

crobenchmarks place pressure on two shared resources. The sparse profiling sig-

nal on resource preferences is transformed into a dense signal using collaborative

filtering [43, 161, 219, 281]. Collaborative filtering projects the signal against all in-

formation available from previously-run jobs, identifying similarities in resource and

interference preferences. These include examples such as the preferred core frequency

and cache size for a job or the memory and network contention it generates. Quasar

performs profiling and collaborative filtering online. We perform this analysis offline,

given that workloads like real-time analytics are repeated multiple times, potentially

over different data (e.g., daily or hourly).

CHAPTER 7. TARCIL 140

7.3 The Tarcil Scheduler

7.3.1 Overview

Tarcil is a shared-state scheduler that allows multiple, concurrent agents to operate

on the cluster state [232]. In this section, we describe the operation of a single agent.

The scheduler processes incoming workloads as follows. Upon submission, Tarcil

first looks up the job’s resource and interference sensitivity preferences [76, 79]. This

information provides estimates of the relative performance on the different server plat-

forms, as well as estimates of the interference the workload can tolerate and generate

in shared resources (caches, memory, I/O channels). Next, Tarcil performs admission

control. Given statistics on the cluster state, it determines whether the scheduler is

likely to quickly find resources of satisfactory quality for a job, or whether it should

queue it for a while. Admission control is useful when the cluster is highly loaded.

A queued application waits until it has a high probability of finding appropriate re-

sources or until a queueing-time threshold is reached. Tarcil maintains coarse-grained

statistics on available resources for admission control decisions. These statistics are

updated as jobs begin and end execution.

For admitted jobs, Tarcil performs sampling-based scheduling with the sample size

adjusted to satisfy statistical guarantees on the quality of allocated resources. The

scheduler also uses batch sampling if a job requests multiple cores. Tarcil examines

the quality of sampled resources to select those best matching the job’s preferences.

It additionally monitors the performance of running jobs. If a job runs significantly

below its expected performance, the scheduler adjusts the scheduling decisions. This

is useful for long-running workloads; for short jobs, the initial scheduling decision

determines performance with little space for adjustments.

7.3.2 Analytical Framework

We use the following framework to design and analyze sampling-based scheduling in

Tarcil.

Resource unit (RU): Tarcil manages resources at RU granularity using Linux

CHAPTER 7. TARCIL 141

containers [66]. Each RU consists of one core and an equally partitioned fraction of

the server’s memory and storage capacity and the provisioned network bandwidth.

For example, a server with 16 cores, 64GB DRAM, 480GB of Flash and a 10GE

NIC has 16 RUs, each with 1 core, 4 GB DRAM, 30GB of Flash and 625ME of

network bandwidth. Because all our experiments are on public cloud providers where

the network topology is unknown, in our evaluation we do not partition network

bandwidth.

RU quality: The utility an application can extract from an RU depends on the

hardware type (e.g., 2GHz vs 3GHz core) and the interference on shared resources

from other jobs on the same server. Classification [76, 79] obtains the interference

preferences of an incoming job using a small set of microbenchmarks to inject pressure

of increasing intensity (from 0 to 99%) on one of ten shared resources of interest [74].

Interference preferences capture, first, the amount of pressure ti a job can tolerate in

each shared resource i (i ∈ [1, N]), and second, the amount of pressure ci it itself will

generate in the same resource. High values of ti or ci imply that a job will tolerate or

cause a lot of interference on resource i. ti and ci take values in [0, 99]. In most cases,

jobs that cause a lot of interference in a resource are also sensitive to interference

on the same resource. Hence, to simplify the rest of the analysis we assume that

ti = 99 − ci and express resource quality as a function of caused interference in an

RU.

Let W be an incoming job and VW the vector of interference it will cause in the

N shared resources, VW = [c1, c2, ..., cN]. To capture the fact that different jobs are

sensitive to interference on different resources [186], we reorder the elements of VW

by decreasing value of ci and get V ′
W = [cj, ck, ..., cn], with cj > ck > ... > cn. Finally,

we obtain a single value for the resource requirements of W using an order-preserving

encoding scheme that transforms V ′
W to a concatenation of its elements:

VWenc
= cj · 10(2·(N−1)) + ck · 10(2·(N−2)) + ...+ cn (7.1)

For example if V ′
W = [84, 31] then VWenc

= 8431. The expression above is provably

the most dense encoding that preserves the full entropy of the values of vector V ′
W

and their ordering, for general V ′
W . Finally, for simplicity we normalize VWenc

in [0, 1]

CHAPTER 7. TARCIL 142

0.0 0.2 0.4 0.6 0.8 1.0
Q

0.0

0.2

0.4

0.6

0.8

1.0

R
e

s
o

u
rc

e
 Q

u
a

lit
y
 C

D
F

TW = 0.3

Poor

Good P
e

rf
e

c
t

0.0 0.2 0.4 0.6 0.8 1.0
Q

0.0

0.2

0.4

0.6

0.8

1.0

R
e

s
o

u
rc

e
 Q

u
a

lit
y
 C

D
F

TW = 0.8

G
o

o
d

Poor

P
e
rf

e
c
t

Figure 7.2: Distribution of resource quality Q for two workloads with TW = 0.3
(left) and TW = 0.8 (right).

and derive the target resource quality for job W :

TW =
VWenc

102N − 1
, TW ∈ [0, 1] (7.2)

A high value for the quality target TW implies that job W is resource-intensive. Its

performance will depend a lot on the quality of the scheduling decision.

We now need to find RUs that closely match this target quality. To determine if

an available resource unit H is appropriate for job W , we calculate the interference

caused on this RU by all other jobs occupying RUs on the same server. Assuming M

resource units in the server, the total interference H experiences on resource i is:

Ci =

∑

m 6=H ci

M − 1
(7.3)

Starting with vector VH = [C1, C2, ..., CN] for H and using the same reordering

and order-preserving encoding as for TW , we calculate the quality of resource H as:

UH = 1− VHenc

102N − 1
, UH ∈ [0, 1] (7.4)

The higher the interference from colocated tasks, the lower UH will be. Resources

with low UH are more appropriate for jobs that can tolerate a lot of interference and

vice versa.

Comparing UH for an RU against TW allows us to judge the quality of resource

H for incoming job W :

CHAPTER 7. TARCIL 143

n=8 n=16 n=32 n=64

0.0 0.2 0.4 0.6 0.8 1.0
Q

0.2

0.4

0.6

0.8

1.0

R
e
s
o
u
rc

e
 Q

u
a
lit

y
 C

D
F

0.0 0.2 0.4 0.6 0.8 1.0
Q

10-6
10-5
10-4
10-3
10-2
10-1
100

R
e
s
o
u
rc

e
 Q

u
a
lit

y
 C

D
F

Figure 7.3: Resource quality CDFs under the uniformity assumption in linear and
log scale for sample size R=8, 16, 32 and 64.

Q =

{

1− (UH − TW) , if UH ≥ TW

TW − UH , if UH < TW

(7.5)

If Q equals 1, we have an ideal assignment with the server tolerating as much

interference as the new job generates. If Q is within [0, TW], selecting RU H will

degrade the job’s performance. If Q is within [TW , 1), the assignment will preserve

the workload’s performance but is suboptimal. It would be better to assign a more

demanding job on this resource unit.

Resource quality distribution: Figure 7.2 shows the distribution of Q for a 100-

server cluster with ∼800 RUs (see Section 7.6 for cluster details) and one hundred,

10-min Hadoop jobs as resident load (50% cluster utilization). For a non-demanding

new job with TW = 0.3 (left), there are many appropriate RUs at any point in time.

In contrast, for a demanding job with TW = 0.8, only a small number of resources

will lead to good performance. Obviously, the scheduler must adjust the sample size

for incoming jobs based on TW .

7.3.3 Sampling-based Scheduling with Guarantees

We can now derive the sample size that provides statistical guarantees on the quality

of scheduling decisions.

Assumptions and analysis: To make the analysis independent of cluster load,

we make Q an absolute ordering of RUs in the cluster. Starting with equation (5),

CHAPTER 7. TARCIL 144

0.0 0.2 0.4 0.6 0.8 1.0
Q

0.2

0.4

0.6

0.8

1.0

R
e

s
o

u
rc

e
 Q

u
a

lit
y
 C

D
F unif.(8)

unif.(16)

unif.(32)

unif.(64)

n=8

n=16

n=32

n=64

0.0 0.2 0.4 0.6 0.8 1.0
Q

10-6
10-5
10-4
10-3
10-2
10-1
100

R
e

s
o

u
rc

e
 Q

u
a

lit
y
 C

D
F

Figure 7.4: Comparison of resource quality CDFs under the uniformity assumption,
and as measured in a 100-server cluster.

we sort RUs based on Q for incoming job W , breaking any ties in quality with a

fair coin, and distribute them uniformly in [0, 1], i.e., for NRU total RUs, Q(i) =

i/(NRU − 1), i ∈ [0, NRU − 1]. Because Q is now a probability distribution function of

resource quality, we can derive the sample size in the following manner.

Assume that the scheduler samples R RU candidates for each RU needed by

an incoming workload. If we treat the qualities of these R candidates as random

variables Qi (Q1, Q2, ..., QR ∼ U [0, 1]) that are uniformly distributed by construction

and statistically independent from each other (i.i.d), we can derive the distribution

of quality Q after sampling. The cumulative distribution function (CDF) of the

resource quality of each candidate is: FQi
(x) = Prob(Qi ≤ x) = x, x ∈ [0, 1]1. Since

the candidate with the highest quality is selected from the sampled set, its resource

quality is the random variable A = max{Q1, Q2, ..., QR}, and its CDF is:

FA(x) = Prob(A ≤ x) = Prob(Q1 ≤ x ∧ ... ∧QR ≤ x)

= Prob(Qi ≤ x)R = xR, x ∈ [0, 1] (6)

This implies that the distribution of quality after sampling only depends on the

sample size R. Figure 7.3 shows CDFs of resource quality distributions under the

uniformity assumption, for sample sizes R = {8, 16, 32, 64}. The higher the value of

R, the more skewed to the right the distribution is, hence the probability of finding

only candidates of low quality quickly diminishes to 0. For example, for R = 64 there

1This assumes Qi to be continuous variables, although in practice they are discrete. This makes
the analysis independent of the cluster size NRU . The result holds for the discretized version of the
equation.

CHAPTER 7. TARCIL 145

is a 10−6 probability that none of the sampled RUs will have resource quality of at

least Q = 80% (Prob(Q < 0.8| ∀ RU) = 10−6).

Figure 7.4 validates the uniformity assumption on a 100-server EC2 cluster running

short Spark tasks (100msec ideal duration) and longer Hadoop jobs (1-10min). The

cluster load is 70-75% (see methodology in Section 7.6). In all cases, the deviation

between the analytically derived and measured distributions of Q is minimal, which

shows that the analysis above holds in practice. In general, the larger the cluster, the

more closely the quality distribution approximates uniformity.

Large jobs: For jobs that need multiple RUs, Tarcil uses batch sampling [209,

212]. For m requested units, the scheduler samples R · m RUs and selects the m

best among them as shown in Figure 7.5a. Some applications experience locality

between sub-tasks or benefit from allocation of all resources in a small set of machines

(e.g., within a single rack). In such cases, for each sampled RU, Tarcil examines its

neighboring resources and makes a decision based on their aggregate quality as shown

in Figure 7.5b. Alternatively, if a job prefers distributing its resources across machines

the scheduler will allocate RUs in different machines, racks and/or cluster switches,

assuming knowledge of the cluster’s topology. Placement preferences for reasons such

as security [237] can also be specified in the form of attributes at submission time by

the user.

Sampling at high load: Equation (6) estimates the probability of finding near-

optimal resources accurately when resources are not scarce. When the cluster operates

at high load, we must increase the sample size to guarantee the same probability of

finding a candidate of equally high quality, as when the system is unloaded. Assume

a system with NRU = 100 RUs. Its discrete CDF is FA(x) = P [A ≤ x] = x , x =

0, 0.01, 0.02, ..., 1. For sample size R, this becomes: FA(x) = xR, and a quality target

of Pr[Q < 0.8] = 10−3 is achieved with R = 32. Now assume that 60% of the RUs

are already busy. If, for example, only 8 of the top 20 candidates for this task are

available at this point, we need to set R s.t. Pr[Q < 0.92] = 10−3, which requires a

sample size of R = 82. Hence, the sample size for a highly loaded cluster can be quite

high, degrading scheduling latency. In the next section, we introduce an admission

control scheme that bounds sample size and scheduling latency, while still allocating

CHAPTER 7. TARCIL 146

…

…

…

RUA

 Job A B

RUB

(R = 4)

x x
x

x

x
x

x x

x

x
x

x
x

x x

x
x x

x

x

x
x

x

x

x
x

Scheduler

Scheduler

…

x
x

Scheduler

…

x x
x

x

x
x

x x

x x

x

x
A1 A2

x
x

x

x
x

 Job

(R = 4)

Scheduler

Scheduler

…

Scheduler
…

…

x

x
x

x
x

x x
x

x

x
x

Figure 7.5: Batch sampling in Tarcil with sample size R = 4 for (a) a job with
two independent tasks A and B, and (b) a job with two subtasks A1 and A2 that
exhibit locality. x-marked RUs are already allocated, striped RUs are sampled, and
solid black RUs are allocated to the incoming job after sampling.

high quality resources.

7.4 Admission Control

7.4.1 Pre-scheduling Queueing

When available resources are plentiful, jobs are immediately scheduled using the

sampling scheme described in Section 7.3. However, when load is high, the number

of resources of sufficient quality may be very small and the sample size needed to find

them can become quite large. Tarcil employs a simple admission control scheme that

queues jobs until resources of proper quality become available and estimates how long

an application should wait at admission control.

A simple indication to trigger job queueing is the count of available RUs in the

cluster. This, however, does not yield sufficient insight into the quality of available

RUs. If most RUs have poor quality for an incoming job, it may be better for it to

CHAPTER 7. TARCIL 147

wait. Unfortunately, a näıve quality check involves accessing the state of the whole

cluster, which would introduce prohibitive overheads. Instead, we maintain a small

amount of coarse-grain information which allows for a fast check. We leverage the

information on contention scores that is already maintained for each RU to construct

a contention score vector [C1C2 ... CN] from the resource contention Ci it experiences

in each of its resources, due to interference from neighboring RUs. We use locality

sensitive hashing (LSH) based on random selection to hash these vectors into a small

set of buckets [19, 53, 219]. LSH computes the cosine distance between vectors and

assigns RUs with similar contention scores in the respective resources to the same

bucket. We also separate RUs by platform type to account for heterogeneity. We

only keep a single count of available RUs for each bucket. The hash for an RU (and

the counter of the corresponding bucket) needs to be recalculated upon instantiation

or completion of a job in an RU. Updating the per-bucket counters is a fast operation,

out of the critical path for scheduling. Note that excluding updates in RU status,

LSH is only performed once.

Admission control works as follows. We check the bucket(s) that correspond to the

resources with quality that matches the incoming job’s preferences. If these buckets

have counters close to the number of RUs the job needs, the application is queued.

Queued applications wait until the probability that resources are freed increases or

until an upper bound for waiting time is reached. To estimate waiting time, Tarcil

records the rate at which RUs of each bucket became available in recent history.

Specifically, it uses a simple feedback loop to estimate when the probability that

an appropriate RU exists approximates 1 for a target bucket. The distribution is

updated every time an RU from that bucket is freed. Tarcil also sets an upper bound

for waiting time at µ+ 2 · σ, where µ and σ are the mean and standard deviation of

the corresponding “time-until-free” PDF. If the estimated waiting time is less than

the upper bound, the job waits for resources to be freed; otherwise it is scheduled

to avoid excessive queueing. Although admission control adds some complexity, in

practice it only delays workloads at very high cluster utilizations (over 80%-85%).

Validation of waiting time estimation: Figure 7.6 shows the probability that

CHAPTER 7. TARCIL 148

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

P
r[
∃

ap
pr

op
ria

te
 R
U

]

Bucket A
Bucket B
Bucket C

Figure 7.6: Actual and estimated (dot) probability for a target RU to exist as a
function of waiting time for three buckets.

a desired RU will become available within time t for different buckets for a heteroge-

neous 100-server EC2 cluster running short Spark tasks and longer Hadoop jobs. The

cluster utilization is approximately 85%. We show the probabilities for r3.2xlarge

(8 vCPUs) instances with CPU contention (A), r3.2xlarge instances with network

contention (B), and c3.large (2 vCPUs) instances with memory contention (C). The

distributions are obtained from recent history and vary across buckets. The dot in

each line shows the estimated waiting time by Tarcil, which closely approximates the

measured time for an appropriate RU to be freed (less than 8% deviation on aver-

age). In all experiments, we use 20 buckets, and history of the past 2 hours, which

was sufficient to make accurate estimations of available resources. The number of

buckets and/or history length may vary for different systems.

7.4.2 Post-scheduling Queueing

A job that exceeds the upper bound on queueing may still require a high sample size.

To avoid excessive scheduling overheads, we cap the sample size at 32 and instead

use late binding on the sampled servers until resources become available [209]. If the

best two of the 32 sampled RUs are currently busy, the job is locally queued in both

until the first RU is freed and is subsequently removed from the queue of the second

RU. Note that local queueing is unlikely in practice.

CHAPTER 7. TARCIL 149

7.5 Tarcil Implementation

7.5.1 Tarcil Components

Figure 7.7 shows the components of the scheduler. Tarcil is a distributed, shared-state

scheduler and, unlike Quincy or Mesos, it does not have a central coordinator [139,

149]. Scheduling agents work in parallel, are load-balanced by the cluster front-end,

and each agent has a local copy of the shared server state, which contains the list and

status of all RUs in the cluster.

Since all schedulers have full access to the cluster state, conflicts are possible. Con-

flicts between agents are resolved using lock-free optimistic concurrency as discussed

in [232]. The system maintains one resilient master copy of state. Each scheduling

agent has a local copy of this state which is updated frequently. When an agent

makes a scheduling decision it attempts to update the master copy of the state us-

ing an atomic write operation. While an agent performs this action no other agent

can update these resources in the master copy. Once the commit is successful the

resources are yielded to the corresponding agent. Any other agent with conflicting

decisions needs to resample resources. The local copy of state of each agent is peri-

odically synced (every 5-10sec) with the master. The timing of the updates includes

a small random seed such that not all agents update their state at exactly the same

time, making the master the bottleneck. When the sample size is small, decisions of

scheduling agents rarely overlap and each scheduling action is fast (∼ 10− 20ms, for

a 100-server cluster and R = 8, over an order of magnitude faster than centralized

approaches). When the number of sampled RUs increases beyond R = 32 for very

large jobs, conflicts can become more frequent, which we resolve using incremental

transactions on the non-conflicting resources [232]. In the event where one scheduling

agent crashes, an idle cluster server resumes its role, once it has obtained a copy of

the master state.

Each worker server has a local monitor module that handles scheduling requests,

federates resource usage in the server, and updates the quality of RUs. When a

new task is assigned to a server by a scheduling agent, the monitor updates the

status of the RU in the master copy and notifies the scheduling agent and admission

CHAPTER 7. TARCIL 150

W
o

rk
e

r

W
o

rk
e

r
W

o
rk

e
r

W
o

rk
e

r

…

…

Lo
ca

l
m

o
n

it
o

r
Lo

ca
l

m
o

n
it

o
r

Lo
ca

l
m

o
n

it
o

r
Lo

ca
l

m
o

n
it

o
r

Lo
a

d
 m

o
n

it
o

r

A
d

m
is

si
o

n
 c

o
n

tr
o

l

Le
g

e
n

d

Lo
ca

l
ta

sk
 q

u
e

u
e

R
e

so
u

rc
e

 u
n

it
 R

U

W
o

rk
e

r
se

rv
e

r

S
ch

e
d

u
le

r

cl
u

st
e

r
st

a
te

 c
o

p
y

S
ch

e
d

u
li

n
g

 a
g

e
n

t

cl
u

st
e

r
st

a
te

 c
o

p
y

S
ch

e
d

u
li

n
g

 a
g

e
n

t

cl
u

st
e

r
st

a
te

 c
o

p
y

S
ch

e
d

u
li

n
g

 a
g

e
n

t

M
a

st
e

r
cl

u
st

e
r

st
a

te

S
e

rv
e

r

F
ig
u
re

7.
7:

T
h
e
d
iff
er
en
t
co
m
p
on

en
ts

of
th
e
sc
h
ed
u
le
r
an

d
th
ei
r
in
te
ra
ct
io
n
s.

E
ac
h
of

th
e
sc
h
ed
u
li
n
g
ag
en
ts

h
as

a
lo
ca
l
co
p
y
of

th
e
cl
u
st
er

st
at
e,

w
h
il
e
an

ad
d
it
io
n
al

se
rv
er

h
as

th
e
m
as
te
r
co
p
y
of

th
e
st
at
e,

fo
r
sc
h
ed
u
li
n
g
ac
ti
on

s.
E
ac
h
w
or
ke
r
se
rv
er

h
as

a
lo
ca
l
m
on

it
or

th
at

tr
ac
k
s
re
so
u
rc
e
u
sa
ge
,
an

d
h
an

d
le
s
sc
h
ed
u
li
n
g
re
q
u
es
ts
.

CHAPTER 7. TARCIL 151

control. Finally, a per-RU load monitor evaluates performance in real time. When

the monitor detects that a job’s performance deviates from its expected target, it

notifies the proper agent for a possible allocation adjustment. The load monitor also

notifies agents of CPU or memory saturation, which triggers resource autoscaling (see

Section 7.5.2).

We currently use Linux containers to partition servers into RUs [?]. Containers en-

able CPU, memory and I/O isolation. Each container is configured to a single core and

a fair share of the memory and storage subsystem, and the network bandwidth. Con-

tainers can be merged to accommodate multicore workloads, using cgroups. Virtual

machines (VMs) can also be used to enable workload migration [204, 269, 270, 283],

but would incur higher overheads.

Figure 7.8 traces a scheduling event. Once a job is submitted, admission control

evaluates whether it should be queued or not. Once the assigned scheduling agent sets

the sample size according to the job’s constraints, it samples the shared cluster state

for the required number of RUs. Sampling happens locally in each agent. The agent

computes the resource quality of sampled resources and selects the ones that should

be allocated to the job. The actual selection takes into account the resource quality

and platform preferences, as well as any locality preferences of a task. The agent then

attempts to update the master copy of the state. Upon a successful commit the agent

notifies the local monitor of the selected server(s) over RPC and launches the task in

the target RU(s). The local monitor notifies admission control, and the master copy

to update their state. Once the task completes, the local monitor issues RPCs that

update the master state and notify the agent and admission control; the scheduling

agent then informs the cluster front-end.

7.5.2 Adjusting Allocations

For short-running tasks, the quality of the initial assignment is particularly important.

For long-running tasks, we must also consider the different phases the program can

go through [163]. Similarly, we must consider cases where Tarcil makes a suboptimal

allocation due to inaccurate classification, deviations from fully random selection in

CHAPTER 7. TARCIL 152

Time

Admission

Control

Scheduling

Agent

Local

Monitor

Resource

Unit/s

Cluster

Frontend

sampleRU()

e
x
e

cTa
sk

()

computeQ()

selectRU()

Master

State Copy

Figure 7.8: Trace of a scheduling event in Tarcil.

the sampling process, or a compromise in resource quality at admission control. Tarcil

uses the per-server load monitor, i.e., a local daemon running in each RU, to measure

the performance of active workloads in real time. This can correspond to instructions

per second (IPS), packets per second or a high-level application metric, depending on

the application type. Tarcil compares this metric to any performance targets the job

provides or are available from previous runs of the same application. If there the job

is not satisfying its QoS constraints, the scheduler takes action. Since we are using

containers, the primary action we take is to avoid scheduling other jobs on the same

server. For scale-out workloads, the system also employs a simple autoscale service

which allocates more RUs (locally or not) to improve the job’s performance.

7.5.3 Fairness

Users can submit jobs with priorities. Jobs with higher priority will bypass others

at admission control and preempt lower-priority jobs during resource selection. Tar-

cil also allows the user to select between incremental scheduling, where tasks from

a job get progressively scheduled as resources become available and all-or-nothing

gang scheduling, where either all or no task from a job is scheduled. We leave the

experimental evaluation of priorities and other policies to future work.

CHAPTER 7. TARCIL 153

2 4 8 16 32 64
Sample Size R

0

50

100

150

200

250

S
a
m

p
lin

g
 T

im
e
 (

m
s
e
c
)

load=10%

load=20%

load=50%

load=80%

load=90%

2 4 8 16 32 64
Sample Size R

50

100

150

200

250

300

350

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
e
c
)

load=10%

load=20%

load=50%

load=80%

load=90%

Figure 7.9: Sensitivity of sampling overheads and response times to sample size.

7.6 Evaluation

7.6.1 Tarcil Analysis

We first evaluate Tarcil’s scalability and its sensitivity to parameters such as the

sample size and task duration.

Sample size: Figure 7.9 shows the sensitivity of sampling overheads and response

times to the sample size for homogeneous Spark jobs with 100msec duration and

cluster loads varying from 10% to 90% on the 110-server EC2 cluster. All machines

are r3.2xlarge memory-optimized instances (61GB of RAM). 10 servers are used by

the scheduling agents, and the remaining 100 machines serve incoming load. The

boundaries of the boxplots depict the 25th and 75th percentiles, the whiskers the 5th

and 95th percentiles and the horizontal line in each boxplot shows the mean. As

sample size increases, the overheads increase. Until R = 32 overheads are marginal

even at high loads, but they increase substantially for R ≥ 64, primarily due to the

overhead of resolving conflicts between the 10 scheduling agents used. Hence, we cap

sample size to R = 32 even under high load. Response times are more sensitive to

CHAPTER 7. TARCIL 154

Load 10%

Load 20%

Load 30%

Load 40%

Load 50%

Load 60%

Load 70%

Load 80%

Load 90%

0 5 10 15 20

Scheduling Agents

0

20

40

60

80

100
S

c
h
e
d
u
lin

g
 L

a
te

n
c
y
 (

m
s
e
c
)

0 5 10 15 20

Scheduling Agents

0

20

40

60

80

100

A
p
p
s
 t
h
a
t
m

e
e
t
Q

o
S

 (
%

)

Figure 7.10: Sensitivity to the number of concurrent scheduling agents. Figure 7.10a
shows the scheduling latency, and Figure 7.10b the fraction of jobs that meet QoS.

sample size. At low load, high quality resources are plentiful and increasing R makes

little difference to performance. As load increases, sampling with R = 2 or R = 4

is unlikely to find good resources. Sample size of R = 8 is optimal for both low and

high cluster loads, in this scenario.

Number of scheduling agents: We now examine how the number of agents that

perform concurrent scheduling actions affects the quality and latency of scheduling.

Figure 7.10a shows how scheduling latency changes as we increase the number of

scheduling agents. The cluster load varies again from 10% to 90%, and the load is

the same homogeneous Spark tasks with 100msec optimal duration, as before. We set

the sample size to R = 8, which was the optimal, based on the previous experiment.

When the number of schedulers is very small (below 3), latency suffers at high loads

due to limited scheduling parallelism. As the number of agents increases latency

drops, until 12 agents. Beyond that point, latency slowly increases due to increasing

conflicts among agents. For larger cluster sizes, the same number of agents would

not induce as many conflicts. Figure 7.10b shows how the fraction of tasks that meet

QoS changes as the number of scheduling agents increases. As previously seen, if the

number of agents is very small, many jobs experience increased response times. As

more agents are added, the vast majority of jobs meet their QoS until high cluster

loads. When cluster load exceeds 80%, QoS violations are caused primarily due to

queueing at admission control, instead of limited scheduling concurrency. In general,

3 scheduling agents are sufficient to get the minimum scheduling latency; in following

CHAPTER 7. TARCIL 155

0 20 40 60 80 100
Utilization (%)

0

200

400

600

800

1000

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
e
c
)

Target

Mean

95th %ile

10-2 10-1 100 101 102 103
Job Duration (sec)

10-2

10-1

100

101

102

103

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
)

Target

Mean

95th %ile

Figure 7.11: Response times when (a) increasing cluster load, and (b) when de-
creasing task duration with constant load.

comparisons with Sparrow we use 10 agents to ensure a fair comparison, since Sparrow

uses a 10:1 worker to agent ratio.

Cluster load: Figure A.3a shows the average and 95th percentile response times

when we scale the cluster load in the 110-server EC2 cluster. The incoming jobs

are homogeneous Spark tasks with 100msec target duration. We increase the task

arrival rate to increase cluster load. The target performance of 100msec includes

no scheduling overheads or degradation due to suboptimal scheduling. The reported

response times include the task execution time and all overheads. The mean of

response times with Tarcil remains almost constant until loads over 85%. At very high

loads, admission control and the large sample size increase the scheduling overheads,

affecting performance. The 95th percentile is more volatile at high loads, but only

exceeds 250msec at cluster loads of 80% or higher. Tasks with very high response

times are typically those delayed by admission control until the wait-time threshold is

reached. Sampling itself adds marginal overheads until 90% load. At very high loads

scheduling overheads are dominated by queueing time and increased sample sizes.

Task duration: Figure A.3b shows the average and 95th percentile response times as

a function of task duration, which ranges from 10msec to 600sec. The cluster load is

80% in all cases. For long tasks the mean and 95th percentile closely approximate the

target performance. When task duration is below or close to 100msec, the scheduling

overhead dominates. Despite this, the mean and 95th percentile remain very close,

which shows that performance unpredictability is limited. For long jobs, configuring

and allocating large amounts of resources dominates the scheduling overheads, while

CHAPTER 7. TARCIL 156

Centralized Sparrow Tarcil Ideal

q1 q3 q4 q6 q9 q10 q12
0

500

1000

1500

2000

2500

3000

3500

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

0 500 1000 1500 2000
Scheduling Time (msec)

0

20

40

60

80

100

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty
 (

%
)

Centralized

Sparrow

Tarcil

(a) Initially unloaded cluster.

q1 q3 q4 q6 q9 q10 q12
0

500

1000

1500

2000

2500

3000

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

0 500 1000 1500 2000
Scheduling Time (msec)

0

20

40

60

80

100

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty
 (

%
)

Centralized

Sparrow

Tarcil

(b) Cluster with initial resident load.

q1 q3 q4 q6 q9 q10 q12
0

500

1000

1500

2000

2500

3000

3500

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

0 500 1000 1500 2000
Scheduling Time (msec)

0

20

40

60

80

100

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty
 (

%
)

Centralized

Sparrow

Tarcil

(c) Heterogeneous cluster with initial resident load.

Figure 7.12: Response times for different TPC-H query types (left) and CDFs of
scheduling overheads (right).

for large numbers of short tasks, queueing delay dominates.

7.6.2 Comparison with Other Schedulers

Methodology: We compare Tarcil to Sparrow [209] and Quasar [79]. Sparrow uses

multiple scheduling agents and sampling ratio of R = 2 servers for every core required,

as recommended in [209]. Quasar has a centralized greedy scheduler that searches

the cluster state with a scheduling timeout of 2 seconds. Sparrow does not take into

account heterogeneity or interference preferences for incoming jobs, while Tarcil and

Quasar do. We evaluate these schedulers on the same 110-server EC2 cluster with

CHAPTER 7. TARCIL 157

r3.2xlarge memory-optimized instances (61GB of RAM). 10 servers are dedicated to

the scheduling agents for Tarcil and Sparrow and a single server for Quasar. While

we could replicate Quasar’s scheduler for fault tolerance, it would not help with the

latency of each scheduling decision. Additionally, Quasar schedules applications at

job, not task, granularity (when applicable), which reduces its scheduling load. Unless

otherwise specified, Tarcil uses sample sizes of R = 8 during low load.

TPC-H workload

We compare the three schedulers on the TPC-H decision support benchmark.

TPC-H is a standard proxy for ad-hoc, low-latency queries that comprise a large

fraction of load in shared clusters. We use a similar setup as the one used to evaluate

Sparrow [209]. TPC-H queries are compiled into Spark tasks using Shark [94], a dis-

tributed SQL data analytics platform. The Spark plugin for Tarcil is 380 lines of code

in Scala. Each task triggers a scheduling request for the distributed schedulers (Tarcil

and Sparrow), while Quasar schedules jointly all tasks from the same computation

stage. We constrain tasks in the first stage of each query to the machines holding

their input data (3-way replication). All other tasks are unconstrained. We run each

experiment for 30 minutes, with multiple users submitting randomly-ordered TPC-

H queries to the cluster. The results discard the initial 10 minutes (warm-up) and

capture a total of 40k TPC-H queries and approximately 134k jobs. Utilization at

steady state is 75-82%.

Unloaded cluster: We first examine the case where TPC-H is the only workload

present in the cluster. Figure 7.12a shows the response times for seven representative

query types [293]. Response times include all scheduling overheads from sampling or

the greedy selection, and queueing. Boundaries show 25th and 75th percentiles and

whiskers the 5th and 95th percentiles. The ideal scheduler corresponds to a system

that identifies the resources of optimal quality (including heterogeneity and interfer-

ence preferences) with zero delay. Figure 7.12a shows that the centralized scheduler

experiences the highest variability in performance. Although some queries complete

CHAPTER 7. TARCIL 158

0 20 40 60 80 100
Tasks (%)

0

500

1000

1500

2000

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

Centralized

Sparrow

Tarcil

100
0 20 40 60 80 100

Requests (%)

0

500

1000

1500

2000

2500

3000

3500

L
a

te
n

c
y
 (

u
s
e

c
)

Centralized

Sparrow

Tarcil

0 100 200 300 400 500 600 700 800 900
Time (sec)

0

500

1000

1500

2000

2500

3000

9
9

th
 %

ile
 L

a
te

n
c
y
 (

u
s
e
c
)

Centralized

Sparrow

Tarcil

Figure 7.13: Performance of scheduled Spark tasks and resident memcached load
(aggregate and over time).

very fast because they receive high quality resources, most experience high schedul-

ing delays. To verify this, we also show the scheduling time CDF on the right of

Figure 7.12a. While Tarcil and Sparrow have tight bounds on scheduling overheads,

the centralized scheduler adds up to 2 seconds of delay (timeout threshold). Com-

paring the query performance using Sparrow and Tarcil, we see that the difference

is small, 8% on average. Tarcil approximates the ideal scheduler more closely, as

it accounts for each task’s resource preferences. Additionally, Tarcil constrains per-

formance unpredictability. The 95th percentile is reduced by 80%-2.4x compared to

Sparrow.

Cluster with resident load: The difference in scheduling quality becomes more

clear when we introduce cross-application interference. Figure 7.12b shows a setup

where 40% of the cluster is busy servicing background applications, including other

Spark jobs for machine learning processing, long Hadoop workloads, and latency-

critical services like memcached. These jobs are not being scheduled by the examined

schedulers. While the centralized scheduler still adds considerable overhead to each

job (Figure 7.12b, right), its performance is now comparable to Sparrow. Since Spar-

row does not account for sensitivity to interference, the response time of queries that

experience resource contention is high. Apart from average response time, the 95th

percentile also increases significantly (poor predictability). In contrast, Tarcil ac-

counts for resource preferences and only places tasks on machines with acceptable

interference levels. It maintains an average performance only 6% higher compared

to the unloaded cluster across query types. More importantly, it preserves the low

performance jitter by bounding the 95th percentile of response times.

CHAPTER 7. TARCIL 159

Heterogeneous cluster with resident load: Next, in addition to interference,

we also introduce hardware heterogeneity. The cluster size remains constant but

75% of the worker machines are replaced with less or more powerful servers, rang-

ing from general purpose medium and large instances to quadruple compute- and

memory-optimized instances. Figure 7.12c shows the new performance for the TPC-

H queries. As expected, response times increase, since some of the high-end machines

are replaced by less powerful servers. More importantly, performance unpredictability

increases when the resource preferences of incoming jobs are not accounted for. In

some cases (q9, q10), the centralized scheduler now outperforms Sparrow despite its

much higher scheduling overheads. Tarcil preserves response times close to those in

the unloaded cluster and very close to those achieved with the ideal scheduler.

Impact on Resident Memcached Load

Finally, we examine the impact of scheduling decisions on resident cluster load. In

the same heterogeneous cluster (110 nodes on EC2, 100 workers and 10 schedulers),

we place long-running memcached instances as resident load. These instances serve

read and write queries following the Facebook etc workload characteristics [23]. etc

is the large memcached deployment in Facebook, has a 3:1 read:write ratio, and a

value distribution between 1B and 1KB. Memcached occupies about 40% of the total

system capacity and has a QoS target of 200usec for the 99th percentile of response

latency.

The incoming jobs are homogeneous, short Spark tasks (100msec ideal duration,

20 tasks per job) that perform logistic regression. A total of 300k jobs are submitted

over 900 seconds. Figure 7.13a shows the response times of the Spark tasks for the

three schedulers. The centralized scheduler adds significant overheads, while Sparrow

and Tarcil lead to small overheads and behave similarly for 80% of the tasks. For

the remaining tasks, Sparrow increases response times significantly, as it is unaware

of the interference induced by memcached. Tarcil maintains low response times for

most tasks.

CHAPTER 7. TARCIL 160

It is also important to consider the impact on the memcached load. Figure 7.13b

shows the latency CDF of the memcached requests. The black diamond depicts the

QoS constraint of 200usec for the 99th request percentile. With Tarcil and the cen-

tralized scheduler, memcached does not suffer as both schedulers attempt to minimize

interference. Sparrow, however, leads to large latency increases for memcached. Even

though the performance of the short tasks is satisfactory, not accounting for resource

preferences has an impact on the longer jobs in the cluster. Finally, Figure 7.13c

shows how the 99th percentile of memcached requests changes throughout the execu-

tion of the experiment. Initially memcached meets its QoS for all three schedulers. As

the cluster becomes more loaded the tail latency increases significantly for Sparrow.

Note that a näıve coupling of Sparrow – for short jobs – with Quasar – for long

jobs – is inadequate for three reasons. First, Tarcil achieves higher performance for

short tasks because it accounts for their resource preferences. Second, even if the

long-running resident load was scheduled using Quasar, scheduling short tasks with

Sparrow would degrade its performance. Third, while the difference in execution

time achieved by Quasar and Tarcil for long jobs is small, scheduling overheads are

significantly reduced, without sacrificing the scheduling decision quality.

7.6.3 Large-Scale Evaluation

Methodology: We also evaluated Tarcil on a 400-server EC2 cluster with 10 server

types ranging from 4 to 32 cores. The total core count in the cluster is 4,178. All

servers are dedicated and managed only by the examined schedulers and there is no

external interference from other workloads.

We use applications including short Spark tasks, longer Hadoop jobs, stream-

ing Storm jobs [252], latency-critical services (memcached [170] and Cassandra [49]),

and single-server benchmarks (SPECCPU2006, PARSEC [40], etc.). In total, 7,200

workloads are submitted with 1 second inter-arrival times. These applications stress

different resources, including CPU, memory and I/O (network, storage). We mea-

sure job performance (from submission to completion), cluster utilization, scheduling

overheads and quality of allocation decisions.

CHAPTER 7. TARCIL 161

0 1000 2000 3000 4000 5000 6000 7000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
e
d
u
p
 n

o
rm

 t
o
 I
d
e
a
l

Ideal Performance

Distr. Sampling

Centralized Greedy

Tarcil

0 6000 12000 18000 24000 300000

50

100

150

200

250

300

350

400

S
e

rv
e

rs

0

10

20

30

40

50

60

70

80

90

100

S
e

rv
e

r
U

ti
liz

a
ti
o

n
 (

%
)

Time (s)

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

350

400

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
so

ur
ce

 Q
ua

lit
y

(Q
R

)
Resource Units (RUs)

S
e
rv

e
rs

0 500 10001500200025003000
Workloads

0.0

0.5

1.0

1.5

2.0

S
c
h
e
d
u
lin

g
 T

im
e
 (

s
e
c
)

Queueing (Tarcil)

Sampling (Tarcil)

Centralized

Figure 7.14: (a) Performance across 7,200 jobs on a 400-server EC2 cluster for
the Sampling-based and Centralized schedulers and Tarcil, normalized to optimal
performance, (b) cluster utilization achieved by Tarcil throughout the duration of
the experiment, (c) quality of resource allocation across all RUs, and (d) scheduling
overheads in Tarcil and the Centralized scheduler.

We compare Tarcil, Quasar and Sparrow. Because this scenario includes long-

running jobs, such as memcached, that are not supported by the open-source imple-

mentation of Sparrow, we use Sparrow when applicable (e.g., Spark) and a Sampling-

based scheduler that follows Sparrow’s principles (sample size 2, batch sampling and

late binding) for the remaining jobs.

Performance: Figure 7.14a shows the performance (time between submission and

completion) of the 7,200 workloads ordered from worst to best-performing, and nor-

malized to their optimal performance in this cluster. Optimal corresponds to the

performance on the best available resources and zero scheduling delay. The Sampling-

based scheduler degrades performance for more than 75% of jobs. While Centralized

behaves better, achieving an average of 82% of optimal, it still violates QoS for a

large fraction of applications, particularly short-running workloads (0-3900 for this

scheduler). Tarcil outperforms both schedulers, leading to 97% average performance

and bounding maximum performance degradation to 8%.

Cluster utilization: Figure 7.14b shows the system utilization across the 400 servers

of the cluster when incoming jobs are scheduled with Tarcil. CPU utilization is

averaged across the cores of each server, and sampled every 2 sec. Utilization is

CHAPTER 7. TARCIL 162

0.0

0.2

0.4

0.6

0.8

1.0

R
e
s
o
u
rc

e
 Q

u
a
lit

y

0

10

20

30

40

50

60

70

80

90

100

A
llo

c
a
te

d
 R

U
 F

ra
c
ti
o
n
 (

%
)

Time (s)
7000 14000 21000 28000 35000 0.0

0.2

0.4

0.6

0.8

1.0

R
e
s
o
u
rc

e
 Q

u
a
lit

y

0

10

20

30

40

50

60

70

80

90

100

A
llo

c
a
te

d
 R

U
 F

ra
c
ti
o
n
 (

%
)

Time (s)
7000 14000 21000 28000 35000

Figure 7.15: Resource quality CDFs for: (a) Sampling-based, (b) Tarcil.

70% on average at steady-state (middle of the scenario), when there are enough jobs

to keep servers load-balanced. The maximum in the x-axis is set to the time it

takes for the Sampling-based scheduler to complete the scenario (∼ 35, 000 sec). The

additional time corresponds to jobs that run on suboptimal resources and take longer

to complete.

Core allocation: Figure 7.14c shows a snapshot of the RU quality across the cluster

as observed by the job that is occupying each RU when using Tarcil. The snapshot

is taken at 8, 000s when all applications have arrived and the cluster operates at

maximum utilization. White tiles correspond to unallocated resources. Dark blue

tiles denote jobs with resources very close to their target quality. Lighter blue RUs

correspond to jobs that received good but suboptimal resources. The graph shows

that the majority of jobs are given appropriate resources. Note that high Q does not

imply low server utilization. Utilization at the time of the snapshot is approximately

75%.

Scheduling overheads: Figure 7.14d shows the scheduling overheads for the Cen-

tralized scheduler and Tarcil. The results are consistent with the TPC-H experiment

in Section 7.6.2. The overheads of the Centralized scheduler increase significantly

with scale, adding approximately 1 sec to most workloads. Tarcil keeps overheads

low, adding less than 150msec to more than 80% of workloads. This is essential for

scalability. At high load, Tarcil increases the sample size to preserve the statistical

guarantees and/or resorts to local queueing. The overheads for the Sampling-based

scheduler are similar to Tarcil and are omitted from the graph for clarity.

Predictability: Figure 7.15 shows the fraction of allocated RUs that are over

CHAPTER 7. TARCIL 163

0 20 40 60 80 100
Q

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Sampling-based

Uniform

Permutation 1

Permutation 2

Permutation 3

Permutation 4

Permutation 5

0 20 40 60 80 100
Q

0.0

0.2

0.4

0.6

0.8

1.0 Tarcil, 8 RU candidates

Uniform

Permutation 1

Permutation 2

Permutation 3

Permutation 4

Permutation 5

0 20 40 60 80 100
Q

0.0

0.2

0.4

0.6

0.8

1.0 Tarcil, 16 RU candidates

Uniform

Permutation 1

Permutation 2

Permutation 3

Permutation 4

Permutation 5

Figure 7.16: Resource quality distributions for the Sampling-based scheduler and
Tarcil with R = 8 and 16 RUs across different permutations of the EC2 scenario.

a certain resource quality at each point of the duration of the scenario. Results

are shown for the Sampling-based scheduler (left) and Tarcil (right). Darker colors

towards the bottom of the graph denote that a larger fraction of allocated RUs have

poor quality. At time 16, 000sec, when the cluster is highly-loaded, the Sampling-

based scheduler leads to 70% of allocated cores having quality less than 0.4. For

Tarcil, only 18% of cores have less than 0.9 quality. Also note that, as the scenario

progresses, the Sampling-based scheduler starts allocating resources of worse quality,

while Tarcil maintains almost the same quality throughout the experiment.

Figure 7.16 explains this dissimilarity. It shows the CDF of resource quality for

this scenario, and 5 random permutations of it (different job submission order). We

show the CDF for the Sampling-based scheduler and Tarcil with 8 and 16 candi-

dates. We omit the centralized scheduler which allocates resources of high quality

most of the time. The sampling-based scheduler deviates significantly from the uni-

form distribution, since it does not account for the quality of allocated resources. In

contrast, Tarcil closely follows the uniform distribution, improving the predictability

of scheduling decisions.

7.7 Conclusions

We have presented Tarcil, a cluster scheduler that improves both scheduling speed

and quality, making it appropriate for large, highly-loaded clusters running both

short and long jobs. Tarcil uses an analytically-derived sampling framework that

provides guarantees on the quality of allocated resources, and adjusts the sample size

CHAPTER 7. TARCIL 164

to match application preferences. It also employs admission control to avoid excessive

sampling and poor scheduling decisions at high load. We have compared Tarcil to

existing parallel and centralized schedulers for a variety of workload scenarios on 100-

to 400-server clusters on Amazon EC2. We have shown that it provides low scheduling

overheads, high application performance, and high cluster utilization. Moreover, it

reduces performance jitter, improving predictability in large, shared clusters.

Chapter 8

HCloud: Optimizing Resource

Provisioning in Public Clouds

8.1 Introduction

An increasing amount of computing is now hosted in public clouds, such as Amazon’s

EC2 [13], Windows Azure [279] and Google Compute Engine [110], or in private

clouds managed by frameworks such as VMware vCloud [268], OpenStack [206], and

Mesos [139]. Cloud platforms provide two major advantages for end-users and cloud

operators: flexibility and cost efficiency [29, 31, 136]. Users can quickly launch jobs

without the overhead of setting up a new infrastructure every time. Cloud opera-

tors can achieve economies of scale by building large-scale datacenters (DCs) and by

sharing their resources between multiple users and workloads.

Users can provision resources for their applications in two basic manners; using

reserved and on-demand resources. Reserved resources consist of servers reserved for

long periods of time (typically 1-3 years [13]) and offer consistent service, but come at

a significant upfront cost for the purchase of the long-term resource contract. In the

other extreme are on-demand resources, which can be full servers or smaller instances

and are progressively obtained as they become necessary. In this case, the user pays

only for resources used at each point in time, but the per hour cost is 2-3x higher

compared to reserved resources. Moreover, acquiring on-demand resources induces

165

CHAPTER 8. HCLOUD 166

Configuration Cost
Performance

Spin-up Flexibility
Typical

unpredictability usage

Reserved
High upfront,

no no no long-term
low per hour

On-demand
No upfront,

yes yes yes short-term
high per hour

Hybrid
Medium upfront,

low some yes long-term
medium per hour

Table 8.1: Comparison of system configurations with respect to: cost, performance
unpredictability, overhead and flexibility.

instantiation overheads and depending on the type of instance, the variability in the

quality of service obtained can be significant.

Since provisioning must determine the necessary resources, it is important to un-

derstand the extent of this unpredictability. Performance varies both across instances

of the same type (spatial variability), and within a single instance over time (temporal

variability) [28, 207, 148, 100, 160, 172, 185, 208, 221, 275, 231]. Figure 8.1 shows

the variability in performance for a Hadoop job running a recommender system using

Mahout [184] on various instance types on Amazon EC2 [13] and on Google Compute

Engine (GCE) [110]. Analytics such as Hadoop and Spark [288] are throughput-bound

applications, therefore performance here corresponds to the completion time of the

job. The instances are ordered from smallest to largest, with respect to the number

of virtual CPUs and memory allocations they provide. We show 1 vCPU micro, 1-8

vCPU standard (stX) and 16 vCPU memory-optimized instances (mX) [13, 110]. Each

graph is the violin plot of completion time of the Hadoop job over 40 instances of the

corresponding type. The dot shows the mean performance for each instance type. It

becomes clear that especially for instances with less than 8 vCPUs unpredictability is

significant, while for the micro instances in EC2 several jobs fail to complete due to

the internal EC2 scheduler terminating the VM. For the larger instances (m16), per-

formance is more predictable, primarily due to the fact that these instances typically

occupy a large fraction of the server, hence they have a much lower probability of

suffering from interference from co-scheduled workloads, excluding potential network

interference. Between the two cloud providers, EC2 achieves higher average perfor-

mance than GCE, but exhibits worse tail performance (higher unpredictability).

CHAPTER 8. HCLOUD 167

micro st1 st2 st8 m16 micro st1 st2 st8 m16
0

50

100

150

200

250

300

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
in

)

Hadoop

EC2
GCE

Figure 8.1: Performance unpredictability on Amazon EC2 and Google Compute
Engine for a Hadoop job.

micro st1 st2 st8 m16 micro st1 st2 st8 m16
0

200

400

600

800

1000

1200

1400

9
9
th

 %
ile

 L
a
te

n
c
y
 (

u
s
e
c
) memcached

EC2
GCE

Figure 8.2: Performance unpredictability on Amazon EC2 and Google Compute
Engine for memcached.

Figure 8.2 shows a similar experiment for a latency-critical service (memcached)

on the same instance types. Note that the number of memcached clients is scaled by

the number of vCPUs of each instance type, to ensure that all instances operate at a

similar system load. Unpredictability is even more pronounced now, as memcached

needs to satisfy tail latency guarantees [68], as opposed to average performance. The

results from above hold, with the smaller instances (less than 8 vCPUs) experiencing

significant variability in their tail latency. Performance jitter decreases again for the

8-16 vCPU VMs, especially in the case of the memory-optimized instances (m16).

Additionally GCE now achieves better average and tail performance compared to

EC2.

The goal of this work is to optimize performance over cost for cloud systems,

CHAPTER 8. HCLOUD 168

similarly to the way work on system design and resource management optimized per-

formance per Watt for small- and large-scale systems [167, 297, 254, 166, 257]. We

first explore the implications of the two main provisioning approaches (reserved and

on-demand resources), with respect to performance variability and cost efficiency. We

perform this analysis on Google Compute Engine (GCE) [110] using three represen-

tative workload scenarios with mixes of batch and latency-critical applications, and

increasing levels of load variability. We assume no a priori knowledge of the appli-

cations in each scenario, except for the minimum and maximum aggregate load for

each scenario, which is needed for a comparison with an idealized statically-reserved

provisioning strategy.

Our study reveals that while reserved resources are superior with respect to per-

formance (2.2x on average over on-demand), they require a long-term commitment,

and are therefore beneficial for use cases over extended periods of time. Fully on-

demand resources, on the other hand, are more cost-efficient for short-term use cases

(2.5x on average), but are prone to performance unpredictability, especially when us-

ing smaller instances. They also incur instantiation overheads to spin-up new VMs.

Our study also shows that to achieve reasonable performance predictability with ei-

ther strategy, it is crucial to understand the resource preferences and sensitivity to

interference of individual applications [79, 186, 223]. Recent work has shown that

a combination of lightweight profiling and classification-based analysis can provide

accurate estimations of job preferences with respect to the different instance types,

the sensitivity to interference in shared resources and the amount of resources needed

to satisfy each job’s performance constraint (Chapter 4).

Next, we consider hybrid provisioning strategies that use both reserved (long-

term) and on-demand (short-term) resources. A hybrid provisioning strategy has the

potential to offer the best of both worlds by allowing users to leverage reserved re-

sources for the steady-state long-term load, and on-demand resources for short-term

resource needs. The main challenge with hybrid provisioning strategies is determining

how to schedule jobs between the two types of resources. We show that leveraging

the knowledge on resource preferences and accounting for the characteristics of on-

demand resources, and the system load enables correct mapping of jobs to reserved

CHAPTER 8. HCLOUD 169

and on-demand resources. Table 8.1 shows the differences between the three main

provisioning strategies with respect to cost, performance unpredictability, instantia-

tion overheads and provisioning flexibility.

We demonstrate that hybrid provisioning strategies achieve both high resource ef-

ficiency and QoS-awareness. They maximize the usage of the already-provisioned re-

served resources, while ensuring that applications that can tolerate some performance

unpredictability will not delay the scheduling of interference-sensitive workloads. We

also compare the performance, cost and provisioning needs of hybrid systems against

the fully reserved and fully on-demand strategies examined before over a wide spec-

trum of workload scenarios. Hybrid provisioning strategies achieve within 8% of the

performance of fully reserved systems (and 2.1x better than on-demand systems),

while improving their cost efficiency by 46%. Reserved resources are utilized at 80%

on average during steady-state. Finally, we perform a detailed sensitivity analysis of

performance and cost with job parameters, such as duration, and system parameters

such as resource pricing, spin-up overhead, and external load.

8.2 Cloud Workloads and Systems

8.2.1 Workload Scenarios

We examine the three workload scenarios shown in Figure 8.3 and summarized in

Table 8.2. Each scenario consists of a mix of batch applications (Hadoop workloads

running over Mahout [184] and Spark jobs) and latency-critical workloads (mem-

cached). The batch jobs are machine learning and data mining applications, includ-

ing recommender systems, support vector machines, matrix factorization, and linear

regression. memcached is driven with loads that differ with respect to the read:write

request ratio, the size of requests, the inter-arrival time distribution, the client fanout

and the size of the dataset.

The first scenario has minimal load variability (Static). In steady-state the aggre-

gate resource requirements are 854 cores on average. Approximately 55% of cores are

required for batch jobs and the remaining 45% for the latency-critical services. The

CHAPTER 8. HCLOUD 170

difference between maximum and minimum load is 10% and most jobs last several

minutes to a few tens of minutes.

Second, we examine a scenario with mild, long-term load variability (Low Vari-

ability). The steady-state minimum load requires on average 605 cores, while in the

middle of the scenario the load increases to 900 cores. The surge is mostly caused by

an increase in the load of the latency-critical applications. On average 55% of cores

are needed for batch jobs and the remaining 45% for the latency-critical services.

Finally, we examine a scenario with large, short-term load changes (High Vari-

ability). The minimum load is 210 cores, while the maximum load reaches up to 1226

cores for short time periods. Approximately 60% of cores are needed for batch jobs

and 40% for the latency-critical services. Because of the increased load variability,

each job is shorter (8.1 min duration on average).

The ideal duration for each scenario, with no scheduling delays or degradation

due to interference between workloads, is approximately 2 hours.

8.2.2 Cloud Instances

We use servers on Google Compute Engine (GCE) for all experiments. For provi-

sioning strategies that require smaller instances we start with the largest instances

(16 vCPUs) and partition them using Linux containers [26, 66]. The reason for con-

structing smaller instances as server slices as opposed to directly requesting various

instance types is to introduce controlled external interference which corresponds to

typical load patterns seen in cloud environments, rather than the random interference

patterns present at the specific time we ran each experiment. This ensures repeatable

experiments and consistent comparisons between provisioning strategies.

We model external interference by imposing external load that fluctuates ± 10%

around a 25% average utilization [31, 79]. The external load is generated using both

batch and latency-critical workloads. Section 8.5.1 includes a sensitivity study to the

intensity of external load.

We only partition servers at the granularity of existing GCE instances, e.g., 1,2,4,8

and 16 vCPUs. Whenever we refer to the cost of an on-demand instance, we quote

CHAPTER 8. HCLOUD 171

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

R
e

q
u

ir
e

d
 C

o
re

s

Static

Low Variability

High Variability

Figure 8.3: The three workload scenarios.

the cost of the instance that would be used in the real environment, e.g., a 2 vCPU

instance. Similarly, we account for the spin-up overhead of the instance of the de-

sired size, wherever applicable. Finally, all scheduling actions such as autoscale and

migration performed by GCE are disabled.

8.2.3 Cloud Pricing

Google Compute Engine currently only offers on-demand instances. To encourage

high instance usage, it provides sustained usage monthly discounts [110]. Although

sustained usage discounts reduce the prices of on-demand instances, they do not ap-

proximate the price of long-term reserved resources. The most popular alternative

pricing model is the one used by AWS, which includes both long-term resource reser-

vations and short-term on-demand instances. Because this pricing model offers more

provisioning flexibility and captures the largest fraction of the cloud market today,

we use it to evaluate the different provisioning strategies and adapt it to the resource

prices of GCE. Specifically, we approximate the cost of reserved resources on GCE

based on the reserved to on-demand price ratio for EC2, adjusted to the instance

prices of GCE. In Section 8.5.3 we discuss how our results translate to different pric-

ing models, such as the default GCE model and the pricing model used by Windows

Azure.

CHAPTER 8. HCLOUD 172

Workload Scenarios
Static Low Var High Var

max:min resources ratio 1.1x 1.5x 6.2x

batch:low-latency – in jobs 4.2x 3.6x 4.1x
– in cores 1.4x 1.4x 1.5x

inter-arrival times (sec) 1.0 1.0 1.0

ideal completion time (hr) 2.1 2.0 2.0

Table 8.2: Workload scenario characteristics.

8.3 Provisioning Strategies

The two main types of resource offerings in cloud systems are reserved and on-demand

resources. Reserved instances require a high upfront capital investment, but have 2-3x

lower per-hour cost than on-demand resources, offer better service availability (1-year

minimum), and provide consistent performance. On-demand resources are charged

in a pay-as-you-go manner, but incur spin-up overheads and experience performance

unpredictability due to interference from external load. We ignore spot instances for

the purpose of this work, since they do not provide any availability guarantees.

The provisioning strategy must acquire the right type and number of resources

for a workload scenario. Ideally, a provisioning strategy achieves three goals: (1) high

workload performance, (2) high resource utilization (minimal overprovisioning), and

(3) minimal provisioning and scheduling overheads. We initially study the three ob-

vious provisioning strategies described in Table 8.3: a statically-provisioned strategy

using only reserved resources (SR); an on-demand strategy (OdF) that only uses full

servers (16 vCPU instances); and an on-demand strategy (OdM) that uses instances

of any size and type.

8.3.1 Statically Reserved Resources (SR)

This strategy statically provisions reserved resources for a 1 year period, the shortest

contract for reserved resources on cloud systems such as EC2. Reserved resources

require significant capital investment upfront, although the per-hour charge is 2-3x

lower than for the corresponding on-demand instances. Moreover, reserved resources

CHAPTER 8. HCLOUD 173

are readily available as jobs arrive, eliminating the overhead of spinning up new VMs

on-demand. Because SR only reserves large instances (16 vCPU), there is limited

interference from external load, except potentially for some network interference.

Because of its static nature, SR must provision resources for the peak requirements

of each workload scenario, plus a small amount of overprovisioning. Overprovisioning

is needed because all scenarios contain latency-critical jobs, that experience tail la-

tency spikes when using nearly saturated resources [29, 31, 68, 162]. We explain the

insight behind the amount of overprovisioning in Section 8.3.3. Peak requirements

can be easily estimated for mostly static workload scenarios. For scenarios with load

variability, static provisioning results in acquiring a large number of resources which

remain underutilized for significant periods of time.

8.3.2 Dynamic On-Demand Resources (OdF, OdM)

We now examine two provisioning strategies that acquire resources as they become

necessary to accommodate the incoming jobs of each workload scenario. In this case

there is no need for a large expenditure upfront, but the price of each instance per

hour is 2-3x higher compared to the corresponding reserved resources. Moreover,

each new instance now incurs the overhead needed to spin up the new VMs. This is

typically 12-19 seconds for GCE, although the 95th percentile of the spin-up overhead

is up to 2 minutes. Smaller instances tend to incur higher spin-up overheads.

Because of spin-up overheads, these two strategies must also decide how long they

should retain the resources for after a job completes. If, for example, a workload

scenario has no or little load variability, instances should be retained to amortize the

spin-up overhead. On the other hand, retaining instances when load variability is

high can result in underutilized resources. We determine retention time by drawing

from related work on processor power management. The challenge in that case is to

determine when to switch to low power modes that enable power savings but incur

overheads to revert to an active mode [242, 180, 189]. Given that the job inter-arrival

time in our scenarios is 1 second, we set the retention time to 10x the spin-up overhead

CHAPTER 8. HCLOUD 174

SR OdF OdM HF HM

Reserved
Yes No No Yes Yes

resources

On-demand
No

Yes (full
Yes

Yes (full
Yes

resources servers) servers)

Table 8.3: Resource provisioning strategies.

of an instance. 1 Section 8.5.1 shows a sensitivity analysis to retention time. Only

instances that perform in a satisfactory manner are retained past the completion of

their jobs.

We examine two variants of on-demand provisioning strategies. On-demand Full

(OdF) only uses large instances (16 vCPUs), which are much less prone to exter-

nal interference (see Section 8.1). On-demand Mixed (OdM) acquires on-demand

resources of any instance type, including smaller instances with 1-8 vCPUs. While

OdM offers more flexibility, it introduces the issue that performance unpredictability

due to external interference now becomes substantial. There are ways to improve per-

formance predictability in fully on-demand provisioning strategies, e.g., by sampling

multiple instances for each required instance and only keeping the better-behaved

instances [100]. Although this approach addresses the performance variability across

instances, it is still prone to temporal variation within a single instance. Additionally,

it is only beneficial for long-running jobs that can afford the overhead of sampling

multiple instances. Short jobs, such as real-time analytics (100msec-10sec) cannot

tolerate long scheduling delays and must rely on the initial resource assignment.

8.3.3 The Importance of Resource Preferences

So far, we have assumed that the provisioning strategy has limited knowledge about

the resource preferences of individual jobs within a workload scenario. Traditionally,

the end-users have to specify how many resources each job should use; unfortunately

this is known to be error-prone and to frequently lead to significant resource over-

provisioning [31, 223, 177, 79, 48]. Moreover, this offers no insight on the sensitivity

1The benefit of longer retention time varies across instance sizes due to differences in spin-up
overheads.

CHAPTER 8. HCLOUD 175

of each job to interference from other jobs, external or not, running on the same

physical server. This is suboptimal for both the statically-reserved and on-demand

strategies, which will acquire more/less resources than what is truly needed by an

application. The lack of interference understanding is equally problematic. SR will

likely colocate jobs that interfere negatively with each other on the same instance.

OdF and OdM will likely acquire instance types that are prone to higher interference

than what certain jobs can tolerate.

The recently-proposed Quasar system provides a methodology to quickly deter-

mine the resource preferences of new jobs [79]. When a job is submitted to the

system, it is first profiled on two instance types, while injecting interference in two

shared resources, e.g., last level cache and network bandwidth. This profiling signal

is used by a set of classification techniques which find similarities between the new

and previously-scheduled jobs with respect to instance type preferences and sensi-

tivity to interference. A job’s sensitivity to interference in resource i is denoted by

ci, where i ∈ [1, N], and N = 10 the number of examined resources [79]. Large

values of ci mean that the job puts a lot of pressure in resource i. To capture the

fact that certain jobs are more sensitive to specific resources we rearrange vector

C = [c1, c2, ..., cN] by order of decreasing magnitude of ci, C
′ = [cj, ck, ..., cn]. Finally,

to obtain a single value for C ′, we use an order preserving encoding scheme as follows:

Q = cj · 10(2·(N−1)) + ck · 10(2·(N−2)) + ... + cn, and normalize Q in [0, 1]. Q denotes

the resource quality a job needs to satisfy its QoS constraints. High Q denotes a

resource-demanding job, while low Q a job that can tolerate some interference in

shared resources.

We use Quasar’s estimations of resource preferences and interference sensitivity

to improve resource provisioning. For SR, we use these estimations to find the most

suitable resources available in the reserved instances with respect to resource size and

interference using a simple greedy search [79]. Accounting for the information on

resource preferences reduces overprovisioning to 10-15%. For OdF, the estimations

are used to select the minimum amount of resources for a job, and to match the

resource capabilities of instances to the interference requirements of a job. For OdM,

this additionally involves requesting an appropriate instance size and type (standard,

CHAPTER 8. HCLOUD 176

with profiling info without profiling info

SR OdF OdM
0

20

40

60

80

100

120

140

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Static Scenario

SR OdF OdM
0

50

100

150

200

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Low Variability Scenario

SR OdF OdM
0

50

100

150

200

250

300

350

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

High Variability Scenario

(a) Performance of batch applications for the three scenarios.

SR OdF OdM
0

500

1000

1500

2000

2500

R
e

q
u

e
s
t

L
a

te
n

c
y
 (

u
s
e

c
)

Static Scenario

SR OdF OdM
0

500

1000

1500

2000

2500

R
e

q
u

e
s
t

L
a

te
n

c
y
 (

u
s
e

c
)

Low Variability Scenario
5962 7501

SR OdF OdM
0

1000

2000

3000

4000

5000

6000

R
e

q
u

e
s
t

L
a

te
n

c
y
 (

u
s
e

c
)

High Variability Scenario
15564 15980 19611 20213

(b) Performance of latency-critical applications for the three scenarios.

Figure 8.4: Performance of jobs of the three workload scenarios with the three
provisioning strategies. The boundaries of the boxplots depict the 25th and 75th
percentiles, the whiskers the 5th and 95th percentiles and the horizontal line in each
boxplot shows the mean.

compute- or memory-optimized). Note that because smaller instances are prone to

external interference, provisioning decisions may have lower accuracy in this case.

Finally, we must detect suboptimal application performance and revisit the allo-

cation decisions at runtime [224, 24, 25, 54, 79]. Once an application is scheduled

its performance is monitored and compared against its expected QoS. If performance

drops below QoS we take action [79]. At a high level, we first try to restore perfor-

mance through local actions, e.g., increasing the resource allocation, and then through

rescheduling. Rescheduling is very unlikely in practice.

8.3.4 Provisioning Strategies Comparison

Performance: We first compare the performance impact of the three provision-

ing strategies, with and without Quasar’s information on individual job preferences.

CHAPTER 8. HCLOUD 177

SR OdF OdM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
o
s
t

Static Scenario

SR OdF OdM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
o
s
t

Low Variability Scenario

SR OdF OdM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
o
s
t

High Variability Scenario

Figure 8.5: Cost of fully reserved and on-demand systems.

Figure 8.4 shows the performance achieved by each of the three provisioning strate-

gies for the three workload scenarios. We separate batch (Hadoop, Spark) from

latency-critical applications (memcached), since their critical performance metric is

different: completion time for the batch jobs and request latency distribution for

memcached. The boundaries in each boxplot depict the 25th and 75th percentiles of

performance, the whiskers the 5th and 95th percentile and the horizontal line shows

the mean. When the information from Quasar is not used, the resources for each job

are sized based on user-defined resource reservations. For batch jobs (Hadoop and

Spark) this translates to using the default framework parameters (e.g., 64KB block

size, 1GB heapsize for Hadoop), while for memcached resources are provisioned for

peak load [223]. OdM requests the smallest instance size that satisfies the resource

demands of a job. SR allocates resources for workloads on the reserved instances with

the most available resources (least-loaded).

It is clear from Figure 8.4 that all three provisioning strategies benefit significantly

from understanding the jobs’ resource preferences and interference sensitivity. Specif-

ically for SR, there is a 2.4x difference in performance on average across scenarios.

The differences are even more pronounced in the case of latency-critical applications,

where the performance metric of interest is tail, instead of average performance. Omit-

ting the information on interference sensitivity in this case significantly hurts request

latency. In all following results, we assume that provisioning takes job preferences

into account, unless otherwise stated.

We now compare the performance achieved by the three provisioning strategies.

The static strategy SR achieves the best performance for all three scenarios, both

for batch and latency-critical workloads. OdF behaves near-optimally for the static

CHAPTER 8. HCLOUD 178

scenario, but worsens for the scenarios where variability is present. The main reason

is the spin-up overhead required to obtain new resources as they become necessary.

Strategy OdM achieves the worst performance of all three provisioning strategies

for every scenario (2.2x worse than SR on average), in part because of the spin-up

overhead, but primarily because of the performance unpredictability it experiences

from external load in the smaller instances. Memcached suffers a 24x and 42x increase

in tail latency in the low- and high-variability scenarios, as it is more sensitive to

resource interference.

Cost: Figure 8.5 shows the relative cost of each strategy for the three scenarios.

All costs are normalized to the cost of the static scenario with SR. Although strategy

SR appears to have the lowest cost for a 2 hour run (2-3x lower per hour charge than

on-demand), it requires at least a 1-year commitment with all charges happening

in advance. Therefore, unless a user plans to leverage the cluster for long periods

of time, on-demand resources are dramatically more cost-efficient. Moreover, SR

is not particularly cost effective in the presence of high workload variability, since

it results in significant overprovisioning. Between the two on-demand strategies,

OdM incurs lower cost, since it uses smaller instances, while OdF only uses the

largest instances available. Note however that the cost savings of OdM translate to

a significant performance degradation due to resource unpredictability (Figure 8.4).

8.4 Hybrid Provisioning Strategies

The previous section showed that neither fully reserved nor fully on-demand strate-

gies are ideal. Hybrid provisioning strategies that combine reserved and on-demand

resources have the potential to achieve the best of both worlds. This section presents

two hybrid provisioning strategies that intelligently assign jobs between reserved and

on-demand resources and compares their performance and cost against the strategies

of Section 8.3. Again, we make use of the information on resource preferences and

interference sensitivity of individual jobs, as estimated by Quasar.

CHAPTER 8. HCLOUD 179

8.4.1 Provisioning Strategies

We design two hybrid strategies that use both reserved and on-demand resources. The

first strategy (HF) only uses large instances for the on-demand resources, to reduce

performance unpredictability. The second strategy (HM), uses a mix of on-demand

instance types to reduce cost, including smaller instances that experience interference

from external load. The retention time policy of on-demand resources is the same

as for the purely on-demand strategies OdF and OdM. The reserved resources in

both cases are large instances, as with the statically-provisioned strategy (SR). We

configure the number of reserved instances to accommodate the minimum steady-

state load, e.g., 600 cores for the low variability scenario to avoid overprovisioning of

reserved resources. For scenarios with low steady-state load but high load variability

the majority of resources will be on-demand.

Since HF uses large instances with limited performance unpredictability for both

reserved and on-demand resources, it mostly uses on-demand instances to serve over-

flow load. In contrast, with HM on-demand instances may be smaller and can ex-

perience resource interference from external load. Therefore, for hybrid strategies it

is critical to determine which jobs should be mapped to reserved versus on-demand

resources, based on their interference sensitivity and the availability of reserved re-

sources.

8.4.2 Application Mapping Policies

We first consider a baseline policy that maps applications between the reserved and

on-demand resources randomly using a fair coin. Figure 8.6 shows the performance of

applications mapped to the reserved (left) and on-demand resources (right) for the two

hybrid provisioning strategies in the case of the high variability scenario. Performance

is normalized to the performance each job achieves if it runs with unlimited resources

alone in the system (in isolation). Figure 8.7 also shows the utilization of the reserved

instances and the total cost to run the 2 hour scenario normalized to the cost of

the static scenario with SR. Because of the large number of scheduled applications,

approximately half of them will be scheduled on reserved and half on on-demand

CHAPTER 8. HCLOUD 180

P1: Random P2: Q > 80% to reserved P3: Q > 50% to reserved P4: Q > 20% to reserved
P5: Reserved load < 50% P6: Reserved load < 70% P7: Reserved load < 90% P8: Dynamic Policy

P1 P2 P3 P4 P5 P6 P7 P8
75

80

85

90

95

100

P
e
rf

.
n
o
rm

 t
o
 I
s
o
la

ti
o
n
 (

%
) Reserved Resources

HF
HM

P1 P2 P3 P4 P5 P6 P7 P8
55
60
65
70
75
80
85
90
95

100

P
e
rf

.
n
o
rm

 t
o
 I
s
o
la

ti
o
n
 (

%
) On-Demand Resources

HF
HM

Figure 8.6: Sensitivity to the policy of mapping jobs to reserved versus on-demand
resources for HF and HM.

resources [123]. The random policy hurts performance for jobs mapped to either type

of resources. In the reserved resources, performance degrades as more workloads than

the instances can accommodate are assigned to them, and are therefore queued. In

the on-demand resources, performance degrades for two reasons. First, because of

the inherent unpredictability of resources, especially in the case of HM, and, more

prominently, because jobs that are sensitive to interference and should have been

mapped to reserved resources slow down due to external load.

Ideally, the mapping policy should take into account the sensitivity of jobs to

performance unpredictability. The following three policies shown in Figure 8.6 set a

limit to the jobs that should be mapped to reserved resources based on the quality

of resources they need. P2 assigns jobs that need quality Q > 80% to the reserved

instances to protect them from the variability of on-demand resources. P3 and P4

set stricter limits, with P4 only assigning very tolerant to unpredictability jobs to the

on-demand resources. As we move from P2 to P4 the performance of jobs in the on-

demand instances improves, as the number of applications mapped to them decreases.

In contrast, the performance of jobs scheduled to reserved resources worsens due to

increased demand and queueing for resources. In general, performance is worse for HM

in the on-demand resources, due to the increased performance variability of smaller

instances.

It is clear that there needs to be an upper load limit for the reserved resources. The

next three policies P5−P7 set progressively higher, static limits. For low utilization

CHAPTER 8. HCLOUD 181

P1: Random P2: Q > 80% to reserved P3: Q > 50% to reserved
P4: Q > 20% to reserved P5: Reserved load < 50% P6: Reserved load < 70%
P7: Reserved load < 90% P8: Dynamic Policy

P1 P2 P3 P4 P5 P6 P7 P8
0

20

40

60

80

100
U

ti
liz

a
ti
o
n
 (

%
)

Reserved Resources

P1 P2 P3 P4 P5 P6 P7 P8
0

1

2

3

4

5

C
o

s
t

Figure 8.7: CPU utilization of reserved resources and cost with different application
mapping policies for HF and HM.

limits, e.g., 50-70% the performance of jobs on reserved resources is near-optimal. In

contrast, jobs assigned to on-demand resources suffer substantial performance degra-

dations, since application mapping is only determined based on load and not based

on resource preferences. For a utilization limit of 90%, the performance of jobs in

the reserved resources degrades due to excessive load. Low utilization in the reserved

resources also significantly increases the cost, as additional on-demand resources have

to be obtained. Therefore a policy using a static utilization limit that does not dis-

tinguish between the resource preferences of jobs is also suboptimal.

Based on these findings we design a dynamic policy to separate jobs between

reserved and on-demand resources. The policy adheres to three principles. First,

it utilizes reserved resources before resorting to on-demand resources. Second, ap-

plications that can be accommodated by on-demand resources should not delay the

scheduling of jobs sensitive to resource quality. Third, the system must adjust the

utilization limits of reserved instances to respond to performance degradations due

to excessive queueing.

Figure 8.8 explains the dynamic policy. We set two utilization limits for the

reserved resources. First, a soft limit is set (experimentally set at 60-65% utilization),

below which all incoming jobs are allocated reserved resources. Once utilization

exceeds this limit, the policy differentiates between applications that are sensitive

to performance unpredictability and applications that are not. The differentiation is

done based on the resource quality Q a job needs to satisfy its QoS constraints and

CHAPTER 8. HCLOUD 182

~65%

~80%

System Load (reserved)

0%

Sensitive & insensitive jobs

 reserved

No load

Soft limit

Hard limit

Saturation

Sensitive jobs  reserved

Insensitive jobs  on-demand

Sensitive  queued or larger on-demand

Insensitive jobs  on-demand

90th %ile
Q90

C
D

F

Resource Quality

QT

QT

Target

resource

quality

QT < Q90 On-demand

St. 4

90th %ile
Q90

C
D

F

QT

QT > Q90 Reserved

Mem. 2

Resource Quality

Figure 8.8: Application mapping scheme between reserved and on-demand instances
for HF and HM. Figure 8.8a shows the resource limits that determine where ap-
plications are scheduled, and Figure 8.8b shows how an application is scheduled to
on-demand versus reserved resources based on its performance constraints.

the knowledge on the quality of previously-obtained on-demand instances. Once we

determine the instance size a job needs (number of cores, memory and storage), we

compare the 90th percentile of quality of that instance type (monitored over time)

against the target quality (QT) the job needs. If Q90 > QT the job is scheduled on the

on-demand instance, otherwise it is scheduled on the reserved instances. Examining

the 90th percentile is sufficient to ensure accurate decisions for the majority of jobs.

Second, we set a hard limit for utilization, when jobs need to get queued until

reserved resources become available. At this point, any jobs for which on-demand

resources are satisfactory are scheduled in the on-demand instances and all remaining

jobs are locally queued [209]. An exception occurs for jobs whose queueing time is

expected to exceed the time it would take to spin up a large on-demand instance

(16 vCPUs); these jobs are instead assigned to on-demand instances. Queueing time

is estimated using a simple feedback loop based on the rate at which instances of a

CHAPTER 8. HCLOUD 183

..

Queue Length
.

Tim
e

.

0

.

20

.

40

.

60

.

80

.

100

.

30

.

36

.

42

.

48

.

54

.

60

.

66

.

72

.

78

.

So
ft
Li
m
it
(%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
[∃

 in
st

an
ce

 X
]

A

B

C

Figure 8.9: Determining the soft utilization limit (left) and the expected waiting
time (right) in HF and HM.

given type are being released over time. For example, if out of 100 jobs waiting for

an instance with 4 vCPUs and 15GB of RAM, 99 were scheduled in less than 1.4

seconds, the system will estimate that there is a 0.99 probability that the queueing

time for a job waiting for a 4 vCPU instance will be 1.4 seconds. Figure 8.9b shows a

validation of the estimation of waiting time for three instance types. The lines show

the cumulative distribution function (CDF) of the probability that an instance of a

given type becomes available. The dots show the estimated queueing time for jobs

waiting to be scheduled on instances with 4 (A), 8 (B) and 16 vCPUs (C) in the

high variability scenario. In all cases the deviation between estimated and measured

queueing time is minimal.

Third, we adjust the soft utilization limit based on the rate at which applications

get queued. If the number of queued jobs increases sharply, the reserved instances

should become more selective in the workloads they accept, i.e., the soft limit should

decrease. Similarly, if no jobs get queued for significant periods of time, the soft limit

should increase to accept more incoming jobs. We use a simple feedback loop with

linear transfer functions to adjust the soft utilization limit of the reserved instances

as a workload scenario progresses. Figure 8.9a shows how the soft limit changes with

execution time and queue length.

8.4.3 Provisioning Strategies Comparison

Performance: Figure 8.10 compares the performance achieved by the static strat-

egy SR and the two hybrid strategies (HF and HM), with and without the profiling

CHAPTER 8. HCLOUD 184

with profiling info without profiling info

SR HF HM
0

20

40

60

80

100

120

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Static Scenario

SR HF HM
0

20

40

60

80

100

120

140

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Low Variability Scenario

SR HF HM
0

50

100

150

200

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

High Variability Scenario

(a) Performance of batch applications for the three scenarios.

SR HF HM
0

500

1000

1500

2000

2500

R
e

q
u

e
s
t

L
a

te
n

c
y
 (

u
s
e

c
)

Static Scenario

SR HF HM
0

500

1000

1500

2000

2500
R

e
q

u
e

s
t

L
a

te
n

c
y
 (

u
s
e

c
)

Low Variability Scenario

SR HF HM
0

1000

2000

3000

4000

5000

6000

R
e

q
u

e
s
t

L
a

te
n

c
y
 (

u
s
e

c
)

High Variability Scenario

(b) Performance of latency-critical applications for the three scenarios.

Figure 8.10: Performance of the three scenarios with the statically-reserved and
hybrid provisioning strategies. The boundaries of the boxplots depict the 25th and
75th percentiles, the whiskers the 5th and 95th percentiles and the horizontal line in
each boxplot shows the mean.

information for new jobs. Again we separate batch from latency-critical jobs. As

expected, having the profiling information improves performance significantly for the

hybrid strategies, for the additional reason that it is needed to decide which jobs

should be scheduled on the reserved resources (2.4x improvement on average for HF

and 2.77x for HM). When using the profiling information, strategies HF and HM

come within 8% of the performance of the statically reserved system (SR), and in

most cases outperform strategies OdF and OdM, especially for the scenarios with sig-

nificant load variability. The main reason why HF and HM achieve good performance

is that they differentiate between applications that can tolerate the unpredictability

of on-demand instances, and jobs that need the predictable performance of a fully

controlled environment. Additionally hybrid strategies hide some of the spin-up over-

head of on-demand resources by accommodating part of the load in the reserved

instances.

CHAPTER 8. HCLOUD 185

Reserved Cost On Demand Cost

SR HF HM
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

C
o
s
t

Static Scenario

SR HF HM
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

C
o
s
t

Low Variability Scenario

SR HF HM
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

C
o
s
t

High Variability Scenario

Figure 8.11: Cost comparison between SR, HF and HM.

Cost: Figure 8.11 shows the relative cost of strategies SR, HF and HM for the

three scenarios. While the static provisioning strategy (SR) is more cost-efficient in

the static scenario where provisioning is straight-forward, the hybrid strategies incur

significantly lower costs for both scenarios with load variability. Therefore, unless load

is almost completely static, statically-provisioned resources is not cost-efficient both

due to long-term reservations, and significant overprovisioning. Additionally, because

of the lower per-hour cost of reserved resources in HF and HM, the hybrid strategies

have lower per-hour cost than fully on-demand resources as well. For HF and HM,

most of the cost per hour comes from on-demand resources, since reserved instances

are provisioned for the minimum steady-state load. Finally, between the two hybrid

strategies, HM achieves higher cost-efficiency since it uses smaller instances.

8.5 Discussion

8.5.1 Sensitivity to Job/System Parameters

We first evaluate the sensitivity of the previous findings to various system and work-

load parameters. Unless otherwise specified, we use the same strategies as before to

provision reserved and/or on-demand resources.

Resource cost: The current average cost ratio of on-demand to reserved resource

per hour is 2.74. Figure 8.12 shows how the relative cost of the three scenarios varies

for each of the five strategies when this ratio changes. The current ratio is shown

with a vertical line at 2.74. All costs are normalized to the cost for the static scenario

CHAPTER 8. HCLOUD 186

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
On-Demand:Reserved Price per hr

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
o
s
t

Static Scenario

SR

OdF

OdM

HF

HM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
On-Demand:Reserved Price per hr

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
o
s
t

Low Variability Scenario

SR

OdF

OdM

HF

HM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
On-Demand:Reserved Price per hr

0

1

2

3

4

5

6

C
o
s
t

High Variability Scenario

SR

OdF

OdM

HF

HM

Figure 8.12: Sensitivity to on-demand:reserved cost.

using SR. We change the ratio by scaling the price of reserved resources. We vary

the ratio in [0.01, 4]; beyond that point the cost of SR per hour becomes practically

negligible. Initially (0.01), strategies using only on-demand resources (OdF, OdM)

are significantly more cost-efficient, especially for the scenarios with load variability.

For the static scenario, even when on-demand resources are much cheaper than re-

served, SR, HF and HM incur similar charges as the fully on-demand systems. For

each scenario, there is a price ratio for which SR becomes the most cost-efficient strat-

egy. As variability increases, this value becomes larger (e.g., for the high variability

scenario the ratio needs to become 3 for SR to be more cost-efficient per hour than

HM). Note that SR still requires at least a 1-year commitment, in contrast to the

on-demand strategies. Finally, the hybrid strategies achieve the lowest per-hour cost

for significant ranges of the price ratio, especially for scenarios with load variability.

Scenario duration: Figure 8.13 shows how cost changes for each strategy, as

the scenario duration increases. Because we compare aggregate costs (instead of

per-hour), this figure shows the absolute cost in dollars for each strategy. For the

static scenario, from a cost perspective, strategy HM is optimal only if duration is

[20 − 25] weeks. For durations less than 20 weeks, strategy OdM is the most cost-

efficient, while for durations more than 25 weeks the statically-reserved system (SR)

is optimal. This changes for scenarios with load variability. Especially in the case

of high variability, for durations larger than 18 weeks, strategy HM is the most cost-

efficient, with the significantly overprovisioned reserved system (SR) never being the

most efficient. Note that the charge for SR doubles beyond the 1 year (52 weeks)

mark.

CHAPTER 8. HCLOUD 187

0 10 20 30 40 50
Duration (weeks)

0

100

200

300

400

500

600

C
o
s
t
(x

1
0
0
0
$
)

Static Scenario

SR

OdF

OdM

HF

HM

0 10 20 30 40 50
Duration (weeks)

0

100

200

300

400

500

600

C
o
s
t
(x

1
0
0
0
$
)

Low Variability Scenario

SR

OdF

OdM

HF

HM

0 10 20 30 40 50
Duration (weeks)

0

100

200

300

400

500

C
o
s
t
(x

1
0
0
0
$
)

High Variability Scenario

SR

OdF

OdM

HF

HM

Figure 8.13: Sensitivity to scenario duration.

Spin-up overhead: Figure 8.14a shows how the 95th percentile of performance

changes as the overhead to spin-up new resources changes for the high variability sce-

nario. The statically-reserved strategy (SR) is obviously not affected by this change.

Because in this scenario resources are frequently recycled, increasing the spin-up over-

head significantly affects performance. This is more pronounced for the strategies

using exclusively on-demand resources (OdF, OdM). The additional degradation for

OdM comes from the performance unpredictability of smaller on-demand instances.

External load: Figure 8.14b shows the sensitivity of performance to external load

(load in machines due to jobs beyond those provisioned with our strategies). SR

provisions a fully-controlled environment, therefore there is no external load to affect

performance. OdF and HF are also tolerant to external load, as they only use the

largest instances, which are much less prone to external interference. For HM per-

formance degrades minimally until 50% load, beyond which point the estimations on

resource quality become inaccurate. OdM suffers most of the performance degrada-

tion as all of its resources are susceptible to external interference.

Retention time: Figure 8.15 shows the 95th percentile of performance and the cost

of each strategy, as the time for which idle instances are maintained changes for the

high variability scenario. As expected, releasing well-behaved instances immediately

hurts performance, as it increases the overheads from spinning-up new resources.

This is especially the case for this scenario, where load changes frequently. With

respect to cost, higher retention time increases the cost of strategies using only on-

demand resources (OdF, OdM), while SR remains unchanged; the difference for hybrid

strategies is small. An unexpected finding is that excessive resource retention slightly

CHAPTER 8. HCLOUD 188

0 20 40 60 80 100 120
Spin up Overhead (sec)

0

20

40

60

80

100

9
5

th
 %

ile
 o

f
P

e
rf

 n
o

rm
 t

o
 S

R
 (

%
) High Variability Scenario

SR

OdF

OdM

HF

HM

0 20 40 60 80 100

External Load (%)

0

20

40

60

80

100

9
5

th
 %

ile
 P

e
rf

 n
o

rm
 t

o
 I

s
o

la
ti
o

n
 (

%
)

High Variability Scenario

SR

OdF

OdM

HF

HM

Figure 8.14: Sensitivity to spin-up time and external load.

hurts performance for OdM and HM. The primary reason is the temporal variability

in the quality of on-demand resources, which degraded by the time new applications

were assigned to these instances.

8.5.2 Provisioning Overheads

In the presented strategies, the provisioning overheads include job profiling and classi-

fication (Quasar), provisioning decisions, spin-up of new on-demand instances (where

applicable), and rescheduling actions. The profiling that generates the input signal for

the classification engine takes 5-10 sec, but only needs to happen the first time a job is

submitted. Classification itself takes 50msec on average. Decision overheads include

the greedy scheduler in the statically-reserved strategy (SR) and the overhead of de-

ciding whether to schedule a new job on reserved versus on-demand resources in the

hybrid strategies. In all cases decision overheads do not exceed 20msec, three orders

of magnitude lower than the spin-up overheads of on-demand instances (10-20sec on

average). Finally, job rescheduling due to suboptimal performance is very infrequent

for all strategies except OdM, where it induces 6.1% overheads to the execution time

of jobs on average.

8.5.3 Different Pricing Models

So far we have assumed a pricing model for reserved and on-demand instances similar

to the one used by Amazon’s AWS. This is a popular approach followed by many

smaller cloud providers. Nevertheless, there are alternative approa-ches. GCE does

CHAPTER 8. HCLOUD 189

0 100 200 300 400 500
Retention Time (x Spin up Overhead)

0

20

40

60

80

100

9
5

th
 %

ile
 P

e
rf

 n
o

rm
 t

o
 S

R
 (

%
) High Variability Scenario

SR

OdF

OdM

HF

HM

0 100 200 300 400 500

Retention Time (x Spin up Overhead)

0

2

4

6

8

10

12

14

C
o

s
t

High Variability Scenario

SR

OdF

OdM

HF

HM

Figure 8.15: Sensitivity to resource retention time.

not offer long-term reservations. Instead it provides sustained usage monthly discounts

to encourage high-utilization of on-demand resources. The higher the usage of a set

of instances of a type for a fraction of the month, the lower the per-hour instance

price for the remainder of the month. This approach does not differentiate whether

one uses a single instance of type A for 3 weeks or 3 instances of type A for 1 week

each. Microsoft Azure only offers on-demand resources of different types.

Even without reserved resources, the problem of selecting the appropriate instance

size and configuration, and determining how long to keep an instance before releasing

it remains. Figure 8.16 shows how cost changes for the three workload scenarios,

under the Azure (on-demand only) and GCE (on-demand + usage discounts) pricing

models, compared to the AWS pricing model (reserved + on-demand). We assume

that the resources will be used at least for a one month period, so that GCE discounts

can take effect. Cost is normalized to the cost of the static workload scenario under

the SR provisioning strategy using the reserved & on-demand pricing model. Even

with these alternative pricing models using the hybrid strategies and accounting for

the resource preferences of incoming applications to optimize provisioning significantly

benefits cost. For example, for the high variability scenario HM achieves 32% lower

cost than OdF with the Windows Azure pricing model; similarly for the GCE model

with discounts, HM achieves 30% lower cost than OdF.

GCE decouples the level of usage from the specific instance used. For example,

monthly usage is considered the same between a single instance used for 50% of the

month, and N instances of the same type used for (50/N)% of the month each. This

introduces new opportunities to optimize resource provisioning by maximizing the

CHAPTER 8. HCLOUD 190

SR OdF OdM HF HM

Reserved & On-demand On-demand &
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

C
o
s
t

Static Scenario

on-demand only usage discounts
Reserved & On-demand On-demand &

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

C
o
s
t

Low Variability Scenario

on-demand only usage discounts

Reserved & On-demand On-demand &
0

1

2

3

4

5

C
o
s
t

High Variability Scenario

on-demand only usage discounts

Figure 8.16: Sensitivity to the cloud pricing model for the three workload scenarios.

time a certain instance type is used during a month. We defer such considerations to

future work.

8.5.4 Resource Efficiency

Apart from lowering cost, we also want to ensure that a provisioning strategy is

not wasteful in terms of resources. Figure 8.17 shows the resource allocation by each

strategy throughout the duration of the high variability scenario. The reserved system

(SR) is provisioned statically for the peak requirements plus a 15% overprovisioning

as described in Section 8.3.1. Because all instances are private (limited external in-

terference) and all resources are readily available, the scenario achieves near-ideal

execution time (∼2hr). However, because there is high load variability, utilization is

rarely high, resulting in poor resource efficiency. Strategy OdF obtains resources as

they become necessary and because it induces spin-up overheads frequently due to the

constant load change, it results in longer execution time (132 min). It also introduces

some overprovisioning, as it only requests the largest instances to constrain perfor-

mance unpredictability. OdM does not overprovision allocations noticeably since it

uses smaller instances, however, it significantly hurts performance, resulting in the

scenario completing in 48% more time. Performance degradation is partially the result

CHAPTER 8. HCLOUD 191

Required Reserved On-Demand

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

C
o
re

s

Configuration: SR

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

C
o
re

s

Configuration: OdF

0 20 40 60 80 100 120 140 160
Time (min)

0

200

400

600

800

1000

1200

1400

C
o
re

s

Configuration: OdM

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

C
o
re

s

Configuration: HF

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

C
o
re

s

Configuration: HM

Figure 8.17: Resource allocation graphs for the five provisioning strategies in the
case of the high variability scenario.

0 20 40 60 80 100 120

Time (min)

0

20

40

60

80

100

120

S
e
rv

e
rs

Strategy SR

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

U
ti
liz

a
ti
o
n
 (

%
)

0 20 40 60 80 100 120

Time (min)

0

20

40

60

80

100

120

140

S
e
rv

e
rs

Strategy OdF

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

U
ti
liz

a
ti
o
n
 (

%
)

0 20 40 60 80 100 120 140 160

Time (min)

0

50

100

150

200

In
s
ta

n
c
e
s

Strategy OdM

0

10

20

30

40

50

60

70

80

90

100

In
s
ta

n
c
e
 U

ti
liz

a
ti
o
n
 (

%
)

0 20 40 60 80 100 120
0

10
20
30
40
50
60
70

S
e
rv

e
rs

Strategy HF

0
10
20
30
40
50
60
70
80
90
100

0 20 40 60 80 100 120
0

20
40
60
80

100
120

In
s
ta

n
c
e
s

Strategy HM

0
10
20
30
40
50
60
70
80
90
100

0 20 40 60 80 100 120

Time (min)

0
5

10
15
20
25
30

S
e
rv

e
rs

0
10
20
30
40
50
60
70
80
90
100

0 20 40 60 80 100 120

Time (min)

0
5

10
15
20
25
30

S
e
rv

e
rs

0
10
20
30
40
50
60
70
80
90
100

Figure 8.18: Resource utilization for the high variability scenario across the five
provisioning strategies. For strategies HF and HM we separate reserved (bottom)
from on-demand (top) resources.

of variability in the quality of an instance, and of the high instance churn (releasing in-

stances immediately after use), due to their poor behavior. 43% of obtained instances

were released immediately after use. The hybrid strategies (HF and HM) provision

reserved resources for the minimum, steady-state load and use on-demand resources

beyond that. Spin-up overheads induce some delay in the completion of the scenario,

although this only amounts to 2.6% over SR. With HM, this delay is primarily due

to instances that misbehaved and were immediately released after the completion of

their jobs, requiring resources to be obtained anew (about 11% of instances). This

issue is less pronounced when all on-demand resources are large instances (HF).

Figure 8.18 shows the CPU utilization of each instance throughout the execution

of the high variability scenario for the five provisioning strategies. CPU utilization

is sampled every 2 seconds and averaged across the cores of an instance. For the

hybrid strategies we separate the reserved from the on-demand resources. For the

on-demand resources, instances are ranked in the order in which they are obtained.

In the case of the fully reserved provisioning strategy (SR), a small fraction of the

CHAPTER 8. HCLOUD 192

Allocated Hadoop Spark memcached

0 20 40 60 80 100 120

Time (min)

0

100

200

300

400

500

600

C
o

re
s

Reserved Resources

0 20 40 60 80 100 120

Time (min)

0

50

100

150

200

250

300

350

400

450

C
o

re
s

On-Demand Resources

Figure 8.19: Breakdown of allocation per application type.

instances operate at high utilization as we try to co-schedule as many applications

as possible, however, the majority of instances are greatly underutilized. This is

consistent with the findings of Figure 8.17a; because resources are provisioned for

peak load most of the machines operate at low utilization when load is lower than the

maximum. The majority of resources are used only during the two load surges at 32

and 60 minutes. Strategies OdF and OdM obtain resources as they become necessary

(shown by the fact that not all instances exist at time 0). Although the total number

of instances used during the execution of the scenario with OdF is similar to SR, most

instances are released when no longer needed, hence the number of active instances

during off-peak load is significantly lower. In the case of the OdM strategy instances

are additionally released when they behaved poorly for a given application. Note that

because of the high instance churn, the total number of instances used throughout

the execution of the scenario is higher for OdM than for OdF. The scenario also takes

longer to complete for OdM (178 as opposed to 120 minutes).

Finally the hybrid strategies maintain the utilization of reserved resources high

throughout the execution of the workload scenario, and obtain on-demand resources

as needed. HF needed in total 72 on-demand instances, although only 34 of those

are used on average. More than 60 on-demand instances are only used during load

surges. HM needs a higher number of on-demand resources, because it also uses

smaller instances, and because poorly-performing instances are released and replaced

by new ones. Note that the fraction of released instances due to poor performance

is lower for HM than for OdM, since only jobs that can tolerate some performance

CHAPTER 8. HCLOUD 193

unpredictability are mapped to smaller on-demand instances. Both hybrid strategies

complete the scenario in the same time as SR.

Figure 8.19 breaks down the allocation of the low variability scenario by applica-

tion type, for strategy HM. Initially the reserved resources are used for most appli-

cations, until load reaches the soft utilization limit. Beyond that, the interference-

sensitive memcached occupies most of the reserved resources, while the batch work-

loads are mostly scheduled on the on-demand side. When the increase in the mem-

cached load exceeds the capabilities of the reserved resources, part of the latency-

critical service is scheduled on on-demand resources to avoid long queueing delays,

although it is often allocated larger on-demand instances to meet its resource quality

requirements.

8.5.5 Additional Provisioning Considerations

Spot instances: Spot instances consist of unallocated resources that cloud providers

make available to users through a bidding interface. Spot instances do not have avail-

ability guarantees, and may be terminated at any point in time if the bidding price

is lower than the market price for an instance type. Incorporating spot instances in

provisioning strategies for non-critical tasks or jobs with very relaxed performance

requirements can further improve the system’s cost-efficiency.

Reducing unpredictability: Resource partitioning (e.g., cache or network band-

width partitioning) has the potential to improve isolation between instances sharing

one or more resources, thus reducing performance unpredictability in fully on-demand

provisioning strategies. We plan to investigate how resource partitioning complements

provisioning decisions in future work.

Data management: In our current infrastructure both reserved and on-demand

resources are in the same cluster. When reserved resources are deployed as a private

facility, the provisioning strategy must also consider how to minimize and manage

data transfers and replication across the private and on-demand resources.

CHAPTER 8. HCLOUD 194

0 20 40 60 80 100
Sensitive Apps (%)

0

20

40

60

80

100

9
5

th
 %

ile
 P

e
rf

.
n

o
rm

 t
o

 I
s
o

la
ti
o

n
 (

%
)

High Variability Scenario

SR

OdF

OdM

HF

HM

0 20 40 60 80 100
Sensitive Apps (%)

0

1

2

3

4

5

6

C
o

s
t

High Variability Scenario

SR

OdF

OdM

HF

HM

Figure 8.20: Sensitivity to application characteristics.

8.5.6 Sensitivity to Workload Characteristics

We now evaluate how the performance and cost results change as the characteristics

of the applications change with respect to how sensitive they are to interference.

Figure 8.20 shows the 95th percentile of performance for the five strategies as the

percentage of jobs that are sensitive to interference increases. We modify the high

variability scenario used before, such that the number of jobs that cannot tolerate

performance unpredictability increases. In the left-most part of the graph, most jobs

are batch Hadoop applications, which can tolerate some resource contention; as we

move to the right part of the graph the majority of jobs are latency-critical memcached

applications and real-time Spark jobs.

The statically-provisioned strategy (SR) behaves well even when most applica-

tions need resources of high quality, as it is provisioned for peak load, and there is

no external load. The two hybrid strategies also behave well, until the fraction of

sensitive applications increases beyond 80%, at which point queueing in the reserved

resources becomes significant. The purely on-demand strategies are the ones that

suffer the most from increasing the fraction of sensitive applications. OdF and es-

pecially OdM significantly degrade the performance of scheduled applications, both

due to increased spin-up overheads, and because more applications are now affected

by external contention.

With respect to cost, increasing the fraction of applications that are sensitive to

interference impacts all strategies except for SR. Since HF and HM can use the re-

served resources for the sensitive jobs, their cost increases only beyond the 30% mark,

at which point more on-demand resources have to be purchased to avoid increased

CHAPTER 8. HCLOUD 195

with profiling info without profiling info

SR OdF OdM HF HM
0

1

2

3

4

5

6

7

8

9

C
o

s
t

Static Scenario

SR OdF OdM HF HM
0

2

4

6

8

10

12

C
o

s
t

Low Variability Scenario

SR OdF OdM HF HM
0

2

4

6

8

10

C
o

s
t

High Variability Scenario

Figure 8.21: Cost of the three workload scenarios with and without the profiling
information from Quasar.

queueing in the reserved resources. The two on-demand strategies experience a signif-

icant cost surge, as increasing the fraction of sensitive applications results in a lower

degree of co-scheduling and the need for new resources.

8.5.7 Cost Impact of Information from Quasar

Finally, we examine how removing the information on the resource preferences of new

jobs affects the cost of the five provisioning strategies. In this case, latency-critical

applications, such as memcached are provisioned for their peak load, and batch jobs

(Hadoop and Spark) use the default framework parameters, for example for the num-

ber of tasks per core, heapsize, etc. Figure 8.21 shows the cost with and without the

information from Quasar for the three workload scenarios. Since overprovisioning is

now much more prominent both the statically-reserved and the on-demand strategies

incur significantly higher costs. The differences become more pronounced for scenar-

ios with load variability, where overprovisioning is higher. For most cases the relative

ordering between strategies remains the same; for example in the high variability

scenario even without the information from Quasar the hybrid strategies have lower

cost than SR and significantly lower than the on-demand strategies.

CHAPTER 8. HCLOUD 196

8.6 Related Work

Cluster management: The increase in the size and number of large-scale DCs

has motivated several designs for cluster management. Systems like Mesos [139],

Torque [259] and Omega [232] all address the problem of allocating resources and

scheduling applications in large, shared clusters. Mesos is a two-level scheduler.

It has a central coordinator that makes resource offers to application frameworks,

and each framework has an individual scheduler that handles its assigned resources.

Omega on the other hand, follows a shared-state approach, where multiple concurrent

schedulers can view the whole cluster state, with conflicts being resolved through a

transactional mechanism [232]. Dejavu identifies a few workload classes and reuses

previous resource allocations for each class, to minimize reallocation overheads [266].

CloudScale [240], PRESS [118], AGILE [203] and the work by Gmach et al. [117] pre-

dict future resource needs online, often without a priori workload knowledge. Finally,

auto-scaling systems, such as Rightscale [224], automatically scale the number of

physical or virtual instances used by webserving workloads, to accommodate changes

in user load.

A second line of work tries to identify the specific resources that are appropriate

for incoming tasks [76, 188, 199, 285]. Paragon uses classification techniques to deter-

mine the impact of platform heterogeneity and workload interference on an unknown,

incoming workload [76]. It then uses this information to schedule each workload in

a way that enables high performance for the job and high utilization for the cluster.

Paragon, assumes that the cluster manager has full control over all resources, which is

often not the case in public clouds. Nathuji et al. developed a feedback-based scheme

that tunes resource assignments to mitigate interference effects [200]. Yang et al.

developed an online scheme that detects memory pressure and finds colocations that

avoid interference on latency-sensitive workloads [285]. Similarly, DeepDive detects

and manages interference between co-scheduled workloads in a VM environment [204].

Finally, CPI2 [296] throttles low-priority workloads that induce interference to im-

portant services. In terms of managing platform heterogeneity, Nathuji et al. [199]

and Mars et al. [186] quantified its impact on conventional benchmarks and Google

CHAPTER 8. HCLOUD 197

services, and designed schemes to predict the most appropriate server type for each

workload.

Hybrid clouds: Hybrid clouds consist of both privately-owned and publicly-rented

machines and have gained increased attention over the past few years for several

reasons, including cost-efficiency, as well as security and privacy concerns [20, 44,

143, 159, 294]. Breiter et al. [44] describe a framework that allows service integration

in hybrid cloud environments, including actions such as overflowing in on-demand

resources during periods of high load. Farahabady et al. [143] present a resource

allocation strategy for hybrid clouds that attempts to predict the execution times

of incoming jobs and based on these predictions generate Pareto-optimal resource

allocations. Finally, Annapureddy et al. [20] and Zhang et al. [294] discuss the security

challenges of hybrid environments, and propose ways to leverage the private portion

of the infrastructure for privacy-critical computation. The provisioning strategies

discussed here are also applicable to hybrid clouds.

Cloud economics: The resource pricing of cloud providers has been extensively

analyzed. Ben-Yehuda et al. [36] contest whether the pricing strategy of spot instances

on EC2 is indeed market-driven, and discuss alternative pricing strategies. Deelman

et al. [71] discuss provisioning strategies for a single astronomy application on a cloud

provider. Li et al. [172] compare the resource pricing of several cloud providers to

assist users provision their applications. Finally, Guevara et al. [127] and Zahed et

al. [290] incorporate the economics of heterogeneous resources in market-driven and

game-theoretic strategies for resource allocation in shared environments.

8.7 Conclusions

We have discussed the different provisioning strategies available on cloud providers

today and showed their advantages and pitfalls with respect to cost, performance

predictability and initialization overheads. We have also designed two new hybrid

provisioning strategies, that use both reserved and on-demand resources, and leverage

the information on resource preferences of incoming jobs and the quality of previously-

obtained on-demand instances, to map jobs to reserved versus on-demand resources.

CHAPTER 8. HCLOUD 198

We showed that hybrid provisioning strategies can provide the best of both worlds in

terms of performance and cost-efficiency; they preserve QoS for the majority of jobs,

improve performance by 2.1x compared to fully on-demand resources, and reduce cost

by 46% compared to fully reserved resources.

Chapter 9

Conclusions and Future Work

This dissertation has presented scheduling and resource management techniques that

enable resource-efficient and performance-aware datacenters. In particular we have

made the following contributions.

• Big Data in System Management: We have designed two systems that

leverage data mining techniques to quickly extract the resource preferences of

previously-unknown applications. First, Paragon (Chapter 3) uses a recommender

system based on collaborative filtering to determine the most suitable hardware

platforms for a new workload, and the sensitivity it experiences to interference

in shared resources (Chapter 5). Subsequently, Quasar (Chapter 4) generalizes

this framework to tackle the more general problem of cluster management in dat-

acenters, addressing both resource assignment (type of resources), and resource

allocation (amount of resources). Leveraging data mining not only improves ap-

plication performance and cluster-wise utilization by 2-3x, but enables practical

management solutions at the scale of thousands of machines.

• High-Level Declarative Interfaces: We have highlighted the performance and

efficiency pitfalls of reservation-based interfaces in datacenters. In Quasar (Chap-

ter 4), we have proposed a high-level, declarative interface that centers around

performance. Users specify the performance (QoS) target a new application must

meet and the system translates it to resources using the data mining approach

199

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 200

detailed above. The declarative interface simplifies the responsibility of the user,

while allowing flexibility to the cluster manager to better allocate resources.

• Scalable Scheduling Techniques: We have developed two systems that enable

scalable scheduling in the presence of heterogeneous resources. First, we presented

Tarcil (Chapter 7), a scheduler that bridges the gap between centralized systems

that optimize decision quality, and distributed schedulers that optimize decision

latency. Tarcil relies on a simple analytical framework, that provides statistical

guarantees on the quality of allocated resources. Second, we designed HCloud

(Chapter 8) which enables efficient resource provisioning in public clouds. Both

systems enable millisecond-level scheduling decisions at high cluster load, while

guaranteeing per-application performance constraints.

We believe that these contributions open several interesting directions for future

work. Our work on applying data mining principles to datacenter management places

an emphasis on the importance on finding practical solutions for large-scale system

challenges. We have shown that contrary to the traditional trial-and-error approach,

mining the knowledge systems accummulate through data collection in a mindful

fashion can provide invaluable insight on application requirements, which translates

to both performance and efficiency benefits. We hope that architects and system

designers will apply this approach to other large-scale problems, including managing

dependencies across multi-tier services, performance debugging for distributed appli-

cations, and design of heterogeneous and reconfigurable systems. Additionally, while

we have so far focused on improving resource efficiency at the cluster management

level, efficiency is sacrificed in lieu of performance across the system stack. Designing

hardware and software schemes that guarantee strict isolation between applications

sharing system resources can further improve resource efficiency. Finally, a lot of per-

formance unpredictability comes from the many levels of indirection in the software

stack. Providing feedback to application designers on application-level inefficiencies

can bridge the programmability-performance gap and improve predictability in large-

scale systems. We leave these endeavors to future work.

Appendix A

Storage Modeling of Datacenter

Workloads

A.1 Introduction

With the advent of social networking and cloud data-stores, user data is increasingly

being stored in large-capacity and high-performance storage systems. These systems

account for a significant portion of the total cost of ownership (TCO) of a datacenter

(DC) [229, 69]. Specifically, for online services, data retrieval is often the bottle-

neck to application performance [230, 229], making efficient storage provisioning a

first-order design constraint. One of the main challenges when trying to evaluate

storage system options is the difficulty in replaying the entire application in all pos-

sible system configurations. The effort itself can be highly inefficient from the time

and cost perspective, given the scale of DC deployments (hundreds of TBs, over tens

of thousands of servers). It is hence imperative to invest in frameworks that allow for

extensive workload analysis, characterization and modeling.

Large-scale Online Services differ from conventional applications in that they can-

not be approximated by single machine benchmarking, due to patterns that emerge

from user behavior in a large-scale environment. Furthermore, privacy concerns make

source code, user behavior patterns and datasets of DC applications rarely available

to storage system designers. This makes the development of a representative model

201

APPENDIX A. STORAGE MODELING 202

that captures key aspects of the workload’s storage profile, even more appealing.

Once such a model is available, creating a tool that reproduces the application’s stor-

age behavior via a synthetic access pattern will enable large-scale storage studies,

decoupled from the requirement to access application code.

Despite the merit in this effort, previous work on I/O workload generation lacks

the ability to capture the spatial and temporal locality of I/O access patterns, causing

them to significantly deviate from the application’s real characteristics. In this chap-

ter, we provide a framework for research on large-scale storage systems that addresses

these issues. This infrastructure includes probabilistic, state diagram-based models

that capture information of configurable granularity on the workload’s access patterns.

We develop the models from production traces of real DC applications based on pre-

vious work [230]. We extend these models to a granular, hierarchical representation

in order to identify the optimal level of detail for each application. Then we perform

an in-depth, per-thread characterization of the storage activity of ten large-scale DC

applications in terms of the functionality, intensity and fluctuation of I/O behavior.

To the best of our knowledge this is the first study at a per-thread granularity for

large-scale applications, including information on their spatial locality. Furthermore,

we design a tool that recognizes these models and recreates synthetic access patterns

with I/O features that closely match those of the original applications. We perform

extensive validation of our methodology to ensure resemblance between original and

synthetic loads in both I/O characteristics and performance metrics.

The main features we introduce for accurate I/O generation are:

1. The ability to issue I/Os with specified inter-arrival times, both static and follow-

ing time distributions.

2. The ability to preserve the spatial and temporal locality of I/O accesses, as well

as the features and weights of each transition in the state diagram.

3. The ability to modify the intensity of the generated I/Os by scaling the inter-

arrival time of I/O requests. This enables high performance storage systems eval-

uations (e.g., Solid State Drives).

APPENDIX A. STORAGE MODELING 203

We use our methodology (model and tool) to evaluate two important DC storage

design challenges. Firstly, we explore the applicability of Solid State Devices (SSD)

caching in DC workloads. Using our tool, we show that for most of the examined

DC applications, SSD caching offers a significant storage system speedup without

application change (31% on average for a 32GB SSD cache). In the second use case,

we motivate the need for defragmentation in the DC. We observe that user data

gets accumulated over a period of time and files get highly fragmented. Using this

information from tracing [97], we rearrange blocks on disk in order to improve the

sequential characteristics of the workloads. Using the tool to run the defragmented

traces we show that defragmentation offers a significant boost in performance (18%

on average), in some cases even greater than incorporating SSDs.

Succinctly, the main contributions of this work are:

• We present a concise statistical model that accurately captures the I/O access pat-

tern of large-scale applications including their spatial locality, inter-arrival times

and type of accesses. It is also hierarchical, which allows configurable level of

detail to accommodate the features of each application.

• We implement a tool that recognizes this model and recreates synthetic access

patterns with same I/O characteristics and performance metrics as in the original

application. No previous storage tool (e.g., IOMeter) can simulate spatial and

temporal locality of DC workloads.

• This methodology enables storage system studies that were previously impos-

sible without full application deployment and without access to the

real applications. We demonstrate the applicability of our tool in evaluating

SSD caching and defragmentation. These spatial locality-based studies have been

unexplored due to lack of a tool that allowed their evaluation.

A.2 Related Work

Significant prior work [163] has studied how to efficiently provision DC storage sys-

tems. However, a necessary requirement towards efficiently configuring the storage

APPENDIX A. STORAGE MODELING 204

State 1

(0-25%

LBN)

State 2

(25-50%

LBN)

State 3

(50-75%

LBN)

State 4
(75-100%

LBN)

4K rd Rnd 3ms 11.8%

32K wr Seq 3.25ms 20.1% 16K rd Seq 4.13ms 28%

4K rd Seq 12.34ms 17% 16K wr Seq 5.74ms 16%

8K wr Rnd 11.34ms 1.33%

8
K

 rd
 S

e
q

 1
.8

4
m

s 8
.1

%
 1

6
K

 r
d

 R
n

d
 3

6
m

s
4

.1
%

Figure A.1: One level state diagram

system is studying DC workloads. A convenient approach for that should involve a

model that captures the workload’s representative features and a tool that accurately

recreates its access patterns.

Despite this, prior large-scale storage configuration techniques are primarily empir-

ical, based on the workload’s characteristics as derived from traces [156]. Kavalanekar

et al. [156, 155] use a trace-based approach to characterize large online services for

storage system configuration and performance modeling. Traces offer useful insight

on the characteristics of large-scale workloads, but their usefulness is limited by the

system upon which they have been collected. Regenerating I/O workloads with high

fidelity can offer far richer information towards understanding the behavior of work-

loads whose implementation remains largely unknown. It also enables addressing

instrumental challenges in storage system design (e.g., incorporating SSDs, defrag-

mentation, placement/migration of hot data) when optimizing for performance and

efficiency.

IOMeter [147], SQLIO [245], Vdbench [264] are all open-source generators of disk

I/O loads. IOMeter allows for specific I/O characteristics to be defined, SQLIO

simulates aspects of the disk load of the Microsoft SQL Server, while Vdbench apart

from the feature of I/O generation is equipped with the capability of trace replay.

Finally, a workload generator relying on online histograms in a virtual machine over

VMWare’s ESX Server [8] captures information on disk I/O without significant CPU

or latency overheads. However, all these workload generators lack the ability to

APPENDIX A. STORAGE MODELING 205

4K rd Rnd 3ms 11.8%

32K wr Seq 3.25ms 10.6%

16K rd Seq 0.13ms 4.5%

4K rd Seq 0.34ms 3.91% 16K wr 0.036ms Seq 3.1%
8K wr Rnd 11.34ms 1.33%

8
K

 rd
 S

e
q

 1
.8

4
m

s 8
.1

%
 1

6
K

 r
d

 R
n

d
 3

6
m

s
4

.1
%

State 4 (75-100% LBN) State 3 (50-75% LBN)

State 2 (25-50% LBN) State 1 (0-25% LBN)

State 1_1

(0-6.25% LBN)
State 2_1

(25-31.25% LBN)

32K wr Seq 3.25ms 20.1%

State 3_1

(50-56.25% LBN)

32K wr Seq 3.25ms 20.1%

State 4_1

(75-81.25% LBN)

State 1_3

(12.50-18.75% LBN)

State 2_2

(31.25-37.50% LBN)

State 2_3

(37.50-43.75% LBN)

State 2_4

(43.75-50% LBN)

State 3_2

(56.25-62.50% LBN)

State 3_4

(68.75-75% LBN)

State 3_3

(62.50-68.75% LBN)

State 4_2

(81.25-87.50% LBN)

State 4_3

(87.50-93.75% LBN)

State 4_4

(93.75-100% LBN)

State 1_2

(6.25-12.50% LBN)

State 1_4

(18.75-25% LBN)

4K rd Rnd 3ms 11.8% 32K wr Seq 3.25ms 10.6% 16K rd Seq 0.13ms 4.5%

4K rd Seq 0.34ms 3.91% 16K wr 0.036ms Seq 3.1%
8K wr Rnd 11.34ms 1.33%

8
K

 rd
 S

e
q

 1
.8

4
m

s 8
.1

%
 1

6
K

 r
d

 R
n

d
 3

6
m

s
4

.1
%

State 4 (75-100% LBN) State 3 (50-75% LBN)

State 2 (25-50% LBN) State 1 (0-25% LBN)

State 1_1

(0-6.25% LBN)
State 2_1

(25-31.25% LBN)

32K wr Seq 3.25ms 20.1%

State 3_1

(50-56.25% LBN)

32K wr Seq 3.25ms 20.1%

State 4_1

(75-81.25% LBN)

State 1_2

(6.25-12.50% LBN)

State 1_3

(12.50-18.75% LBN)

State 1_4

(18.75-25% LBN)

64K wr Seq 0.001ms 8.65%

State 2_2

(31.25-37.50% LBN)

State 2_3

(37.50-43.75% LBN)

State 2_4

(43.75-50% LBN)

State 3_2

(56.25-62.50% LBN)

State 3_4

(68.75-75% LBN)

State 3_3

(62.50-68.75% LBN)

State 4_2

(81.25-87.50% LBN)

State 4_3

(87.50-93.75% LBN)

State 4_4

(93.75-100% LBN)

Figure A.2: Two level state diagram: (a) Transition between minor states, and (b)
Transition between major states

exploit the temporal and especially the spatial locality of DC applications. Spatial and

temporal locality are extremely important for DC applications, due to the different

behavior of storage devices with and without locality. Ignoring locality can result in

greatly misleading results in performance, power and TCO.

Finally, where applicable, these tools are based on outstanding I/Os instead of

inter-arrival times. However, the latter offers a better representation of the workload’s

behavior [197], decoupled from the system that hosts it. For our work, we extend the

functionality of DiskSpd [90], an I/O workload generator, in ways that enable us to

recreate representative DC loads.

A.3 Modeling and Generation Process

A.3.1 Basic State Diagram Model

Our approach requires a model that captures the I/O features and locality of storage

activity from the application’s point of view. This means that the model needs to

cluster accesses based on their spatial locality and characteristics. For this purpose we

use the Markov Chain representation proposed by Sankar et al. [230]. The models are

APPENDIX A. STORAGE MODELING 206

trained based on real storage traces from production servers of a large-scale datacenter

deployment, and can capture I/O accesses in one or multiple servers, and from one or

multiple users. According to the model, states correspond to ranges of logical blocks

on disk (LBNs) and transitions represent the probabilities of switching between LBN

ranges. Each transition is characterized by a set of features that reflect the workload’s

I/O behavior and consist of the block size, randomness, type of I/O (read, write) and

inter-arrival time between subsequent requests.

The insight behind the model’s structure is that spatial locality is represented

by the clustering of I/Os corresponding to the same state, and temporal locality

(i.e., subsequent I/Os) is represented by the transitions between states in the model.

Therefore, it provides a comprehensive and modular representation of the workload’s

I/O behavior. The probability for each transition is calculated as the percentage of

I/Os that correspond to it. Figure A.1 demonstrates a simplified form of the state

diagram with four states, each of which corresponds to 25% of the total LBNs. The

model works as follows (highlighted part of the diagram): If an I/O corresponds to

State 1, there is an 11.8% probability that the next I/O will be a 4K read, random

access with an inter-arrival time of 3ms that corresponds to State 2.

A.3.2 Hierarchical State Diagram Model

Different applications have different access patterns, some requiring more detail than

others to be accurately captured. To convey information of finer granularity, we have

extended the previous model to a hierarchical representation. Figure A.2 demon-

strates one such model with two levels. To build a two-level model each state in the

one level diagram is subdivided in four states and becomes a new state diagram. The

two-level diagram will have 16 states. Here LBNs are divided in four states. In gen-

eral, the number of states per level is chosen such that the probabilities of transitions

are minimized.

Perhaps counter-intuitively, the number of transitions in the new diagram is not

256 but 76. As shown in Figure A.2, level-two (fine-grained) transitions only exist

within the large states but not across them. This means that a transition happens

APPENDIX A. STORAGE MODELING 207

Levels State Count
Transition Count

Hierarchical Model Flat Model
1 4 16 16
2 16 76 256
3 64 316 4096
4 256 1276 65536
5 1024 5116 1048576

10 1048576 5242876 109951162776

Table A.1: Scalability of the model in terms of number of states and transitions with
an increasing number of levels.

either between two minor states (Figure A.2(a)) or between two major states (Fig-

ure A.2(b)). This approach exploits the fact that spatial locality is mostly confined

within states. The number of transitions for a given level is given by

4l−116 +
l−1
∑

i=1

4i−112 (1)

while for the flat model it is given by 16l, where l is the number of levels.

Table A.1 shows how the number of states and transitions scales for up to 10

levels. It becomes obvious that for the flat representation the number of transitions

increases exponentially with the number of states, while the hierarchical model has

a linear relation with the state count. This choice does not cancel the value of a

flat model, but rather proposes that a hierarchical model is just as beneficial without

making the number of transitions intractable. Comparing the throughput of models

constructed with the hierarchical and the flat representations shows less than 5%

difference in throughput.

The number of levels reflects the complexity of an application’s access pattern

and as shown in the validation section (Section A.4), finer granularity is instrumental

to accurately represent some applications. The proposed model structure guarantees

scalability even for applications that require many levels.

A.3.3 Storage Activity Fluctuation

It is well known that DC applications experience high fluctuations in their activity,

with peak activity usually occurring throughout periods of the day and low activity be

APPENDIX A. STORAGE MODELING 208

present throughout the night. In order to generate representative storage workloads

of real applications one must account for this effect. Studying the fluctuation of the

storage activity for DC applications reveals that the main feature that changes is

the intensity of the I/O requests, i.e., throughout specific periods of an application’s

lifecycle inter-arrival times decrease significantly. Other features however, like the

spatial locality and size of the requests are self-similar throughout this lifecycle [197].

In order to account for this fluctuation, we calculate the inter-arrival times over shorter

periods of activity and progressively switch between workload intensities. Essentially

each model is composed by multiple models of different intensities that capture the

transient features of the I/O requests.

A.3.4 Generation Tool Design - DiskSpd

The model, previously discussed, is the first step in recreating accurate DC I/O loads.

The second step, involves a tool that recognizes the model and generates storage

workloads with high fidelity, using some configuration knobs.

For this purpose we use DiskSpd, a tool that started as a means to measure disk

I/O bandwidth and expanded to a complete workload generator [90]. It performs

read and/or write I/Os in burst mode on either disks or files, given the I/Os’ block

size, randomness, and initial block offset. The former consist of a subset of the most

relevant features of DiskSpd for the current study. Other features include controlling

system parameters such as hardware or software (OS) caches, thread affinity, number

of outstanding I/Os, etc.

To recreate a representative workload using the model previously discussed, we

have introduced a series of features in DiskSpd. The following subsections describe

these features.

Inter-arrival Times (Average and Distributions)

Studying real application traces has shown that burst mode I/O accesses, though

present for short periods of time, are not the norm and do not dominate an appli-

cation’s lifetime. Subsequent I/Os tend to have well-defined time margins between

APPENDIX A. STORAGE MODELING 209

them. Narayanan et al. [197] have shown that inter-arrival times are a critical feature

of I/O behavior, especially in DC applications that experience high peaks and low

troughs throughout their execution. Multiple studies quantify the magnitude of this

metric and explore the differences among DC workloads [230, 229].

To demonstrate these margins between accesses of specific block ranges, we im-

plement inter-arrival times in DiskSpd, which are calculated for each transition and

measured in ms. Enabling inter-arrival times also means disabling the simultaneous

tuning of outstanding I/Os since the two are incompatible, with the former ensuring

an ”idle” period of time between I/Os and the latter ensuring a defined number of

on-the-fly I/Os in the queues.

The use of inter-arrival times instead of outstanding I/Os in a workload generator

is first proposed here. Previous tools are based on defining the system’s queue length.

However, queued I/Os do not characterize an application as well as inter-arrival times,

since queue length is a system feature, while I/O intensity a workload feature. The

difference between the two becomes clearer in the case where we want to create a

more intense workload as described in Section A.3.4.

Furthermore, in order to capture the variations in storage intensity we have added

the feature of inter-arrival time distributions, i.e., during the workload’s execution

inter-arrival times can follow one of the following distributions: normal, exponential,

Poisson and gamma. This permits a closer resemblance to the fluctuations of a

workload’s intensity throughout its lifetime, as well as the capture of burst I/Os.

In the default version of the tool, the mean for normal distribution (µ), the rate

parameter for exponential (λ), the expected number of occurrences for Poisson (λ)

and the scale parameter (θ) for gamma correspond to the mean inter-arrival time

calculated from the traces.

Multiple Threads and Thread Weights

Access patterns of real applications have distinct per transition characteristics. In

order to recreate an I/O load using the state diagram model, we have added the feature

of executing threads with different I/O characteristics each (block size, randomness,

type (rd/wr), target LBN range and inter-arrival times). Each thread corresponds to

APPENDIX A. STORAGE MODELING 210

a transition in the state diagram and maintains the original access pattern via the

notion of thread weight, i.e., the proportion of I/O accesses that correspond to each

thread. During the threads’ execution, we ensure that thread weights are satisfied

with less than 0.05% deviation from the target weights by adjusting their ”idle” time.

This mechanism might seem redundant if one considers thread weights as a straight-

forward translation of inter-arrival times. Although inter-arrival times are a strong

indication of the proportions of accesses for a transition, there are cases where fast

I/Os are not common, but are confined in a short period of the application’s execu-

tion. In this case, simply maintaining inter-arrival time will not ensure the transition’s

weight. Although these events are rare, this mechanism ensures that thread weights

are maintained in all cases.

Furthermore, in order to guarantee that thread weights are satisfied throughout

the workload’s execution we perform a Round Robin visit in states so that all threads

are active in different phases during the program’s execution instead of limiting them

in an arbitrary period of activity. This way the synthetic trace becomes a compressed

version of the original workload. Although this does not cover all possible transi-

tion patterns, self-similarity tests [156] in original DC applications have verified that

indeed the spatial characteristics of I/Os are consistent across time.

Intensity Knob

One of the main objectives behind developing this tool is to evaluate different storage

system configurations. Although when referring to disks, inter-arrival times are within

a few milliseconds or tenths of a millisecond, when switching to SSDs that number

is expected to fall dramatically, since I/Os are expected to arrive at a higher rate.

Current production traces do not have such intensity; however, we expect workloads

to be tuned to faster storage systems using SSDs. In order to replay workloads

compatible with such systems, we have added an intensity knob that scales inter-

arrival times down or up to increase or decrease their intensity respectively. This

feature clarifies the distinction between outstanding I/Os and inter-arrival times.

Queuing more I/Os does not emulate a faster storage system, since in an SSD-based

system, for example, I/Os do not simply get queued in larger numbers, they also get

APPENDIX A. STORAGE MODELING 211

1

10

100

1000

10000

100000

1000000

0.001 0.01 0.1 1 2 10 20

IO
P

S

Scale

Search-Real Search-Ideal

Figure A.3: Throughput scaling for different workload intensities.

serviced faster. Maintaining the outstanding I/Os queue length in this case, stresses

the storage system out of proportion and is not useful for DC scaling studies. Having

this knob offers the opportunity to evaluate a storage system configuration based

on the workload’s expected intensity margins. It also enables studies that scale the

number of users that initiate requests in the system.

For example, in a hard disk-based system (HDD) when intensity exceeds the

system’s queues’ capabilities, throughput levels-off. Figure A.3 shows this inability

of the HDD system to service high-rate requests. Smaller scale corresponds to a

more intense workload. Although we assume that I/Os will not be dropped, unless

timeouts are present in the system, the application can still not meet its increased

performance requirements. The use of SSDs for storage is motivated, among others,

by this performance limitation of the HDD-based system.

An important note to make here is that our work is based on an open-loop ap-

proach, which means that applications are not retuned when we switch to an SSD-

based system. This potentially underestimates the benefit from the use of SSDs,

but offers a more concise comparison between the capabilities of the storage systems,

since all other parameters remain constant. A second assumption is that, in order to

use the same models as in the HDD-based system, we expect subsequent I/Os to be

independent of each other, therefore scaling the inter-arrival times is a valid approx-

imation of the workload’s access pattern when run on a faster storage system. This

assumption is justifiable for large-scale applications where most requests come from

APPENDIX A. STORAGE MODELING 212

Thread Type Functionality Intensity Fluctuation
Data #0 Data High High
Data #1 Data High Low
Data #2 Data Low High
Data #3 Data Low Low
Log #4 Log High Low
Log #5 Log Low High

Table A.2: Per-thread classification for the ten examined applications based on query
type, intensity of storage activity and fluctuation in the intensity of I/O requests.

different users. Therefore, the intensity knob makes the application more compatible

with a high service rate storage system, while retaining the previous spatial locality.

Whether this locality and hence the model is subject to change in a faster system is

deferred to future work.

A.4 Characterization and Validation

A.4.1 Original DC Workloads

For all our experiments we use traces from production servers of ten popular large-

scale DC applications. Messenger, Display Ads and User Content are the SQL por-

tions of an Online Messenger, an Ads Display and a Live Storage application respec-

tively. For each one, we study the part that maintains the SQL database with user

information. These applications service thousands of users; therefore the data being

accessed is typically spread across most of the provisioned disks.

Email, Search and Exchange are latency-critical online services. Email and Ex-

change are hosted in a much larger storage system than Search. Search has significant

spatial locality, with some portions of the disk being frequently accessed and others

heavily underutilized. TPCC, TPCE and TPCH are large-scale databases, part of the

TPC benchmark suite [260]. Finally, D-Process is a highly-parallelized distributed

computing application that resembles MapReduce [69], collecting and processing large

amounts of information on applications such as Search. Its storage comprises of a

large number of disks, partitioned between data and logs. These applications cover

APPENDIX A. STORAGE MODELING 213

the majority of large-scale workloads in modern DCs.

A.4.2 Generating Models from Traces

The first step in order to create the workload models is collecting real, 24-hour long

(unless otherwise specified) traces from production servers, hosting the applications

previously discussed. The I/O traces are collected from individual servers, however

due to load balancing in DCs the storage behavior is similar across multiple ma-

chines [197]. The length of the traces is sufficiently representative of an application’s

behavior, given the self-similarity of access patterns in DC workloads [197].

The traces are collected using ETW [97], which aside from information on I/O

features (block size, type of request, etc.), tracks the file name, thread id and values

of timestamps for each storage access. Having these traces, we create state-diagram

models with different number of levels. The models are created by clustering I/Os

in states based on their spatial locality and then categorizing them based on size,

type (read/write) and randomness (random/sequential). Each distinct I/O category

becomes a different transition and based on the number of I/Os that belong to each

transition we calculate its inter-arrival time and probability. These models are then

used to create the synthetic workloads.

A.4.3 DC Application Characterization

We previously described a way to model the I/O characteristics of large-scale DC

applications. Here we perform an in-depth per-thread characterization of the ten

applications based on this model and provide insights on their behavior. To the best

of our knowledge no such per-thread, storage activity categorization and characteri-

zation has been previously performed for DC applications. We separate the storage

traces per-thread and define different thread types for each application based on ac-

tivity fluctuation, intensity (I/O rate) and functionality of the thread (Data or Log -

where applicable). The different thread types are shown in Table A.2.

In Table A.3 we show the per-thread storage characterization for one online service

(Exchange), one SQL-based application (Messenger), and one of the TPC benchmarks

APPENDIX A. STORAGE MODELING 214

App
Thread

Load R:W
%Seq Spatial Locality Avg Latency

Type I/Os St1 St2 St3 St4 IOPS (ms)
E
x
c
h
a
n
g
e
(6

h
)

Total
1:2.6 13.7 42.3 55.8 1.9 0.1 134.0 3.7

R 1 2.3 35.2 60.4 4.3 0.0 36.8 5.9
W 2.6 22.7 45.3 54.5 0.1 0.1 97.2 0.5

Data#0
1:2 2.1 42.1 57.4 0.5 0.0 51.2 3.9

R 1 1.3 38.1 59.8 3.1 0.0 18.4 5.2
W 2 2.8 48.9 50.1 1.0 0.0 34.1 0.5

Data#1
3.9:1 11.8 47.6 50.1 2.3 0.0 5.5 4.1

R 3.9 2.1 41.1 58.1 0.8 0.0 4.4 5.9
W 1 17.9 31.9 48.7 19.4 0.0 1.1 0.5

Data#2
1:100 12.7 72.4 27.4 0.0 0.2 0.3 0.5

R 0 - - - - - 0 -
W 100 12.7 72.4 27.4 0.0 0.2 0.3 0.5

Data#3
2.4:1 13.3 21.0 68.8 10.2 0.0 0.02 3.9

R 2.4 3.5 43.0 58.4 2.6 0.1 0.01 5.2
W 1 13.7 0.0 78.9 21.1 0.0 5.2E-3 0.5

M
e
ss
e
n
g
e
r
(6

h
)

Total
2.8:1 9.3 31.5 22.8 45.5 0.2 255.1 8.09

R 2.8 7.3 31.0 38.6 30.8 0.2 194.0 10.0
W 1 11.4 32.6 10.8 56.7 0.2 69.3 3.4

Data#0
1.8:1 11.4 31.6 32.4 36.0 0.0 13.8 9.4

R 1.8 9.4 51.5 10.1 38.4 0.0 8.8 11.8
W 1 12.4 22.9 42.7 34.4 0.0 4.9 4.6

Data#1
3.3:1 5.3 65.8 21.9 12.3 0.0 5.5 9.8

R 3.3 4.2 71.8 19.6 10.6 0.0 4.2 10.8
W 1 7.3 43.8 30.8 25.4 0.0 1.2 4.4

Data#2
1:2.1 13.6 43.5 36.6 19.0 1.9 1.0 8.4

R 1 8.4 41.2 23.8 35.6 0.5 0.32 10.0
W 2.1 13.6 46.3 41.8 8.8 3.1 0.67 4.8

Data#3
10:1 10.8 43.5 38.9 17.6 0.0 1.0 8.7

R 10 8.7 48.9 31.5 19.6 0.0 0.9 9.3
W 1 14.5 35.3 56.5 8.2 0.0 0.08 3.8

Log#4
1:99 12.1 9.0 61.9 22.1 6.0 0.08 1.3

R 1 8.5 79.0 21.0 0.0 0.0 8E-5 10.8
W 99 13.2 7.5 63.7 22.8 6.0 0.08 0.5

Log#5
1:100 12.9 30.8 60.8 8.4 0.0 0.01 0.5

R 0 - - - - - 0 -
W 100 12.9 30.8 60.8 8.4 0.0 0.01 0.5

T
P
C
E

(1
1
m

in
)

Total
10:1 8.1 89.8 8.4 1.7 0.3 24,694 5.55

R 10 6.0 92.5 5.4 2.1 0 22,546 6.0
W 1 23.7 56.0 26.9 15 2.1 2,148 0.7

Data#0
12.5 16.3 91.0 8.0 0.2 0.8 1,172 5.7

R 12.5 11.6 90.8 8 0.4 0.7 1,086 6.1
W 1 50 92 0 0 8 86 0.9

Data#1
7:1 20.6 92.4 7.4 0.2 0 1,897 4.6

R 7 15.3 96.0 4.0 0 0 1,659 5.3
W 1 37.9 87.7 10 2.3 0 238 0.5

Data#3
70:1 15.5 91.2 6.2 2.4 0.2 859.3 5.4

R 70.4 15.6 90.6 7.2 2.4 0.1 847.3 5.4
W 1 7.1 99 0 0 1 12.0 0.7

Log#4
1:99 11.7 88.8 10 1.0 0.3 12.4 0.5

R 1 0.01 76 16.3 7.4 0.3 0.1 5.6
W 99 11.7 88.9 11 0.1 0 12.2 0.5

Log#5
1:100 1.4 89.0 11.0 0 0 0.5 0.5

R 0 - - - - - 0 -
W 100 1.4 89.0 11.0 0 0 0.5 0.5

Table A.3: Per-thread characterization for one Online Service (Exchange), one SQL-based ap-
plication (Messenger), and one of the TPC benchmarks (TPCE). From left to right we show the
fluctuation of storage activity, the I/O features in terms of read:write ratio, percentage of sequential
I/Os, average block size and inter-arrival time and spatial locality, as well as average performance
metrics, in terms of throughput and latency for each thread type.

APPENDIX A. STORAGE MODELING 215

(TPCE). We show the fluctuation for the aggregate workload and each thread type

over the entire tracing period, as well as the I/O features in terms of average block

size, inter-arrival time, read:write ratio, sequential I/Os and introduce here the study

of spatial locality .

Spatial locality is estimated using one-level models, where each state corresponds

to 25% of the machine’s storage. The third to last column denotes the thread weight of

the individual thread and of the entire thread type. We also show average performance

metrics (throughput and latency). Examining Exchange reveals that the majority of

storage activity comes from few, very I/O intensive threads (Data #0), while threads

with no fluctuation, or low activity account for a considerably lower portion of the

total throughput. Exchange is random, write I/O-dominated, while studying its

spatial locality reveals that most accesses happen in the first half of the provisioned

storage.

Email and Search and Exchange have similar behavior in terms of thread type

classification and per-thread storage activity. Similarly, all the SQL applications

(Messenger, Display Ads, User Content and D-Process) experience high resemblance

in their storage activity. Finally, the I/O behavior of TPCC is very close to that of

TPCE, with the DSS TPCH slightly deviating in terms of number of threads and

intensity of storage activity.

A.4.4 Validation

Validating the accuracy of the model and the tool is necessary in order to ensure

that original and synthetic workloads are similar in their storage activity. Apart from

that, we want to identify the optimal level of detail for each application.

We perform the following steps:

1. Collect traces from production servers

2. Create workload models with a configurable number of levels

3. Run the synthetic workload and collect the new trace

APPENDIX A. STORAGE MODELING 216

Metrics Original Workload Synthetic Workload Deviation
M

e
ss
e
n
g
e
r

Read:Write Ratio 2.8:1 2.8:1 0%
% of Random I/Os 90.7% 89.4% -1.38%

Block Sizes
8K(87%) 64K(7.4%) 8K(88%) 64K(7.8%)

0.1-1%
1K(1.6%) 1K(1.7%)

Thread Weights
T1 (19%) T2 (11.6%) T1 (19%) T2 (11.7%)

0 - 0.05%
T3 (1.6%) T3 (1.6%)

Avg Inter-Arrival Time 4.63ms 4.78ms 1.1%
Throughput (IOPS) 255.14 263.27 3.1%

Average Latency 8.09ms 8.48ms 4.8%

Table A.4: Validation of I/O features & performance metrics for Messenger.

4. Compare I/O characteristics and performance metrics between the original and

synthetic storage workload.

For the validation experiments we use a server provisioned for SQL applications,

like Messenger and User Content, with 8 cores, 5 physical volumes, 10 disk partitions

and a total of 2.3TB of purely HDD storage.

We maintain the configuration of the storage system the synthetic trace is replayed

on, as close as possible to that of the original system by performing specific I/O re-

quests in the appropriate disk partitions. For the SQL-based workloads, for example,

Log I/Os are replayed in the Log partition while SQL queries are replayed in the data

partition. For the remaining applications, the system varies in the real DC (Search

and D-Process run on striped four-disk SATA systems); however, throughput does

not greatly deviate from its expected value. Although this result might seem unex-

pected, for an incorrectly provisioned system, these applications have relatively low

I/O throughput (IOPS) that is easily satisfied through a system engineered for SQL.

Although the percentile difference is higher for these two applications, the absolute

number of IOPS remains reasonably low.

For each one of the ten applications we evaluate the similarities in the features of

the I/O requests (block size, rd/wr, rnd/seq, inter-arrival time and thread weight) as

well as the performance metrics (throughput and latency) of the synthetic applications

as opposed to the original ones. As far as the proportion of accesses is concerned, we

verify that thread weights are satisfied with less than 0.05% deviation from their

original values.

APPENDIX A. STORAGE MODELING 217

0

50

100

150

200

250

300

350

400

450

500

Messenger Search Email User

Content

D-Process Display Ads TPCC TPCE TPCH Exchange

IO
P

S

Synthetic Workload

Original Trace Synthetic Trace

1
 l

e
v

e
l

1
 l

e
v

e
l

2
 l

e
v

e
ls

3
 l

e
v

e
ls

1
 l

e
v

e
l

3
 l

e
v

e
ls

2
 l

e
v

e
ls

2
 l

e
v

e
ls

2
 l

e
v

e
ls

1
 l

e
v

e
l

:1
0

0

:1
0

0

:1
0

0

Figure A.4: Throughput comparison between original and synthetic workloads for
the 10 applications.

Table A.4 shows the comparison for these metrics between original and synthetic

workload for Messenger. The results are similar for the remaining applications. In

all cases the deviation for the I/O features between original and synthetic load is less

than 5%. Similarly for the performance metrics the deviation is at most 6.7% and on

average 3.38%. Figure A.4 shows the throughput comparison between original and

synthetic load for all applications. The difference in IOPS is always less than 5%,

verifying the accuracy of the modeling and generation process. Furthermore, in order

to ensure the consistency of our results, we calculate the variance between different

runs of the same synthetic workload and guarantee a difference in throughput less

than 1% in all cases.

Figure A.4 also plots the optimal number of levels per application, which is the

one for which the synthetic trace resembles the original workload best. As optimal

granularity we define the first number of levels for which the performance metrics

stabilize (less than 2% difference in IOPS). That way, we convey the best possible

accuracy with the least necessary model complexity. This methodology allows for a

configurable level of detail in the model of each application. Figure A.5 shows how

the throughput changes for each application for an increasing number of levels. In

most cases one to three levels are sufficient for the I/O characteristics to stabilize.

Finally, we verify the resemblance in the fluctuation of storage activity between

original and synthetic workloads. We perform a sensitivity study on the granularity at

APPENDIX A. STORAGE MODELING 218

0

100

200

300

400

500

600

700

Messenger Search Email User

Content

D-Process Display Ads TPCC TPCE TPCH Exchange

IO
P

S

Synthetic Workload

1 level 2 levels 3 levels 4 levels 5 levels

:1
0

0

:1
0

0

:1
0

0

Figure A.5: Throughput for increasing number of levels.

0

50

100

150

200

250

300

350

400

450

500

1
2

:0
0

a
m

1
:0

0
a

m

2
:0

0
a

m

3
:0

0
a

m

4
:0

0
a

m

5
:0

0
a

m

6
:0

0
a

m

7
:0

0
a

m

8
:0

0
a

m

9
:0

0
a

m

1
0

:0
0

a
m

1
1

:0
0

a
m

1
2

:0
0

p
m

1
:0

0
p

m

2
:0

0
p

m

3
:0

0
p

m

4
:0

0
p

m

5
:0

0
p

m

6
:0

0
p

m

7
:0

0
p

m

8
:0

0
p

m

9
:0

0
p

m

1
0

:0
0

p
m

1
1

:0
0

p
m

1
2

:0
0

a
m

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Time

Original Workload Synthetic Workload

Figure A.6: Validation of storage activity fluctuation over 24h (Messenger).

which the I/O request intensity changes, to choose the interval over which we calculate

inter-arrival times. We observe that within a 30-minute period there is no significant

fluctuation in the storage activity for the examined applications. Figure A.6 shows

the resemblance in storage activity fluctuation between the original and synthetic

application for Messenger. The results are similar for the other applications as well.

In all cases, peaks and troughs coincide for the two workloads, verifying that the

activity fluctuation requirements are met.

A.4.5 Comparison with IOMeter

IOMeter is the most well-known open-source workload generator [147]. Although it

offers many capabilities as far as access characteristics are concerned, it has limited

information on the spatial locality of I/Os, making it unsuitable for several DC storage

studies. Furthermore, IOMeter implements outstanding I/Os but cannot represent

inter-arrival times, which seriously limits its intensity scaling capabilities. Finally, it

does not allow specific file accesses, which as will be seen in Section A.5.2, would make

it impractical to evaluate the benefits of defragmentation. Table A.5 summarizes the

APPENDIX A. STORAGE MODELING 219

0.92

0.96

1

1.04

1.08

1.12

1.16

DiskSpd IOMeterTool

Messenger
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

DiskSpd IOMeter
Tool

Email
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs-all

0.9

1

1.1

1.2

1.3

1.4

DiskSpd IOMeter
Tool

Search
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs-all

0.9

1

1.1

1.2

1.3

1.4

1.5

DiskSpd IOMeter
Tool

D-Process
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs-all

0.9

0.95

1

1.05

1.1

1.15

1.2

DiskSpd IOMeterTool

User Content
No SSD 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

0.96

0.98

1

1.02

1.04

1.06

DiskSpd IOMeterTool

Display Ads
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

DiskSpd IOMeter
Tool

TPCC
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs-all

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

DiskSpd IOMeter
Tool

TPCE
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs-all

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

DiskSpd IOMeter
Tool

TPCH
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs-all

0.8

0.9

1

1.1

1.2

1.3

1.4

DiskSpd IOMeter
Tool

Exchange
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs-all

Figure A.7: IOMeter vs DiskSpd speedup comparison for (a) Messenger, (b) Email,
(c) Search, (d) D-Process, (e) User Content (f) Display Ads (g) TPCC, (h) TPCE,
(i) TPCH and (j) Exchange. The results for DiskSpd confirm the expected impact
of SSD caching on workload performance. On the other hand, when the workloads
are run using IOMeter there is either no performance speedup (e.g., Messenger) or
inconsistent speedup (e.g., User Content) with an increasing number of SSD caches.

differences between the features supported by the two tools.

In this section we compare the performance characteristics of IOMeter and DiskSpd.

For the purpose of this comparison no change is conducted in IOMeter, and the pa-

rameters for the tests are defined using the tool’s default knobs. We perform identical

tests using both tools and quantify the difference in throughput and latency. The ta-

ble below (Table A.6) shows how the tools behave in a series of simple access patterns

with the exact same parameters. All tests are run for 30 seconds, performing I/O

requests to a simple file. In the interest of clarity, we do not demonstrate all possible

parameter configurations, but some representative examples. Note that no notion of

spatial locality is introduced in these simple tests. From the results we observe that

both tools behave similarly with a maximum throughput deviation of 3.4%.

APPENDIX A. STORAGE MODELING 220

Features IOMeter DiskSpd
Inter-arrival times

No Yes
(static or distributions)
Intensity knob No Yes
Spatial locality No Yes
Temporal locality No Yes
Trace replay No Yes
Granular I/O load detail No Yes
Individual file accesses No Yes

Table A.5: IOMeter vs DiskSpd features comparison

Test Configuration
IOMeter DiskSpd
(IOPS) (IOPS)

Block size: 4K, Inter-arrival time: 10ms, Read, Sequential 97.99 101.33
Block size: 16K, Inter-arrival time: 1ms, Read, Sequential 949.34 933.69

Block size: 64K, Inter-arrival time: 10ms, Write, Sequential 96.59 95.41
Block size: 64K, Inter-arrival time: 10ms, Read, Random 86.99 84.32

Table A.6: IOMeter vs DiskSpd comparison

The main difference in the two tools becomes evident when introducing the no-

tion of spatial locality. To demonstrate that DiskSpd takes locality into account

while IOMeter does not, we use an optimization technique that will be presented in

more detail in the following section (Section A.5.1). SSD caching takes advantage

of frequently-accessed blocks, and thus improves performance by avoiding accessing

the disk often. If a tool takes into consideration spatial and temporal locality we

expect an improvement in performance when the synthetic trace is run using SSD

caches. We run the synthetic traces for the ten applications and the corresponding

I/O tests that best resemble their behavior using IOMeter. No notion of spatial lo-

cality is incorporated in the latter. Figure A.7 shows how performance changes as we

progressively add SSDs to the system for each of the workloads. The important point

in these figures is not the precise speedup but the significantly different behavior of

the tools. In all cases it becomes evident that IOMeter does not reflect the spatial

and temporal locality of the original access pattern. For most applications there is

no speedup for an increasing number of SSDs, due to incorrect caching of blocks, and

for those that a speedup exists it is inconsistent with what would have been expected

as caching becomes more intense (more SSDs - better speedup).

APPENDIX A. STORAGE MODELING 221

Workload
Spatial Locality - Level 1

State1 State2 State3 State4
TPCH 92.7% 6.2% 1.3% 0.0%
TPCE 89.8% 8.4% 1.7% 0.3%

D-Process 73.3% 18.8% 0.0% 0.0%

Table A.7: Spatial locality (SSD-caching study). Studying the spatial locality for the
three applications with the highest benefit from SSD caching reveals that they have
the highest I/O aggregation. This justifies the significant speedups from introducing
SSD caching in the system.

A.5 Use Cases

One of the main benefits from using a modeling and generation tool for DC workloads

is enabling storage studies, which would otherwise require access to application code

or full application deployment. In this section we evaluate two possible use cases for

the tool: SSD caching and defragmentation. Both are spatial and temporal locality-

dependent, and have been unexplored using workload generation tools.

A.5.1 SSD caching

Designing an efficient storage system configuration for widely-deployed applications

is a great challenge and in terms of proper provisioning, a field that separates high-

quality systems from the norm. Studying the spatial locality of the ten DC ap-

plications reveals that for most of them, I/Os are aggregated in a small LBN range.

This motivates incorporating SSDs to improve performance. Estimating performance,

however, is not easy since writes in SSDs are highly unpredictable, and often as slow

as disk, which makes performance gains greatly dependent on the I/O access features.

This motivates using modeling and characterization to evaluate the potential benefit.

Due to the fact that we use an open-loop approach, applications are not retuned

when switching to the SSD-based system. The experiments are performed by running

the previous models on an SQL-provisioned server with 4 SSD caches (8GB each) [6],

which we progressively turn on.

Figure A.7 shows the storage speedup when going from no SSD caches on (left

bar) to all 4 SSD caches on (right bar). We observe that especially for the I/O

APPENDIX A. STORAGE MODELING 222

(a)

(b)

(c)

Figure A.8: File mapping (a) before, (b) during, and (c) after defragmentation.
Blocks of different colors correspond to different files.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Messenger Email Search User

Content

D-Process Display Ads TPCC TPCE TPCH Exchange

S
p

e
e

d
u

p

Synthetic Workload

Figure A.9: Storage speedup from defragmentation

intensive TPCH, TPCE and D-Process, the performance benefit from using a large

number of SSDs is significant (31% on average across all workloads for 4 SSDs and 79%

maximum for TPCH). Studying the clustering of accesses in the corresponding models

reveals that these three applications have the highest aggregation of I/O requests

(Table A.7). Increasing the number of levels in this case, confines the accessed LBNs

in a smaller range, thus better caching frequently-accessed blocks. An important

note is that in Figure A.7, we refer to storage speedup and not speedup for the

entire application. These workloads are not necessarily limited by storage but their

performance improvement, and the expected improvement in efficiency, are strong

incentives towards the use of SSD caching nonetheless.

A.5.2 Defragmentation

Most DC applications experience high levels of fragmentation, as user-requests get

accumulated over time, with Random I/Os often exceeding 80%. This motivates the

use of defragmentation to improve performance and efficiency. From the information

provided by ETW [97] we can extract the name of the file for each I/O access, estimate

fragmentation levels, and perform a block rearrangement to improve the sequential

characteristics as shown in Figure A.8.

APPENDIX A. STORAGE MODELING 223

Workload Read Write
Before After

Rnd Seq Rnd Seq

Messenger 73.7% 26.3% 90.7% 9.3% 63.2% 35.7%
Email 52.8% 45.2% 84.5% 13.7% 61.6% 33.7%
Search 49.8% 45.1% 87.7% 8.5% 70.9% 24.5%

UserContent 58.3% 39.4% 93.1% 5.5% 73.2% 25.0%
D-Process 30.1% 68.8% 73.2% 26.8% 45.4% 54.4%

DisplayAds 96.5% 2.5% 93.5% 4.3% 78.5% 19.2%
TPCC 68.8% 31.2% 97.2% 2.8% 71.1% 29.9%
TPCE 91.3% 8.7% 91.9% 8.2% 77.7% 22.4%
TPCH 96.7% 3.3% 65.5% 35.5% 52.8% 47.2%

Exchange 32.0% 68.1% 83.2% 16.8% 68.1% 31.9%

Table A.8: Random/Sequential characteristics before and after defragmentation.

Estimating performance after defragmentation, using the models, can act as an

offline method to identify the benefits of defragmentation, as well as the optimal mo-

ment to perform defragmentation, without having to examine the entire application.

These are usually latency-critical applications that cannot afford the overhead of a

continuous online evaluation.

In most cases, the percentage of sequential accesses increases by 20% (Table A.8),

which corresponds to a storage speedup of 8-45% as shown in Figure A.9. This result

implies that clustering I/Os is more beneficial than taking advantage of parallel spin-

dles, due to faster completion of sequential accesses. Two applications that benefit

from this are D-Process and Email, which have the highest write-to-read probabili-

ties. Since these applications are random-write dominated, improving their sequential

characteristics allows better utilization of the full disk rotation. Defragmentation also

benefits the TPC benchmarks that access continuous entries in database tables.

A comparison between the benefits of SSD caching and defragmentation shows

that for some workloads (Email and Display Ads) defragmentation offers better

speedups without increasing the cost of the system. The decision on which method

is most beneficial at a certain time is up to the storage system designer, given the

application and system of interest.

APPENDIX A. STORAGE MODELING 224

A.6 Conclusions

In this work we have proposed a framework for modeling, characterization and re-

generation of large-scale storage workloads. We have extended a probabilistic model

to capture granular information on a workload’s I/O pattern and implemented a tool

that recreates DC workloads with high fidelity. This tool can be used for a wide spec-

trum of studies for large-scale systems, without the need to access DC application

code or full application deployment.

In contrast with previous work, we take into account spatial and temporal lo-

cality of I/O accesses, a critical feature for DC applications. We have conducted

detailed characterization of the storage activity of DC applications and performed

extensive validation of the generated I/O traces against ten real workloads. Finally,

we have evaluated two possible uses for the tool, SSD caching and defragmentation,

and quantified the improvement in performance. We believe that, compared to pre-

viously available workload generators, this framework can be used to make confident

design decisions for DC systems.

Appendix B

BLOC: Bandwidth-Aware Storage

Consolidation

B.1 Introduction

Consolidation can significantly improve datacenter (DC) resource efficiency, by in-

creasing server utilization by integer factors. First, consolidation can pack hosted

workloads onto fewer servers, significantly increasing DC utilization, which currently

ranges between 5% and 15% [29, 31]. Second, aside from reducing the number of

servers required, consolidation also reduces energy consumption per unit work. This

happens because servers are not energy-proportional and consume significant energy

even when idling [31, 99, 191]. Consolidation amortizes this idle power over more

units of work.

Consolidation methods based on virtualization for com-pute-intensive workloads

are now available both in commercial products [130, 2, 4] and through cloud plat-

forms including Amazon EC2 [13] and Windows Azure [279]. Sophisticated consol-

idation methods for network-intensive workloads are also available [54, 55, 61, 183].

However, while several storage virtualization mechanisms exist [130, 145, 181, 243],

performance-aware consolidation policies are lacking.

Many storage consolidation policies have considered capacity requirements [126,

140, 141, 194]. Although this ensures that consolidation is feasible, it does not ensure

225

APPENDIX B. BLOC 226

that performance will not be penalized. Storage performance is very tightly coupled

to bandwidth, and surges in bandwidth usage result in significant performance losses.

Thus bandwidth must be taken into account to preserve performance. Additionally,

while storage capacity costs have dropped rapidly [163], bandwidth costs have not.

Therefore, it is important to use bandwidth efficiently. There is work on storage

system design exploration [18] which accounts for bandwidth requirements to find the

optimal design for a given workload, but does not determine the set of applications to

be consolidated and assumes that the storage system of each machine is configurable,

which is not the case in a homogeneous DC.

A second challenge is that bandwidth requirements are highly dynamic [31, 85, 258].

Consider storage-intensive applications serving user data, such as pictures on a social

network or user mailboxes on an email server. More users are active at certain times

of the day with many data objects being simultaneously accessed, resulting in high

storage bandwidth use. At other times, far fewer objects are accessed. Provisioning

for peak demand wastes energy at off-peak times, since individual nodes are not

energy-proportional. Instead, we want a storage system that adapts to fluctuations

in user demand. However, changing the number of active nodes, and the bandwidth

allocated to each application is challenging, since all data must remain accessible. If

some nodes are to be powered down or re-allocated to an application with increasing

demand, their data may need to be moved.

Finally, when the datasets of several applications are consolidated on the same

storage node they interfere in shared storage resources, i.e., bandwidth and capacity.

Detecting which applications are sensitive to interference is critical to determining

which datasets can be consolidated effectively. Interference in storage resources de-

pends on the specific access pattern of a workload, however exhaustively evaluating

all possible consolidation combinations to determine the ones that do not degrade

performance would be infeasible in an environment with strict QoS requirements.

In this chapter we present BLOC, a storage consolidation scheme that addresses

these challenges. BLOC detects interference between applications, and consolidates

workloads to the extent that performance is not penalized, while adapting to dynamic

bandwidth demands, much like VM consolidation methods tune the number of active

APPENDIX B. BLOC 227

servers to match compute demand [35, 165, 175, 273]. We address the first chal-

lenge by explicitly limiting the bandwidth usage on each storage node to the level

that preserves the performance requirements of each consolidated application. We

characterize application bandwidth usage to determine this limit. To address the

second challenge, we dynamically tune the number of active nodes to match user de-

mand, based on expected future load. In this case, data migration may be required to

ensure data availability. BLOC predicts near-future application demand and starts

data movement ahead of time. It reserves extra bandwidth for this proactive mi-

gration, such that as utilization grows from migration, it does not grow against the

consolidated applications’ bandwidth. Finally, to minimize storage interference be-

tween consolidated applications, we use analytical models to create mirror instances

of each storage workload. These models capture the application’s temporal and spa-

tial I/O patterns, but enable much fast evaluation of how sensitive application mixes

are to storage interference, than using the original workloads. The end result is a

more energy-proportional storage subsystem although individual storage nodes are

not energy-proportional.

Prior work has addressed the problem of tuning system bandwidth to match de-

mand by adjusting the number of active replicas for each object. When the required

bandwidth for a data chunk goes down, some of its replicas can be powered-down,

and systems such as Sierra [258] and Rabbit [14] do precisely that, while respect-

ing reliability requirements. However, bandwidth decrease may not always be due

to smaller demand for a given data chunk (resulting in a need for fewer replicas).

When fewer users are accessing their pictures or emails, fewer data chunks are being

accessed. Existing systems do not reduce the provisioned bandwidth or the number

of storage nodes. We describe our methods assuming a replication factor of one and

later discuss how previously-proposed techniques can be integrated to tune the repli-

cation factor. Additionally, in distributed file systems, including GFS [?] that now

use Reed-Solomon codes for fault-tolerance instead of replication, reducing replication

is not feasible to reduce power consumption.

The main contributions of this chapter are three:

• Interference-aware storage consolidation: We develop a practical technique

APPENDIX B. BLOC 228

to quickly characterize the sensitivity of different application mixes to storage

interference. The technique relies on validated analytical models that preserve

workload I/O access patterns, and allows interference characterization that would

take several days to complete within minutes. We use this characterization to

determine an efficient packing of application datasets on storage nodes that does

not violate their performance constraints.

• Demand adaptation: We design a policy to dynamically reallocate storage

resources among applications such that the number of active nodes matches user

demand. Extra bandwidth is reserved to overcome migration overheads. We

pre-activate additional nodes and transfer data to them based on near-future

prediction of when an increase in node allocation will be needed.

• Validation with real DC workloads: We evaluate BLOC using I/O traces of

7 large-scale Microsoft DC applications and 3 TPC benchmarks on a 40-machine

cluster. BLOC achieves 3.09x energy savings over a system without storage con-

solidation. We also compare BLOC against a capacity-based scheme. While the

capacity-based scheme reduces energy use, it degrades both throughput and la-

tency by almost 2x. BLOC maintains performance within 2.8% compared to

performance before consolidation while yielding significantly higher energy sav-

ings than the capacity-based scheme. Finally, we demonstrate how BLOC can be

tuned to trade off performance for even higher energy savings.

B.2 BLOC Design

B.2.1 System Overview

We design BLOC with the principle of accounting for both the performance and

energy impact of storage consolidation, by minimizing storage interference and pre-

dictively plan for changes in user demand. For the evaluation of BLOC we use

applications that rely on a distributed file system (DFS), therefore all BLOC tech-

niques are presented under the assumption of an underlying DFS. With appropriate

APPENDIX B. BLOC 229

Storage Interference

Characterization

BLOC Controller

A B A + B

QoS

S
to

ra
g

e
 D

a
ta

se
ts

sNode

sNode

sNode

sNode

sNode

sNode

sNode

sNode

sNode

Bin-packing

1

2 3 Dynamic Adaptation

Bw(t)

Cap(t)

Bw(t+1)

Cap(t+1)

7-days

Ap
p

m
ix

es
’

In
te

rf
e

re
n

ce

Migration
Bin Bin

Bin Bin Bin Bin

Figure B.1: BLOC architecture.

chan-ges, the principles in BLOC can be applied in systems such as VM management

systems, RDBMS and scalable key-value stores as well (see Section B.8).

Figure B.1 shows the primary components of BLOC. Storage datasets represent

the backend of workloads that are being consolidated. The storage nodes represent

the servers where the workloads are hosted. Each storage node has a given number of

disks and a disk array controller configuration1 that determine its maximum storage

capacity and bandwidth. The actual capacity and bandwidth that can be used by an

application depend on the workload’s I/O access pattern.

BLOC sits in the middle and consolidates applications in storage nodes, with the

objective of improving utilization without hurting performance. The first step in

BLOC performs characterization of storage interference, which addresses the issue

that depending on applications’ resource demands and access patterns, performance

can suffer from consolidation, due to interference in the storage subsystem. This

step determines whether a mix of applications can be effectively consolidated, and

what is the expected performance degradation - if any - after consolidation, due to

interference.

The second step performs the bin packing of application storage into fewer storage

nodes. The algorithm accounts for the sensitivity to interference and the resource

demands of the different consolidation candidates to determine the per-application

1Both Redundant Array of Inexpensive Disks (RAID) and Just a Bunch of Disks (JBOD) con-
figurations are used in commercial DCs.

APPENDIX B. BLOC 230

Time (h)
0

5

10

15

20

25

30

35

40
Original Modeled

02:00 08:00 14:00 20:00 02:00

Ba
nd

w
id

th
 U

til
iz

at
io

n
(%

)

0:00 6:00 12:00 18:00 23:59

Lo
a

d
 (

IO
P

S
) 500

400

300

200

100

0

0:00 0:05 0:10 0:15

Lo
a

d
 (

IO
P

S
) 500

400

300

200

100

0

Original

Modeled

Figure B.2: Validation of the storage activity model for Websearch (Figure B.2a) and
compression of storage load using the analytical model (Figure B.2b).

resource allocation.

Finally, the third step of BLOC accounts for changes in user load over time.

This component characterizes the per-application temporal demand variation and

predicts future resource requirements. This information is used to re-evaluate storage

interference and is then given to the bin packing component to adjust the allocation

of resources, if necessary. This component also compensates for prediction errors,

attempts to minimize data migration and manages the excess resources required if

migration becomes necessary.

The following three sections describe each component in detail.

B.3 Quantifying Storage Interference

B.3.1 Motivation

Interference is the result of contention in a shared resource. Consolidating applica-

tions in the same storage node can introduce contention in the storage subsystem,

resulting in performance losses. Therefore quantifying the degree of interference be-

tween two or more consolidation candidate workloads is critical to ensure that any

efficiency gains from consolidation do not come at a performance penalty. Ideally

sensitivity to interference would be determined by profiling consolidated applications

and measuring the performance losses from contention. Obviously exhaustive profil-

ing of all possible application mixes in a DC environment is infeasible. Additionally,

APPENDIX B. BLOC 231

0 50 100 150 200 250 300 350
Workload Pair

0

20

40

60

80

100

In
te

rfe
re

nc
e

(%
)

Models
Applications

Figure B.3: Validation of the interference estimation using the analytical workload
models across the surviving 390 application pairs. Deviation between estimated and
measured interference is on average 3.8%.

interference depends on load variations, therefore profiling would need to happen over

long time windows to cover the whole spectrum of user activity. Finally, profiling ap-

plication mixes has system side-effects as it requires migrating large datasets and

allowing the applications to potentially change the datasets’ state.

B.3.2 Application Models

We address the challenges above by leveraging the analytical storage models described

in [85]. This model captures block-level I/O patterns in a concise way using Markov

Chains (MC) and allows us to recreate time-varying storage activity, that preserves

the timing and locality of the original I/O accesses. It also enables varying the load

intensity to create multiple demand levels. Models are retrained over time to capture

changes in application code and/or structure. While these models were validated

in [85], we validate them against the storage traces of our workloads. Figure B.2a

shows the storage bandwidth for a large-scale deployment of Websearch, running on

1,000 servers, over a 24h period (black line). The grey line shows the storage activity

generated using the model in a scaled-down system with 40 servers. The synthetic

workload follows the original activity fluctuation with average deviation 3.8% and sim-

ilar per-hour deviations. We use this storage model for performance measurements,

both to characterize interference and to evaluate the impact of consolidation.

Additionally, due to its statistical nature, the model enables compressing the

APPENDIX B. BLOC 232

storage activity of applications in time to evaluate more quickly a wider spectrum

of user loads. Figure B.2b shows how the model captures the full storage behavior

of a workload in a shorter timescale. While the trace from the original application

is recorded over a 24 hour period, the model is generating the same load fluctuation

over 15 minutes. This happens by switching between MCs at a faster pace than the

original workload [85]. Note that this does not affect the reprentativeness of the I/O

patterns. The inter-arrival times between requests remain the same as in the original

workload; what changes is the time for which the application remains at a specific

load, e.g., if the original workload experienced a 30 minute interval with a flat load

of 100 IOPS, this interval is reduced to 30 seconds when using the model. The exact

degree of compression depends on the application patterns, however in general, a

week’s worth of storage traces can be compressed to a few hours using the analytical

model.

B.3.3 Trimming the Search Space

This still leaves the problem of the exponentially increasing space of application mixes.

If BLOC were to evaluate interference näıvely for all consolidation pairs of N appli-

cations, it would have to assess 2N combinations. This number increases further for

mixes of more than 2 workloads. Obviously, the overhead of this process would be

infeasible. In BLOC we trim the search space, by discarding from consideration appli-

cation mixes that are bound to experience performance violations when consolidated.

These are mixes for which the aggregate storage bandwidth or capacity exceeds what

the storage node can support. Note that the bandwidth the storage node can support

in general, is different from its rated sequential bandwidth, and depends on the band-

width that the most random application in the mix can sustain. For the workload

combinations that remain, BLOC quantifies storage interference.

B.3.4 Profiling

For each active application in the system, BLOC creates a “mirror” instance using the

analytical model. This mirror instance is used to quantify the degree of interference

APPENDIX B. BLOC 233

0 20 40 60 80 100
Disk Bandwidth Utilization (%)

0
1
2
3
4
5
6
7
8

Av
g

Re
sp

on
se

 T
im

e
(m

s)
Websearch
Webmail

0 20 40 60 80 100
Disk Capacity Utilization (%)

0
1
2
3
4
5
6
7
8

Av
g

Re
sp

on
se

 T
im

e
(m

s)

Websearch
Webmail

Figure B.4: Performance variation with bandwidth and capacity utilization.

between consolidation candidates. While BLOC allows consolidation of any number

of workloads, the initial step only considers application pairs, since they are more

likely to be consolidated without QoS violations. Each of the application pairs that

did not get discarded in the previous step is profiled for a 1-5 minute period, while

the controller evaluates the performance degradation for each workload. The metric

we use for the degree of interference is the average performance degradation across

the pair’s workloads compared to running in isolation. Higher interference means

higher performance degradation. Note, that even after trimming the application

space, the total number of pairs that have to examined is high. However, the full

evaluation across pairs only needs to happen at the initial step of consolidation, when

no application has been consolidated. This step can happen offline. When the system

is online, the only mixed of applications that need to be examined are those for which

consolidation has to change, i.e., some datasets have to be migrated. This number is

significantly smaller that the complete application mix space.

Since the model preserves I/O access locality and timing, the interference deter-

mined using the workload models is expected to be very close to the interference that

the actual applications will experience. In the following section we validate that this

is indeed the case.

B.3.5 Validation

We use 10 production DC workloads from Microsoft for our evaluation. All applica-

tions run over a DFS. Section B.7 provides details on each application. The full space

APPENDIX B. BLOC 234

of application pairs consists of 210 = 1024 pairs (note that the number of pairs is not

simply
(

N

2

)

, since the order in which applications are consolidated matters). From

these, 390 survive the maximum bandwidth and capacity check. Figure B.3 shows

the predicted versus measured interference over the 390 surviving application pairs.

Pairs are ordered from those experiencing the least to those experiencing the most

interference.

Interference ranges from 0 to 85%, which means that performance degradation

for application pairs varies from mar-ginal to very serious. The deviation between

predicted and measured interference is on average 3.8% and at most 11.8%. Using

the analytical models enables both fast and accurate interference estimation, without

the overhead of deploying each real workload multiple times. Also in general the

mirror instances overestimate interference, which makes the sch-eme slightly more

conservative than necessary, but favors preserving QoS.

B.4 Bin Packing

Given the application resource requirements and the degree of interference for differ-

ent application pairs, storage consolidation can be viewed as a bin-packing problem.

The application datasets are the objects to be packed. Since each object has size

requirements in both storage capacity and bandwidth, this is a two-dimensional bin-

pack-ing problem. Theoretically, the size of each bucket is the total capacity and

bandwidth of the storage node. In practice these limits cannot be met, as described

in the following section.

B.4.1 Limiting Storage Resource Usage

As utilization increases the response times the storage system can provide increase.

Figure B.4a shows this effect for two distributed applications (Websearch and Web-

mail) wi-th varying bandwidth utilization. Both applications run on production clus-

ters with thousands of servers. The utilization on the x-axis is normalized to the

rated storage bandwidth of the node. Suppose the response-time constraint for each

APPENDIX B. BLOC 235

application is 5ms. Then, for Websearch, the maximum supported bandwidth before

latency exceeds 5ms is 30% of rated bandwidth, while for Webmail, it is 70%. This

is expected since Websearch has a more random access pattern than Webmail.

We also perform a similar measurement for capacity. Figure B.4b shows that per-

formance changes with capacity utilization, especially at higher utilizations - although

less than it changes with bandwidth. This is likely due to increased fragmentation

and increased seek times from traversing more tracks. To ensure performance, we

enforce a similar constraint on capacity.

The maximum bandwidth and capacity limits that a storage node can support for

an application i are denoted MBi and MCi. These values need to be recalculated

after major application software updates or node configuration changes that may

cause I/O access patterns to change.

B.4.2 Bin Packing Algorithm

First, we determine the maximum bandwidth and capacity an application i can use

on a storage node, MBi and MCi, as described in Section B.4.1. This is used to

determine the total bandwidth limit, MBs, of a storage node, s, after applications

i = {1, ..., N} are placed on it:

MBs = min
i=1...N

MBi (B.1)

The capacity limit, MCs is calculated similarly.

Since we want to preserve the per-application performance constraints, BLOC

first packs applications that interfere minimally in the storage system.

We start with a system where applications are not consolidated. All application

pairs that survived the maximum capacity/bandwidth check are evaluated and sorted

in order of increasing interference. Applications are removed from the sorted list and

packed on storage nodes until either the capacity or bandwidth limits of the node

are met, or interference exceeds a tolerable threshold. For the sake of explanation,

we assume that the highest performance degradation across the workloads of a mix

that can be tolerated is 10%. Every time a new application is placed on a server, the

APPENDIX B. BLOC 236

node’s available storage resources (Expression B.1) and level of interference (Interfs)

change. This process is repeated until all available applications have been assigned

to some node. The available storage bandwidth also accounts for a small ∆B for

migration (Section B.5.3). The details are specified in Algorithm 1.

Algorithm 1 Consolidate(I,K, B, C, ∆B)

Require: I: applications, B, C: bi and ci are the bandwidth and capacity require-
ments respectively of application i, K: available nodes

Ensure: Placement P , that assigns all applications in I to some node in K
1: for i,j in I do
2: Interf(i,j) = avgPerfDegradation(i,j)

3: end for
4: I ← application pairs in I sorted by increasing Interf(i,j)
5: Use storage node s = 1 ⊲ nodes taken from K
6: Initialize MBs =∞, MCs =∞, Bs = 0, Cs = 0
7: for i = 1 to |I| do
8: x← Is Bs + bi < min(MBs,MBi)−∆B?
9: y ← Is Cs + ci < min(MCs,MCi) ?
10: z ← Is Interf(s) ¡ 10% ?
11: if x is false OR y is false OR z is false then
12: s← s+ 1
13: Initialize MBs,MCs =∞; Bs, Cs = 0
14: end if
15: Assign i to s
16: Bs = Bs + bi, Cs = Cs + ci, Interf(s) = Interf(s−i) + Interf(s,i)
17: MBs = min(MBs,MBi)
18: MCs = min(MCs,MCi)
19: end for

B.4.3 Consolidation Granularity

In the description above, we assumed that each application to be consolidated is the

dataset hosted by a workload in a single node. However, this granularity is very

limiting, since consolidation can only be done for entire node instances, reducing the

potential efficiency savings. The granularity at which consolidation can be performed

is a function of the system applications operate on, e.g., DFS, key-value store, etc.

APPENDIX B. BLOC 237

Since our applications operate over DFS, the dataset of a node can be split into

partitions at file granularity, which are then used as the consolidation units. The

split is done using the same storage model as before, to preserve I/O spatial locality.

Typically, a node’s dataset is split to 16-64 subsets.

This increases the number of objects being packed, leading to higher server uti-

lization. The bin packing algorithm has low computational complexity and easily

scales to the larger number of objects. The technique to determine the maximum

bandwidth and capacity, MBi and MCi, still applies in a similar way to each of the

individual storage subsets.

B.4.4 Dynamic Demands

The bin packing described above is a static algorithm and does not account for changes

between time intervals. While it can be näıvely re-applied at each time interval, that

is inefficient, since it may result in excessive data migration. Rather, we update the

placement incrementally, based on the change in application demands.

Even with incremental updates, the number of active nodes changes from one

interval to the next. When the number of nodes decreases, the extra nodes may be

turned off any time after the interval required for data movement. However, when the

number of nodes is increasing, additional nodes should be brought online sufficiently

in advance such that data can be moved to them before demand increases.

We predict the resource requirements for the next interval to determine which

nodes are expected to exceed their capacity and/or bandwidth limits. We then select

the applications with the smallest data footprints on these nodes and compute a new

placement only for them, since they are the only workloads that need to be moved.

Any extra nodes required for the change in placement are brought online. Section

B.5.2 describes how the dynamic phase of bin packing works.

APPENDIX B. BLOC 238

100 101 102

Bandwidth (%)

100

101

102

Ca
pa

ci
ty

 (%
)

Average utilization
95th percentile utilization

Figure B.5: Utilization of storage bandwidth and capacity across the 10 DC work-
loads. Log scale used to show the low utilization region clearly.

B.5 Dynamic Adaptation

Most applications go through different phases during their execution. This is es-

pecially true for interactive DC workloads, whose load is a function of user activ-

ity [31, 195, 258, 163, 85, 84, 88]. Consolidation should adapt to these changes to

avoid performance degradations. This means that there may be periods that require

certain datasets to be migrated to avoid oversubscribing storage resources in consol-

idated servers.

To avoid the overheads of migration, the controller could näıvely provision for peak

storage resource requirements. However, for the majority of cases this is extremely

wasteful. Figure B.5 shows the difference between average and 95th percentile storage

resource utilization for the ten examined workloads. Storage bandwidth and capac-

ity are normalized to the values the server can support for each application, since

depending the their access patterns, different workloads get very different maximum

bandwidths on the same storage node. The key observation here is that average uti-

lization rarely exceeds single digits, while 95th percentile utilizations are significantly

higher.

Instead of conservatively provisioning for peak load, in BLOC we provision for

current storage resource requirements, but prevent oversubscription with two mecha-

nisms; first, we set a maximum limit for storage capacity and bandwidth utilization

as described in Section B.4.1. This prevents the system from constantly operating

APPENDIX B. BLOC 239

in a close-to-saturation region and in the case of unexpected load spikes it lets de-

mands grow against the unused resources, as opposed to interfering with application

execution.

Second, to avoid migrating data when a surge in load arrives, the system acts

proactively, and starts the migration before the high load arrives. This way, when

user demand increases, all storage resources are dedicated to servicing user requests,

as opposed to migrating data.

B.5.1 Predicting User Load

Load may be classified into two categories: primary user load and spikes. Primary

user load follows a diurnal pattern [31, 85, 84, 195, 258] and can be predicted within

a reasonable margin of error. Spikes, on the other hand, occur randomly and are

hard to predict [31, 99]. We use traced behavior to predict the primary user load and

adapt to spikes and other deviations at run time. The primary user load has large

fluctuations and adapting to its variation can yield significant savings.

The implication of Figure B.5 is that although provisioning for peak demands is

wasteful, each application does not come with a specification of user demand and

bandwidth requirements over time. This must be predicted at run time. The pre-

diction method in BLOC is based on preceding user behavior. To compensate for

deviation from past behavior, we include an additional runtime correction term.

Predictions are performed at a 30-minute granularity. Ch-anging resource allo-

cation at shorter intervals can improve the match between allocated resources and

demand, but each update comes at the cost of potential data migration. Hence, up-

dates should not happen faster than data movement can be amortized. For the studied

applications, 30 minutes are sufficient to track major load changes and perform any

migration required (see Section B.7.2).

The outputs of the demand prediction module are the bandwidth and capacity

requirements expected in the next time interval. If bi(t) and ci(t) are the bandwidth

and capacity requirements of application i at time interval t, then this module outputs

bi(t+ 1) and ci(t+ 1). The actual implementation is given in Section B.6.

APPENDIX B. BLOC 240

B.5.2 Dynamic Updates to Bin Packing

This phase is described in Algorithm 2. At each time interval, the predicted resource

demands are used to determine the nodes for which any application will violate its

resource constraints in the next interval, due to increased demand (Steps 5,6). To

minimize the amount of data that needs to be migrated, applications with the small-

est data footprints are removed from these nodes and added to the set of applications,

UA that will be reallocated (Steps 7 to 15), until the node utilization drops below the

allowed limit. Nodes where resource demand falls below the limit minus the hysteresis

margins δB, δC , either due to reduction in the demands of their current applications, or

due to deconsolidated workloads, are added to the set of nodes available for consolida-

tion (Steps 16, 21). These nodes are partially occupied but the remaining capacity is

available for consolidation. The static consolidation algorithm operates on this new,

reduced application set UA, instead of performing a global re-assignment. For the

portion of the placement that changes, data movement is started within the current

time interval, so that all storage resources are used towards servicing user requests in

next time interval2. If additional servers are required by Algorithm 2 they are turned

on, and any servers relieved of all applications are turned off.

The incremental update used in the dynamic phase does not consider all appli-

cations and may deviate from a bin packing solution that examines all applications

in each interval. Thus, a global re-assignment may be performed periodically, such

as once a day, during times of low demand. This can also help ensure that the same

nodes are not repeatedly power-cycled by randomizing the order in which nodes are

assigned.

B.5.3 Migration Costs

Data movement is not free. It incurs two types of costs: performance, since some

of the system bandwidth will get tied up in migration, and energy, since the energy

consumption of extra I/Os performed for migration will eat into the savings from

2We assume that each data block is unavailable during migration. It can be accessed before
movement starts or after it has been completely copied to the new location. The movement time for
each individual block is small.

APPENDIX B. BLOC 241

Algorithm 2 UpdatePlacement(P (t), B(t+ 1), C(t+ 1))

Require: B(t + 1) and C(t + 1) specify predicted bandwidth and capacity require-
ments, respectively, for all applications at next time step

Ensure: Updated placement that satisfies new demands
1: Compute bandwidth and capacity utilizations, Bs(t + 1) and Cs(t + 1), at each

node s ∈ K, using demands B(t+ 1), C(t+ 1) and current placement
2: UA ← {} ⊲ set of applications to update
3: UK ← {} ⊲ set of storage nodes made available
4: for s in K do
5: x1← Is Bs(t+ 1) > MBs ?
6: y1← Is Cs(t+ 1) > MCs ?
7: while x1 or y1 do
8: k ← application with least data on s
9: UA ← UA ∪ k

10: Bs(t+ 1)← Bs(t+ 1)− bk(t+ 1)
11: Cs(t+ 1)← Cs(t+ 1)− ck(t+ 1)
12: Interfs(t+ 1)← Interfs(t+ 1)− Interf(s,i)(t+ 1)
13: Update MBs,MCs to value with k removed
14: Update x, y using new Bs(t+ 1), Cs(t+ 1)
15: end while
16: x2← Is Bs(t+ 1) < MBs(t+ 1)− δB ?
17: y2← Is Cs(t+ 1) < MCs(t+ 1)− δC ?
18: z2← Is Interfs(t+ 1) < 10% ?
19: if x2 or y2 or z2 then
20: US ← US ∪ s
21: end if
22: end for
23: P (t+ 1)= CONSOLIDATE(UA, UK + empty nodes, B(t+ 1), C(t+ 1), Interf(i,j),

∆B)
24: Migrate data of nodes that change from P (t) to P (t+ 1)

powering down unused nodes.

Performance: To mitigate the performance impact, BLOC uses two mechanisms.

First, data migration is performed ahead of load increase, based on predicted demand.

This way upon arrival of high load, storage resources are explicitly used to service

user requests. Second, BLOC maintains an additional bandwidth margin, ∆B, beyond

what is required to serve the workload demand. This implies that workloads are

APPENDIX B. BLOC 242

packed slightly sparser than allowed based on their bandwidth requirements. This

way, if the server is operating near its limits, migration uses the reserved bandwidth

and does not take bandwidth away from the consolidated applications.

The value of ∆B should be sufficient for all data movement required by appli-

cations on a server. We empirically determine a common value for ∆B at 2% of

rated bandwidth on all nodes, based on the load changes between intervals and the

corresponding application re-allocations.

Energy: To reduce the energy overhead of migrations, data should only be moved

when the savings from a reduced number of active nodes will be larger than the

migration energy cost. This is accomplished by using a hysteresis margin below the

bandwidth and capacity limits. If resource usage in some node falls, but is within

the hysteresis margin (i.e., not enough to justify migration), applications are not

re-consolidated to fewer nodes.

Most modern DCs use mechanical hard disks. The idle cost of keeping a storage

node active with disks spinning is much larger than the energy cost of a small migra-

tion bandwidth. This implies that small hysteresis margins, δB and δC for bandwidth

and capacity respectively, can be set. These values are common across all nodes

regardless of application placement. Since the bin-packing procedure does not pack

each node to its limit, in practice this margin does not lead to wasted resources. δB

and δC may need to be tuned more precisely for solid state storage.

B.5.4 Performance and Efficiency Trade-offs

The design of BLOC presented so far is geared towards preserving performance. In

some scenarios, such as in batch-processing workloads, resource efficiency may be

more important than performance. In this case, BLOC can be tuned to provide

further savings for selected applications. Parameters MBi and MCi can be tuned to

higher values for applications that prioritize efficiency over performance. We evaluate

the trade-off between efficiency and performance in detail in Section B.7.2.

Second, we can reduce the fraction ∆B of excess resources that covers migration

overheads, to improve overall resource efficiency. This implies that whenever data

APPENDIX B. BLOC 243

movement is performed, performance may briefly suffer.

Third, deconsolidation can be performed lazily. Rather than deconsolidating when

an increase in demand is predicted, the number of nodes are only increased when

an actual increase in demand is observed. This saves resources in the event of an

erroneously-predicted increase in demand. However when demand does increase, there

will be a performance penalty due to the delay in bringing up additional nodes.

We experimentally evaluate the savings achieved through some of these modifica-

tions and their performance impact. The results can be used to tune the system for

the best trade-off between performance and efficiency.

B.6 Implementation

State: BLOC resides with the cluster scheduler and determines the allocation of

storage nodes to applications. The implementation of the methods presented earlier

requires maintaining some state for each application object (either entire application

instance or data subset) and each storage node:

• Per-application state: BLOC tracks each application’s historic and real-time ca-

pacity and bandwidth requirements and its interference against other workloads.

It also determines the maximum bandwidth (MBi) and capacity (MCi) limits for

each application.

• Per-server state: For each storage node, BLOC records the current capacity and

bandwidth utilizations (Cs, Bs), the set of applications that are hosted on it, its

current interference levels, and the current maximum capacity and bandwidth

limits of the server (MBs, MCs) based on the hosted applications.

The state overhead is minimal, in the order of a few KBs, even for a DC with a large

number of applications. This state information is used by the algorithm described in

Section B.4 to consolidate applications into fewer nodes.

Prediction: Another implementation detail is the specific prediction method used

to track application demand dynamics. Our prediction includes two terms. The first

term exploits the application’s past behavior. At a given time interval the expected

APPENDIX B. BLOC 244

CapacityB-max B-dyn B-fine BLOC Oracle0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
En

er
gy

 S
av

in
gs

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (%

)

Energy Savings Throughput

10 0 10 20 30 40 50 60 70 80
Throughput slowdown (%)

Capacity
B-max
BLOC
Oracle

0

20

40

60

80

100

Ti
m

e
(%

)

CapacityB-max B-dyn B-fine BLOC Oracle0

50

100

150

200

Average
90th PCTL
99th PCTL

QoS

La
te

nc
y

(%
)

20 0 20 40 60 80 100 120 140
Latency increase (%)

Capacity
B-max
BLOC
Oracle

0

20

40

60

80

100

I/O
 R

eq
ue

st
s

(%
)

Figure B.6: Performance and efficiency comparison between different consolidation
schemes.

demand is predicted by averaging the resource (bandwidth or capacity) use over the

past seven days for the same time of day, similar to [258]. This information is sufficient

since most applications change slowly and the algorithm has some resource slack. This

history-based predicted demand is denoted Rh(t+ 1). The second term accounts for

deviations from past behavior using the real-time observation, Rrt(t). The two terms

are combined to generate the final prediction as follows:

R(t+ 1) =



















(1− A2) ·Rh(t+ 1) + A2 ·Rrt(t) if A < 0.3

(1− A) ·Rh(t+ 1) + A ·Rrt(t) if 0.3 ≤ A < 0.7

Rrt(t) if A ≥ 0.7

Weight A is defined as the ratio of the number of intervals where observed demand

deviated from predicted demand by more than 5%, over the total number of inter-

vals for which prediction has been running. The more demand deviates from past

behavior, the greater the value of A, which biases the prediction towards current

observations. The values 0.3 and 0.7 that define the weight of the past versus the

real time information in the estimation of R are determined based on the standard

deviation of (Rh −Rrt), similarly to the technique discussed in [247].

Operation: Let’s assume that the system starts with a set of applications running

without storage consolidation. First, the storage activity of each application i is mod-

eled to determine MBi and MCi. Then, consolidation is enabled and applications are

ranked according to their degree of interference. Bin-packing starts using Algorithm 1

and applications get placed on the minimum required number of nodes. BLOC then

APPENDIX B. BLOC 245

prepares for the next interval using Algorithm 2, which runs at the chosen time gran-

ularity of 30 minutes. Algorithm 2 selects the subset of applications that will need to

be re-allocated to accommodate changes in user load.

B.7 Evaluation

We have deployed BLOC on a 40-machine cluster and used it for application storage

consolidation. We compare it against an existing consolidation approach that only

considers capacity requirements (Capacity), as well as a hypothetical scheme that

has perfect future knowledge (no prediction errors) and incurs no migration costs

(Oracle). Computing the oracle placement is an NP-hard problem and we use an

exhaustive search for our purpose.

We also compare four different configurations of BLOC to explicitly show the gains

from each of the design techniques. These are (1) B-max, a static scheme that only

uses the maximum bandwidth (MBi) determined using BLOC for each application

but does not adapt to dynamic demand. B-max only uses algorithm 1 once. (2)

B-dyn, a dynamic scheme that accounts for demand variation but does not split

application storage to smaller fractions, i.e., it treats the dataset of an application

in a node as a single application object. B-dyn makes use of both algorithms 1

and 2. (3)B-fine, a scheme that performs fine-grained consolidation, but makes static

consolidation decisions, i.e., it only accounts for initial demands without adjusting to

dynamics. B-fine only uses algorithm 1. Finally, (4) BLOC, the final design that

incorporates all of the previous techniques.

I/O Workloads: We use storage traces from production clusters of seven large

Microsoft applications: Websearch, Webmail, D-Process (a distributed computing

application similar to MapReduce [69]), Messenger, User Content (a cloud storage

service), Display Ads, and Exchange. Websearch, Webmail, Messenger and Exchange

are user-interactive applications that experience significant load variations throughout

a day, while applications like D-Process do not depend on external user traffic. These

applications run over a DFS and span thousands of servers. We also use I/O access

traces collected from large installations of three benchmarks from the TPC suite:

APPENDIX B. BLOC 246

Nodes (%)
0

20

40

60

80

100

Ti
m

e
ac

tiv
e

(%
)

No consolidation
Capacity

BLOC
Oracle

0 20 40 60 80 100

Figure B.7: CDF of storage node active time.

TPC-C, TPC-E and TPC-H.

Testbed: We use a 40-machine cluster with three server types. The first type has

2 sockets, 12 cores, 12GB of DRAM and 4 hard drives (1.2TB). The second has 2

sockets, 24 cores, 48GB of DRAM and 4 hard drives (1.2TB). The third type has

2 sockets, 8 cores, 8GB of DRAM and 12 hard drives (5.4TB). All hard drives are

10krpm HDDs organized in RAID1+0 configurations. The cluster has 18 servers

of the first type, 10 of the second and 12 of the third. We determine maximum

bandwidth and capacity, MBi and MCi, for every application on each type.

Each of the 10 applications has between 3 and 5 instances for a total of 40 instances

on the cluster. Instance data sizes range between 50GB and 450GB. For B-fine and

BLOC, where data is split into smaller chunks, the consolidated objects are between

782MB and 1963MB. The I/O traces are replayed such that the same block is accessed

for a given I/O operation, whether all accesses of an application go to the same node

or are split across nodes. Addressing issues on privacy between applications are out

of the scope of the current work. BLOC may place data from different applications in

the same storage node. All experiments are run for 24h periods and repeated seven

times for consistency.

B.7.1 Comparison of Consolidation Schemes

Performance and efficiency: Figure B.6a compares the energy savings across the

six schemes. Savings are defined as the total amount of energy spent for the cluster,

compared to energy spent in the same cluster, for the same number of requests,

APPENDIX B. BLOC 247

without consolidation (1 on the energy savings axis represents no savings while 2

represents a 2x reduction in energy consumption). These savings are cluster-wide

and account for data migration overheads. The savings account for the increase

in energy consumption due to higher utilization after consolidation, as well as the

reduction in cluster-wide consumption due to unused nodes being powered down.

Resource efficiency alone is not a sufficient figure of merit, since consolidation

can incur performance losses. Figure B.6a also shows the performance in throughput,

including any overheads from migration. Latency is shown in Figure B.6c, normalized

to the latency of applications running in isolation, which is represented as 100% on

the y-axis.

While the capacity-based scheme provides significant savings, it degrades through-

put by nearly 36.8%. B-max considers bandwidth explicitly and hence maintains per-

formance but it provisions for peak demand and therefore does not lead to high energy

savings. B-dyn accounts for dynamic demands and significantly improves energy sav-

ings. B-fine takes advantage of fine-grained consolidation and increases savings even

further, but since it only considers initial demands, it degrades performance. BLOC

combines all techniques and leads to the best operating point, with 3.18x savings

on average and performance maintained at 98.2% of that before consolidation. The

difference between B-dyn and BLOC comes from the finer granularity at which data

is placed. Smaller pieces of data offer more choices for placement, resulting in higher

savings. Finer granularity improves server utilization but increases performance over-

heads due to increased inter-server communication, while coarser granularity achieves

lower savings, as the ones shown in B-dyn.

Apart from average throughput and latency, worst-case performance is also im-

portant. Figures B.6b and B.6d show the throughput and latency CDFs for the most

important schemes; we omit B-dyn and B-fine for clarity. Latency increase for BLOC

is confined in a very narrow region around 0, and throughput degradation is minimal

for most of the experiment’s duration.

Node active times: Figure B.7 shows the cumulative distribution (CDF) of active

time of the storage nodes in the cluster. Average active time drops by 61% with

BLOC.

APPENDIX B. BLOC 248

Websearch

Webemail

D-Process

Messe
nger

DisplayAds

UsrC
ontent

TPC-C
TPC-E

TPC-H

Exchange0.0
0.5
1.0

1.5
2.0
2.5
3.0
3.5
4.0

4.5

En
er

gy
 S

av
in

gs
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (%

)

Energy savings Throughput

Figure B.8: Per application throughput and energy savings.

B.7.2 BLOC Behavior

Server utilization: Figure B.9 shows the operation of BLOC over a 24h period.

Bandwidth and capacity utilization increases during consolidation for active nodes,

but fewer nodes are utilized. Figure B.9a shows the bandwidth utilization for a

representative node. Periods that had low utilization without consolidation (2am-8am

& 8pm-2am) experience significant increase in utilization with consolidation. Also,

since BLOC works adaptively, diurnal effects are less evident after consolidation.

Figures B.9b-B.9e show how the load shifts to fewer nodes during consolidation.

Average utilization increases by 45.7% in the active servers. BLOC tries to minimize

node active times so most of the consolidated nodes are the same throughout the 24h

period of the experiment. The wear-out and reliability of the nodes is often related

to how many times they are power-cycled, and whether active nodes operate in a

localized thermal hotspot. Appropriate methods can be used to ensure that active

nodes are recycled in the cluster.

Application performance and efficiency: We previously saw the average perfor-

mance and efficiency across all applications. However, given the different I/O access

patterns of each workload, energy savings vary. Figure B.8 shows the throughput and

energy savings for each of the ten applications, over a 24-hour period. In all cases,

performance degradation is less than 3% since BLOC is careful in managing storage

resource allocation. However, while all applications operate more efficiently, energy

savings vary from 2.2x to 3.98x. This variance is expected since applications that

APPENDIX B. BLOC 249

One

server

0
5

10
15
20
25
30
35
40

0
10
20
30
40
50
60
70
80
90
100

Ba
nd

w
id

th
 U

til
iz

at
io

n
(%

)

02:00 08:00 14:00 20:00 02:00
Time (h)

Bandwidth

Before

0
5

10
15
20
25
30
35
40

0
10
20
30
40
50
60
70
80
90
100

Ba
nd

w
id

th
 U

til
iz

at
io

n
(%

)

02:00 08:00 14:00 20:00 02:00
Time (h)

Bandwidth

After

0
5

10
15
20
25
30
35
40

0
10
20
30
40
50
60
70
80
90
100

Ca
pa

ci
ty

 U
til

iz
at

io
n

(%
)

02:00 08:00 14:00 20:00 02:00
Time (h)

Capacity

Before

0
5

10
15
20
25
30
35
40

0
10
20
30
40
50
60
70
80
90
100

Ca
pa

ci
ty

 U
til

iz
at

io
n

(%
)

02:00 08:00 14:00 20:00 02:00
Time (h)

Capacity

After

Figure B.9: Disk bandwidth (Figures B.9a-c) and capacity (Figures B.9d-e) over time,
before and after consolidation. Utilization increases in fewer nodes after consolidation,
while many nodes can be powered-down, improving resource efficiency.

stress the disk bandwidth more are less suitable for consolidation and achieve lower

gains.

Data migration overhead: Figure B.10 shows the bandwidth used and amount

of data migrated for the entire cluster over the 24-hour experiment. The upper

graph shows the total bandwidth used, including the bandwidth for migration and

bandwidth used to serve user demand. The difference between the two is small,

indicating that the bandwidth used for data migration is negligible. The lower graph

shows the temporal behavior of the data migration bandwidth. More migrations

happens at the initial step of the experiment, when consolidation is first applied, and

later in the morning when user demand rises and applications are deconsolidated.

High migration is again seen in the evening hours as applications are consolidated

back to fewer servers. The overall migration bandwidth is well below 5% except for

the initial placement.

Parameter Sensitivity: One of the design parameters in BLOC is the frequency

at which consolidation is updated. For our experiments we make consolidation de-

cisions at a 30-minute granularity. This is based on the dynamics of the studied

applications and the timing overheads of consolidation (time required for migration).

Figure B.11a shows the throughput and energy savings when consolidation is reeval-

uated at intervals that range from 10 minutes to 2 hours. The optimal trade-off

between performance and efficiency occurs for 30-minute intervals. Both metrics de-

grade for small intervals, due to the high overheads for data migration, and for large

APPENDIX B. BLOC 250

0
20
40
60
80

100
Total Bw utilization App Bw utilization

0

5

10

15

20
Migration Bw utilization

02:00 08:00 14:00 20:00 02:00

Bw
 U

til
. (

%
)

Bw
 U

til
. (

%
)

Time (h)02:00 08:00 14:00 20:00 02:00

Figure B.10: Cluster-wide data migration over a 24h period.

intervals due to the overly coarse-grain estimation of resource requirements.

Another design parameter is the strictness of performance requirements. The

maximum bandwidth and capacity limits, MBi and MCi, can be set higher for ap-

plications that are willing to accept lower performance. For instance, in Figure B.4a,

rather than determining the bandwidth limit for a latency cut-off of 5ms (used as the

performance constraint in earlier experiments), one could determine the bandwidth

limit for a higher latency. Figure B.11b shows the energy savings for different per-

formance constraints (percentages of original performance), e.g., 90% on the x-axis

denotes that performance is 90% of the original, or degraded by 10%.

B.8 Discussion

Designing BLOC highlighted several issues that are interesting to explore in future

work:

Bin-packing: The bin-packing problem used in BLOC is different from the multi-

dimensional bin-packing problems considered earlier [210, 249] because in our setting,

the size of the bin depends on the objects packed in it. Each time we place an ap-

plication on a node, in addition to the reduction of available resources taken up by

that application, the maximum limit up to which the node can be filled may decrease

due to the new application’s requirements. The theoretical implications of this differ-

ence on the bin-packing problem and near-optimal heuristics are an interesting open

APPENDIX B. BLOC 251

problem.

Replication and erasure codes: We described the consolidation algorithm as-

suming a replication factor of one. However, applications may use replication to meet

bandwidth requirements, and may use replication or erasure codes for reliability. If

replication is used for bandwidth requirements, previous methods [14, 258] can tune

the number of online replicas to match demand, within reliability constraints. How-

ever, for reliability, the multiple replicas or erasure code blocks of any data item

belonging to an application should not be placed on a single storage node. This

constraint needs to be added to the consolidation algorithm in BLOC. One way to

enforce it is that when a sorted list of the application objects is prepared for bin

packing, the replicas or erasure code blocks should be maintained as separate lists.

That is, if an application has n replicas or code blocks for each data item, then n

lists are used. When packing objects to a node, objects are removed from only one

list. Whenever a new node is started, the objects are selected from the list with the

biggest head object. This way, reliability requirements are maintained while reducing

resource costs.

Other storage systems: BLOC can be used with other storage systems, other than

DFS. It only requires the address ranges, or data units located on each server. These

can be physical blocks or logical blocks. For example, in the case of an RDBMS, data

units would be tables of the relational database. Similarly, in the case of a distributed

key-value store, such as Bigtable [51] the address ranges are shards or tablets. Finally,

in the case of a virtualized system [130, 2, 273], since only entire VM instances can

be migrated, a single VM would be the minimum consolidated unit.

Minimizing migrations: We greedily choose the applications with the smallest

data footprints to be moved in the dynamic consolidation stage (Algorithm 2). This

may not minimize the overall amount of data moved over multiple time steps. A

longer term optimization that jointly considers placements over longer periods could

be developed to reduce the number of migrations needed. Additionally, applications

with small changes in demand could preferably be placed together so that those nodes

do not experience frequent migration.

I/O pattern-aware consolidation: The maximum bandwidth for each node is

APPENDIX B. BLOC 252

10 20 30 40 60 120
Interval length (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
er

gy
 S

av
in

gs

0

20

40

60

80

100
Energy savings Throughput

Th
ro

ug
hp

ut

Figure B.11: Sensitivity to the length of time intervals at which consolidation de-
cisions are made (Figure B.11a) and the strictness of performance constraints (Fig-
ure B.11b).

conservatively selected to the smallest value that preserves QoS for every application

in that node. This maximum limit can be tightened to yield denser consolidation for

applications where, exceeding this limit does not incur performance degradation (e.g.,

an application with random I/Os can be consolidated with a highly-sequential appli-

cation without performance losses, even if the original bandwidth limit is exceeded).

Disk access reordering: Additional techniques, such as I/O access reordering [225]

can be applied in BLOC to further improve the performance of consolidated appli-

cations. Reordering schemes can take advantage of the access locality recorded in

the analytical model to determine the extent for which reordering is beneficial to

performance.

B.9 Related Work

Consolidation is a well-known technique to reduce cost and energy consumption in

DCs [14, 54, 126, 105, 125, 132, 140, 141, 163, 244]. We summarize related work

below.

Capacity-based storage consolidation: Most prior work on storage consolida-

tion is exclusively based on storage capacity requirements [140, 194, 195, 196, 197].

While they can reduce the number of storage nodes used, they ignore bandwidth

requirements and hence result in performance degradation. Also, these techniques

APPENDIX B. BLOC 253

perform consolidation at coarse granularity (entire application storage). BLOC ac-

counts for bandwidth and partitions an application’s data to perform consolidation

at a finer granularity, which significantly improves efficiency.

Energy-proportional storage: Storage energy-proporti-onality can be improved

using systems such as Rabbit [14], Sierra [258] and Pesto [131] that adapt to changes

in load by tuning the replication factor. GreenHDFS [154] and Popular Data Con-

centration [215] employ techniques to identify and collect cold (unpopular) data on

common servers and power those down. Data layout is optimized in [171] such that

excess replicas can be powered down. BLOC addresses a complementary problem,

since it reduces energy usage even when there are no excess replicas or cold data that

can be taken offline, or when erasure codes are used instead of replication, as is the

case with GFS [113]. Rather, BLOC allocates sufficient bandwidth to applications

to serve current demand, and powers down excess resources. Section B.8 discusses

how existing techniques such as [14, 258, 214] can be integrated in BLOC to manage

replicas and erasure-coded data.

Storage virtualization: Storage virtualization mechanisms [130, 145, 181, 243]

ensure that two or more workloads consolidated on the same storage node can each

achieve their allocated bandwidths. However, these methods do not actually perform

the consolidation or adapt to demand dynamics. Rather they can be used in BLOC

after the consolidation has been performed to provide better performance isolation.

Consolidation policies: Extensive work has gone into bin-packing algorithms for

server consolidation [10, 132, 168, 210, 244, 246, 249, 292]. Ajiro et al. [10] use

an M/M/1 queueing model based on average resource utilization to determine the

per-server consolidation density. Gupta et al. [132] propose consolidation in a virtu-

alized environment by considering all resources as equivalent and static. Lee et al.

[168] use vector bin-packing techniques for VM consolidation. Most of these schemes

consider the processor, memory, and storage capacity requirements of consolidated

applications, which are all largely additive. Storage bandwidth, is not additive, and

is not considered in these systems. Also, consolidation is performed statically and

does not consider migration overheads when the data layout changes over time. We

dynamically adapt consolidation, while accounting for migration overheads.

APPENDIX B. BLOC 254

Storage system design: Finally, there is work on storage design exploration such

that the system configuration meets the requirements of a given application [17, 18].

These techniques also use bin-packing algorithms which, given an analysis of workload

features, determine the appropriate storage system configuration. This work is or-

thogonal to BLOC. First, design decisions are driven by a performance model, which

is determined for the storage load as a whole, as opposed to on a per-application

basis. This is not accurate when multiple, diverse applications (e.g., Websearch and

MapReduce) run on the same storage node. Second, this work assumes that the

per-node storage is configurable, which is not the case for a large-scale homogeneous

DC. Finally, it configures the storage system, e.g., RAID structure, to accommodate

a given load, rather than decide which applications can be consolidated on a node of

a given configuration. BLOC does not rely on performance models which might be

proven inaccurate for complex multi-tier workloads, but rather determines consolida-

tion based on available storage resources, such that there is no contention between

applications. This enables higher resource efficiency (utilization), and stricter perfor-

mance guarantees. However, assuming freedom in reconfiguring the storage system,

BLOC can leverage some of these techniques to further boost resource efficiency.

B.10 Conclusions

We presented BLOC, an interference-aware storage consolidation system that im-

proves DC resource efficiency and energy proportionality. BLOC leverages analytical

models to determine the expected interference in the storage subsystem and the upper

utilization limits that do not degrade performance for any consolidated application.

It accounts for temporal variations in storage load, predicts future application ac-

tivity, and reconfigures application placement to meet new demands. Experiments

with real-world DC applications show over 3x reduction in energy consumption with

minimal performance penalty. Compared to prior capacity-based methods, BLOC

achieves high energy savings while maintaining performance constraints. We believe

that the improved resource efficiency provided by BLOC can significantly improve

the hosting costs of applications in large-scale datacenters.

Appendix C

ECHO: Network Modeling of

Datacenter Workloads

C.1 Introduction

As the world’s computation continues to migrate into massive datacenter (DC) infras-

tructures, developing highly efficient systems for these computing platforms has be-

come increasingly critical. DC architectures are still in their relative infancy and when

optimizing for performance, efficiency, or cost of ownership (TCO), architects must

take into account the unique characteristics that dominate the behavior of large-scale

applications. Understanding this behavior requires detailed workload characteriza-

tion and is crucial not only from the systems but from the data analytics perspective

as well.

DC applications are radically different from conventional workloads in several

ways; first, privacy concerns make their source code, user behavior patterns and

datasets rarely publicly available. This seriously hinders accurate and convincing

studies. Second, DC applications experience activity patterns that cannot be re-

produced or approximated by traditional benchmarks in standardized experimental

environments because they only emerge from user behavior in the large scale, such

as localized hotspots. Third, the cost of deploying experimental system configura-

tions in a production environment is prohibitive both from the time and the cost

255

APPENDIX C. ECHO 256

perspective. This increases the importance of concise, accurate and scalable models

that representatively capture the behavior of large-scale workloads and can be used

to create realistic access patterns.

The network component of DC applications reflects a large fraction of user patterns

both in time and space. It is often responsible for Quality of Service (QoS) guarantees

violations and accounts for a significant portion of the infrastructure’s TCO. Despite

the obvious merit in developing representative analytical models that capture DC

network traffic, unfortunately previous work lacks the ability to reflect the complex

spatial and temporal patterns that emerge in the large-scale. For a workload model to

be useful in the context of large-scale DCs it needs to have three main properties: (a)

accuracy, so that the information in the model closely resembles the actual behavior of

the application, (b)modularity, so that it can: (i) adjust the granularity of information

to the needs of an application and (ii) be reconfigurable and compatible with other

components, and (c) scalability, in order to capture large-scale effects in a lightweight

manner. Existing solutions either fail to capture the spatial patterns in network traffic

or introduce significant computational overheads and are unable to scale past a few

servers.

In this chapter, we present ECHO, a scalable and accurate modeling scheme that

captures the spatial and temporal behavior of network traffic in large-scale DC appli-

cations. ECHO is derived from validated analytical models that enable it to concisely

represent the network patterns of workloads, while provably guaranteeing low and

upper-bounded errors. As part of ECHO, we present two models; first we examine

a simple, distribution fitting model that captures and generates per-server network

traffic by recognizing known distributions in network activity fluctuation. To cap-

ture the burstiness and spatial patterns of network load, e.g., server-to-server traf-

fic, we propose a Markov Chain model that is topology-independent and locality of

communication-aware and captures individual server interactions. Additionally, we

make ECHO hierarchical, adjusting the level of detail in the model to the require-

ments of each application. Starting from groups of racks and increasing the level of

detail down to individual servers, ECHO captures and recreates the spatial patterns

of network activity in DCs with tens of thousands of servers. We perform a detailed

APPENDIX C. ECHO 257

validation study and show that the deviations between original and generated traffic

are marginal for the network activity of two large-scale systems. We also verify that

ECHO captures all the critical features of DC applications, such as spikes in network

activity and inter, intra-rack communication. Additionally, we perform a detailed

characterization of the temporal and spatial patterns of the network activity of DC

applications in three DC deployments over a period of five months.

C.2 Related Work

Network Workload Characterization: The network is one of the most widely

characterized aspects of a workload since it reflects user patterns that emerge in

the application. This characterization becomes more interesting for DC workloads

running on tens to hundreds of thousands of servers. Although there is extensive

prior work on network characterization for traditional applications [27, 46, 92]; in

this chapter we focus on related work in the context of large-scale DC systems.

Feitelson [104, 103] presents a detailed characterization of network requests based

on their stationarity, self-similarity, burstiness, and heavy tails; features that dom-

inate DC workloads. Yu et al. [287] use a detailed profiling of the TCP/IP stack

to troubleshoot network performance problems of multi-tier DC applications. They

design a generic, app-independent profiler that monitors TPC at the socket-level and

identifies performance bottlenecks within the same and across different connections.

Ersoz et al. [95] also characterize the network traffic of a multi-tier DC. They observe

that inter-arrival times and message sizes follow log-normal distributions, while ser-

vice times fall within the Pareto distribution and show heavy tails at heavy loads.

Benson et al. [37] analyze the features of network traffic in several cloud DCs classified

per application type, in terms of temporal patterns, network and link utilization, con-

gestion and packet drops and in [38] propose a fine-grain scheme for traffic engineering

in these systems.

Atikoglu et al. [23] perform a workload analysis of Facebook’s key-value store,

memcached. They observe that GET requests by far dominate over SETs, while

APPENDIX C. ECHO 258

spatial locality widely varies across memcached servers. They also record user pat-

terns that experience diurnal behavior and propose statistical modeling to extract

the distribution of request inter-arrival rate. Also in the area of large-scale workload

analysis, Shafiq et al. [236] study the machine-to-machine (M2M) traffic in cellular

networks which has similarities with the traffic of certain user-interactive DC applica-

tions. They characterize the temporal dynamics (e.g., diurnal behavior, burstiness),

hot spots, application usage and data upload/download of a dataset from a large

network service provider. Many of their findings are consistent with the behavior we

present in Section C.4 for latency-critical DC applications. Using network character-

ization in a different scope, Gill et al. [116] measure DC network load to evaluate the

system’s reliability and characterize the components most prone to fail.

Network Workload Modeling: Similar to characterization, network modeling

has attracted significant interest due to the user patterns of large-scale DC applica-

tions. Feitelson [104] apart from characterizing network loads, presents an overview

of methods to model network request distributions. He suggests distribution fitting

through the Kolmogorov-Smirnov test, to identify known distributions in network

traffic fluctuation. Furthermore, he presents preliminary considerations on the corre-

lation between task size, arrival rate and execution time when combining network and

CPU modeling. Although his work presents strong arguments for the value of mod-

eling temporal variations of network traffic, it does not present any validation of the

proposed techniques against actual applications. In Section C.3 we evaluate a similar

distribution fitting-based model, but additionally validate it against real DC work-

loads. Building from this paper, Li [173] characterizes network and CPU-intensive

applications running on large-scale grids. He analyzes features like job arrival rate,

size, pseudo-periodicity and correlation of these features with execution time. He,

then, proposes a two-phase approach to model these workload attributes. The first

step consists of Model-Based Clustering which performs distribution fitting. The sec-

ond step generates autocorrelations to create synthetic workloads that resemble the

original load. Although this work provides some insight on the performance impact

of request distributions in grids, it is computationally intensive and does not scale

beyond a few nodes, making it inapplicable in large-scale DCs.

APPENDIX C. ECHO 259

Barford et al. [27] study the characteristics of Web servers and propose a work-

load generator that recreates patterns with temporal fluctuation and request sizes

similar to the original application. Joo et al. [151] propose network traffic modeling

to identify and resolve performance bottlenecks in a small machine cluster. They

compare two different models, an infinite source-based model that is user-invariant,

i.e., all users send the same amount of data, and a SURGE-based model, where traffic

varies per user. They observe that ignoring user variation and information about net-

work topology causes significant inaccuracies in the generated workloads. Sengupta

et al. [234] characterize the request arrival rates of a series of OLTP workloads and

propose an analytical distribution fitting and self-similarity recognition model. They

conclude that accurate modeling of network traffic can facilitate decision-making for a

series of performance/energy-related optimizations, although their study is only lim-

ited in transaction-based applications running on a small cluster. Similarly, Danzig et

al. [67] propose an empirical workload model based on statistical analysis of wide-area

TCP/IP traffic. They use both inter-arrival times to model traffic that follows known

distributions and amount of data transferred to model burstiness. Finally, Tang et

al. [256] propose a framework that captures non-stationarity, burstiness and request

duration to model long-time network behavior. Based on this model, they develop

MediSyn, a publicly available streaming media workload generator.

Overall, the common base in previous work is a focus on capturing temporal vari-

ations in network load using analytical models such as distribution fitting. Although

this can provide insights on load variations and identify user patterns over time, it

includes no notion of spatial patterns, which are a crucial part of DC applications.

Hot spots due to load imbalance, inter-application traffic and server-to server com-

munications are all features that impact critical design decisions in large-scale DCs

and necessary for a modeling scheme to capture.

C.3 Single Server Temporal Model

We first focus on the requirements for simplicity and conciseness of the scheme, with

a simple model that captures per-server network activity over time. We show which

APPENDIX C. ECHO 260

features of network load this model captures and why on its own it is not sufficient

to model the behavior of DC applications.

We adopt a distribution fitting model which has been previously shown to be

useful to capture the behavior of conventional network workloads [173, 234]. In this

work we are validating its accuracy in the context of a real large-scale DC applica-

tion. The model takes as input a network bandwidth trace from a single server and

identifies known distributions (e.g., Gaussian, Poisson, Zipf, etc.) in the activity pat-

tern. The output is a mathematical expression that is the superposition of identified

distributions similar to Expression C.1.

BWo =
N
∑

i=0

(Distribution Expressions) =

N1
∑

i=0

f(x;µ, σ2) =
1

σ
√
2π

e
− 1

2
(
x−µi
σi

)2 |tistoptistart
+

N2
∑

i=0

f(k;λ) =
λke−λ

k!
|tistoptistart

+

N3
∑

i=0

fother|
tistop
tistart

+ ... (C.1)

where N is the number of identified distributions and Ni the number of individual

distributions of each type.

We validate the accuracy of the model by comparing the network traffic generated

based on the model against original traffic patterns. Figure C.1 shows this comparison

for a Webmail workload running on a production-class server. The deviation between

original and generated load is less than 4.9% on average ensuring that the model

accurately captures temporal variations in network load. In this case the model iden-

tifies three Gaussian, one exponential and one constant distribution in the network

activity. We have performed additional validation experiments with workloads that

experience diverse activity patterns and verified the consistency of the results.

Although the distribution fitting model is a simple and comprehensive way to

capture the load of individual servers it is agnostic of the source and destination of

traffic, therefore it cannot represent spatial effects, such as server-to-server commu-

nication. Additionally DC workloads often experience short bursty periods in their

APPENDIX C. ECHO 261

0 50 100 150 200 250 300 350
Time (min)

7

8

9

10

11

12

13

14

Ba
nd

w
id

th
 (M

B/
s)

Original
Synthetic1
Synthetic2

Synthetic3
Synthetic4
Synthetic5

Figure C.1: Distribution fitting model validation.

network activity [104], which cannot be accurately approximated by known distribu-

tions. The next Section describes the most critical features of network workloads in

the large-scale that the model should accurately capture. To recreate them we adopt

a different approach. The hierarchical Markov chain model described in Section C.5

is a scalable, yet accurate solution that captures both temporal and spatial effects

without becoming intractable in complexity.

C.4 Temporal and Spatial Network Traffic Char-

acterization

Previous work has established some trends for DC workloads, such as diurnal be-

havior and variation in activity between different time intervals, e.g., weekdays over

weekends [23, 37, 95]. Here we validate these findings and additionally perform a

detailed study on the spatial locality of network traffic in DC applications, as well

as its fluctuation over time. We examine the network load of two production DC

deployments; a system with several tens of thousands of servers from Microsoft run-

ning Websearch and two smaller systems with several hundred and a few thousand

servers respectively running a single application. Specifically, the first system runs a

combiner for query results, part of Websearch (Combine), while the second system

APPENDIX C. ECHO 262

extracts a snippet of information from backend Websearch servers and displays it to

the user, in the top of the search results (Render).

Fluctuation of network activity over time: We show network traffic over time

in the form of heatmaps. Each tick on the x-axis represents an interval of 5 minutes

and each point on the y-axis, a server ordered by server id. Consecutive servers belong

to the same rack in groups of 48 servers per rack. The colorbar on the right shows the

range of network traffic bandwidth observed. Darker color in the heatmap represents

higher network traffic. There are a few servers in each heatmap that exceed this

range, however they represent a very small percentage of the total deployment, typi-

cally 0.1%-0.5%. Figure C.2(a) shows the fluctuation of activity per server in the large

DC running Websearch over the period of one month (December 2011). As shown

in the graph, the network load varies across groups of servers, with specific nodes

experiencing high traffic, although mostly the system remains well load-balanced.

Overall, the network traffic is very low; very few nodes exceed 0.0064MB/s, which is

in agreement with the extensive overprovisioning present in large-scale deployments

of latency-critical applications such as Websearch. Additionally, the traffic over time

remains mostly self-similar, consistent with well-known DC application characteris-

tics [23]. The diurnal patterns in network activity, i.e., difference in load between

day and night, become more clear in Figure C.4(a) and (c) which show per-server

traffic for Combine and Render. Every dark vertical band representing the hours of

the day is followed by a lighter interval (e.g., in the x-axis: vertical band at range

970-1030) representing the low activity period of the night. There are 31 dark and 31

light bands in total in the graph representing each 24h period in the month. Com-

pared to Websearch, both Combine and Render have significantly higher network

traffic, as a result of the lookups necessary to extract and aggregate search results.

Between Combine and Render, the former has slightly higher network activity, since

larger chunks of data are transferred between servers. To better visualize the diurnal

patterns in network activity and their change, in Figure C.4 we plot network load

over time, averaged across all servers. Figure C.4(a) shows the fluctuation in load for

Websearch across five consecutive months (November 2011-March 2012). Overall, the

patterns are similar, although their magnitude varies across different months, with

APPENDIX C. ECHO 263

significantly higher loads in December and January. Figure C.4(b) shows the per-

week breakdown of network load for December. Again, diurnal patterns are present,

with load being 10-15% higher in the last two weeks of the month, and 15-18% higher

in the days of the weekend, compared to weekdays. Finally, Figure C.4(c) shows the

per-day breakdown for the last week of the month. The load experiences two peaks,

one from 12pm to 6pm and another from 8am to 12pm while progressively decreasing

in the hours of the night.

Although the time aspect of DC applications has been extensively studied, the

same is not the case for the locality of communication in network applications. This

study has three types of contributions; first, it can verify that the application takes

advantage of data locality by confining most requests to servers of the same or neigh-

boring racks to reduce latencies, second, in the presence of multiple applications, it

can provide insight to the scheduler on how to assign machines to jobs to confine

inter-application traffic to neighboring nodes and third, it can verify that load bal-

ancing prohibits the formation of extensive hot spots. In this work, we examine both

the average locality of network traffic and its fluctuation over time to provide insights

on these issues.

Spatial locality of network activity: Figure C.2(b), Figure C.3(b) and (d) show

the server-to-server network traffic for Websearch, Combine and Render. The x and

y axes represent servers and the graphs are symmetric over the principal diagonal

since, for example, traffic between servers 2 and 3 is the same as traffic between

servers 3 and 2. This includes both sent and received traffic for each pair of servers.

More prominently in Websearch, but for the other applications as well, the majority

of traffic is confined within servers of the same or consecutive racks, seen by the

darker colors along the diagonal. For all three applications, especially Combine and

Render, there is a small number of servers that talk to most of the machines in

the system. These are likely servers running the cluster scheduler, aggregators (in

multi-tier Websearch) or monitoring systems.

In the smaller clusters of Combine and Render, we see less network locality, as

several servers, especially in the first few racks, exchange requests with machines

outside their rack. This is consistent with the functionality of the two applications,

APPENDIX C. ECHO 264

aggregating and caching or displaying results extracted from search queries. Overall,

we observe that in Websearch, which is dominated by query latency, the job scheduler

is data locality-aware and tries to minimize long request round trips to servers that

are far from each other.

Finally, we examine the actual network traffic map for Websearch in Figure C.2(c),

where each shaded region corresponds to a rack, with 48 servers within each region.

All servers in a rack are connected to the same switch, while servers in different

racks are connected to different switches. As seen in the figure, with the exception of

few, most racks have similar levels of network load, verifying that the load balancer

assigns work to machines preserving fairness, while the small number of racks which

have slightly higher network traffic are the ones that talk to many servers in the DC.

Fluctuations in the locality of network activity: Apart from examining the

average locality of network activity, we look at how these patterns change over time.

Figure C.5 shows the server-to-server network activity for Websearch over a period of

five consecutive months in 2011 and 2012. In most cases the patterns remain consis-

tent across different months with a slight surge in traffic in December and January,

which is in agreement with our findings for the activity fluctuation over time for the

same period (Figure C.4). When comparing this to the fluctuation in locality observed

in Combine in the same period (Figure C.6) there are significant differences. Unlike

Websearch, Combine experiences significant differences in its locality over different

months, probably the result of changes in the application’s structure and functional-

ity. For example, while in November and December there is a significant number of

servers polling a large fraction of the system, in the following months the requests be-

come progressively more localized in servers of the same or neighboring racks. March

also experiences an interesting access pattern with high localized network activity in

specific servers (range 180-250).

Although at the month granularity Websearch seems invariant in its locality pat-

terns, when moving to a finer granularity we see that it also experiences fluctuations

in its network activity locality. Figure C.7 and C.8 show the server-to-server traffic

for two weeks of December and three days of the second week respectively. At the

APPENDIX C. ECHO 265

Figure C.2: (a) Per-server network traffic over a 1 month period, (b) server-to-server
traffic and (c) rack-level network traffic map across the entire DC for Websearch.

day granularity, we observe that there are significant differences in the locality of ac-

cesses, with different subsets of the DC being more active than others, however these

fluctuations get hashed out at large time intervals.

Overall, we observe that the network activity of large-scale applications changes

both in time and space, and for a model to provide useful insight in the behavior of

the application, it should capture the workload accurately across both these axes.

C.5 System-Wide Spatial Model

C.5.1 Overview

From the previous Section there are several network activity features that are critical

for a workload model to accurately capture; (a) the average activity (per-server and

system-wide), (b) the fluctuation of activity over time, both bursty and with defined

intervals, (c) the locality of activity, i.e., spatial patterns across the system and (d)

the interactions between specific servers or racks. This is a wide and often conflicting

set of requirements to be met; for example a model that captures spatial distribution

of load might not capture temporal variations accurately.

APPENDIX C. ECHO 266

Figure C.3: Network traffic over time and server-to-server traffic for Combine and
Render.

C.5.2 Design

To address these requirements we propose ECHO, a scalable modeling scheme that

captures both temporal and spatial network patterns. ECHO leverages robust ana-

lytical models which enable it to provide strict error bounds on the accuracy of the

representation. Specifically, it is driven by a set of Markov chains which are trained

on real input traces from production DCs and provide a probabilistic framework to

both characterize and recreate network activity patterns.

To tackle the scale of modern DCs, ECHO is hierarchical, starting from groups

of racks, and modeling network activity down to racks and individual servers. This

way the level of granularity is adjusted to the specific patterns of a given application.

ECHO is topology-independent, since the aggregation of state in the model is not

tied to a specific network organization, therefore it is portable across different topolo-

gies, provided no radical changes in the system’s organization. Figure C.9 shows the

hierarchical probabilistic model for a system with four groups of racks. Each state

APPENDIX C. ECHO 267

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

Ba
nd

w
id

th
 (M

b/
s)

M1
M2

M3
M4

M5

Time (Days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

Ba
nd

w
id

th
 (M

b/
s)

W1
W2

W3
W4

Time (Days)
1 2 3 4 5 6 7

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

Ba
nd

w
id

th
 (M

b/
s)

D1
D2

D3
D4

D5
D6

D7

Time (Hours)
12h 18h 24h 06h 12h

Figure C.4: Network activity averaged over all the servers in the system across (a)
five months, (b) four weeks and (c) seven days.

represents different entities in each level. In the highest abstraction, a state is a

group of racks, while at the second level it represents a rack, and at the lowest level

it represents an individual server. The number of groups of racks or racks in each

group is a configurable parameter of the model, while the number of servers per rack

is a design parameter of the system. A transition between any two states represents

the probability/portion of network traffic between two entities that has certain char-

acteristics. These characteristics correspond to the size of network requests, the type

and the inter-arrival times that separate them, or their burstiness. The Markov chain

defines such probabilities as:

pij = Pr[Xj|Xi] =

Pr[Serverj ← Serveri |MB/s, rd/wr, int. time] (2)

APPENDIX C. ECHO 268

Figure C.5: Server-to-server traffic for Websearch over a period of five consecutive
months in 2011 and 2012.

Figure C.6: Server-to-server traffic for Combine over a period of five consecutive
months in 2011 and 2012.

APPENDIX C. ECHO 269

Figure C.7: Spatial locality of network activity across two different weeks in Decem-
ber 2011.

Figure C.8: Spatial locality of network activity across three different days in Decem-
ber 2011.

where there is a pij probability that Serveri interacts with Serverj over the net-

work with specific bandwidth (MB/s), request type (rd/wr) and inter-arrival time.

Although the use of both inter-arrival times and probabilities might seem redundant,

it enables modeling both requests that follow well-defined distributions (in which case

the two metrics are almost equivalent) and bursty behavior (when the inter-arrival

rate is very high, but the probability of the traffic occurring low).

For the clarity of the representation some transitions are omitted from Figure C.9.

Based on the workload characterization of Section C.4, we observe that the majority of

network traffic, with a few exceptions, is confined within the servers’ corresponding

rack. This motivates the use of a hierarchical rather than a flat model where all

transitions are explored. As seen in Figure C.9 transitions between large states remain

coarse-grain when moving to lower levels of granularity, while transitions within large

states are expanded. This improves the scalability of the scheme, by enforcing upper

bounds for the transition count and prevents a complexity explosion when scaling

up to thousands of servers, while conveying the same amount of information about

APPENDIX C. ECHO 270

3

R6

R1

R2

R3

R4

R5

G4

G1

G2

G3

S3

S1 S2

S4

S6 S5

p’’ij

S7 S8

S10 S9

Group of Racks
Individual Rack

Individual Server

Level 1 Level 2 Level 3

Figure C.9: Schematic of the hierarchical spatial Markov chain model.

the workload. Comparing a flat and hierarchical model for a system with 100 racks

reveals a 90% reduction in transition count for the hierarchical model.

The model described so far captures both spatial and temporal patterns in a DC

for a given time frame. However, network activity is highly volatile switching from

low to high load frequently and experiencing short periods of high burstiness in the

requests. To capture such evolving patterns we rely not on one, but on a set of

Markov chains, each one corresponding to a different interval of the application’s

execution. The number of models is a configurable parameter, depends on the char-

acteristics of the application and since individual models can be created in parallel,

higher disaggregation in time not only does not increase, but decreases the overhead

of the modeling process. For example, to create a single Markov chain a system-wide

bandwidth trace is required. Parsing the entire trace, although only done once can

introduce some overhead in the modeling process. However, partitioning this pro-

cedure to create multiple Markov chains for different time periods and processing

them in parallel, both reduces the training overhead and improves the convergence

between original and generated load. When generating a synthetic workload, the dif-

ferent models are activated in a Round-Robin fashion based on the time frame they

correspond to, e.g., when there are separate models for each 12h period of a day,

APPENDIX C. ECHO 271

50% of the time the generated workload complies with the first model and 50% of

the time with the second model. Finally, although the model is non-deterministic,

which means that subsequent runs may be different, we verify that each one of them

maintains close resemblance to the original workload.

C.5.3 Validation

For our validation we focus on four main metrics, as discussed in Section C.4; (i)

average network traffic, i.e., how much traffic is generated on average irrespective

of temporal and spatial patterns, (ii) per-server activity fluctuation over time, i.e.,

how much traffic, (iii) spatial patterns of network activity, i.e., to whom is the traffic

sent and finally a more fine-grain metric, (iv) individual server interactions, i.e., how

much traffic, to whom and when. We show validation results for the hierarchical

spatial model using as input real network activity traces from two production DC

deployments with hundreds to tens of thousands of servers. Unless otherwise specified

all results are using the 3-level hierarchical model. Additionally, experiments shown

in this work are repeated over five runs to verify the consistency of the results.

Average activity validation: We evaluate the model against two types of systems.

First, we validate the model in a small test cluster of a single rack with 24 servers.

The workload is the network traffic of servers hosting the webmail of an academic

institution. We examine four two-hour instances of this load; Load A is the load on

the morning of a weekday, Load B the load on the afternoon of a weekday, Load C

the load on a night of a weekday and Load D the load on a weekend. Figure C.10

shows the comparison between original and synthetic traffic generated based on the

spatial model for Load A (the results are similar for the other loads) and the table

in Figure C.1 the statistical metrics that quantify this deviation. In all cases the

difference between original and synthetic workload is less than 7% validating the

accuracy of the model.

Second, we validate the model against real DC workloads on two production sys-

tems; the DC running Websearch on several tens of thousands of servers and the

smaller cluster running Combine. The temporal patterns in Section C.4 reveal that

APPENDIX C. ECHO 272

0 100 200 300 400 500 600 700
Time (min)

5

10

15

20

Se
rv

er
 N

o

0

6

12

18

24

30

36

42

48

54

60

Ba
nd

w
id

th
 (M

B/
s)

0 100 200 300 400 500 600 700
Time (min)

5

10

15

20

Se
rv

er
 N

o

0

6

12

18

24

30

36

42

48

54

60

Ba
nd

w
id

th
 (M

B/
s)

Figure C.10: Per-server bandwidth comparison between original and generated net-
work traffic for a one-rack system running Webmail at load A.

load changes significantly both throughout a 24h period, and between different week-

days compared to the weekend. Based on these patterns we create a set of 10 models

for each system; 4 models from six hours periods of two different weekdays (2 · 4)
and 2 models for 12h periods of a day of the weekend. This choice is configured to

the features of the specific applications and can be different for other workloads. We

first validate the average statistics of network activity between original and gener-

ated workloads. Table C.2 shows the deviation in average traffic both for fractions of

servers and system-wide. The first 4 columns show the deviation for the 25, 50, 75

and 95 percentages of servers, sorted by increasing average network load and the last

one shows the average deviation across the entire system. In all cases, the deviation is

marginal, with the system-wide being lower than the ones for server subsets for both

applications. We also observe that the lower the load of a server the higher the devi-

ation between original and synthetic workload, while for higher loads the deviations

are lower. Additionally the larger the modeled system the lower the deviation.

Activity fluctuation validation: We validate the accuracy of the model in captur-

ing the fluctuation of network activity by generating synthetic workloads for subsets

of the two production DCs, Websearch and Combine. There are two reasons for not

validating the model against the entire DC; first, the unavailability of an equally

large system to run the generated workload and more importantly the fact that al-

though possible, system-wide generation of a workload obscures some of the value of

the model, which is identifying interesting patterns or performance issues in network

APPENDIX C. ECHO 273

Server
Average Deviation

Percentage
Webmail

LoadA LoadB LoadC LoadD

25% 3.8% 4.3% 2.3% 2.9%
50% 4.2% 5.6% 2.5% 3.4%
75% 4.5% 6.2% 2.7% 3.5%
95% 5.5% 6.3% 3.1% 4.2%

All Servers 5.8% 6.3% 3.0% 4.1%

Table C.1: Validation of average statistics between original and generated network
load.

Application
Average Deviation for Percentages of Servers
25% 50% 75% 95% System-Wide

Websearch 7.2% 5.9% 4.2% 3.9% 3.8%
Combine 8.5% 6.9% 5.3% 4.4% 4.4%

Table C.2: Validation of average statistics between original and generated network
load for Websearch and Combine.

traffic and reproducing them independently, without full application deployment. The

validation process works as follows:

• We select subsets of servers in the original workload that present interesting traffic

patterns.

• We create models that are trained on network activity traces from each subsystem.

• We generate a synthetic workload for each subsystem based on the corresponding

model.

• We compare the network traffic between original and synthetic workload.

Figure C.11(a) shows this validation for Websearch and Figure C.11(b) for Com-

bine using as input the network activity over a one month period (December 2011).

This activity for Websearch includes traffic from multiple components of the applica-

tion, such as indexing, advertisements and answers to user queries, while for Combine

it represents network traffic from a single application. We have selected four server

subsets in each case, representing machines with both low and high activity, as well

as static or varying traffic patterns over time. The figures visually demonstrate the

APPENDIX C. ECHO 274

similarity between original and synthetic patterns, while the corresponding Table C.3

quantitatively confirms these findings. In all cases, the errors both for percentages

of servers and across the entire sample are lower than 7% for Websearch and 8% for

Combine, verifying the accuracy of the model in capturing time variations.

An important point when modeling system subsets is that traffic is not necessarily

self-contained in them. For example, if a subsystem includes servers 1-10, it is not

necessarily true that server 1 does not interact with server 11 and vice versa. Therefore

to maintain the accuracy of per-server load when choosing parts of the system, we

need to ensure that the external traffic is also represented in the model. We do this

by introducing a single ”cloud” node that generates and receives all traffic from and

to servers in the subsystem. Figure C.14 shows how this external node is integrated

in the model. Essentially the model has one additional state which is responsible for

the network traffic outside the selected subsystem.

Validation of locality of network activity: A critical goal of the model’s de-

sign is capturing spatial patterns in network activity. We verify this with a similar

experiment to the one previously described. We select four subsets of servers from

the server-to-server traffic maps for Websearch and Combine and generate synthetic

workloads based on the corresponding models. Figure C.12 shows a visualization of

the similarities between original and synthetic subsets and Table C.4 presents the

quantitative metrics that confirm these similarities. For both systems the deviations

are low, with higher load servers typically experiencing smaller inaccuracies. Overall

the deviation is less than 10% for Websearch and 11% for Combine.

Finally, Figure C.16 shows the error CDFs for the temporal (Figure C.16a) and

spatial (Figure C.16b) patterns of the generated workload against the original appli-

cation. The errors reported are for the large-scale DC running Websearch. From the

figure, the errors for spatial patterns are slightly higher than for temporal patterns,

but it all cases the 50th percentile of servers have less than 4% error in temporal and

less than 5.2% in spatial while the 90th percentile of servers have less than 7.3% in

temporal and 9.8% in spatial. Only few outliers experience errors larger than 10%,

validating the accuracy of the modeling scheme.

APPENDIX C. ECHO 275

A
p
p
li
ca
ti
on

A
v
e
ra

g
e
D
e
v
ia
ti
o
n

(%
)
fo
r
P
e
rc
e
n
ta

g
e
s
o
f
S
e
rv

e
rs

in
e
a
ch

S
u
b
se
t

S
u
b
se
t
S
1

S
u
b
se
t
S
2

S
u
b
se
t
S
3

S
u
b
se
t
S
4

25
50

75
95

10
0

25
50

75
95

10
0

25
50

75
95

1
0
0

2
5

5
0

7
5

9
5

1
0
0

W
eb
se
ar
ch

1.
2

2.
4

5.
7

6.
8

6.
6

3.
9

3.
8

4.
7

5.
3

5.
2

3.
2

3.
6

3.
7

4.
1

4
.0

7
.2

6
.7

6
.8

7
.1

7
.0

C
om

b
in
e

2.
3

3.
5

3.
6

4.
4

4.
2

4.
2

3.
8

3.
6

3.
7

3.
8

5.
1

4.
8

4.
9

4.
6

4
.5

7
.6

7
.9

8
.1

8
.0

8
.0

T
ab

le
C
.3
:
V
al
id
at
io
n
of

ge
n
er
at
ed

n
et
w
or
k
ac
ti
v
it
y
ov
er

ti
m
e
fo
r
se
rv
er

su
b
se
ts

in
tw

o
D
C
s.

APPENDIX C. ECHO 276

Original Model

Original Model

Original Model

Original Model

1

2

3
4

Original Model
Original

Original Model
Original

Model

Model

1

2

3 4

Figure C.11: Spatial model validation for server activity over time. Figure C.11a
shows the validation of ECHO against subsets of the large-scale DC running Web-
search and Figure C.11b a similar validation for Combine running on a smaller DC.

APPENDIX C. ECHO 277

A
p
p
li
ca
ti
on

A
v
e
ra

g
e
D
e
v
ia
ti
o
n

(%
)
fo
r
P
e
rc
e
n
ta

g
e
s
o
f
S
e
rv

e
rs

in
e
a
ch

S
u
b
se
t

S
u
b
se
t
S
1

S
u
b
se
t
S
2

S
u
b
se
t
S
3

S
u
b
se
t
S
4

25
50

75
95

10
0

25
50

75
95

10
0

25
50

75
95

1
0
0

2
5

5
0

7
5

9
5

10
0

W
eb
se
ar
ch

9.
5

5.
2

3.
4

3.
2

2.
7

6.
2

5.
4

4.
9

4.
6

4.
6

4.
2

4.
1

4.
3

4.
3

4
.4

1
0
.8

9
.9

7
.6

8
.1

8.
2

C
om

b
in
e

6.
5

4.
9

4.
3

2.
4

2.
4

3.
4

3.
5

4.
7

4.
6

4.
5

5.
8

6.
7

7.
3

6.
3

6
.4

1
1
.2

1
0
.8

8
.2

5
.6

5.
4

T
ab

le
C
.4
:
V
al
id
at
io
n
of

ge
n
er
at
ed

n
et
w
or
k
tr
affi

c
m
ap

fo
r
se
rv
er

su
b
se
ts

in
tw

o
D
C
s.

APPENDIX C. ECHO 278

Original

Model

Model

2

4

1

Original

3

Model Original

Original
Model

Model
Original

Model

Model
Original

Original Original Model

1

2

3 4

Figure C.12: Server-to-server network traffic map validation for server subsets of (a)
Websearch and (b) Combine.

APPENDIX C. ECHO 279

0 50 100 150 200 250
Time (5 min)

0
100000
200000
300000
400000
500000
600000
700000
800000

Ba
nd

w
id

th
 (B

yt
es

/s
)

S1 -> S4: weekday
Original
Model

0 50 100 150 200 250
Time (5 min)

0

100000

200000

300000

400000

500000

600000

Ba
nd

w
id

th
 (B

yt
es

/s
)

S1 -> S4: weekend
Original
Model

0 50 100 150 200 250
Time (5 min)

0

100000

200000

300000

400000

500000

600000

Ba
nd

w
id

th
 (B

yt
es

/s
)

S4 -> S1: weekday
Original
Model

0 50 100 150 200 250
Time (5 min)

0

50000

100000

150000

200000

250000

300000

Ba
nd

w
id

th
 (B

yt
es

/s
)

S4 -> S1: weekend
Original
Model

Figure C.13: Inter-server communication validation for a day of the week (Fig-
ure C.13a) and a day of the weekend (Figure C.13b) for two Websearch servers.

Validation of server interaction: Finally, we validate the accuracy of the model in

capturing network interactions between specific servers. Potentially this is the highest

source of inaccuracy for the model given its probabilistic nature. Figure C.13 shows

the comparison between original and synthetic workload for the isolated network

activity of a server pair across two different days (a weekday and a weekend day).

The upper figures show traffic from Server A to Server B and the lower figures traffic

from Server B to Server A. The two servers are chosen randomly across the pool of

servers of the large Websearch cluster. As the graph shows, the hierarchical design

and temporal variance of ECHO enables close resemblance for the point to point

network traffic. The deviation between original and synthetic workloads is 12.2% for

the weekday, on average and 8.9% for the weekend, which is higher than the system-

wide deviation but still a very close approximation of the original traffic. Most of the

error occurs when very low traffic in the original application is not reflected in the

generated workload. We have verified the consistency of these results with different

server pairs.

Overall, the network load captured and generated by the model deviates marginally

from the original application in all four characteristics, with average deviation being

smaller than the other metrics and the recreation of temporal patterns being slightly

APPENDIX C. ECHO 280

Figure C.14: Modified model for server subsets. The ”Cloud” node represents traffic
generated from or directed to external nodes in the system.

Figure C.15: Model representation when moving from single-level to two and three-
level hierarchy for a DC running Combine.

more accurate than that of spatial patterns.

Sensitivity to model granularity: Finally, we examine the impact of hierarchy

on the accuracy of the model. For the small DC running Combine we create three

different sets of models; the first has information only at the granularity of groups

of racks (level 1), the second at the granularity of individual racks (level 2) and the

last one captures the workload at individual server granularity (level 3). Figure C.15

shows the network traffic generated by the model as more levels are added in the

representation. Adding more levels significantly improves the accuracy of the model,

as reflected in the corresponding deviations which are: 28% for the level-1, 9.1% for

the level-2 and 4.4% for the level-3 model.

APPENDIX C. ECHO 281

0 2 4 6 8 10 12
Error (%)

0

20

40

60

80

100

Se
rv

er
s

(%
)

Temporal Error Cumulative Distribution

0 2 4 6 8 10 12 14 16 18
Error (%)

0

20

40

60

80

100

Se
rv

er
s

(%
)

Spatial Error Cumulative Distribution

Figure C.16: CDFs of error distribution across servers for (a) network activity
fluctuation and (b) network activity locality.

C.6 Conclusions

We presented ECHO, a concise and scalable modeling and generation scheme for

network traffic in large-scale DCs. ECHO captures both the temporal and spatial

characteristics of large-scale applications and recreates per-server and system-wide

network traffic maps. ECHO is driven by robust analytical models which allow us

to provide strong guarantees on the accuracy of the workload information. We have

validated the accuracy of these models against real DC applications and have shown

marginal deviations between original and generated traffic. Thus, ECHO can be

used to derive confident decisions on DC-related system studies. Specifically, we have

studied the temporal and spatial patterns of two large-scale production DCs running

Websearch. ECHO can also be used for studies involving workload migration, and

consolidation.

Bibliography

[1] Controlling virtual machine sprawl: How to better utilize virtual infrastructure.

In White Paper. November 2012. 17

[2] Migrate VMs with Zero Downtime. http/ /www. vmware. com/ products/

vmotion . 26, 225, 251

[3] Understanding memory resource management in vmware vsphere v. 5.0. In

Technical White Paper. 2011. 17

[4] Xenserver 4.0 http://www.citrix.com/xenserver/. 18, 24, 26, 57, 225

[5] B. Abrahao and A. Zhang. Characterizing application workloads on cpu uti-

lization for utility computing. Technical Report HPL-2004-157, HP Labs, 2004.

9

[6] Adaptec maxiq. 32gb ssd cache performance kit. http://www.adaptec.com/

en-US/products/CloudComputing/MaxIQ/SSD-Cache-Performance/. 221

[7] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijayku-

mar. Tarazu: optimizing mapreduce on heterogeneous clusters. In Proceedings

of the International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS). London, UK, 2012. 82

[8] Irfan Ahmad. Easy and efficient disk i/o workload characterization in vmware

esx server. In Proceedings of the IEEE International Symposium on Workload

Characterization (IISWC). Boston, MA, 2007. 204

282

http//www.vmware.com/products/vmotion
http//www.vmware.com/products/vmotion
http://www.citrix.com/xenserver/
http://www.adaptec.com/en-US/products/CloudComputing/MaxIQ/SSD-Cache-Performance/
http://www.adaptec.com/en-US/products/CloudComputing/MaxIQ/SSD-Cache-Performance/

BIBLIOGRAPHY 283

[9] Irfan Ahmad. Easy and efficient disk i/o workload characterization in vmware

esx server. In Proceedings of the 10th IEEE International Symposium on Work-

load Characterization, pages 149–158, 2007. 9

[10] Yasuhiro Ajiro and Atsuhiro Tanaka. Improving packing algorithms for server

consolidation. In Int. CMG Conference, 2007. 253

[11] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,

commodity data center network architecture. In Proceedings of the ACM SIG-

COMM Conference on Data Communication. Seattle, WA, 2008. 11

[12] Alaa Alameldeen and David Wood. Ipc considered harmful for multiprocessor

workloads. In IEEE Micro, July/Aug. 2006. 32

[13] Amazon ec2. http://aws.amazon.com/ec2/. 9, 17, 18, 24, 44, 57, 165, 166,

225

[14] Hrishikesh Amur, James Cipar, Varun Gupta, Gregory R. Ganger, Michael A.

Kozuch, and Karsten Schwan. Robust and flexible power-proportional stor-

age. In Proceedings of the 1st ACM Symposium on Cloud Computing (SOCC).

Indianapolis, Indiana, USA, 2010. 227, 251, 252, 253

[15] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effec-

tive straggler mitigation: Attack of the clones. In Proceedings of the USENIX

Symposium on Networked Systems Design and Implementation (NSDI). Lom-

bard, IL, 2013. 82

[16] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica,

Yi Lu, Bikas Saha, and Edward Harris. Reining in the outliers in map-reduce

clusters using mantri. In Proceedings of the 9th USENIX conference on Oper-

ating Systems Design and Implementation (OSDI). Vancouver, CA, 2010. 82

[17] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa

Uysal, and Alistair Veitch. Hippodrome: Running circles around storage ad-

ministration. In Proceedings of the 1st USENIX Conference on File and Storage

Technologies (FAST). Monterey, CA, 2002. 254

http://aws.amazon.com/ec2/

BIBLIOGRAPHY 284

[18] Eric Anderson, Susan Spence, Ram Swaminathan, Mahesh Kallahalla, and Qian

Wang. Quickly finding near-optimal storage designs. ACM Trans. Comput.

Syst., 23(4):337–374, November 2005. 226, 254

[19] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-

proximate nearest neighbor in high dimensions. In Proceedings of the 47th

IEEESymposium on the Foundations of Computer Science (FOCS). Berkeley,

CA, 2006. 147

[20] Koushik Annapureddy. Security challenges in hybrid cloud infrastructures. In

Seminar on Network Security, Aalto University, T-110.5290. 2010. 21, 197

[21] Apache zookeeper. http://zookeeper.apache.org/. 83

[22] Rami Atar, Avi Mandelbaum, and Martin Reiman. Scheduling a multi class

queue with many exponential server: Asymptotic optimality in heavy traffic.

In Annals of Applied Probability, Vol. 14, No. 3. 2004. 123, 133

[23] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload analysis of a large-scale key-value store. In Proceedings of SIGMET-

RICS. London, UK, 2012. 9, 98, 159, 257, 261, 262

[24] Autoscale. https://cwiki.apache.org/cloudstack/autoscaling.html. 57,

85, 176

[25] Aws autoscaling. http://aws.amazon.com/autoscaling/. 85, 176

[26] Gaurav Banga, Peter Druschel, and Jeffrey Mogul. Resource containers: a new

facility for resource management in server systems. In Proceedings of OSDI.

New Orleans, LA, 1999. 57, 82, 170

[27] Paul Barford and Mark Crovella. Generating representative web workloads for

network and server performance evaluation. In Proceedings of the 1998 ACM

SIGMETRICS Joint International Conference on Measurement and Modeling

of Computer Systems. Madison, Wisconsin, USA, 1998. 257, 259

http://zookeeper.apache.org/
https://cwiki.apache.org/cloudstack/autoscaling.html
http://aws.amazon.com/autoscaling/

BIBLIOGRAPHY 285

[28] Sean Kenneth Barker and Prashant Shenoy. Empirical evaluation of latency-

sensitive application performance in the cloud. In Proceedings of MMsys. Scotts-

dale, AR, 2010. 166

[29] Luiz Barroso. Warehouse-scale computing: Entering the teenage decade. ISCA

Keynote, SJ, June 2011. 12, 25, 60, 62, 165, 173, 225

[30] Luiz Barroso, Jeffrey Dean, and Urs Hoelzle. Web search for a planet: The

google cluster architecture. In Journal IEEE Micro archive, Volume 23 Issue

2, page 22-28, March 2003. 9, 10

[31] Luiz Barroso and Urs Hoelzle. The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines. MC Publishers, 2009. 1, 2, 9, 12,

13, 24, 25, 109, 119, 165, 170, 173, 174, 225, 226, 238, 239

[32] Luiz Barroso and Urs Hölzle. The case for energy-proportional computing.

Computer, 40(12):33–37, December 2007. 12

[33] Novella Bartolini, Giancarlo Bongiovanni, and Simone Silvestri. Self-overload

control for distributed web systems. In Proceedings of the International Work-

shop on Quality of Service (IWQoS). Enschede, 2008. 131

[34] Robert Bell, Yehuda Koren, and Chris Volinsky. The bellkor 2008 solution to

the netflix prize. Technical report, 2007. 26, 28, 67, 70, 116

[35] Anton Beloglazov and Rajkumar Buyya. Managing overloaded hosts for dy-

namic consolidation of virtual machines in cloud data centers under quality of

service constraints. IEEE Trans. Parallel Distrib. Syst., 24(7):1366–1379, July

2013. 227

[36] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.

Deconstructing amazon ec2 spot instance pricing. In ACM TEAC, 1(3),

September 2013. 21, 197

[37] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic charac-

teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM

BIBLIOGRAPHY 286

Conference on Internet Measurement (IMC). Melbourne, Australia, 2010. 257,

261

[38] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Mi-

crote: Fine grained traffic engineering for data centers. In Proceedings of the

Seventh COnference on Emerging Networking EXperiments and Technologies

(CoNEXT). Tokyo, Japan, 2011. 257

[39] Dimitris Bertsimas, David Gamarnik, and John Tsitsiklis. Performance of mul-

ticlass markovian queueing networks via piecewise linear lyapunov functions. In

Annals of Applied Probability, Vol. 00, No. 0, 1-45. 2001. 123, 132

[40] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec

benchmark suite: Characterization and architectural implications. In Proceed-

ings of the 17th International Conference on Parallel Architectures and Com-

pilation Techniques (PACT). Toronto, CA, October, 2008. 45, 84, 95, 110, 126,

160

[41] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated management

of multiple interacting resources in chip multiprocessors: A machine learning

approach. In Proceedings of the 41st Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO). Lake Como, Italy, 2008. 22

[42] Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jordan, and

David A. Patterson. Characterizing, modeling, and generating workload spikes

for stateful services. In Proceedings of SOCC, pages 241–252, 2010. 9

[43] Leon Bottou. Large-scale machine learning with stochastic gradient descent.

In Proceedings of the International Conference on Computational Statistics

(COMPSTAT). Paris, France, 2010. 30, 70, 115, 139

[44] Gerd Breiter and Vijay K. Naik. A framework for controlling and managing

hybrid cloud service integration. In Proceedings of IC2E. Redwood City, CA,

2013. 21, 197

BIBLIOGRAPHY 287

[45] Brad Calder, Ju Wang, et al. Windows azure storage: a highly available cloud

storage service with strong consistency. In Proceedings of the 23rd ACM Sym-

posium on Operating Systems Principles. Cascais, Portugal, 2011. 9, 26

[46] Maria Calzarossa and Giuseppe Serazzi. Workload Characterization: a Survey.

Proceedings of the IEEE, 8(81):1136–1150, 1993. 257

[47] Jakob Carlström and Raphael Rom. Application-aware admission control and

scheduling in web servers. In Proceedings of Infocom. New York, NY, 2002. 120,

131

[48] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro, and John Wilkes. Long-

term slos for reclaimed cloud computing resources. In Proceedings of SOCC.

Seattle, WA, 2014. 17, 174

[49] Apache cassandra. http://cassandra.apache.org/. 10, 72, 85, 160

[50] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for shared

data centers using online measurements. In Proceedings of International Work-

shop on Quality of Service (IWQoS). Montreal, CA, 2004. 16

[51] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.

Bigtable: A distributed storage system for structured data. In Proceedings of

the 7th USENIX Symposium on Operating Systems Design and Implementation

(OSDI). Seattle, WA, 2006. 10, 251

[52] Hyeong Soo Chang, Robert Givan, and Edwin Chong. On-line scheduling via

sampling. In Proceedings of Artificial Intelligence Planning and Scheduling

(AIPS). 2000. 20, 138

[53] Moses S. Charikar. Similarity estimation techniques from rounding algorithms.

In Proceedings of the 34th Annual ACM Symposium on Theory of Computing

2002. 147

http://cassandra.apache.org/

BIBLIOGRAPHY 288

[54] Jeffrey Chase, Darrell Anderson, Prachi Thakar, Amin Vahdat, and Ronald

Doyle. Managing energy and server resources in hosting centers. In Proceedings

of SOSP. Banff, CA, 2001. 16, 57, 176, 225, 252

[55] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao,

and Feng Zhao. Energy-aware server provisioning and load dispatching for

connection-intensive internet services. In Proceedings of the 5th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI). San Fran-

cisco, California, 2008. 225

[56] Hong Chen. Fluid approximations and stability of multiclass queueing networks:

Work-conserving disciplines. In Annals of Applied Probability, Vol. 5, No. 3.

1995. 132

[57] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. The case

for evaluating mapreduce performance using workload suites. In Proceedings of

the 2011 IEEE 19th Annual International Symposium on Modelling, Analysis,

and Simulation of Computer and Telecommunication Systems, pages 390–399,

2011. 9

[58] Sheng-Tzong Cheng, Chi-Ming Chen, and Ing-Ray Chen. Performance evalu-

ation of an admission control algorithm: dynamic threshold with negotiation.

In Performance Evaluation, vol. 52. 2003. 132

[59] Ludmila Cherkasova and Pete Phaal. Predictive admission control strategy for

overloaded commercial web server. In Proceedings of the international sympo-

sium on Modeling, Analysis and Simulation of Computer and Telecommunica-

tion Systems (MASCOTS). San Francisco, CA, 2000. 131, 132

[60] Ludmila Cherkasova and Peter Phaal. Session-based admission control: A mech-

anism for peak load management of commercial web sites. In IEEE Transactions

on Computers, Vol. 51, No. 6. 2002. 131

[61] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,

Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual

BIBLIOGRAPHY 289

machines. In Proceedings of the Second Conference on Symposium on Networked

Systems Design & Implementation (NSDI). Boston, MA, 2005. 16, 225

[62] Cluster management: Maintenance and monitoring. http:

//www.cloudera.com/content/cloudera/en/developers/home/

developer-admin-resources/cluster-management.html. 14

[63] McKinsey & Company. Revolutionizing data center efficiency. In Uptime Insti-

tute Symposium, 2008. 61, 66

[64] Computing Community Consortium (CCC). ”21st century computer architec-

ture: A community white paper”. http://www.cccblog.org/2012/05/29/21st-

century-computer-architecture, May 2012. 11

[65] Computing Community Consortium (CCC). Challenges and opportunities with

big data. http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf, February 2012.

9

[66] Linux containers. http://lxc.sourceforge.net/. 141, 170

[67] Peter B. Danzig, Sugih Jamin, Ramres, Danny J. Mitzel, and Deborah Estrin.

An empirical workload model for driving wide-area tcp/ip network simulations.

Internetworking: Research and Experience, 3:1–26, 1992. 259

[68] Jeffrey Dean and Luiz Andre Barroso. The tail at scale. In CACM, Vol. 56 No.

2, Pages 74-80. 10, 62, 81, 167, 173

[69] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. In Proceedings of OSDI, pages 10–10, 2004. 9, 10, 82, 98, 201,

212, 245

[70] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-

pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value

store. In Proceedings of twenty-first ACM SIGOPS symposium on Operating

systems principles, pages 205–220, 2007. 9

http://www.cloudera.com/content/cloudera/en/developers/home/developer-admin-resources/cluster-management.html
http://www.cloudera.com/content/cloudera/en/developers/home/developer-admin-resources/cluster-management.html
http://www.cloudera.com/content/cloudera/en/developers/home/developer-admin-resources/cluster-management.html
http://lxc.sourceforge.net/

BIBLIOGRAPHY 290

[71] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good.

The cost of doing science on the cloud: The montage example. In Proceedings

of SC. Austin, TX, 2008. 20, 197

[72] Christina Delimitrou, Nick Bambos, and Christos Kozyrakis. QoS-Aware Ad-

mission Control in Heterogeneous Datacenters. In Proceedings of the Interna-

tional Conference of Autonomic Computing (ICAC). San Jose, CA, USA, 2013.

6, 86

[73] Christina Delimitrou and Christos Kozyrakis. Amdahl’s Law for Latency-

Critical Applications. http://www.stanford.edu/~cdel/2014.amdahls.

slides.pdf, November 2014. 3

[74] Christina Delimitrou and Christos Kozyrakis. iBench: Quantifying Interfer-

ence for Datacenter Workloads. In Proceedings of the 2013 IEEE International

Symposium on Workload Characterization (IISWC). Portland, OR, September

2013. 4, 74, 141

[75] Christina Delimitrou and Christos Kozyrakis. Optimizing Resource Provision-

ing in Shared Cloud Systems. in submission. 7

[76] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-Aware Scheduling

for Heterogeneous Datacenters. In Proceedings of the Eighteenth International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). Houston, TX, USA, 2013. 4, 20, 62, 65, 69, 71, 96, 98,

109, 116, 119, 128, 135, 136, 137, 139, 140, 141, 196

[77] Christina Delimitrou and Christos Kozyrakis. QoS-Aware Scheduling in Het-

erogeneous Datacenters with Paragon. In ACM Transactions on Computer

Systems (TOCS), Vol. 31 Issue 4. December 2013. 4

[78] Christina Delimitrou and Christos Kozyrakis. Quality-of-Service-Aware

Scheduling in Heterogeneous Datacenters with Paragon. In IEEE Micro Special

Issue on Top Picks from the Computer Architecture Conferences. May/June

2014. 4

http://www.stanford.edu/~cdel/2014.amdahls.slides.pdf
http://www.stanford.edu/~cdel/2014.amdahls.slides.pdf

BIBLIOGRAPHY 291

[79] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient and

QoS-Aware Cluster Management. In Proceedings of the Nineteenth Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS). Salt Lake City, UT, USA, 2014. 2, 5, 12, 19,

135, 137, 138, 139, 140, 141, 156, 168, 170, 174, 175, 176

[80] Christina Delimitrou and Christos Kozyrakis. The Netflix Challenge: Data-

center Edition. Los Alamitos, CA, USA, July 2012. IEEE Computer Society.

4

[81] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tarcil: Recon-

ciling Scheduling Speed and Quality in Large Shared Clusters. In Proceedings

of the Sixth ACM Symposium on Cloud Computing (SOCC). Kohala Coast, HI,

2015. 6

[82] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tarcil: Recon-

ciling Scheduling Speed and Quality in Large Shared Clusters. in submission.

6

[83] Christina Delimitrou, Sriram Sankar, Aman Kansal, and Christos Kozyrakis.

ECHO: Recreating Network Traffic Maps for Datacenters of Tens of Thousands

of Servers. In Proceedings of the IEEE International Symposium on Workload

Characterization (IISWC). San Diego, CA, USA, 2012. 7, 98

[84] Christina Delimitrou, Sriram Sankar, Badriddine Khessib, Kushagra Vaid, and

Christos Kozyrakis. Time and Cost-Efficient Modeling and Generation of Large-

Scale TPC Workloads. In Proceedings of the Third TPC Technology Conference

on Performance Evaluation & Benchmarking (TPC TC). In conjunction with

VLDB. Seattle, WA, USA, 2011. 7, 98, 238, 239

[85] Christina Delimitrou, Sriram Sankar, Kushagra Vaid, and Christos Kozyrakis.

Decoupling Datacenter Studies from Access to Large-Scale Applications: A

BIBLIOGRAPHY 292

Modeling Approach for Storage Workloads. In Proceedings of the IEEE In-

ternational Symposium on Workload Characterization (IISWC). Austin, TX,

USA, 2011. 7, 9, 98, 226, 231, 232, 238, 239

[86] Christina Delimitrou, Sriram Sankar, Kushagra Vaid, and Christos Kozyrakis.

Storage I/O Generation and Replay for Datacenter Applications. In Proceedings

of the IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). Austin, TX, USA, 2011. 7, 98

[87] Christina Delimitrou, Sriram Sankar, Kushagra Vaid, and Christos Kozyrakis.

Decoupling Datacenter Studies from Access to Large-Scale Applications: A

Modeling Approach for Storage Workloads. In IEEE Computer Architecture

Letters, Los Alamitos, CA, USA, January-June 2012. 7, 98

[88] Christina Delimitrou, Sriram Sankar, Kushagra Vaid, and Christos Kozyrakis.

Accurate Modeling and Generation of Storage I/O for Datacenter Workloads. In

Proceedings of the 2nd Exascale Evaluation and Research Techniques Workshop

(EXERT), in conjunction with ASPLOS, Newport Beach, CA, USA, 2011. 7,

98, 238

[89] S. Di, D. Kundo, and W. Cirne. Characterization and comparison of google

cloud load versus grids. http://hal.archives-ouvertes.fr/hal-00705858, 2012. 9

[90] Diskspd: File and network i/o using win32 and .net api’s on windows

xp. http://research.microsoft.com/en-us/um/siliconvalley/projects/

sequentialio/. 205, 208

[91] Xicheng Dong, Ying Wang, and Huaming Liao. Scheduling mixed real-time

and non-real-time applications in mapreduce environment. In Proceedings of

the IEEE 17th International Conference on Parallel and Distributed Systems

(ICPADS). Tainan, 2011. 20, 138

[92] Allen B. Downey and Dror G. Feitelson. The elusive goal of workload charac-

terization. SIGMETRICS Perform. Eval. Rev., 26(4):14–29, March 1999. 257

http://research.microsoft.com/en-us/um/siliconvalley/projects/sequentialio/
http://research.microsoft.com/en-us/um/siliconvalley/projects/sequentialio/

BIBLIOGRAPHY 293

[93] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Model-based resource

provisioning in a web service utility. In Proceedings of the 4th conference on

USENIX Symposium on Internet Technologies and Systems (USITS). Seattle,

WA, 2003. 16

[94] Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael J. Franklin,

Scott Shenker, and Ion Stoica. Shark: Fast data analysis using coarse-grained

distributed memory. In Proceedings of ACM SIGMOD. Scottsdale, Arizona,

2012. 157

[95] Deniz Ersoz, Mazin S. Yousif, and Chita R. Das. Characterizing network traffic

in a cluster-based, multi-tier data center. In Proceedings of ICDCS. Toronto,

Canada, 2007. 257, 261

[96] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-

alingam, and Doug Burger. Dark silicon and the end of multicore scaling.

In Proceedings of the 38th annual Intl. symposium on Computer architecture

(ISCA). San Jose, California, USA, 2011. 11

[97] Etw: Event tracing for windows. http://msdn.microsoft.com/en-us/

library/bb968803%28VS.85%29.aspx. 203, 213, 222

[98] Eucalyptus cloud services. http://www.eucalyptus.com/. 62

[99] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning

for a warehouse-sized computer. In Proceedings of the International Symposium

on Computer Architecture (ISCA). San Diego, CA, 2007. 16, 225, 239

[100] Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ristenpart,

Kevin D. Bowers, and Michael M. Swift. More for your money: Exploiting

performance heterogeneity in public clouds. In Proceedings of SOCC. San Jose,

CA, 2012. 166, 174

[101] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. Improving perfor-

mance isolation on chip multiprocessors via an operating system scheduler. In

http://msdn.microsoft.com/en-us/library/bb968803%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb968803%28VS.85%29.aspx
http://www.eucalyptus.com/

BIBLIOGRAPHY 294

Proceedings of the 16th Intl. Conference on Parallel Architecture and Compila-

tion Techniques (PACT). Brasov, Romania, 2007. 58

[102] Alexandra Fedorova, David Vengerov, and Daniel Doucette. Operating system

on heterogeneous core systems. In Proceedings of Operating System Support for

Heterogeneous Multicore Architectures (OSHMA), 2007. 18, 58

[103] Dror Feitelson and Bill Nitzberg. Job characteristics of a production parallel

scientific workload on the nasa ames ipsc/860. In Proceedings of JSSPP. 1995.

257

[104] Dror G. Feitelson. Metric and workload effects on computer systems evaluation.

Computer, 36(9):18–25, September 2003. 257, 258, 261

[105] Yuan Feng, Baochun Li, and Bo Li 0001. Peer-to-peer bargaining in container-

based datacenters. In Proceedings of IPTPS. San Jose, CA, 2010. 252

[106] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Moham-

mad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anas-

tasia Ailamaki, and Babak Falsafi. Clearing the clouds: A study of emerging

scale-out workloads on modern hardware. In Proceedings of the Seventeenth

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). London, England, UK, 2012. 98

[107] Brad Fitzpatrick. Distributed caching with memcached. In Linux Journal,

Volume 2004, Issue 124, 2004. 10, 15, 85, 97, 106, 112

[108] Rohan Gandhi and Amit Sabne. Finding stragglers in hadoop. In Technical

Report. 2011. 82

[109] Gartner says efficient data center design can lead to 300 percent capacity growth

in 60 percent less space. http://www.gartner.com/newsroom/id/1472714. 61,

66

[110] Google compute engine. https://developers.google.com/compute/. 9, 24,

44, 165, 166, 168, 171

http://www.gartner.com/newsroom/id/1472714
https://developers.google.com/compute/

BIBLIOGRAPHY 295

[111] Orhan Gemikonakli, Enver Ever, and Eser Gemikonakli. Performance modeling

of virtualized servers. In Proceedings of Computer Modelling and Simulation

Conference (UKSim). Cambridge, UK, 2010. 133

[112] Zoubin Ghahramani and Michael Jordan. Learning from incomplete data. In

Lab Memo No. 1509, CBCL Paper No. 108, MIT AI Lab. 74

[113] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file sys-

tem. In Proceedings of SOSP, New York, NY, 2003. 253

[114] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott

Shenker, and Ion Stoica. Dominant resource fairness: fair allocation of multiple

resource types. In Proceedings of the 8th USENIX conference on Networked

systems design and implementation (NSDI). Boston, MA, 2011. 17, 65

[115] A. Gidenstam, B. Koldehofe, M. Papatriantafilou, and P. Tsigas. Dynamic and

fault-tolerant cluster management. In Proc. of the Fifth IEEE International

Conference on Peer-to-Peer Computing. Konstanz, Germany. 13

[116] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding net-

work failures in data centers: Measurement, analysis, and implications. In

Proceedings of the ACM SIGCOMM 2011 Conference, pages 350–361. Toronto,

Ontario, Canada, 2011. 258

[117] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. Work-

load analysis and demand prediction of enterprise data center applications. In

Proceedings of IISWC. Boston, MA, 2007. 17, 57, 65, 196

[118] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive elastic re-

source scaling for cloud systems. In Proceedings of CNSM. Niagara Falls, ON,

2010. 16, 65, 81, 196

[119] Sriram Govindan, Jeonghwan Choi, Bhuvan Urgaonkar, Anand Sivasubrama-

niam, and Andrea Baldini. Statistical profiling-based techniques for effective

BIBLIOGRAPHY 296

power provisioning in data centers. In Proceedings of EuroSys. Nuremberg,

Germany, 2009. 16

[120] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam.

Cuanta: quantifying effects of shared on-chip resource interference for consoli-

dated virtual machines. In Proceedings of the 2nd ACM Symposium on Cloud

Computing. Cascais, Portugal, 2011. 13, 17, 20, 26, 56, 98, 135, 139

[121] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao,

and Aditya Akella. Multi-resource packing for cluster schedulers. In Proc. of

the 2014 ACM Conference on SIGCOMM. Chicago, Illinois, 2014. 20

[122] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta

Sengupta. Vl2: a scalable and flexible data center network. In Proceedings of

the ACM SIGCOMM Conference on Data communication. Barcelona, Spain,

2009. 11

[123] Geoffrey R. Grimmett and David R. Stirzaker. Probability and random pro-

cesses. 2nd Edition. Clarendon Press, Oxford, 1992. 180

[124] B. Guenter, N. Jain, and C. Williams. Managing cost, performance, and re-

liability tradeoffs for energy-aware server provisioning. In Proceedings of the

IEEE International Conference on Computer Communications (INFOCOM).

Shanghai, China, 2011. 16

[125] Jorge Guerra, Wendy Belluomini, Joseph Glider, Karan Gupta, and Himabindu

Pucha. Energy proportionality for storage: Impact and feasibility. SIGOPS

Oper. Syst. Rev., 44(1):35–39, March 2010. 252

[126] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini, and Raju

Rangaswami. Cost effective storage using extent based dynamic tiering. In

Proceedings of the 9th USENIX Conference on File and Storage Technologies

(FAST). San Jose, CA, 2011. 225, 252

BIBLIOGRAPHY 297

[127] Marisabel Guevara, Benjamin Lubin, and Benjamin C. Lee. Navigating hetero-

geneous processors with market mechanisms. In Proceedings of HPCA. Shen-

zhen, China, 2013. 21, 197

[128] Jordi Guitart, David Carrera, Vicenc Beltran, Jordi Torres, and Eduard

Ayguade. Designing an overload control strategy for secure e-commerce ap-

plications. In Computer Networks, vol. 51. 2007. 132

[129] Ajay Gulati, Chethan Kumar, and Irfan Ahmad. Modeling workloads and

devices for io load balancing in virtualized environments. 37(3):61–66, January

2010. 9

[130] Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar. Basil: Au-

tomated io load balancing across storage devices. In Proceedings of the 8th

USENIX Conference on File and Storage Technologies (FAST), pages 13–13.

San Jose, California, 2010. 225, 251, 253

[131] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl A. Waldspurger,

and Mustafa Uysal. Pesto: online storage performance management in vir-

tualized datacenters. In Proceedings of the Symposium on Cloud Computing

(SoCC). Cascais, Portugal, 2011. 253

[132] Rohit Gupta, Sumit Kumar Bose, Srikanth Sundarrajan, Manogna Chebiyam,

and Anirban Chakrabarti. A two stage heuristic algorithm for solving the server

consolidation problem with item-item and bin-item incompatibility constraints.

In IEEE SCC (2), pages 39–46. IEEE Computer Society, 2008. 252, 253

[133] Itai Gurvich. Design and control of the m/m/n queue with multi-type customers

and many servers. InM.S. Thesis, Technion Israel Institute of Technology. 2004.

133

[134] Apache hadoop. http://hadoop.apache.org/. 84, 97, 98

[135] Greg Hamerly, Erez Perelman, Jeremy Lau, Brad Calder, and Timothy Sher-

wood. Using machine learning to guide architecture simulation. Journal of

Machine Learning Research, 7:343–378, 2006. 22

http://hadoop.apache.org/

BIBLIOGRAPHY 298

[136] James Hamilton. Cost of power in large-scale data centers. http://

perspectives.mvdirona.com. 1, 10, 11, 13, 25, 165

[137] James Hamilton. Internet-scale service infrastructure efficiency. In Proceedings

of the 37th Intl. Symposium on Computer architecture, Austin, TX, 2009. 11,

13

[138] John Jay Hasenbein. Stability, capacity and scheduling of multiclass queueing

networks. In Ph.D. Thesis. Georgia Institute of Technology. 1998. 123

[139] Ben Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.

Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-

grained resource sharing in the data center. In Proceedings of NSDI. Boston,

MA, 2011. 13, 14, 19, 26, 57, 60, 62, 65, 72, 135, 138, 149, 165, 196

[140] Storage consolidation for growing environments. Hitachi White Paper. April

2008. 225, 252

[141] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant

Agarwal, and Martin Rinard. Dynamic knobs for responsive power-aware com-

puting. In Proceedings of the Sixteenth International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS).

Newport Beach, CA, USA, 2011. 225, 252

[142] Mark Horowitz. Scaling, power and the future of cmos. In Proceedings of

the 20th Intl. Conference on VLSI Design held jointly with 6th International

Conference: Embedded Systems, VLSID ’07, 2007. 11

[143] Reza Hoseinyfarahabady, Hamid Samani, Luke Leslie, Young Choon Lee, and

Albert Zomaya. Handling uncertainty: Pareto-efficient bot scheduling on hybrid

clouds. In Proceedings of ICPP. Lyon, France, 2013. 21, 197

[144] Hotcrp conference management system. http://read.seas.harvard.edu/

~kohler/hotcrp/. 85

http://perspectives.mvdirona.com
http://perspectives.mvdirona.com
http://read.seas.harvard.edu/~kohler/hotcrp/
http://read.seas.harvard.edu/~kohler/hotcrp/

BIBLIOGRAPHY 299

[145] Lan Huang, Gang Peng, and Tzi-cker Chiueh. Multi-dimensional storage virtu-

alization. In Proceedings of the Joint International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS). New York, NY, USA,

2004. 225, 253

[146] Ibm websphere: Security configuration properties. https://www-01.ibm.

com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.admin.doc/

topics/csec_config_properties.html. 14

[147] Iometer: performance analysis tool. http://www.iometer.org/. 204, 218

[148] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. On the performance vari-

ability of production cloud services. In Proceedings of CCGRID. Newport Beach,

CA, 2011. 166

[149] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar,

and Andrew Goldberg. Quincy: Fair scheduling for distributed computing clus-

ters. In Proceedings of the ACM Symposium on Operating Systems Principles

(SOSP). Big Sky, MT, 2009. 18, 19, 20, 135, 149

[150] Aamer Jaleel, Matthew Mattina, and Bruce L. Jacob. Last level cache (llc)

performance of data mining workloads on a cmp - a case study of parallel

bioinformatics workloads. In Proceedings of the 12th International Symposium

on High-Performance Computer Architecture (HPCA-12). Austin, Texas, 2006.

45, 84, 95, 110, 126

[151] Youngmi Joo, Vinay Ribeiro, Anja Feldmann, Anna C. Gilbert, and Walter

Willinger. Tcp/ip traffic dynamics and network performance: A lesson in work-

load modeling, flow control, and trace-driven simulations. SIGCOMM Comput.

Commun. Rev., 31(2):25–37, April 2001. 98, 259

[152] Sukhun Kang and Rakesh Kumar. Magellan: A search and machine learning-

based framework for fast multi-core design space exploration and optimization.

In Proceedings of the Conference on Design, Automation and Test in Europe

(DATE). Munich, Germany, 2008. 22

https://www-01.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.admin.doc/topics/csec_config_properties.html
https://www-01.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.admin.doc/topics/csec_config_properties.html
https://www-01.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.admin.doc/topics/csec_config_properties.html
http://www.iometer.org/

BIBLIOGRAPHY 300

[153] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.

Chapman & Hall/CRC Press, 2007. 30, 40

[154] Rini T. Kaushik and Milind Bhandarkar. Greenhdfs: Towards an energy-

conserving, storage-efficient, hybrid hadoop compute cluster. In Proceedings of

the International Conference on Power Aware Computing and Systems (Hot-

Power). Vancouver, BC, Canada, 2010. 253

[155] Swaroop Kavalanekar, Dushyanth Narayanan, Sriram Sankar, Eno Thereska,

Kushagra Vaid, and Bruce Worthington. Measuring database performance in

online services: a trace-based approach. In Proceedings of TPC TC. Lyon,

France, 2009. 204

[156] Swaroop Kavalanekar, Bruce Worthington, Qi Zha, and Vishal Sharda. Char-

acterization of storage workload traces from production windows servers. In

Proceedings of the IEEE International Symposium on Workload Characteriza-

tion (IISWC). Seattle, WA, 2008. 9, 204, 210

[157] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An analysis

of traces from a production mapreduce cluster. In Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,

pages 94–103, 2010. 9

[158] Steve Keckler. Life after dennard and how i learned to love the picojoule.

Keynote at the he 44th Intl. Symposium on Microarchitecture, December 2011.

11

[159] Vaibhav Khadilkar, Kerim Yasin Oktay, Bijit Hore, Murat Kantarcioglu, Sharad

Mehrotra, and Bhavani Thuraisingham. Risk-aware data processing in hybrid

clouds. TR-UTDCS-31-11, 2011. 21, 197

[160] Yaakoub El Khamra, Hyunjoo Kim, Shantenu Jha, and Manish Parashar. Ex-

ploring the performance fluctuations of hpc workloads on clouds. In Proceedings

of CloudCom. Indianapolis, IN, 2010. 166

BIBLIOGRAPHY 301

[161] Krzysztof C. Kiwiel. Convergence and efficiency of subgradient methods for

quasiconvex minimization. In Mathematical Programming (Series A) (Berlin,

Heidelberg: Springer) 90 (1): pp. 1-25, 2001. 30, 70, 74, 139

[162] Leonard Kleinrock. Queueing systems volume 1: Theory. pp. 101-103, 404. 173

[163] Christos Kozyrakis, Aman Kansal, Sriram Sankar, and Kushagra Vaid. Server

engineering insights for large-scale online services. IEEE Micro, vol.30, no.4,

July 2010. 13, 25, 119, 151, 203, 226, 238, 252

[164] Vidyadhar G. Kulkarni and Natarajan Gautam. Admission control of multi-

class traffic with service priorities in high-speed networks. In Journal of Queue-

ing Systems: Theory and Applications archive Vol. 27, No. 1/2. 1997. 123,

132

[165] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and

Guofei Jiang. Power and performance management of virtualized computing

environments via lookahead control. Cluster Computing, 12(1):1–15, 2009. 227

[166] Eric Lau, Jason E Miller, Inseok Choi, Donald Yeung, Saman Amarasinghe,

and Anant Agarwal. Multicore performance optimization using partner cores.

In Proceedings of HotPar. Berkeley, CA, 2011. 168

[167] James Laudon. Performance/watt: the new server focus. In ACM SIGARCH

Computer Architecture News: dasCMP. Vol. 33 Issue 4, p. 5-13, November 2005.

168

[168] Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Venugopalan Ramasubra-

manian, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Validating heuristics

for virtual machines consolidation. Technical Report MSR-TR-2011-9, January

2011. 253

[169] Jacob Leverich and Christos Kozyrakis. On the energy (in)efficiency of hadoop

clusters. In Proceedings of HotPower. Big Sky, MT, 2009. 61

BIBLIOGRAPHY 302

[170] Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and

sub-millisecond quality-of-service. In Proceedings of EuroSys. Amsterdam, The

Netherlands, 2014. 12, 160

[171] Jacob Leverich and Christos Kozyrakis. On the energy (in)efficiency of hadoop

clusters. SIGOPS Oper. Syst. Rev., 44(1):61–65, March 2010. 25, 253

[172] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: Com-

paring public cloud providers. In Proceedings of IMC. Melbourne, Australia,

2010. 20, 166, 197

[173] Hui Li. Realistic workload modeling and its performance impacts in large-

scale escience grids. IEEE Transactions on Parallel and Distributed Systems,

21(4):480–493, 2010. 258, 260

[174] M. Li, D. Goldberg, W. Tao, and Y. Tamir. Fault-tolerant cluster management

for reliable high performance computing. In Proc. of the 13th International

Conference on Parallel and Distributed Computing and Systems. Anaheim, CA,

2001. 13

[175] Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. Energy-aware virtual ma-

chine dynamic provision and scheduling for cloud computing. In Proceedings of

the 2011 IEEE 4th International Conference on Cloud Computing (CLOUD).

Washington, DC, USA, 2011. 227

[176] Jimmy Lin. The curse of zipf and limits to parallelization: A look at the

stragglers problem in mapreduce. In Proceedings of LSDS-IR Workshop. Boston,

MA, 2009. 82

[177] Host server cpu utilization in amazon ec2 cloud. http://huanliu.wordpress.

com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/.

2, 61, 66, 174

[178] Xue Liu, Jin Heo, Lui Sha, and Xiaoyun Zhu. Adaptive control of multi-tiered

web applications using queueing predictor. In IEEE Transactions on Network

and Service Management. September 2008. 131, 132

http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/
http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/

BIBLIOGRAPHY 303

[179] Zitao Liu and Sangyeun Cho. Characterizing machines and workloads on a

google cluster. In Parallel Processing Workshops (ICPPW), 2012 41st Interna-

tional Conference on, pages 397 –403, sept. 2012. 9

[180] Jacob Lorch and Alan Smith. Reducing processor power consumption by im-

proving processor time management in a single-user operating system. In Pro-

ceedings of MOBICOM. New York, NY, 1996. 173

[181] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: Online data

migration with performance guarantees. In Proceedings of File and Storage

Technologies (FAST). Monterey, CA, 2002. 225, 253

[182] Apache lucene. http://lucene.apache.org/core/. 98

[183] Priya Mahadevan, Puneet Sharma, Sujata Banerjee, and Parthasarathy Ran-

ganathan. Energy aware network operations. In Proceedings of the 28th IEEE

International Conference on Computer Communications Workshops (INFO-

COM). Rio de Janeiro, Brazil, 2009. 225

[184] Mahout. http://mahout.apache.org/. 84, 87, 166, 169

[185] Dave Mangot. Ec2 variability: The numbers revealed. http://tech.mangot.

com/roller/dave/entry/ec2_variability_the_numbers_revealed. 166

[186] Jason Mars and Lingjia Tang. Whare-map: heterogeneity in ”homogeneous”

warehouse-scale computers. In Proceedings of ISCA. Tel-Aviv, Israel, 2013. 13,

17, 20, 66, 135, 139, 141, 168, 196

[187] Jason Mars, Lingjia Tang, and Robert Hundt. Heterogeneity in “homogeneous”;

warehouse-scale computers: A performance opportunity. IEEE Comput. Archit.

Lett., 10(2), July 2011. 17, 26, 28, 35, 56, 96, 98, 99

[188] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.

Bubble-up: increasing utilization in modern warehouse scale computers via

sensible co-locations. In Proceedings of MICRO. Porto Alegre, Brazil, 2011. 13,

25, 26, 56, 62, 65, 196

http://lucene.apache.org/core/
http://mahout.apache.org/
http://tech.mangot.com/roller/dave/entry/ec2_variability_the_numbers_revealed
http://tech.mangot.com/roller/dave/entry/ec2_variability_the_numbers_revealed

BIBLIOGRAPHY 304

[189] Steven M. Martin, Krisztian Flautner, Trevor Mudge, and David Blaauw. Com-

bined dynamic voltage scaling and adaptive body biasing for lower power mi-

croprocessors under dynamic workloads. In Proceedings of ICCAD. 2002. 173

[190] José F. Mart́ınez and Engin Ipek. Dynamic multicore resource management: A

machine learning approach. IEEE Micro, 29(5):8–17, 2009. 22

[191] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich We-

ber, and Thomas F. Wenisch. Power management of online data-intensive ser-

vices. In Proceedings of the 38th annual international symposium on Computer

architecture, pages 319–330, 2011. 12, 25, 61, 109, 225

[192] Brucrucee L. Miller. A queueing reward system with several customer classes.

In Management Science, 16(3):234-245. 1969. 123, 132

[193] Michael Mitzenmacher. The power of two choices in randomized load balancing.

In Journal IEEE Transactions on Parallel and Distributed Systems, Volume 12

Issue 10, 2001. 20, 138

[194] Consolidating backup infrastructures. http://www.microsoft.com/

windowsserversystem/storage/consolidation.mspx. 225, 252

[195] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-

loading: Practical power management for enterprise storage. Trans. Storage,

4(3):10:1–10:23, November 2008. 238, 239, 252

[196] Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety, and

Antony Rowstron. Everest: Scaling down peak loads through i/o off-loading. In

Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI). San Diego, California, 2008. 252

[197] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and

Antony Rowstron. Migrating server storage to ssds: Analysis of tradeoffs. In

Proceedings of the 4th ACM European Conference on Computer Systems (Eu-

roSys). Nuremberg, Germany, 2009. 205, 208, 209, 213, 252

http://www.microsoft.com/windowsserversystem/storage/consolidation.mspx
http://www.microsoft.com/windowsserversystem/storage/consolidation.mspx

BIBLIOGRAPHY 305

[198] Ramanathan Narayanan, Berkin Ozisikyilmaz, Joseph Zambreno, Gokhan

Memik, and Alok N. Choudhary. Minebench: A benchmark suite for data

mining workloads. In Proceedings of the 9th IEEE International Symposium

on Workload Characterization (IISWC). San Jose, California, 2006. 45, 84, 95,

110, 126

[199] Ripal Nathuji, Canturk Isci, and Eugene Gorbatov. Exploiting platform hetero-

geneity for power efficient data centers. In Proceedings of ICAC. Jacksonville,

FL, 2007. 13, 25, 65, 66, 196

[200] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: Managing

performance interference effects for qos-aware clouds. In Proceedings of EuroSys.

Paris,France, 2010. 13, 18, 20, 26, 28, 57, 65, 135, 196

[201] Intel nehalem architecture optimization reference manual. April 2012. 115

[202] Aws case study: Netflix. http://aws.amazon.com/solutions/

case-studies/netflix/. 10

[203] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John

Wilkes. Agile: Elastic distributed resource scaling for infrastructure-as-a-

service. In Proceedings of ICAC. San Jose, CA, 2013. 65, 81, 196

[204] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan Kostic, and Ricardo

Bianchini. Deepdive: Transparently identifying and managing performance

interference in virtualized environments. In Proceedings of ATC. San Jose, CA,

2013. 18, 66, 82, 139, 151, 196

[205] Apache nutch. http://nutch.apache.org/. 98

[206] Openstack cloud software. http://www.openstack.org/. 165

[207] Simon Ostermann, Alexandru Iosup, Nezih Yigitbasi, Radu Prodan, Thomas

Fahringer, and Dick Epema. A performance analysis of ec2 cloud computing

services for scientific computing. In Lecture Notes on Cloud Computing. Volume

34, p.115-131, 2010. 166

http://aws.amazon.com/solutions/case-studies/netflix/
http://aws.amazon.com/solutions/case-studies/netflix/
http://nutch.apache.org/
http://www.openstack.org/

BIBLIOGRAPHY 306

[208] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski, and Pan

Hui. Exploiting hardware heterogeneity within the same instance type of ama-

zon ec2. In Proceedings of HotCloud. Boston, MA, 2012. 166

[209] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow:

Distributed, low latency scheduling. In Proceedings of SOSP. Farminton, PA,

2013. 19, 20, 135, 136, 137, 138, 139, 145, 148, 156, 157, 182

[210] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics for

vector bin packing. In Technical Report, 2011. 250, 253

[211] Abhay Parekh and Robert Gallager. A generalized processor sharing approach

to flow control in integrated services networks: The single-node case. In IEEE

Transactions on Networks, Vol. 1, No. 3. June 1993. 131

[212] Gahyun Park. A generalization of multiple choice balls-into-bins. In Proceed-

ings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing (PODC). San Jose, CA, 2011. 20, 138, 145

[213] Nathan Parrish, Hyrum Anderson, Maya Gupta, and Dun Yu Hsaio. Classifying

with confidence from incomplete information. In Proceedings of the Journal

Machine Learning Research (JMLR). 2013. 74, 75

[214] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F. Wenisch, and Jack

Underwood. Power routing: Dynamic power provisioning in the data center. In

Proceedings of the Fifteenth International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS). Pittsburgh,

Pennsylvania, USA, 2010. 253

[215] Eduardo Pinheiro and Ricardo Bianchini. Energy conservation techniques for

disk array-based servers. In Proceedings of the 18th Annual International Con-

ference on Supercomputing (ICS). Malo, France, 2004. 253

[216] Nicolas Poggi, David Carrera, Ricard Gavalda, Jordi Torres, and Eduard

Ayguade. Characterization of workload and resource consumption for an online

BIBLIOGRAPHY 307

travel and booking site. In Proceedings of the IEEE International Symposium

on Workload Characterization (IISWC’10), pages 1–10, 2010. 9

[217] Presidents Council of Advisors on Science and Technology

(PCAST). Designing a digital future: Federally funded re-

search and development networking and information technology.

http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-nitrd-

report-2010.pdf, December 2010. 9

[218] Rackspace open cloud. http://www.rackspace.com/. 9, 24

[219] Anand Rajaraman and Jeffrey Ullman. Textbook on Mining of Massive

Datasets. 2011. 28, 45, 70, 74, 110, 115, 139, 147

[220] Vijay Reddi, Benjamin Lee, Trishul Chilimbi, and Kushagra Vaid. Web search

using mobile cores: Quantifying and mitigating the price of efficiency. In Proc.

of the International Symposium on Computer Architecture (ISCA). Saint-Malo,

France, 2010. 9

[221] Suhail Rehman and Majd Sakr. Initial findings for provisioning variation in

cloud computing. In Proceedings of CloudCom. Indianapolis, IN, 2010. 166

[222] Charles Reiss, Wilkes John, and Hellerstein John. Google cluster-usage traces:

format + schema. In Technical Report, Google Inc. Mountain View, CA, USA,

November 2011. 9

[223] Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and Michael

Kozych. Heterogeneity and dynamicity of clouds at scale: Google trace analysis.

In Proceedings of SOCC. 2012. 9, 60, 61, 66, 168, 174, 177

[224] Rightscale. https://aws.amazon.com/solution-providers/isv/

rightscale. 16, 57, 65, 176, 196

[225] Alma Riska, James Larkby-Lahet, and Erik Riedel. Evaluating block-level opti-

mization through the io path. In Proceedings of the USENIX Annual Technical

Conference (ATC). Santa Clara, CA, 2007. 252

http://www.rackspace.com/
https://aws.amazon.com/solution-providers/isv/rightscale
https://aws.amazon.com/solution-providers/isv/rightscale

BIBLIOGRAPHY 308

[226] Roundcube. open-source webmail softwar. http://roundcube.net/. 98

[227] Mohsen Salehi, Bahman Javadi, and Rajkumar Buyya. Preemption-aware

admission control in a virtualized grid federation. In Proceedings of the in-

ternational conference on Advanced Information Networking and Applications

(AINA). Fukuoka, Japan, 2012. 131

[228] Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable and Efficient Fine-

Grain Cache Partitioning. In Proceedings of the 38th annual International Sym-

posium in Computer Architecture (ISCA-38). San Jose, CA, June, 2011. 45, 84,

110, 116, 126

[229] Sriram Sankar and Kushagra Vaid. Addressing the stranded power prob-

lem in datacenters using storage workload characterization. In Proceedings of

WOSP/SIPEW. San Jose, CA, 2010. 201, 209

[230] Sriram Sankar and Kushagra Vaid. Storage characterization for unstructured

data in online services applications. In Proceedings of the IEEE International

Symposium on Workload Characterization (IISWC). Austin, TX, 2009. 201,

202, 205, 209

[231] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measure-

ments in the cloud: Observing, analyzing, and reducing variance. Proceedings

VLDB Endow., 3(1-2):460–471, September 2010. 166

[232] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.

Omega: flexible, scalable schedulers for large compute clusters. In Proceedings

of EuroSys. Prague, Czech Republic, 2013. 13, 19, 62, 63, 65, 78, 119, 135, 137,

138, 140, 149, 196

[233] Malte Schwarzkopf, Derek G. Murray, and Steven Hand. The seven deadly sins

of cloud computing research. In Proceedings of HotCloud, pages 1–1, 2012. 10

[234] Shubhashis Sengupta and Rajeshwari Ganesan. Workload modeling for web-

based systems. In Proceedings of the 29th International Computer Measurement

Group Conference. Dallas, TX, 2003. 98, 259, 260

http://roundcube.net/

BIBLIOGRAPHY 309

[235] Jay Sethuraman and Mark Squillante. Optimal stochastic scheduling in multi-

class parallel queues. In Proceedings of SIGMETRICS. Atlanta, Georgia, 1999.

133

[236] Muhammad Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang, and Jia

Wang. A first look at cellular machine-to-machine traffic: Large scale mea-

surement and characterization. In Proceedings of the 12th ACM SIGMET-

RICS/PERFORMANCE Joint International Conference on Measurement and

Modeling of Computer Systems. London, England, UK, 2012. 258

[237] Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein, Rasekh Rifaat, and

Chita R. Das. Modeling and synthesizing task placement constraints in google

compute clusters. In Proceedings of the 2nd ACM Symposium on Cloud Com-

puting (SOCC). Cascais, Portugal, 2011. 145

[238] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. A cost-

aware elasticity provisioning system for the cloud. In Proceedings of the 31st

International Conference on Distributed Computing Systems (ICDCS). Min-

neapolis, MN, 2011. 16, 82

[239] Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Jeffery, Alexandra Fedorova,

Nestor Perez, Zhi Feng Huang, Sergey Blagodurov, and Viren Kumar. Hass: A

scheduler for heterogeneous multicore systems. OSP, vol. 43, 2009. 18, 58, 115

[240] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale:

elastic resource scaling for multi-tenant cloud systems. In Proceedings of SOCC.

Cascais, Portugal, 2011. 17, 65, 196

[241] David Shue, Michael J. Freedman, and Anees Shaikh. Performance isolation and

fairness for multi-tenant cloud storage. In Proc. of the 10th USENIX Conference

on Operating Systems Design and Implementation, OSDI’12, pages 349–362,

Berkeley, CA, USA, 2012. USENIX Association. 20

[242] Tajana Simunic and Steven Boyd. Managing power consumption in networks

on chips. In Proceedings of DAC. Paris, France, 2002. 173

BIBLIOGRAPHY 310

[243] Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra. Server-

storage virtualization: Integration and load balancing in data centers. In Pro-

ceedings of the ACM/IEEE Conference on Supercomputing (SC). Austin, Texas,

2008. 225, 253

[244] Amy Spellmann, Karen Erickson, and Jim Reynolds. Server consolidation using

performance modeling. In IT Professional, 2003. 252, 253

[245] Sqlio disk subsystem benchmark tool. http://www.

microsoft.com/downloads/en/details.aspx?familyid=

9a8b005b-84e4-4f24-8d65-cb53442d9e19&displaylang=en. 204

[246] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware consolida-

tion for cloud computing. In Proceedings of the Conference on Power Aware

Computing and Systems (HotPower). San Diego, CA, 2008. 253

[247] Raymond T. Stefani, Bahram Shahian, Clement J. Savant, and Gene H. Hostet-

ter. Design of Feedback Control Systems. 244

[248] Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting non-

stationarity for performance prediction. In Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems. Lisbon, Por-

tugal, 2007. 16

[249] Mark Stillwell, David Schanzenbach, Frédéric Vivien, and Henri Casanova. Re-

source allocation algorithms for virtualized service hosting platforms. J. Parallel

Distrib. Comput., 70(9):962–974, September 2010. 17, 250, 253

[250] Mark Stillwell, Frédéric Vivien, and Henri Casanova. Virtual machine resource

allocation for service hosting on heterogeneous distributed platforms. In Proc. of

the 26th International Parallel and Distributed Processing Symposium (IPDPS).

Shanghai, 2012. 17

[251] Alexander Stolyar. On the stability of multiclass queueing networks: A relaxed

sufficient condition via limiting fluid processes. In Technical Report, 1995. 132

http://www.microsoft.com/downloads/en/details.aspx?familyid=9a8b005b-84e4-4f24-8d65-cb53442d9e19&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=9a8b005b-84e4-4f24-8d65-cb53442d9e19&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=9a8b005b-84e4-4f24-8d65-cb53442d9e19&displaylang=en

BIBLIOGRAPHY 311

[252] Storm. https://github.com/nathanmarz/storm/. 84, 160

[253] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is more:

Compact matrix decomposition for large sparse graphs. In Proceedings of SDM.

Minneapolis, MN, 2007. 30

[254] Steven Swanson, Andrew Putnam, Martha Mercaldi, Ken Michelson, An-

drew Petersen, Andrew Schwerin, Mark Oskin, and Susan J. Eggers. Area-

performance trade-offs in tiled dataflow architectures. In Proceedings of ACM

SIGARCH Computer Architecture News, v.34 n.2, p.314-326, May 2006. 168

[255] Lingjia Tang, Jason Mars, and Mary-Lou Soffa. Compiling for niceness: Miti-

gating contention for qos in warehouse scale computers. In Proceedings of CGO.

San Jose, CA, 2012. 98, 99

[256] Wenting Tang, Yun Fu, Ludmila Cherkasova, and Amin Vahdat. Medisyn: A

synthetic streaming media service workload generator. In Proceedings of the

13th International Workshop on Network and Operating Systems Support for

Digital Audio and Video (NOSSDAV). Monterey, CA, USA, 2003. 259

[257] Kanit Therdsteerasukdi, Gyungsu Byun, Jason Cong, Frank Chang, and Glenn

Reinman. Utilizing rf-i and intelligent scheduling for better throughput/watt

in a mobile gpu memory system. In TACO 8(4). 2012. 168

[258] Eno Thereska, Austin Donnelly, and Dushyanth Narayanan. Sierra: Practical

power-proportionality for data center storage. In Proceedings of the Sixth Con-

ference on Computer Systems (EuroSys). Salzburg, Austria, 2011. 226, 227,

238, 239, 244, 251, 253

[259] Torque resource manager. http://www.adaptivecomputing.com/products/

open-source/torque/. 13, 65, 196

[260] Tpc benchmarks. http://www.tpc.org/tpcc/. 212

[261] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource over-

booking and application profiling in shared hosting platforms. In Proceedings of

https://github.com/nathanmarz/storm/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.tpc.org/tpcc/

BIBLIOGRAPHY 312

the 5th Symposium on Operating Systems Design and Implementation (OSDI).

Boston, MA, 2002. 16

[262] K Vaid. Datacenter power efficiency: Separating fact from fiction. Invited talk

at the 2010 Workshop on Power Aware Computing and Systems, October 2010.

10, 11

[263] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and

Joel Emer. Scheduling heterogeneous multi-cores through performance impact

estimation (pie). In Proceedings of the International Symposium on Computer

Architecture (ISCA), Portland, OR, 2012. 18, 58, 115, 116

[264] Henk Vandenbergh. Vdbench: User guide 5.00. 204

[265] Arunchandar Vasan, Anand Sivasubramaniam, Vikrant Shimpi, T. Sivabalan,

and Rajesh Subbiah. Worth their watts? an empirical study of datacenter

servers. In Proceedings of the 16th International Symposium on High Perfor-

mance Computer Architecture (HPCA). Bangalore, India, 2010. 61, 66

[266] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and Ricardo

Bianchini. Dejavu: accelerating resource allocation in virtualized environments.

In Proceedings of the Seventeenth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS). Lon-

don, UK, 2012. 17, 26, 28, 57, 65, 196

[267] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal,

Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,

Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Ben-

jamin Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another re-

source negotiator. In Proceedings of the Symposium on Cloud Computing. Santa

Clara, CA, 2013. 13, 19, 135

[268] Vmware vcloud suite. http://www.vmware.com/products/vcloud. 165

[269] Virtualbox. https://www.virtualbox.org/. 82, 151

http://www.vmware.com/products/vcloud
https://www.virtualbox.org/

BIBLIOGRAPHY 313

[270] Vmware virtual machines. http://www.vmware.com/. 62, 82, 151

[271] VMWare-DRS. Distributed resource scheduler: Design, implementation and

lessons learned. In VMware Technical Journal, 1(1), 2012. 18, 110

[272] Automated reclamation part: Recovering inactive re-

sources. http://blogs.vmware.com/management/2014/02/

automated-reclamation-part-3-recovering-inactive-resources.html.

17

[273] Vmware vsphere. http://www.vmware.com/products/vsphere/. 18, 24, 42,

57, 227, 251

[274] Carl Waldspurger. Memory resource management in vmware esx server. In

Proc. of the Fifth Symposium on Operating Systems Design and Implementation

(OSDI). Boston, MA, 2002. 17

[275] Guohui Wang and T. S. Eugene Ng. The impact of virtualization on network

performance of amazon ec2 data center. In Proceedings of INFOCOM. San

Diego, CA, 2010. 74, 166

[276] Brian J. Watson, Manish Marwah, Daniel Gmach, Yuan Chen, Martin Arlitt,

and Zhikui Wang. Probabilistic performance modeling of virtualized resource

allocation. In Proceedings of the 7th International Conference on Autonomic

Computing. Washington, DC, 2010. 16

[277] Thomas Wenisch, Roland Wunderlich, Michael Ferdman, Anastassia Ailamaki,

Babak Falsafi, and James Hoe. Simflex: Statistical sampling of computer system

simulation. IEEE MICRO, vol. 26, no. 4, Jul./Aug. 2006. 32

[278] Jonathan Wildstrom, Peter Stone, Emmett Witchel, Raymond J. Mooney, and

Michael Dahlin. Towards self-configuring hardware for distributed computer

systems. In Proceedings of the Second International Conference on Autonomic

Computing (ICAC) 2005). Seattle, WA, 2005. 22

[279] Windows azure. http://www.windowsazure.com/. 9, 18, 24, 44, 57, 165, 225

http://www.vmware.com/
http://blogs.vmware.com/management/2014/02/automated-reclamation-part-3-recovering-inactive-resources.html
http://blogs.vmware.com/management/2014/02/automated-reclamation-part-3-recovering-inactive-resources.html
http://www.vmware.com/products/vsphere/
http://www.windowsazure.com/

BIBLIOGRAPHY 314

[280] Jonathan Winter and David Albonesi. Scheduling algorithms for unpredictably

heterogeneous cmp architectures. In Proceedings of DSN. 2008. 115

[281] Ian H. Witten, Eibe Frank, and Geoffrey Holmes. Data Mining: Practical

Machine Learning Tools and Techniques. 3rd Edition. 30, 70, 74, 139

[282] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,

and Anoop Gupta. The splash-2 programs: characterization and methodolog-

ical considerations. In Proceedings of the 22nd International Symposium on

Computer Architecture (ISCA). Santa Margherita Ligure, Italy, 1995. 45, 84,

95, 110, 126

[283] The xen project. http://www.xen.org/. 26, 82, 151

[284] Zhen Xiao, Weijia Song, and Qi Chen. Dynamic resource allocation using virtual

machines for cloud computing environment. In IEEE Transactions on Parallel

and Distributed Systems, Vol. 24, Issue: 6. September 2012. 17

[285] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux: pre-

cise online qos management for increased utilization in warehouse scale com-

puters. In Proceedings of ISCA. 2013. 17, 20, 62, 65, 66, 135, 139, 196

[286] Benjamin Yolken and Nick Bambos. Game based capacity allocation for utility

computing environments. In Proceedings of Gamecomm. Athens, Greece, 2008.

133

[287] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua Yuan,

Srikanth Kandula, and Changhoon Kim. Profiling network performance for

multi-tier data center applications. In Proceedings of the 8th USENIX Confer-

ence on Networked Systems Design and Implementation (NSDI). Boston, MA,

2011. 257

[288] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient

http://www.xen.org/

BIBLIOGRAPHY 315

distributed datasets: A fault-tolerant abstraction for in-memory cluster com-

puting. In Proceedings of NSDI. San Jose, CA, 2012. 10, 20, 84, 135, 136,

166

[289] Matei Zaharia, Andy Konwinski, Anthony Joseph, Randy Katz, and Ion Sto-

ica. Improving mapreduce performance in heterogeneous environments. In

Proceedings of the 8th USENIX Symposium on Operating Systems Design and

Implementation (OSDI). San Diego, CA, 2008. 72, 82

[290] Seyed Majid Zahed and Benjamin C. Lee. Ref: Resource elasticity fairness with

sharing incentives for multiprocessors. In Proceedings of ASPLOS. Salt Lake

City, UT, 2014. 21, 197

[291] Zfs. http://www.freebsd.org/doc/handbook/filesystems-zfs.html. 82

[292] Alex Zhang, Fereydoon Safai, and Dirk Beyer. Server consolidation: High-

dimensional probabilistic bin-packing. In Proceedings of Informs. San Francisco,

CA, 2005. 253

[293] Jianyong Zhang, Anand Sivasubramaniam, Hubertus Franke, Natarajan Gau-

tam, Yanyong Zhang, and Shailabh Nagar. Synthesizing representative i/o

workloads for tpc-h. In Proceedings of the 10th International Symposium on

High Performance Computer Architecture (HPCA). Madrid, Spain, 2004. 157

[294] Joy Ying Zhang, Pang Wu, Jiang Zhu, Hao Hu, and Flavio Bonomi. Privacy-

preserved mobile sensing through hybrid cloud trust framework. In Proceedings

of ICCC. Shenzhen, China, 2013. 21, 197

[295] Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu, Raouf Boutaba,

and Joseph L. Hellerstein. Dynamic energy-aware capacity provisioning for

cloud computing environments. In Proceedings of the 9th international confer-

ence on Autonomic computing, pages 145–154, 2012. 9

[296] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and

John Wilkes. Cpi2: Cpu performance isolation for shared compute clusters. In

Proceedings of EuroSys. Prague, Czech Republic, 2013. 17, 20, 66, 96, 135, 196

http://www.freebsd.org/doc/handbook/filesystems-zfs.html

BIBLIOGRAPHY 316

[297] Li Zhao, Ravi Iyer, Jaideep Moses, Ramesh Illikkal, Srihari Makineni, and Don

Newell. Exploring large-scale cmp architectures using manysim. In IEEE Micro,

vol.27 n.4, July 2007. 168

[298] Wei Zheng, Ricardo Bianchini, G. John Janakiraman, Jose Renato Santos, and

Yoshio Turner. Justrunit: experiment-based management of virtualized data

centers. In Proceedings of the USENIX Annual Technical Conference (ATC).

San Diego, CA, 2009. 16

[299] Zhang Zhi-Hong, Meng Dan, Zhan Jian-Feng, Wang Lei, Wu Lin-ping, and

Huang We. Easy and reliable cluster management: The self-management expe-

rience of fire phoenix. In Proc. of the 20th International Parallel and Distributed

Processing Symposium (IPDPS). Rhodes Island, 2006. 13

[300] Xiaoyun Zhu, Donald Young, Brian J. Watson, Zhikui Wang, Jerry Rolia,

Sharad Singhal, Bret Mckee, Chris Hyser, Daniel Gmach, Robert Gardner, Tom

Christian, and Ludmila Cherkasova. 1000 islands: An integrated approach to

resource management for virtualized datacenters. Journal of Cluster Comput-

ing, vol. 12, 2009. 16, 17, 57

[301] Tsahee Zidenberg, Isaac Keslassy, and Uri Weiser. Multiamdahl: How should

i divide my heterogenous chip? In Computer Architecture Letters (CAL), vol.

11. 2012. 115

