
Reconciling High Server Utilization

and Sub-millisecond Quality-of-Service

Jacob Leverich Christos Kozyrakis

Computer Science Department, Stanford University

{leverich,christos}@cs.stanford.edu

Abstract

The simplest strategy to guarantee good quality of service

(QoS) for a latency-sensitive workload with sub-millisecond

latency in a shared cluster environment is to never run other

workloads concurrently with it on the same server. Unfortu-

nately, this inevitably leads to low server utilization, reduc-

ing both the capability and cost effectiveness of the cluster.

In this paper, we analyze the challenges of maintaining

high QoS for low-latency workloads when sharing servers

with other workloads. We show that workload co-location

leads to QoS violations due to increases in queuing delay,

scheduling delay, and thread load imbalance. We present

techniques that address these vulnerabilities, ranging from

provisioning the latency-critical service in an interference

aware manner, to replacing the Linux CFS scheduler with

a scheduler that provides good latency guarantees and fair-

ness for co-located workloads. Ultimately, we demonstrate

that some latency-critical workloads can be aggressively

co-located with other workloads, achieve good QoS, and

that such co-location can improve a datacenter’s effective

throughput per TCO-$ by up to 52%.

1. Introduction

Warehouse-scale datacenters host tens of thousands of servers

and consume tens of megawatts of power [14]. These facil-

ities support popular online services such as search, social

networking, webmail, video streaming, online maps, auto-

matic translation, software as a service, and cloud comput-

ing platforms. We have come to expect that these services

provide us with instantaneous, personalized, and contextual

access to terabytes of data. Our high expectations of these

services are largely due to the rapid rate of improvement

in the capability (performance) and total cost of ownership

(TCO) of the datacenters that host them.

Many factors that led to TCO and capability improve-

ments are reaching the point of diminishing returns. Cost

was initially reduced by switching from high-end servers to

commodity x86 hardware and by eliminating the overheads

of power distribution and cooling (PUE has dropped from

3.0 to 1.1) [14]. Unfortunately, these are both one-time im-

EuroSys ’14, April 13–16, 2014, Amsterdam, Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2704-6/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592821

provements. In the past, we could also rely on deploying

new servers with processors offering higher performance at

the same power consumption; in effect, by replacing servers

year after year, we could achieve greater compute capability

without having to invest in new power or cooling infrastruc-

ture. However, the end of voltage scaling has resulted in a

significant slowdown in processor performance scaling [9].

A datacenter operator can still increase capability by build-

ing more datacenters, but this comes at the cost of hundreds

of millions of dollars per facility and is fraught with envi-

ronmental, regulatory, and economic concerns.

These challenges have led researchers to pay attention to

the utilization of existing datacenter resources. Various anal-

yses estimate industry-wide utilization between 6% [16] and

12% [10, 40]. A recent study estimated server utilization on

Amazon EC2 in the 3% to 17% range [21]. Even for oper-

ators that utilize advanced cluster management frameworks

that multiplex workloads on the available resources [13, 32,

37], utilization is quite low. Hence, an obvious path towards

improving both the capability and cost of datacenters is to

make use of underutilized resources; in effect, raise utiliza-

tion [6, 22, 23].

High utilization is straight-forward to achieve if system

throughput is the only performance constraint: we can co-

locate multiple workloads on each server in order to saturate

resources, switching between them in a coarse-grain manner

to amortize overheads. In contrast, high utilization is diffi-

cult to achieve in the presence of complex, latency-critical

workloads such as user-facing services like search, social

networking, or automatic translation [2]. For instance, up-

dating a social networking news feed involves queries for the

user’s connections and his/her recent status updates; rank-

ing, filtering, and formatting these updates; retrieving related

media files; selecting and formatting relevant advertisements

and recommendations; etc. Since multiple tiers and tens of

servers are involved in each user query, low average latency

from each server is not sufficient. These services require low

tail latency (e.g., low 95th or 99th percentile) so that latency

outliers do not impact end-to-end latency for the user [4].

The conventional wisdom is that latency-critical services

do not perform well under co-location. The additional work-

loads can interfere with resources such as processing cores,

cache space, memory or I/O bandwidth, in a manner that

introduces high variability in latency and violates each ser-

vice’s QoS constraints. This concern drives operators to

deploy latency-sensitive services on dedicated servers, or

to grossly exaggerate their resource reservations on shared

clusters. For instance, the Google cluster studied by Reiss

showed average CPU and memory reservation of 75% and

60% of available resources, respectively, while actual uti-

lization was only 20% and 40%.

The goal of this work is to investigate if workload co-

location and good quality-of-service for latency-critical ser-

vices are fundamentally incompatible in modern systems,

or if instead we can reconcile the two. Using memcached,

a widely deployed distributed caching service, as a repre-

sentative workload with aggressive QoS requirements (hun-

dreds of microseconds in many commercial deployments),

we study the challenges and opportunities in co-locating

latency-critical services with other workloads on the same

servers. First, we analyze three common sources of QoS

degradation due to co-location: (1) increases in queuing de-

lay due to interference on shared resources (e.g., caches or

memory), (2) long scheduling delays when timesharing pro-

cessor cores, and (3) poor tail latency due to thread load im-

balance. Second, we propose techniques and best practices

to address these problems in existing servers. To manage

queuing delay due to shared resource interference, we sug-

gest interference-aware provisioning of the latency-critical

service, so that interference leads to predictable decrease

in throughput instead of intolerable spikes in latency. To

address long scheduling delays, we find that Linux’s CFS

scheduler is unable to provide good latency guarantees while

maintaining fairness between tasks. We demonstrate that a

modern version of the BVT scheduler [7] affords predictable

latency and fair sharing of CPU amongst tasks, and allows

for aggressive co-location of latency-critical services. Fi-

nally, we find that thread-pinning and interrupt routing based

on network flow-affinity resolve much of memcached’s vul-

nerability to load imbalance.

We put the observations above together to evaluate the

potential savings from co-locating latency-critical services

with other workloads under two important scenarios. For

example, with a memcached cluster utilized at 30%, co-

location of batch workloads gives you the equivalent through-

put of a 47% larger cluster that would otherwise cost 29%

more. On a general-purpose cluster with 50% CPU utiliza-

tion, we can co-locate memcached to harness stranded mem-

ory, and achieve memcached performance that would oth-

erwise require a 17% increase in TCO. Overall, we show

that high server utilization and strong QoS guarantees for

latency-critical services are not incompatible, and that co-

location of low-latency services with other workloads can

be highly beneficial in modern datacenters.

2. Improving Utilization through Co-location

There are several reasons for the low utilization observed

in datacenters today. Many companies have thousands of

servers dedicated to latency-critical tasks, such as web-

serving and key-value stores for user-data. These servers

are under-utilized during periods of low traffic, such as

evenings or weekends. Even worse, the number of deployed

servers is typically determined by the requirements of traf-

fic spikes during uncommon events (e.g., Black Friday,

celebrity mishaps), so these servers are often under-utilized,

even during periods of high nominal traffic. This creates an

opportunity to use the spare capacity for other workloads.

For instance, a company like Facebook, which has thou-

sands of dedicated servers for memcached, could use spare

CPU capacity to run analytics jobs that would otherwise run

on a separate set of machines. This co-location scenario can

be quite beneficial in terms of computing capability and cost

(discussed in Sec. 5) as long as the analytics jobs do not

unreasonably impact the quality-of-service of memcached.

Such a system might be managed by a cluster scheduler that

can adjust the number of analytics jobs as the load on mem-

cached varies throughout the day [6, 41].

Underutilization also occurs because of the difficulty in

allocating the right number of resources for jobs of any

kind, whether latency-critical or throughput-oriented. Sim-

ilarly, it is difficult to build servers that have the perfect bal-

ance of resources (processors, memory, etc.) for every single

workload. The analysis of a 12,000-server Google cluster by

Reiss et al. [32] shows that while the average reservation of

CPU and memory resources is 75% and 60% of available re-

sources respectively, the actual utilization is 20% and 40%

respectively. One could deploy memcached as an additional

service that uses the underutilized processing cores to export

the underutilized memory on such a cluster for other uses,

such as a distributed disk cache. For a 12,000-server cluster,

this could provide a DRAM cache with capacity on the or-

der of 0.5 petabytes at essentially no extra cost, provided the

original workload is not disturbed and that memcached can

serve this memory with good QoS guarantees.

One can imagine several additional scenarios where co-

locating latency-critical services with other workloads will

lead to significant improvements in datacenter capability and

TCO. Nevertheless, most datacenters remain underutilized

due to concerns about QoS for latency-critical services. We

believe this is why most companies deploy latency-critical

services, like memcached, on dedicated servers, and why

latency-critical services running on shared machines have

exaggerated resource reservations (as seen from Reiss’ anal-

ysis of Google’s cluster). Several recent works aim to dis-

cover when latency-critical services and other workloads do

not interfere with each other, in order to determine when co-

location is permissible [6, 23, 45]. However, this approach is

pessimistic; it dances around the symptoms of interference

but does not address the root causes. Our work provides a

deeper analysis of the causes of QoS problems, which allows

us to propose more effective mechanisms to raise utilization

through co-location without impacting QoS.

3. Analysis of QoS Vulnerabilities

In this section, we perform an analysis of the QoS vulner-

abilities of latency-critical services when co-located with

other workloads. We focus on interference local to a server

(processor cores, caches, memory, I/O devices and network

adapters); QoS features for datacenter networks are studied

elsewhere and not considered in this work [15].

The experimental portion of this analysis focuses on

memcached. We chose memcached for several reasons.

First, it has exceptionally low nominal latency, as low as

any other widely deployed distributed service found in dat-

acenters today (excluding certain financial “high-frequency

trading” workloads). As such, it is quite sensitive to interfer-

ence from co-located work, making it easy to identify and

analyze their causes. Second, it is a concise, generic exam-

ple of an event-based service, and many other widely de-

ployed services (including REDIS, node.js, lighttpd, nginx,

etc.) share many aspects of its basic architecture and use the

same basic kernel mechanisms (epoll via libevent). Indeed,

only 17% of CPU time when running memcached is spent

in user-code, versus 83% in the kernel, so the particulars

of memcached are less important than how it uses kernel

mechanisms. Thus, we believe that a thorough analysis of

memcached yields knowledge applicable to other services

as well. Third, memcached consists of less than 10,000 lines

of code, so it is easy to deconstruct. Finally, memcached is

an important service in its own right, a cornerstone of several

large web applications, and deployed on many thousands of

servers. Knowledge gleaned from its careful analysis is use-

ful, even outside the context of understanding interference

from co-located work.

3.1 Analysis Methodology

There are a couple of prerequisite steps to our analysis. First,

it is important to set realistic expectations about guaran-

tees for latency under realistic load. For memcached, there

is sufficient information about traffic patterns in large-scale

commercial deployments (key and data sizes, put/get distri-

butions, etc) in order to recreate realistic loads [1]. These

deployments typically monitor tail latency and set QoS re-

quirements thereof, such as requiring 95th-percentile latency

to be lower than 500 to 1000 microseconds under heavy

load. Second, it is equally important to carefully measure

the single-request latency on an unloaded server. This mea-

surement helps in multiple ways. First, if there is significant

variability, it will be difficult to meet an aggressive QoS tar-

get, even without interference from other workloads, unless

requests with high and low service times are prioritized and

treated separately within the application. Second, the behav-

ior of a well-tuned server can be approximated with a basic

M/M/n queuing model (independent arrival and service time

distributions), where n is the number of worker threads con-

currently running on the server [11, 18, 24]. The unloaded

latency (service time) allows us to estimate the performance

potential of a well-tuned system and pinpoint when observed

behavior deviates due to interference or any other reason.

The main part of our analysis consists of separating the

impact of interference from co-located workloads into its

three key causes: (1) queuing delay, (2) scheduling delay,

and (3) load imbalance.

Queuing delay occurs due to coincident or rapid request

arrivals. Even without co-location, the M/M/1 model sug-

gests that, given a mean service rate of µ and mean arrival

rate of λ, the average waiting time is 1/(µ − λ) and 95th-

percentile latency roughly 3× higher (ln(100
100−95

)/(µ−λ)).
Interference from co-located workloads impacts queuing de-

lay by increasing service time, thus decreasing service rate.

Even if the co-located workload runs on separate processor

cores, its footprint on shared caches, memory channels, and

I/O channels slows down the service rate for the latency-

critical workload. Even if a single request is only marginally

slower in absolute terms, the slowdown is compounded over

all queued requests and can cause a significant QoS problem.

As λ approaches µ (i.e., at high load), wait time asymptot-

ically increases, experienced as significant request latency

by clients. It is common practice to take this asymptotic re-

sponse into account when provisioning servers for a latency-

sensitive service in order to ensure that no server is ever sub-

jected to load that leads to excessive latency (e.g., provision

servers for a load of at most 70-80% of µ). The impact of

co-location on queuing delay can be thoroughly character-

ized by running the latency-critical service concurrently with

micro-benchmarks that put increasing amounts of pressure

on individual resources [5].

Distinct from queuing delay, scheduling delay becomes a

QoS vulnerability when a co-located workload contends for

processor cores with a latency-critical workload. That is, if

the OS or system administrator assigns two tasks to the same

core, they become subject to the scheduling decisions of the

OS, which may induce long-enough delays to cause QoS vi-

olations. There are two parts to scheduling delay that must

be considered independently: scheduler wait time, which is

the duration of time that the OS forces a task to wait until

it gets access to the core while another task runs, and con-

text switch latency, which is the time it takes the OS and

hardware to switch from running one application to another

after the scheduling algorithm has determined that it is the

others’ turn to run. The impact of co-location on scheduling

delay can be characterized by constructing co-location sce-

narios that exacerbate the priorities and idiosyncrasies of the

scheduling algorithm. We present such scenarios for com-

monly used Linux schedulers in Sec. 3.2.5.

Finally, load imbalance across threads of a multi-threaded

service can lead to poor overall tail latency, even when the

cumulative load on a server is low and average or median la-

tency appears nominal. Co-located work can exacerbate load

imbalance in a multi-threaded service in numerous ways: by

causing additional queuing delay on only the threads that

8switch
wire

NIC 4 5 6 7wire 11

4

9

8

IRQ

Kernel

Syscall

NIC
wire

switch 1 3

TX W
ri
te

2

T
C
P
/I
P

12 User

NIC 4 5 6

RX T
C
P
/I
P

9 11

E
p
o
ll

R
e
a
d

13

W
ri
te

14 15

T
C
P
/I
P

TX

8
S
ch
e
d
u
le

NIC 7

A
cJ
v
a
te

12

M
e
m
c
.

“GET foo”

10

li
b
e
v
e
n
t

“VALUE foo

bar

END”

Figure 1. Life of a memcached request. Note that actual

request processing (highlighted) is but one step on a long

journey.

share hardware resources with the interfering work, by in-

curring scheduling delay on a subset of threads due to the

interfering work, or when the OS migrates threads of the

latency-sensitive application on top of each other to make

way for the co-located work, causing the application to ef-

fectively interfere with itself. A latency-sensitive service’s

vulnerability to load imbalance can be easily ascertained by

purposefully putting it in a situation where threads are un-

balanced. For example, we can achieve this by running it

with N + 1 threads on an N -core system, by forcing only

one thread to share a hyper-threaded core with another work-

load, or by timesharing one core with another workload. By

the pigeon-hole principle, such arrangements necessarily re-

duce the performance of at least one thread of the latency-

sensitive service. If the service does not employ any form

of load-balancing, this will cause at least one thread of the

service to exhibit asymptotic queuing delay at far lower load

than the other threads, and is readily observable in measure-

ments of tail latency.

Note that queuing delay, scheduling delay, and imbalance

should not be characterized at a fixed load, e.g., at the max-

imum throughput the server can support or the maximum

throughput at which good QoS is still maintained. Since

the goal of co-location is to increase utilization when the

latency-critical service is at low or medium load, the char-

acterization must be performed across all throughput loads,

from 0% to 100%. This provides valuable data across the

whole range of likely loads for the latency-critical service.

As we show in Sec. 5, it also allows us to work-around in-

terference issues by using cluster-level provisioning instead

of server-level optimizations.

3.2 Analysis of Memcached’s QoS Sensitivity

3.2.1 Experimental Setup

We now make the preceding analysis concrete by applying

it to memcached. For all of the following measurements, we

run memcached version 1.4.15 on a dual-socket server popu-

lated with Intel Xeon L5640 processors (2× 6 cores @ 2.27

Ghz), 48GB of DDR3-1333 memory, an Intel X520-DA2

10GbE NIC, and running Linux 3.5.0 (with ixgbe driver

version 3.17.3). We disable the C6 C-state [34] during our

experiments, as it induces high latency (100s of microsec-

onds) at low load due to its wakeup penalty. We also disable

DVFS, as it causes variability in our measurements at mod-

erate load. Finally, we disable the irqbalance service and

manually set the IRQ affinity for each queue of the X520-

DA2 to distinct cores (using Intel’s set irq affinity.sh

script). Otherwise, memcached performance suffers due to

grave softIRQ imbalance across cores. In this configuration,

memcached achieves 1.1M queries per second (QPS) for

non-pipelined requests and over 3.0M QPS for pipelined re-

quests.

We generate client load for the server with mutilate1,

a high-performance, distributed memcached load-generator

we developed that can recreate the query distributions at

Facebook reported by Atikoglu et al. [1]. Requests are paced

using an exponential distribution, and access 200-byte val-

ues uniformly at random from a set of 1,000,000 30-byte

keys (sized to match the APP pool studied by Atikoglu).

Surprisingly, we found no difference in latency with larger

datasets or non-uniform access patterns. We do not use vari-

able value sizes in this study, as variance in service time ob-

scures variance due to interference. As memcached is com-

monly accessed synchronously, we do not pipeline requests.

Even in environments that make extensive use of parallel

multi-GETs, keys are sharded across multiple servers, such

that the number of requests handled by any one server is

low. In any case, we configure mutilate to make hundreds to

thousands of connections to the memcached server, spread

across 20 client machines. This ensures that we can generate

enough load on the server to saturate it and observe server-

side queuing delay, while never taxing the clients enough to

see client-side queuing delay.

3.2.2 Memcached Request Pipeline

We begin the analysis by presenting a detailed description of

memcached’s request pipeline. There is substantially more

to executing a memcached query than just looking up a

value in a hash-table. In order to gain a more detailed under-

standing, we traced the life-cycle of a memcached request in

Linux. Fig. 1 depicts the basic steps involved.

A client initiates a request by constructing a query and

calling the write() system call (1). The request undergoes

TCP/IP processing (2), is transmitted by the client’s NIC (3),

and is then sent to the server’s NIC via cables and switches,

where upon the processor core running memcached receives

an interrupt (since the Intel X520-DA2 NIC maintains flow-

to-core affinity with its “Flow Director” hardware [30, 42]).

Linux quickly acknowledges the interrupt, constructs a

struct skbuff, and calls netif receive skb in softIRQ

context (4). After determining it is an IP packet, ip rcv

is called (5), and after TCP/IP processing is complete,

1 https://github.com/leverich/mutilate/

Note: all measurements are in microseconds

Who What Unl Ctx Sw Loaded L3 int

Server

RX 0.9 0.8 1 1

TCP/IP 4.7 4.4 4 4

EPoll 3.9 3.1 2,778 3,780

libevent 2.4 2.3 3,074 4,545

Read 2.5 2.1 5 7

memcached 2.5 2.0 2 4

Write⋆ 4.6 3.9 4 5

Total 21.5 18.7 5,872 8,349

Client End-to-end 49.8 47.0 6,011 8,460

Table 1. Latency breakdown of an average request when

the server process is unloaded (Unl), when it is context-

switching with another process (Ctx Sw), when it is fully

loaded (Loaded), and when it is subjected to heavy L3 cache

interference while fully loaded (L3 int). All measurements

are in microseconds. “End-to-end” is the time reported by

mutilate on the clients. ⋆For brevity, we include TCP/IP and

TX time in Write.

tcp rcv established is called (6). At this point, the mem-

cached process responsible for handling this packet has been

identified and activated (marked as runnable) (7). Since there

is no more packet processing work to be done, the kernel

calls schedule to resume normal execution (8). Assum-

ing memcached is asleep waiting on an epoll wait system

call, it will immediately return and is now aware that there

has been activity on a socket (9). If memcached is not asleep

at this point, it is still processing requests from the last time

that epoll wait returned. Thus, when the server is busy,

it can take a while for memcached to even be aware that

new requests have arrived. If epoll wait returns a large

number of ready file descriptors, it executes them one by

one and it may take a long time for memcached to actually

call read on any particular socket (10). We call this libevent

time. After returning from epoll wait, it will eventually

call read on this socket (11), after which memcached fi-

nally has a buffer containing the memcached request. After

executing the request by looking up the key in its object

hash-table, memcached constructs a reply and write’s to

the socket (13). Now TCP/IP processing is performed (14)

and the packet is sent to the NIC (15). The remainder of the

request’s life-cycle at the client-side plays out similar to how

the RX occurred at the server-side. It is interesting to note

that a large portion of this request life-cycle is played out

in the Linux kernel. We find that only 17% of memcached’s

runtime is spent in user code vs. 83% in kernel code. Of that

83%, 37% is spent in Soft IRQ context.

Using SystemTap [8], we have instrumented key points

in the Linux kernel to estimate how long each step of this

process takes. By inspecting the arguments passed to kernel

functions and system calls, we are able to create accurate

mappings between skbuffs, file descriptors, and sockets.

Using this information, we can track the latency of individ-

0

100

200

300

400

500

600

700

800

900

1000

La
te
n
cy
 (
u
se
cs
)

Memcached QPS (% of peak)

Average

95th‐%

Average (w/ L3 int.)

95th‐% (w/ L3 int.)

Figure 2. Impact of heavy L3 interference on latency. In-

terference causes substantial queuing delay at high load, but

has little impact at low to moderate load (e.g., at 30%).

ual requests as they work their way through the kernel, even

though hundreds of requests may be outstanding at any given

time. We take measurements for an unloaded case (where

only one request is outstanding), a context switching case

(where a cpu-bound task is running and the OS must context-

switch to memcached after receiving a packet), a loaded case

(where memcached is handling requests at peak throughput),

and an interference case (where we subject the loaded mem-

cached to heavy L3 cache interference).

3.2.3 Manifestation of Queuing Delay

Table 1 presents the latency breakdown by condensing mea-

surements into key periods: driver RX time, TCP/IP pro-

cessing, waiting for epoll to return (which includes pro-

cess scheduling and context switching if memcached isn’t

already running), libevent queuing delay, read system-call

time, memcached execution time, and write system-call

time. In the unloaded case there are no surprises: TCP/IP

processing, scheduling, and epoll take a plurality of time.

We discuss the context-switching case in Sec. 3.2.5. Distinct

from the unloaded case, our measurements of the loaded

case gives us a key insight: the vast majority of the latency

when memcached is overloaded is queuing delay. This queu-

ing delay manifests itself in the measurement of “libevent”

time, but also “epoll” time. When overloaded, epoll wait

is returning hundreds of ready file descriptors. Thus, it will

take a while to get to any one request (long “libevent” time).

Second, since so many requests are being received by mem-

cached at once, it will take a long time to process them

all and call epoll wait again. This shows up in the long

“epoll” time measured for subsequent packets. When sub-

jected to interference (for instance, L3 interference), the

moderate growth in the time it takes to process each indi-

vidual request (read, memcached) results in a substantial

increase in this queuing delay (epoll, libevent).

This increase in queuing delay due to L3 interference,

however, is observed most distinctly at high load. At low

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000
 5
0
,0
0
0

 1
0
0
,0
0
0

 1
5
0
,0
0
0

 2
0
0
,0
0
0

 2
5
0
,0
0
0

 3
0
0
,0
0
0

 3
5
0
,0
0
0

 4
0
0
,0
0
0

 4
5
0
,0
0
0

 5
0
0
,0
0
0

 5
5
0
,0
0
0

 6
0
0
,0
0
0

 6
5
0
,0
0
0

 7
0
0
,0
0
0

 7
5
0
,0
0
0

 8
0
0
,0
0
0

 8
5
0
,0
0
0

 9
0
0
,0
0
0

 9
5
0
,0
0
0

 1
,0
0
0
,0
0
0

 L
a
te
n
cy
 (
u
se
cs
)

Memcached QPS

Latency vs. QPS (# threads = # cores + 1)

Latency (95th‐%)

Latency (50th‐%)
At least one core has

>1 thread at all @mes

Only manifests as

tail‐latency

Figure 3. Impact of load imbalance on memcached QoS.

load, the interference is hardly measurable. Fig. 2 plots la-

tency vs. QPS for memcached when subjected to a range of

loads. When subjected to L3 cache interference, its service

rate is effectively reduced, resulting in asymptotic queuing

delay at lower QPS. However, note that whether or not L3

interference is present, latency at 30% QPS is quite similar.

This indicates that the impact on per-request latency due to

interference is in and of itself insufficient to cause QoS prob-

lems at low load. Instead, queuing delay at high load is the

real culprit. We build on this observation in Sec. 4.1.

3.2.4 Manifestation of Load Imbalance

As discussed in Sec. 3.1, it is a simple exercise to determine

if a service is vulnerable to multi-threaded load imbalance:

simply run it with N+1 threads on an N -core system. Fig. 3

shows the impact on memcached QPS vs. latency in this sce-

nario (13 threads on a 12-core system). A pronounced spike

in tail latency is observed at around 50% of peak QPS not

seen in lower-order statistics (e.g., median or average). In-

terestingly, we found that a similar spike in tail latency is

observed even when memcached is run with just 12 threads

(instead of 13) on this 12-core system (i.e., N instead of

N + 1 on an N -core system). Upon inspection, we found

that Linux frequently migrated threads from one core to an-

other, often ending up with some cores with two threads

and other cores with no threads, leading to essentially the

same tail latency regressions we observed with 13 threads.

Linux’s “affine wakeup” mechanism appears to be most re-

sponsible for these migrations, causing memcached threads

to migrate closer to each other, even when there is only

minor contention for shared mutexes. Moreover, Linux’s

CPU load-balancing mechanism operates at the time scale

of 100s of milliseconds, so any mistake in thread placement

lasts long enough to be observed in measurements of tail

latency. Linux’s thread migration issues notwithstanding,

these experiments demonstrate that memcached performs no

dynamic load balancing across threads. Indeed, inspection

of its source code shows that it assigns incoming client con-

nections to threads statically in a round-robin fashion. This

lack of load balancing is the root cause of memcached’s vul-

0

100

200

300

400

500

600

700

800

900

1000

3% 13% 23% 33% 44% 54% 64% 74% 85% 95%

9
5
th
‐%

 L
a
te
n
cy
 (
u
se
cs
)

Memcached QPS (% of Peak)

Memcached alone

400.perlbench

410.bwaves

416.gamess

429.mcf

433.milc

459.GemsFDTD

450.soplex

470.lbm

471.omnetpp

401.bzip2

403.gcc

434.zeusmp

Figure 4. Impact of context-switching with other workloads

on memcached latency.

nerability to load imbalance, and a contributing factor to its

sensitivity to queuing delay and scheduling delay.

Interestingly, UDP connections to memcached do not

suffer from this load imbalance problem in the same way

as TCP connections. Memcached monitors the same UDP

socket across all threads, and UDP requests are handled

by whichever thread reads the socket first. However, ker-

nel lock contention on this UDP socket limits peak UDP

throughput at less than 30% of that using TCP. Indeed,

Facebook rearchitected memcached’s UDP support to use

multiple sockets in order to work around this throughput

problem [35].

3.2.5 Manifestation of Scheduling Delay

As discussed in Sec. 3.1, scheduling delay consists of

context-switch latency and wait time. Seen in Table 1, our

SystemTap traces show that not only does memcached not

seem to incur any overhead due to the context switch after

receiving a request, it actually goes slightly faster. We limit

the CPU to the C1 C-state for this experiment, so this is

not C3 or C6 transition time. We suspect that this overhead

has to do with Linux’s management of timers for “tickless”

idle support, but we have not verified this. In any event, the

upshot is that Linux can quickly switch to memcached and

service a request with little impact on end-to-end latency,

even when another application is running on the CPU core

when the request arrives.

Interestingly, contention for the L1 caches or TLBs when

timesharing a CPU appears to not be an issue for mem-

cached. Fig. 4 shows latency vs. QPS for memcached when

timesharing a CPU with a wide variety of SPEC CPU2006

workloads. In this experiment, we run memcached with

“nice -n -20”, so that it essentially never incurs wait time; we

are only observing the impact of context switching (direct

and indirect) with another workload. The fact that mem-

cached is affected so little by contention for the L1 caches

and TLBs may be unexpected, but it can be explained in-

tuitively. First, per-request latency is inconsequential com-

pared to the latency incurred from queuing delay, so any in-

0

2,000

4,000

6,000

8,000

10,000

12,000

3
%

8
%

1
3
%

1
8
%

2
4
%

2
9
%

3
4
%

3
9
%

4
5
%

5
0
%

5
5
%

6
1
%

6
6
%

7
1
%

7
6
%

8
2
%

8
7
%

9
2
%

9
7
%

9
5
th
‐%

 L
a
te
n
cy
 (
u
se
cs
)

Memcached QPS (% of Peak)

No Interference

CFS

BVT

5
0
%
 sh

a
re

Interference w/ CFS

Interference w/ BVT

Figure 5. Demonstration of scheduler wait-time induced on

memcached when run concurrently with a “square-wave”

antagonist. The antagonist runs for 6ms every 48ms (12.5%

load). Both memcached and the antagonist are assigned 50%

share of the CPU, so memcached should ideally achieve

good latency up to that point. However, using the CFS sched-

uler, memcached exhibits unacceptably high tail latency,

even at low load. With BVT (discussed in Sec. 4.3), mem-

cached tail latency is as good as if there were no interference

until it exceeds its 50% share of CPU time. Both schedulers

cap memcached’s throughput at ∼87%, where the CPU is

100% utilized.

crease in per-request latency at low-load is effectively neg-

ligible. Second, at high-load, memcached is running often

enough to keep its cache footprint warm, so it sees essen-

tially no interference. Finally, since the majority of mem-

cached’s runtime is spent in kernel code (83% of runtime),

the TLB flushes due to each context switch have little im-

pact; the kernel’s code is mapped using large pages. Our

conclusion from this experiment is that context-switching is

not itself a large contributor to memcached latency. If mem-

cached is vulnerable to scheduling delay, it is almost entirely

due to wait time induced by the OS scheduling algorithm.

In contrast to context-switch time, memcached is quite

vulnerable to scheduler wait time. We demonstrate the scale

of the danger by forcing memcached to timeshare a core with

a “square-wave” workload. Fig. 5 shows latency vs. QPS for

memcached when timesharing a CPU with such a square-

wave antagonist, where the antagonist runs in a tight loop

(i.e., while(1);) for 6ms, sleeps for 42ms, and then re-

peats; its average CPU usage is only 12.5%. As can be seen,

when using CFS (Linux’s default scheduler), memcached

starts exhibiting exceptionally long tail-latency starting at

around 12% of peak QPS, where the aggregate load on the

CPU (including both memcached and the antagonist) is only

around 25%. The fact that latency spikes when memcached

is at approximately the same CPU usage as the antagonist is

an interesting artifact of CFS’s algorithm; we explore this in

detail in Sec. 3.3. At 87% QPS (∼100% CPU load), mem-

cached must yield involuntarily to ensure the antagonist gets

90

80

70

60

50

40

30

20 ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔ ✔

10 20 30 40 50 60 70 80 90

M
e
m
ca
ch
e
d
 L
o
a
d
 (
%
 P
e
a
k
 Q
P
S
)

1ms RPC‐service Load (% Peak QPS)

Achieved QoS w/ two low‐latency workloads

✔ Both meet QoS

1ms service fails

Memcached fails

Both fail to meet QoS

QoS requirement

= 95th < 5x low‐load 95th

Figure 6. Achieved QoS when co-scheduling two latency-

sensitive services on a processor core with Linux’s CFS

scheduler. For both services, we require that its 95th-% la-

tency never exceed 5× its 95th-% latency as measured at

low-load. Both services achieve tolerable QoS only in a nar-

row range of loads, so it is unwise to co-locate them together

without taking corrective action.

fair access to the CPU, so it necessarily experiences long la-

tency.

To illustrate the consequences of this vulnerability in a

more realistic setting, we measured QoS for two latency-

sensitive services running simultaneously on one server:

memcached (with average latency measured on the order

of 100us) and a synthetic event-based service similar to

memcached with average latency on the order of 1ms. We

ran both services concurrently in every combination of QPS

from 10% to 100% and monitored latency and throughput.

The results are charted in Fig. 6, which reports which of the

two services were able to maintain acceptable QoS at each

load point. Note that memcached fails to achieve good QoS,

even when the co-scheduled workload is offered exception-

ally low load (as circled in Fig. 6). Additionally, the 1ms ser-

vice fails to meet its QoS requirement at higher loads, as it

is sensitive to excessive wait time as well. The consequence

of this result is that neither latency-sensitive service can

safely be co-located with the other. Curiously, memcached

achieves good QoS when its load is lower than that of the

1ms service; we explain this behavior in Sec. 3.3. Overall,

we can conclude that memcached is particularly sensitive

to scheduler wait time, and that addressing it (either by ad-

justing the scheduler or prohibiting CPU time-sharing) is

paramount to running memcached with good QoS.

3.3 Scheduling Delay Analysis

We noted in Sec. 3.2.5 that memcached experienced a spike

in scheduler wait time right around the point when its CPU

usage exceeded that of a co-scheduled application, despite

the fact that the CPU is underutilized overall. We describe

this behavior in detail in this section.

The essence of the “Completely Fair Scheduler” (CFS)

[28], Linux’s general-purpose scheduling algorithm, is quite

A B $me

Zzz..

1

L

A B

2

A B

3

Figure 7. A depiction of CFS run-queue when a task wakes

up. Task B is initially asleep and task A is running (1). When

task B wakes up, it is placed L behind task A and preempts

task A (2), inducing wait time on A while B runs (3).

simple: all non-running tasks are sorted by “virtual runtime”

and maintained in a sorted run-queue (implemented as a red-

black tree). Tasks accumulate virtual runtime (a weighted

measure of actual runtime) when they run. Whenever there

is a scheduling event (e.g., a periodic timer tick, an I/O in-

terrupt, a wakeup notification due to inter-process commu-

nication, etc.) the scheduler compares the virtual runtime

of the current running task with the virtual runtime of the

earliest non-running task (if the event is a periodic timer

tick) or the task being woken (if the event is a wakeup).

If the non-running task has a smaller virtual runtime, the

scheduler performs a context switch between the two tasks.

Overall, the algorithm attempts to guarantee that the task

with the lowest virtual runtime is always the running task,

within some error bounded by the maximum period between

scheduling events times the number of running tasks. CFS

also uses several heuristics to prevent overscheduling (e.g.,

sched min granularity). Users may assign “shares” to

tasks, and a task’s accumulation of virtual runtime when

running is weighted inversely proportional to its number of

shares. In the long term, tasks receive a fraction of CPU time

proportional to the fraction of total shares they are assigned.

An important detail in the design of CFS is how virtual

runtime is assigned for a task that wakes up and becomes

runnable. The assignment of virtual runtime for waking tasks

balances two properties: (1) allowing the waking task to run

promptly, in case the event that caused its wakeup needs

to be handled urgently, and (2) not giving an unfair share

of processor time to waking tasks. CFS balances these two

goals by clamping the virtual runtime of a waking task to the

minimum virtual runtime of all non-sleeping tasks minus an

offset L (called “thresh” in the kernel), which defaults to one

half of the target scheduling latency (L = 24ms/2 = 12ms):

vruntime(T) = max(vruntime(T),min(vruntime(∗))− L).
Unfortunately, CFS’s wakeup placement algorithm al-

lows sporadic tasks to induce long wait time on latency-

sensitive tasks like memcached. The fundamental problem

is that the offset CFS uses when placing the waking task

is larger than memcached’s nominal request deadline. Il-

lustrated in Fig. 7, if memcached (A) is serving a request

when another task B wakes up, it must wait at least for

L time before it can resume processing requests. The only

way memcached can be guaranteed to never see this delay

is if its virtual runtime never exceeds that of the other task.

Coming back to Fig. 5, this fully explains why memcached

achieves good quality of service when its load is lower than

12%; it is accumulating virtual runtime more slowly than the

square-wave workload and always staying behind, so it never

gets preempted when the square-wave workload wakes. The

same behavior explains why, in Fig. 6, memcached achieves

good QoS when its load is less than that of the 1ms service.

3.4 Discussion

The preceding sections have concretely demonstrated how

memcached experiences significant reductions in QoS due

to queuing delay, scheduling delay, or load imbalance in the

presence of co-located workloads. In the course of this study,

we additionally evaluated the impact of interference due to

network-intensive co-located workloads. Interestingly, these

workloads caused far less interference than expected for the

following reasons: (1) memcached, particularly with real-

istic request size distributions, saturates the server’s CPUs

before it saturates the 10GbE network, and (2) Intel’s Flow

Director [42] largely isolates co-located workloads from in-

terference due to interrupt handling for large network loads;

network interference was indeed a problem when we dis-

abled Flow Director and only used RSS.

It’s worth noting that there are a large variety of scenar-

ios where memcached’s QoS could suffer even in the ab-

sence of co-located workloads. For instance, a misbehaving

client could flood the server with requests, denying service

to other clients; a client could try to mix large and small

requests together, causing long serialization latency for the

small requests; the request stream could contain an unusu-

ally high number of “SET” requests, which induces frequent

lock contention between threads; or the server could gen-

uinely be overloaded from provisioning an insufficient num-

ber of servers for a given load. We do not provide a detailed

characterization of these vulnerabilities here, as this paper is

focused on interference caused by co-located workloads.

4. Addressing QoS Vulnerabilities

This section describes robust strategies that can be employed

to address the vulnerabilities identified in Sec. 3 when co-

locating latency-sensitive services on servers.

4.1 Tolerating Queuing Delay

In Fig. 2, we demonstrated that interference within the mem-

ory hierarchy from co-located workloads only causes tail la-

tency problems when it exacerbates queuing delay. The up-

shot is that workloads may be safely co-located with each

other, despite interference, so long as they don’t induce un-

expected asymptotic queuing delay. Since queuing delay is a

function both of throughput (service rate) and load, we can

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000
 5
0
,0
0
0

 1
0
0
,0
0
0

 1
5
0
,0
0
0

 2
0
0
,0
0
0

 2
5
0
,0
0
0

 3
0
0
,0
0
0

 3
5
0
,0
0
0

 4
0
0
,0
0
0

 4
5
0
,0
0
0

 5
0
0
,0
0
0

 5
5
0
,0
0
0

 6
0
0
,0
0
0

 6
5
0
,0
0
0

 7
0
0
,0
0
0

 7
5
0
,0
0
0

 8
0
0
,0
0
0

 8
5
0
,0
0
0

 9
0
0
,0
0
0

 9
5
0
,0
0
0

 1
,0
0
0
,0
0
0

 9
5
th
‐%

 L
a
te
n
cy
 (
u
se
cs
)

Memcached QPS

Latency vs. QPS (# threads = # cores)

Baseline

Pin

Pin = sched_setaffinity() to

assign threads to specific cores

Figure 8. Pinning memcached threads to distinct cores

greatly improves load balance, consequently improving tail

latency.

tolerate a reduction in throughput (due to interference) if we

also reduce the load on the service for any given server. Ad-

ditional servers can be added to pick up the slack for the low-

latency service. Thus, we propose that load be provisioned to

services in an interference-aware manner, that takes into ac-

count the reduction in throughput that a service might expe-

rience when deployed on servers with co-located workloads.

Load provisioning is already an important aspect of the

life-cycle of distributed datacenter services. Provisioning en-

tails selecting how many and what type of servers are needed

to handle a given aggregate request load. While interference-

aware provisioning may be pessimistic with respect to how

much load an individual server could support for a given

service, it accommodates the potential for interference on

shared hardware resources and is very permissive in terms

allowing other workloads to be co-located on the same hard-

ware. Hence, while interference-aware provisioning may use

more servers for the latency-critical service, the TCO for

the cluster as a whole may actually be lower because any

capacity underutilized by the latency-critical service can be

used by other workloads. We give a concrete example of how

interference-aware provisioning can improve overall cluster

utilization and TCO in Sec. 5.

4.2 Tolerating Load Imbalance

In Sec. 3.2.4, we reported that memcached exhibits a pro-

found spike in latency at around 50% load when running

with N threads on an N -core system due to spurious thread-

migrations placing multiple threads on a single core. Note

that this latency spike is in the absence of co-located work;

we cannot operate this server at high load, even if it is ded-

icated to this workload. One solution to this problem is

particularly straight-forward and effective: threads can be

pinned explicitly to distinct cores, so that Linux can never

migrate them on top of each other. We made a simple 20-

line modification to memcached 1.4.15 to query its avail-

able CPU set at startup and to statically pin threads (us-

ing sched setaffinity()) as they are spawned to each

core in round-robin order. After this simple modification,

memcached handles up to near 90% of peak load (over

900,000 QPS) with 95th-% latency under 1ms (see Fig. 8).

We should also note that the flow-to-core affinity provided

by Intel’s ixgbe driver for their X520-DA2 NIC also con-

tributes substantially to maintaining balance amongst mem-

cached threads: it ensures that the interrupt load on each core

is proportional to its request rate, and that network interrupts

destined for co-located workloads do not disturb the cores

running memcached [30, 42].

Although thread-pinning is of exceptional utility in this

case, it does not address the deeper problem: that mem-

cached makes no attempt to perform load-balancing amongst

threads on its own. Thus, it is important to heed the follow-

ing guidelines when deploying memcached with co-located

work. First, it is imperative to pin memcached threads to dis-

tinct cores, as demonstrated above. Second, spawn at most

N memcached threads on an N -core system; memcached

achieves no higher performance with more threads, and tail

latency is adversely affected if some cores have more threads

than other cores. Third, if you wish to share a CPU core

with other workloads (either via OS scheduling or hyper-

threading), you might as well share all of the cores that mem-

cached is running on; memcached’s tail latency will ulti-

mately be determined by its slowest thread. Finally, if thread

load imbalance is unavoidable but certain requests require

minimal latency, issue those requests over a UDP connec-

tion (Sec. 3.2.4). In the long-term, memcached should be

rearchitected to load-balance requests or connections across

threads.

4.3 Tolerating Scheduling Delay

As described in Sec. 3.3, the root cause of scheduler-related

tail latency lies with CFS’s wakeup placement algorithm,

which allows workloads which frequently sleep to impose

long wait times on other co-located workloads at arbitrary

times. Fortunately, there are several strategies one can em-

ploy to mitigate this wait time for latency-sensitive services,

including (1) adjusting task share values in CFS, (2) utiliz-

ing Linux’s POSIX real-time scheduling disciplines instead

of CFS, or (3) using a general purpose scheduler with sup-

port for latency-sensitive tasks, like BVT [7].

4.3.1 Adjusting task shares in CFS

Assigning an extremely large share value to a latency-

sensitive task (e.g., by running it with “nice -n -20” or by

directly setting its CPU container group’s shares value) has

the effect of protecting it from wakeup-related wait time.

Recall from Sec. 3.3 that a task’s virtual runtime advances

inversely proportional to the fraction of shares that a par-

ticular task possesses relative to all other tasks. Thus, if a

task A has a very high shares value, its virtual runtime ad-

vances at a crawl and every other task advances at a relative

sprint. Thus, each time a task other than A runs, it accrues

significant virtual runtime and leaps far ahead of A. Conse-

quently, these tasks are essentially never eligible to preempt

A or induce wait time on it, and effectively only run when A
yields.

While effective at mitigating wait-time for latency-sensitive

tasks, such a strategy presents a conundrum for servers with

co-located workloads: an unexpected spike in load on the

latency-sensitive service, or even a bug, could cause its CPU

usage to spike and starve the other task. In effect, a task’s

immunity to wait time and its share of CPU time are tightly

coupled in CFS, since the only tunable parameter available

to the end-user (shares) affects both. This limitation is fine

for some situations (e.g., co-locating best-effort analytics

jobs with a memcached cluster at Facebook), but is inappro-

priate when co-locating multiple user-facing services (e.g.,

at Google).

4.3.2 POSIX real-time scheduling

An alternative to CFS are the POSIX real-time scheduling

disciplines implemented in Linux, SCHED FIFO or SCHED RR.2

These schedulers are priority-based, where higher-priority

tasks may never be preempted by lower-priority tasks, as

opposed to the general-purpose fair-share nature of CFS.

Tasks scheduled with the POSIX real-time schedulers are

implicitly higher-priority than CFS tasks in Linux, so they

are never preempted by CFS tasks. Thus, latency-sensitive

tasks scheduled using the real-time schedulers never incur

CFS-induced wait-time due to other co-located tasks. Ad-

ditionally, multiple latency sensitive tasks can be safely run

concurrently up to an aggregate load of ∼70% so long as

they are assigned priorities rate monotonically (i.e., lower

latency begets a higher priority) [20].

Similar to using CFS with a high shares value, the real-

time schedulers enable high-priority tasks to starve other

tasks; a load-spike or bug in a latency-sensitive service could

lead to unfair use of the CPU. Again, this is tolerable when

co-located with best-effort workloads, but not with other

workloads with throughput or latency requirements.

4.3.3 CPU Bandwidth Limits to Enforce Fairness

For both CFS and the real-time schedulers, Linux allows

users to specify a CPU bandwidth limit [39], where a user

specifies a runtime “quota” and “period” for a task. This

mechanism can prevent high-share tasks from starving oth-

ers, but it comes with its own drawback: it eliminates the

property of “work conservation” from the schedulers. So

even if CPU time is unused and available, a task would not

be permitted to run if it exceeded its bandwidth quota. While

not terribly important at low loads, non-work-conserving

means that a task operating at close to its share of CPU time

can be hit with long latency as it waits for its quota to be

refilled, even if the server is otherwise underutilized.

2 The principle difference between SCHED FIFO and SCHED RR is that

SCHED FIFO tasks run indefinitely until they either voluntarily yield or a

higher-priority task becomes runnable, where as SCHED RR tasks time-

share in round-robin order with a slice duration of 100ms.

Completely Fair

Scheduler

POSIX Real8me

+ Bandwidth Limit

BVT [Duda’99]

+ Grace Period

F
e
a
tu
re
 Reserva8ons ✔ ✔ ✔

Configurable

preemp8on ✖ ✔ ✔

Work

conserving ✔ ✖ ✔

M
e
m
ca
ch
e
d

1ms latency‐sensi1ve task

Achieved QoS with 2 low‐latency tasks Both meet QoS

1ms service fails

Memcached fails

Both fail to

meet QoS

QoS requirement

= 95th < 5x low‐load 95th

✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ✔

✔ ✔

✔

✔ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔

✔

✔ ✔

✔

✔ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔
✔ ✔
✔

✔

✔ ✔

✔

✔

✔

✔

✔ ✔

✔ ✔ ✔

✔

✔

✔ ✔ ✔

✔

Figure 9. Comparison of scheduling algorithms. “Reserva-

tions” indicates whether CPU time can be guaranteed for

distinct tasks. “Configuration Preemption” indicates whether

the scheduler allows the user to indicate which task may pre-

empt another. See Fig. 9 for axes on the QoS tables.

A B $me

Zzz..

1

L

A B
2

A’

w(A)

A’

Figure 10. A depiction of BVT run-queue when a task

wakes up. Task B is initially asleep. When it wakes up, it

gets placed L behind A, as it would with CFS. However,

since task A’s warp (w(A)) is larger than L, A does not get

preempted. Long-term throughput is still determined by the

tasks’ relative share weights.

We demonstrate the negative consequences of non-work-

conservation by repeating the experiment of Fig. 6, where

two latency-sensitive tasks are co-located on the same server,

but using the real-time SCHED FIFO scheduler for both

tasks instead of CFS. We assigned memcached a higher pri-

ority than the 1ms server (i.e., rate-monotonically). We as-

signed quotas to each of the two services proportional to

how high of QPS they were offered at each point (e.g., at

30%/30%, each service is given a quota of 50% of total

CPU time), and a period of 24ms (equal to CFS’s schedul-

ing period). The result is depicted in the middle column of

Fig. 9. In this configuration, the co-location is substantially

improved compared to the baseline CFS: there is a large

range of moderate loads where both services achieve ac-

ceptable QoS. Still, it leaves the server quite underutilized:

at least one service degrades when aggregate load exceeds

70%. The degradation is entirely due to the bandwidth limit

and non-work-conservation: even though CPU time is avail-

able, the services are prohibited from running by fiat.

4.3.4 Borrowed Virtual Time (BVT)

In contrast to CFS and the POSIX real-time schedulers, Bor-

rowed Virtual Time (BVT) [7] affords a more sensible op-

tion for operators looking to co-locate latency-sensitive tasks

with others. BVT extends virtual-time scheduling by adding

a user-provided “warp” parameter that specifies a static off-

set to be applied to a task’s virtual runtime when making

scheduling decisions; this adjusted virtual runtime is termed

effective virtual runtime. This adjustment biases short-term

preemption actions, but has minimal impact on long-term

throughput fairness, which is still dictated by the fair-share

weight assigned to different tasks. This behavior can be seen

in Fig. 10. Essentially, BVT allows preemption priority and

fair-share allocation to be controlled independently, rather

than being tightly coupled as in CFS.

We have implemented BVT as a concise patch to CFS3

(approx. 150 lines changed) which allows users to assign

a “warp” parameter for tasks (or CPU container groups).

We additionally added a simple extension to BVT that uses

Linux’s high-resolution tick infrastructure (HRTICK) to re-

evaluate scheduling decisions after a short grace period if a

waking task barely misses preempting the current running

task; this improves its worst-case scheduling error. Tasks

with a warp of 0 behave no differently than regular CFS.

The efficacy of BVT is readily apparent when the previous

square-wave and latency-sensitive service co-location exper-

iments are rerun using BVT as the scheduler. As seen in

Fig. 5, when memcached is run concurrently with the square-

wave antagonist using BVT, memcached no longer suffers

unacceptable tail latency at low loads. It is not until mem-

cached exceeds 50% load (and starts using more than its

fair-share of CPU time) that it begins to incur long latencies

due to wait-time. In addition, warp values can be assigned

rate-monotonically, much as priorities can be assigned rate-

monotonically in POSIX real-time scheduling. In the case

of co-locating memcached and a 1ms latency-sensitive ser-

vice, BVT achieves good QoS for both services up to high

aggregate load (80%-90%), as seen in Fig. 9.

Overall, there are several viable strategies to mitigate

scheduling delay for latency-sensitive services when co-

located with other workloads. When the co-located service

is merely “best-effort”, it is sufficient to run the latency-

sensitive service with high CFS shares. If the co-located

service is latency-sensitive or requires a guaranteed portion

or fair-share of CPU throughput, a general-purpose sched-

uler with support for latency-sensitive tasks, like BVT, is

required.

5. Co-location Benefits

The preceding sections have shown that a latency-sensitive

workload like memcached can be quite resilient to interfer-

ence caused by co-located workloads. In this section, we an-

3 https://gist.github.com/leverich/5913713

Memcached QPS (% of peak)

10% 30% 50% 70% 90%

Workload Memcached 95th-% Latency (usecs)

none 122 132 156 209 387

400.perlbench 141 161 195 270 474

470.lbm 325 302 309 380 642

mean 217 215 242 307 512

Workload CPU2006 Instr. per second (norm.)

400.perlbench 74% 42% 22% 10% 14%

401.bzip2 79% 48% 41% 17% 22%

403.gcc 75% 41% 23% 14% 18%

410.bwaves 65% 29% 17% 9% 10%

416.gamess 78% 49% 28% 17% 17%

429.mcf 77% 54% 38% 28% 26%

433.milc 80% 56% 38% 29% 26%

434.zeusmp 73% 43% 24% 13% 14%

450.soplex 86% 53% 34% 18% 22%

459.GemsFDTD 79% 56% 38% 24% 22%

470.lbm 76% 53% 35% 23% 23%

471.omnetpp 61% 48% 40% 28% 39%

geo. mean 75% 47% 30% 18% 20%

Workload Perf/TCO-$ improvement (%)

geo. mean 52% 29% 18% 11% 18%

TCO [29] / server = server + power (3yrs). server = $2,000,

power = (1 +K1 + L1 +K2 ∗ L1) ∗ U$,grid ∗ E.

K1/L1/K2 = 1.33/0.8/0.25, U$,grid = $0.08/kWh.

E = P * 24 hrs * 365 days * 3 yrs

Average power = P = 0.3 kW * (0.5 + 0.5∗CPU util.)

Table 2. Memcached tail latency and SPEC CPU2006 in-

struction throughput when co-located under a range of mem-

cached loads. Results are subsetted to save space, but the

means consider all benchmarks. Both memcached and SPEC

run on all 24 threads of the server and are timesharing. For

SPEC CPU throughput, all measurements are of instruc-

tion throughput normalized to the benchmark running alone.

Perf/TCO-$ improvement compares co-location to operating

distinct clusters for the two workloads.

alyze the additional utility (performance, power-efficiency,

and TCO) that can be extracted from clusters through co-

location, either by deploying other workloads onto an ex-

isting memcached cluster, or deploying memcached onto an

existing batch-compute cluster. We use a combined exper-

imental/analytical approach. We measure latency vs. QPS

for memcached with load varying 0% to 100%, while con-

currently running SPEC CPU2006 benchmarks on the same

server and measuring instruction throughput with Linux’s

perf tool (normalized to the benchmark running alone). We

utilize the techniques discussed in Sec. 4 to minimize the

interference between the co-located workloads. We use the

results to calculate the utility of co-location under two dif-

ferent scenarios explained below.

5.1 Facebook Scenario

The first scenario represents the opportunity in companies

like Facebook (see discussion in Sec. 2). Memcached is de-

ployed on a large number of dedicated servers that have long

periods of underutilization due to diurnal patterns and pro-

visioning for spikes. We’d like to reclaim the unused server

resources by also running other workloads (e.g., analytics)

as background tasks. Memcached is the high priority work-

load, and there should be no impact on its QoS.

Table 2 presents the analysis, where the columns repre-

sent the memcached service load (as % of peak). The top

portion of the table shows the 95th-percentile latency of

memcached with and without co-located workloads. While

this metric is affected by co-location, it never devolves into

asymptotic queuing delay. If the QoS constraint is 1msec,

we can co-locate memcached with other workloads at any

load. If the QoS limit is 0.5msec, the most memory inten-

sive workloads (470.lbm) can cause memcached to violate

its QoS at high load loads (90%). Hence, a conservative ap-

proach may be to disallow co-location in the rare case where

memcached reaches high levels of utilization.

The table also shows the performance achieved by the

SPEC workloads. Since CPU utilization closely matches

memcached load, we’d ideally expect a co-located work-

load to achieve (100-M)% of its peak throughput, where

M% is the memcached load. However, SPEC workloads

do not achieve ideal performance. 400.perlbench, for in-

stance, only achieves 74.1% throughput when memcached

is at 10% load. Curiously, many workloads (e.g., 401.bzip2)

achieve slightly higher throughput at 90% memcached load

compared to 70% load. We measured substantially fewer

context-switches at 90% load even though the request rate

was higher, indicating that memcached is servicing more

requests per wakeup, and may be the result of interrupt

rate throttling by the Intel 10GbE NIC. This results in less

time spent scheduling and context-switching and fewer TLB

flushes for the co-located workload.

Given the observations above, we calculate the benefit

of co-location by comparing the TCO of a single cluster

co-locating both of these workloads vs. operating two sep-

arate clusters for the two workloads. For the split scenario,

we size the cluster for SPEC to match the SPEC through-

put provided by the co-located cluster. For instance, if we

assume 12,000 servers for memcached and since 400.perl-

bench achieves 74.1% throughput when co-located with

memcached at 10% load, this throughput can be matched by

8,892 servers dedicated to running 400.perlbench. For TCO,

we use the methodology of Patel et al. [19, 29] to compute

the fully-burdened cost of power using the parameters in

Table 2 and the assumptions that (1) server capital cost is

$2,000, (2) server power consumption scales linearly with

CPU utilization, and static power is 50% of peak power, (3)

peak power consumption is 300W, and (4) datacenter PUE

is 1.25. This methodology takes into account the fact that a

Memcached QPS (% of peak)

50% 60% 70% 80% 90%

Workload Memcached 95th-% Latency (usecs)

none 156 176 210 250 360

400.perlbench 156 177 206 266 380

401.bzip2 156 181 213 268 402

403.gcc 162 183 217 282 457

429.mcf 186 228 318 4,246 6,775

459.GemsFDTD 201 253 408 6,335 6,896

470.lbm 208 274 449 7,799 6,429

mix 157 199 207 334 4,711

L3 µbench 156 197 246 5,400 4,944

Workload CPU2006 Instr. per second (norm.)

400.perlbench 99% 98% 98% 98% 98%

470.lbm 91% 90% 89% 88% 89%

mix 98% 98% 98% 96% 94%

geo. mean 98% 97% 96% 97% 97%

Table 3. Memcached tail latency and SPEC CPU2006 in-

struction throughput when co-located on distinct cores. Re-

sults are subsetted to save space, but the mean considers all

benchmarks. Each workload gets half of the cores of the

server. Memcached peak QPS is measured when running

alone on its half of the cores. Shaded cells indicate an un-

acceptable drop in QoS.

server operating at higher utilization consumes more power,

hence it has higher overall cost.

Despite the fact that SPEC workloads do not achieve ideal

performance when co-located with memcached, the TCO

benefit of co-location in all cases is positive and substan-

tial. When memcached operates at 10% load, the co-located

workloads achieve an average 75.4% of the throughput of an

equivalent-sized cluster (12,000 servers). To match this per-

formance with a separate cluster, it would cost an additional

52% increase in TCO, taking into account all capital and op-

erational expenses. To put it differently, it is as-if we achieve

the capability of 9,048 servers running SPEC at a 34% dis-

count (1- 1
.52+1

). Even at 90% load for memcached, there is

still a 18% TCO benefit to co-locating workloads.

5.2 Google Scenario

In the second scenario, we assume an underutilized clus-

ter similar to the 12,000-server cluster analyzed by Reiss

et al. [32] (20% CPU utilization, 40% memory utilization).

We conservatively assume that half (50%) of the CPU cores

in the cluster are utilized running some primary workload

and we would like to evaluate the benefit of deploying mem-

cached on the other available cores in order to take advantage

of the ∼0.5 PB of unallocated memory in the cluster.

Again, we evaluate the efficacy of co-location by compar-

ing a co-located cluster to a pair of separate clusters where

one cluster runs the existing primary workload (SPEC work-

loads at 50% core utilization) and the other cluster runs

memcached. The impact on latency and throughput of co-

location at various memcached loads is presented in Table 3.

For many workloads (perlbench, bzip2), the latency impact

of co-location is negligible. For others (lbm, mcf, etc.), sub-

stantial queuing delay is observed at loads above 70%, as

previously seen in Sec. 3.2.3. Moreover, the SPEC work-

loads in some cases also see a moderate slowdown (up to

12% for lbm). If we assume that 500 µsec 95th-% latency is

the maximum latency we are willing to tolerate from mem-

cached, and 10% is the maximum slowdown we are will-

ing to tolerate from the SPEC workloads, then the maximum

memcached load we can provision for co-located servers is

60% of peak (interference-aware provisioning).

Were we to build a separate memcached cluster to ac-

commodate this load, we would allow memcached to use

all of the cores of those servers. Thus, we would need to

increase the size of the cluster by an additional 30%, op-

timistically assuming that performance scales linearly with

cores. Put another way, if our original cluster is 12,000

servers large and 50% is occupied with SPEC workloads,

we can safely co-locate up 3,600 servers worth of addi-

tional memcached load to serve unallocated memory, and

guarantee good quality of service for both workloads. Tak-

ing into account TCO and the pessimistic power assump-

tion that the memcached service is always at 100% load, the

co-located cluster achieves 17% improvement in TCO com-

pared to two separate clusters with the same performance for

the two workloads. Also note that the Google cluster stud-

ied by Reiss et al. had 60% of memory unallocated; a sepa-

rate memcached cluster of this capacity would require 7,200

servers at substantially higher TCO.

6. Related Work

There have been several works addressing QoS for co-

located workloads in warehouse-scale datacenters [6, 22,

23, 43–45]. Several of these, including Paragon, Bubble-

Up, and Bubble-Flux, focus on identifying workloads which

interfere with each other and avoiding co-locating them to-

gether. Our work is distinct in that we (1) concretely describe

how this interference manifests in a canonical low-latency

workload, and (2) accommodate co-locations that may cause

substantial interference by considering the overall impact on

load provisioning in our analytical study. Other works focus

on minimizing latency or improving tail latency for specific

low-latency services [17, 27]. They accomplish this by by-

passing the OS and using user-level network stacks, which

complicates workload consolidation; these services would

invariably have low utilization during diurnal troughs, which

is counter-productive for the goals of this work. Tessella-

tion [3] and Akaros [33] improve QoS in operating systems

through radical changes to the kernel and process abstrac-

tions. Our work instead delves deep into the challenge of

co-locating workloads using existing OS abstractions, and

presents specific examples of where the epoll interface and

CFS fall short in Linux. Pisces [38] presents a holistic so-

lution to QoS for membase; however, they do not consider

workload co-location, just multi-tenancy for membase. Fi-

nally, hardware partitioning techniques have been studied

for caches [31, 36], hyper-threads [12], and memory chan-

nels [25, 26]. Those works are orthogonal to our own.

7. Conclusions

In this paper, we address the conflict between co-locating

workloads to increase the utilization of servers and the chal-

lenge of maintaining good quality-of-service for latency-

sensitive services. We showed that workload co-location

leads to QoS violations due to increases in queuing de-

lay, scheduling delay, and thread load imbalance. We also

demonstrated concretely how and why these vulnerabil-

ities manifest in a canonical low-latency service, mem-

cached, and described several strategies to mitigate the in-

terference due to them. Ultimately, we demonstrated that

latency-critical workloads like memcached can be aggres-

sively co-located with other workloads, achieve good QoS,

and that such co-location can improve a datacenter’s effec-

tive throughput per TCO-$ by up to 52%.

References

[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang,

and Mike Paleczny. Workload Analysis of a Large-Scale Key-

Value Store. SIGMETRICS, 2012.

[2] Luiz Andre Barroso. Warehouse-Scale Computing: Entering

the Teenage Decade. ISCA, 2011.

[3] Juan A. Colmenares et al. Tessellation: Refactoring the OS

Around Explicit Resource Containers with Continuous Adap-

tation. DAC, 2013.

[4] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.

Commununications of the ACM, 56(2):74–80, February 2013.

[5] Christina Delimitrou and Christos Kozyrakis. iBench: Quan-

tifying Interference for Datacenter Workloads. IISWC, 2013.

[6] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-

Aware Scheduling for Heterogeneous Datacenters. ASPLOS,

2013.

[7] Kenneth J Duda and David R Cheriton. Borrowed-Virtual-

Time (BVT) Scheduling: Supporting Latency-Sensitive

Threads in a General-Purpose Scheduler. SOSP, 1999.

[8] Frank C. Eigler, Vara Prasad, Will Cohen, Hien Nguyen, Mar-

tin Hunt, Jim Keniston, and Brad Chen. Architecture of Sys-

temtap: A Linux Trace/Probe Tool, 2005.

[9] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant,

Karthikeyan Sankaralingam, and Doug Burger. Dark

Silicon and the End of Multicore Scaling. ISCA, 2011.

[10] Gartner says efficient data center design can lead to 300 per-

cent capacity growth in 60 percent less space. http://www.

gartner.com/newsroom/id/1472714, 2010.

[11] Donald Gross, John F Shortle, James M Thompson, and

Carl M Harris. Fundamentals of Queueing Theory. Wiley,

2013.

[12] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Ronak Singhal,

Matt Merten, and Martin Dixon. SMT QoS: Hardware Pro-

totyping of Thread-level Performance Differentiation Mecha-

nisms. HotPar, 2012.

[13] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Gh-

odsi, Anthony D Joseph, Randy Katz, Scott Shenker, and Ion

Stoica. Mesos: A Platform for Fine-Grained Resource Sharing

in the Data Center. NSDI, 2011.

[14] Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a

Computer: An Introduction to the Design of Warehouse-Scale

Machines. Morgan and Claypool Publishers, 1st edition, 2009.

[15] Vimalkumar Jeyakumar, Mohammad Alizadeh, David

Mazières, Balaj i Prabhakar, Changhoon Kim, and Albert

Greenberg. EyeQ: Practical Network Performance Isolation

at the Edge. NSDI, 2013.

[16] James M Kaplan, William Forrest, and Noah Kindler. Revo-

lutionizing Data Center Energy Efficiency. Technical report,

McKinsey & Company, 2008.

[17] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M

Voelker, and Ãmin Vahdat. Chronos: Predictable Low Latency

for Data Center Applications. SOCC, 2012.

[18] David G Kendall. Stochastic Processes Occurring in the The-

ory of Queues and their Analysis by the Method of the Imbed-

ded Markov Chain. The Annals of Mathematical Statistics,

1953.

[19] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang,

Chandrakant Patel, Trevor Mudge, and Steven Reinhardt. Un-

derstanding and designing new server architectures for emerg-

ing warehouse-computing environments. ISCA, 2008.

[20] Chung Laung Liu and James W Layland. Scheduling Algo-

rithms for Multiprogramming in a Hard-Real-Time Environ-

ment. Journal of the ACM, 20(1):46–61, 1973.

[21] Huan Liu. A Measurement Study of Server Utilization in Pub-

lic Clouds. In Proc. of the Intl. Conference on Dependable,

Autonomic and Secure Computing, 2011.

[22] Jason Mars, Lingjia Tang, and Robert Hundt. Heterogene-

ity in “Homogeneous” Warehouse-Scale Computers: A Per-

formance Opportunity. IEEE Computer Architecture Letters,

10(2), 2011.

[23] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and

Mary Lou Soffa. Bubble-Up: Increasing Utilization in Mod-

ern Warehouse Scale Computers via Sensible Co-locations. In

Proc. of the Intl. Symposium on Microarchitecture, 2011.

[24] David Meisner, Junjie Wu, and Thomas F Wenisch. Big-

House: A Simulation Infrastructure for Data Center Systems.

ISPASS, 2012.

[25] Onur Mutlu and Thomas Moscibroda. Stall-Time Fair Mem-

ory Access Scheduling for Chip Multiprocessors. In Proc. of

the Intl. Symposium on Microarchitecture, 2007.

[26] Kyle J. Nesbit, Nidhi Aggarwal, James Laudon, and James E.

Smith. Fair Queuing Memory Systems. In Proc. of the Intl.

Symposium on Microarchitecture, 2006.

[27] John Ousterhout et al. The Case for RAMClouds: Scalable

High-Performance Storage Entirely in DRAM. ACM SIGOPS

Operating Systems Review, 43(4), 2010.

[28] Chandandeep Singh Pabla. Completely fair scheduler. Linux

Journal, 2009(184):4, 2009.

[29] Chandrakant D. Patel and Amip J. Shah. Cost Model for Plan-

ning, Development and Operation of a Data Center. Technical

report HPL-2005-107R1, Hewlett-Packard Labs, 2005.

[30] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and

Robert T Morris. Improving Network Connection Locality

on Multicore Systems. EuroSys, 2012.

[31] Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache

Partitioning: A Low-Overhead, High-Performance, Runtime

Mechanism to Partition Shared Caches. In Proc. of the Intl.

Symposium on Microarchitecture, 2006.

[32] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H

Katz, and Michael A Kozuch. Heterogeneity and Dynamicity

of Clouds at Scale: Google Trace Analysis. SOCC, 2012.

[33] Barret Rhoden, Kevin Klues, David Zhu, and Eric Brewer.

Improving Per-Node Efficiency in the Datacenter with New

OS Abstractions. SOCC, 2011.

[34] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Anan-

thakrishnan, and Eliezer Weissmann. Power-Management Ar-

chitecture of the Intel Microarchitecture Code-named Sandy

Bridge. IEEE Micro, 32(2), 2012.

[35] Paul Saab. Scaling memcached at Facebook. https://

www.facebook.com/note.php?note_id=39391378919,

December 2008.

[36] Daniel Sanchez and Christos Kozyrakis. Scalable and Effi-

cient Fine-Grained Cache Partitioning with Vantage. IEEE

Micro’s Top Picks, 32(3), May-June 2012.

[37] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-

Malek, and John Wilkes. Omega: Flexible, Scalable Sched-

ulers for Large Compute Clusters. EuroSys, 2013.

[38] David Shue, Michael J Freedman, and Anees Shaikh. Perfor-

mance Isolation and Fairness for Multi-Tenant Cloud Storage.

OSDI, 2012.

[39] Paul Turner, Bharata B Rao, and Nikhil Rao. CPU Bandwidth

Control for CFS. Linux Symposium, 2010.

[40] Arunchandar Vasan, Anand Sivasubramaniam, Vikrant

Shimpi, T Sivabalan, and Rajesh Subbiah. Worth Their

Watts?–An Empirical Study of Datacenter Servers. HPCA,

2010.

[41] VMware. VMware Infrastructure: Resource Management

with VMware DRS. White paper, VMware, 2006.

[42] Wenji Wu, Phil DeMar, and Matt Crawford. Why Can Some

Advanced Ethernet NICs Cause Packet Reordering? IEEE

Communications Letters, 15(2):253–255, 2011.

[43] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael

Bailey. Bobtail: Avoiding Long Tails in the Cloud. NSDI,

2013.

[44] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang.

Bubble-Flux: Precise Online QoS Management for Increased

Utilization in Warehouse Scale Computers. ISCA, 2013.

[45] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo

Gokhale, and John Wilkes. CPI2: CPU Performance Isolation

for Shared Compute Clusters. EuroSys, 2013.

