
http://www.c2s2.org

Convolution Engine:
 Balancing Efficiency & Flexibility in
 Specialized Computing

Wajahat Qadeer, Rehan Hameed,
Ofer Shacham,

Preethi Venkatesan, Christos Kozyrakis, Mark Horowitz
Stanford University

That’s me

Did the heavy lifting but
could not come today

Smile, you’re on camera
 By show of hands, who here has

an (HD) camera on them?
 How many CPU’s/GPU’s in the

room?
 How many of those xPU’s are

used for the image processing?

ISCA'13 shacham@alumni.stanford.edu 2

Imaging and video systems
 High computational requirements, low power budget
 Stills: ~10M pixels x 10 frames per second
 Video: ~2M pixels x 30 frames per second
 ~400 math operations per pixel (just for the image acquisition)

 On CPU… not enough horse power

 On GPU… too much power

 Typically use special purpose custom HW
 About 500X better performance, 500X lower energy than CPU

ISCA'13 shacham@alumni.stanford.edu 3

Example: H.264 encoder on RISC vs. ASIC
 By coupling compute and storage closely together, ASIC’s are

orders of magnitude performance and energy more efficient

ISCA'13 shacham@alumni.stanford.edu 4

100

1000

10000

100000

1000000

10000000

IME FME IP CABAC

En
er

gy
 (u

J)

RISC
ASIC

Sub-kernel-1 Sub-kernel-2 Sub-kernel-3 Sub-kernel-4

* R. Hameed et. al., Understanding Sources of Inefficiency in General-Purpose Chips. ISCA ’10

2-3 orders of magnitude

We are solving the wrong problem!
 Yes, ASIC is 1000X more efficient than general purpose
 Yes, general purpose is more programmable than ASIC
 Yes, we can make each one marginally better

 But those are good answers to all the wrong questions!

 The right questions:
 Why is the RISC energy so high?
 What type of computation can we make efficient?
 Can we make it just 100X better but keep it programmable?

ISCA'13 shacham@alumni.stanford.edu 5

Anatomy of a RISC Instruction

ISCA'13 6 shacham@alumni.stanford.edu

ADD 70 pJ

* Assuming a typical 32-bit embedded RISC in 45mn @ 0.9V technology

Energy of a 32-bit ADD ≈ 0.5 pJ I-Cache access

Register file access

25pJ 4pJ Control

Control overheads
(Instr Decode, sequencing, pipeline

management, clocking, ….)

Other instructions overhead

ISCA'13 7 shacham@alumni.stanford.edu

* Assuming a typical 32-bit embedded RISC in 45mn @ 0.9V technology

25pJ 4pJ Control

25pJ 4pJ Control

25pJ 4pJ Control

25pJ 4pJ Control

25pJ 4pJ Control

ADD

ST

BR

LD

LD
Overhead
instructions

Overhead
instructions

D-Cache accesses overhead

ISCA'13 8 shacham@alumni.stanford.edu

* Assuming a typical 32-bit embedded RISC in 45mn @ 0.9V technology

25pJ 4pJ Control

25pJ 4pJ Control

25pJ 4pJ Control

25pJ 4pJ Control

25pJ 4pJ Control

D-Cache access
overheads

25pJ

25pJ

25pJ

ADD

ST

BR

LD

LD

SIMD machines give some improvement
 SIMD units amortize overhead and improve performance

 Achieves 10X better energy and performance AND is programmable

 Can we do 100X and keep it programmable?

ISCA'13 9 shacham@alumni.stanford.edu

I-Cache RF Control ADD

I-Cache RF Control SIMD ADD

Energy efficiency in a programmable environment

Each memory and instruction fetch must be
amortized by hundreds of operations

ISCA'13 10 shacham@alumni.stanford.edu

What we want to see

ISCA'13 11 shacham@alumni.stanford.edu

I-Cache Reg File Control D-Cache

OP

ST

LD

I-Cache Reg File Control D-Cache

OP
OP

OP

OP
OP

I-Cache Reg File Control
I-Cache Reg File Control
I-Cache Reg File Control

I-Cache Reg File Control
I-Cache Reg File Control
I-Cache Reg File Control

D-Cache accesses much
narrower than functional path

Many ops per instruction
Many ALU instructions
per LD/ST instruction

Image processing looks like convolution
 Most of the computation is performed over (overlapping) stencils

 Looks like convolution:

ISCA'13 shacham@alumni.stanford.edu 12

Out

() ∑∑
−= −=

−−⋅=⊗
c

cl

c

ck
lmknlkmn fImgfImg],[],[],[

In

coefficients

x

Image processing looks like convolution
 Most of the computation is performed over (overlapping) stencils

 Looks like convolution:

ISCA'13 shacham@alumni.stanford.edu 13

Out In

coefficients

x

() ∑∑
−= −=

−−⋅=⊗
c

cl

c

ck
lmknlkmn fImgfImg],[],[],[

Image processing looks like convolution
 Most of the computation is performed over (overlapping) stencils

 Looks like convolution:

ISCA'13 shacham@alumni.stanford.edu 14

Out In

coefficients

x

() ∑∑
−= −=

−−⋅=⊗
c

cl

c

ck
lmknlkmn fImgfImg],[],[],[

It does not have to be convolution
 It only looks like convolution:

ISCA'13 shacham@alumni.stanford.edu 15

Out

()[][]],[],[
],[

, lmknlk
c

ck
c
cl

mn

CE
fImgmapReduceReducefImg −−−=−=="

#
$

%
&
' ⊗

In

coefficients

re
du

ce

map

Let’s look at some convolution-like workloads
 De-mosaic:
 Adaptive color plane interpolation (ACPI)*: image gradients

followed by a three-tap filter in the direction of smallest gradient.

ISCA'13 shacham@alumni.stanford.edu 16

* Y. Cheng et. al. An adaptive color plane interpolation method based on edge detection. Journal of Electronics (China), 2007.

Let’s look at more convolution-like workloads
 H.264 (high definition) video encoder:
  IME: 2D-Sum of absolute differences
 FME: Half pixel interpolation, quarter pixel interpolation, 2D SAD

ISCA'13 shacham@alumni.stanford.edu 17

Inter
Prediction

Intra
Prediction

CABAC
Entropy
Encoder

Video
Frames

Compressed
Bit Stream

Integer
Motion

Estimation

Fractional
Motion

Estimation

90% of execution time is here

The main computation behind H.264
 Trying to find best match for a stencil within a small neighborhood

ISCA'13 shacham@alumni.stanford.edu 18

Current Frame Previous Frame

The convolution engine must support different ops

Map Reduce Stencil Size Data Flow
IME SAD Abs Diff Add 4x4 2D Convolution
FMW ½ pixel up-sample Multiply Add 6 1D Horizontal & vertical conv.
FME ¼ pixel up-sample Average None -- 2D Matrix operation
SIFT Gaussian blur Multiply Add 9, 13, 15 1D Horizontal & vertical conv.
SIFT DoG Subtract None -- 2D Matrix operation
SIFT Extreme Compare Logic AND 3 1D Horizontal & vertical conv.
Demosaic interpolation Multiply Complex 3 1D Horizontal & vertical conv.

ISCA'13 shacham@alumni.stanford.edu 19

Convolution Engine:
An architecture for convolution-like kernels

ISCA'13 20 shacham@alumni.stanford.edu

Arithmetic / Logical reduction

ALU ALU ALU ALU

Flexible
“reduce” step

Wide 64-
lane SIMD
“map” unit

2D Regfile 2D shift
Regfile

0 1 15 0
0 1 15 1

0 1 15 15

0 1 15 0
0 1 15 1

0 1 15 15

16 17 31
16 17 31

16 17 31

Coefficients
Stencil

neighborhood

Example from H.264’s motion estimation:
Mapping Sum of Absolute Differences (SAD)

ISCA'13 21 shacham@alumni.stanford.edu

Arithmetic / Logical reduction

ALU ALU ALU ALU

Wide 64-
lane SIMD
“map” unit

2D Regfile 2D shift
Regfile

Current
frame pixels

Reference
frame pixels

Flexible
“reduce” step

0 1 15 0
0 1 15 1

0 1 15 15

0 1 15 0
0 1 15 1

0 1 15 15

16 17 31
16 17 31

16 17 31

Example from H.264’s motion estimation:
Mapping Sum of Absolute Differences (SAD)

ISCA'13 22 shacham@alumni.stanford.edu

-

ABS

-

ABS

-

ABS

-

ABS

2D Regfile

Wide 64-
lane SIMD
“map” unit

2D shift
Regfile

Current
frame pixels

Reference
frame pixels

ALU’s
instruction
set to |a-b|

Arithmetic / Logical reduction Flexible
“reduce” step

0 1 15 0
0 1 15 1

0 1 15 15

0 1 15 0
0 1 15 1

0 1 15 15

16 17 31
16 17 31

16 17 31

Example from H.264’s motion estimation:
Mapping Sum of Absolute Differences (SAD)

ISCA'13 23 shacham@alumni.stanford.edu

-

ABS

-

ABS

-

ABS

-

ABS

Sum (Reduction)

2D Regfile

Wide 64-
lane SIMD
“map” unit

2D shift
Regfile

Current
frame pixels

Reference
frame pixels

ALU’s
instruction
set to |a-b|

Summation
tree

Flexible
“reduce” step

pixels
shift left

0 1 15 0
0 1 15 1

0 1 15 15

0 1 15 0
0 1 15 1

0 1 15 15

16 17 31
16 17 31

16 17 31

Example from H.264’s motion estimation:
Mapping Sum of Absolute Differences (SAD)

ISCA'13 24 shacham@alumni.stanford.edu

-

ABS

-

ABS

-

ABS

-

ABS

Sum (Reduction)

Wide 64-
lane SIMD
“map” unit

2D Regfile 2D shift
Regfile

Reference
frame pixels

pixels
shift left

Flexible
“reduce” step

0 1 15 0
0 1 15 1

0 1 15 15

1 2 16 0
1 2 16 1

1 2 16 15

17 18 0
17 18 0

17 18 0

31
31

31

Example from H.264’s motion estimation:
Mapping Sum of Absolute Differences (SAD)

ISCA'13 25 shacham@alumni.stanford.edu

-

ABS

-

ABS

-

ABS

-

ABS

Sum (Reduction)

Wide 64-
lane SIMD
“map” unit

2D Regfile 2D shift
Regfile

Reference
frame pixels

pixels
shift left

Flexible
“reduce” step

0 1 15 0
0 1 15 1

0 1 15 15

2 3 17 0
2 3 17 1

2 3 17 15

18 19 1
17 19 1

18 19 1

0
0

0

Example from H.264’s motion estimation:
Mapping Sum of Absolute Differences (SAD)

ISCA'13 26 shacham@alumni.stanford.edu

-

ABS

-

ABS

-

ABS

-

ABS

Sum (Reduction)

Wide 64-
lane SIMD
“map” unit

2D Regfile 2D shift
Regfile

Reference
frame pixels

pixels
shift left

We performed
4K ops before
the next load!

P
ix

el
s

sh
ift

 u
p

Flexible
“reduce” step

0 1 15 0
0 1 15 1

0 1 15 15

16 17 31 0
16 17 31 1

16 17 31 15

0 1 15
0 1 15

0 1 15

14
14

14

Example from H.264’s motion estimation:
Mapping Sum of Absolute Differences (SAD)

ISCA'13 27 shacham@alumni.stanford.edu

-

ABS

-

ABS

-

ABS

-

ABS

Sum (Reduction)

Wide 64-
lane SIMD
“map” unit

2D Regfile 2D shift
Regfile

Reference
frame pixels

Flexible
“reduce” step

P
ix

el
s

sh
ift

 u
p

0 1 15 0
0 1 15 1

0 1 15 15

16 17 31 1

15

0 1 15 14

16
16 17 31 0 1 15 14

Example from H.264’s motion estimation:
Mapping Sum of Absolute Differences (SAD)

ISCA'13 28 shacham@alumni.stanford.edu

-

ABS

-

ABS

-

ABS

-

ABS

Sum (Reduction)

Wide 64-
lane SIMD
“map” unit

2D Regfile 2D shift
Regfile

load just
one row
of data

Reference
frame pixels

ready for pixels to
start shifting again

Flexible
“reduce” step

0 1 15 0
0 1 15 1

0 1 15 15

16 17 31 1

16 17 31
15

18 19 15

0 1 15

14

14 16
16 17 31 0 1 15 14

Our Convolution Engine as implemented

ISCA'13 29 shacham@alumni.stanford.edu

“Map”

Flexible “Reduce”

2D Register 2D Shift Register

ALU ALU ALU ALU

18 entries
16 wide

10-bit pixel

16 x
10bit lane

1D Shift Register

2D / Column Access IF 2D / Column
Access IF

40 x 10-bit

16x16x10-
bit 16x36x10-bit

1D Window Access IF

16-wide
Regfile

16-way
SIMD

ALU ALU

Get full implementation details in the paper:

•  How we accomplished complex reduce
steps using a “fused instructions graph”

•  How we work on BIG stencils by
combining multiple convolution slices

•  The details of the ISA for the engine

•  And so on, and so forth…

Result #1:
 CE is user programmable in C!

ISCA'13 30 shacham@alumni.stanford.edu

SET_CE_OPS (CE_ABSDIFF, CE_ADD); // Set map & reduce funcs to abs-diff and add
SET_CE_OPSIZE(16); // Set convolution size 16x16

// Load the 16x16 current macroblock into 2D coefficients register
for (int i=0; i<16; i++ {

 LD_COEFF_REG_128(curMBPtr, i); // Load 16 pixels to row i of coefficient register
 curMBPtr += imgWidth;

}
// Load the first 32x16 current reference window into 2D input register
for (int i=0; i<16; i++ {

 LD_2D_REG_128(refPtr, 0, SHIFT_ENABLED); // Load & shift-up 16 pixels to 2D Reg
 LD_2D_REG_128(refPtr+16, 1, SHIFT_DISABLED); // Load next 16 pixels
 refPtr += imgWidth;

}
// Calculate one row of SAD output
for (int x = 0; x < 16; x++) {

 CONVOLVE_2D(ROTATE_LEFT, x); // 16x16 2D convolution step and shift left
}
// Store 16 output SAD results
ST_OUT_REG_128(outPtr);

0.1

1.0

10.0

100.0

SIFT - DoG SIFT-Extrema H.264 - FME H.264- IME Demosaic

En
er

gy
 N

or
m

ali
ze

d
To

 C
us

to
m

(L

ow
er

 is
 b

et
te

r)

SIMD Convolution Engine Custom

Programmable
Convolution enigne

Result #2:
 CE is 100X more energy efficient than RISC

 All variations were implemented as Tensilica extensions (TIE)

shacham@alumni.stanford.edu ISCA'13 31

8 lane 16bit or 16 lane
8bit SIMD

~10X

~3X

Does not do
“real time”

Fixed accelerator

Conclusions
 There are classes of computations for which we can build efficient

hardware, and we typically build them in ASIC

 Image and video are ubiquitous and represents one of those
classes as their computation is convolution-like

 But when we restrict the domain, two orders of magnitude better
programmable engines are also possible!

 Flexible specialized engines are not an oxymoron
 Flexible convolution engine improves power & performance by ~100X
 Only 2-3X worse off than a dedicated (not flexible) accelerator

ISCA'13 shacham@alumni.stanford.edu 32

THANK YOU FOR LISTENING!

ISCA'13 33 shacham@alumni.stanford.edu

BACKUP SLIDES…

ISCA'13 34 shacham@alumni.stanford.edu

Energy dissipation in RISC machines

 Let’s do a breakdown of a typical RISC Instruction

 Keep in mind (at 45nm):
 Addition is ~0.1pJ for 8bits (ASIC) or ~0.5pJ for 32bits (RISC)
 Multiplication is ~0.2pJ for 8bits (ASIC) or ~3.1pJ for 32bits (RISC)
 But a single RISC instruction is 70pJ

 Need to see where the overhead is, and how we can mitigate it

ISCA'13 shacham@alumni.stanford.edu 35

Processor Integration
 Specialized Functional Unit
 Adds about 30 instructions to the processor ISA
 The execution flow is controlled by the processor

ISCA'13 shacham@alumni.stanford.edu 36

Processor Core

32-bit ALU

Register File

Integer FU

Compute

Register Storage

Convolution Engine
Instruction Decode

Pipeline
Management

Program
Sequencing

Evaluating the Convolution Engine
 Applications
 SIFT Feature extraction
 Often a basic step for computational photography algorithms

  HDR Imaging
  Panorama stitching
  Smart zoom / Super resolution
  Multi-frame noise reduction
  Synthetic aperture
  Augmented reality
  Flash – No-Flash photography
  Video de-shake
  ……

 H.264 encoder
 Every video system has one

37 ISCA'13 shacham@alumni.stanford.edu

Let’s look at some of the workloads
 De-mosaic:
 Adaptive color plane interpolation (ACPI)*: image gradients

followed by a three-tap filter in the direction of smallest gradient.

ISCA'13 shacham@alumni.stanford.edu 38

* Y. Cheng et. al. An adaptive color plane interpolation method based on edge detection. Journal of
Electronics (China), 2007.

