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That’s me  

Did the heavy lifting but 
could not come today 



Smile, you’re on camera 
 By show of hands, who here has 

an (HD) camera on them? 
 How many CPU’s/GPU’s in the 

room? 
 How many of those xPU’s are 

used for the image processing? 
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Imaging and video systems 
 High computational requirements, low power budget 
 Stills: ~10M pixels  x  10 frames per second 
 Video: ~2M pixels  x  30 frames per second 
 ~400 math operations per pixel (just for the image acquisition) 

 On CPU… not enough horse power 

 On GPU… too much power 

 Typically use special purpose custom HW 
 About 500X better performance, 500X lower energy than CPU 

ISCA'13 shacham@alumni.stanford.edu 3 



Example: H.264 encoder on RISC vs. ASIC 
 By coupling compute and storage closely together, ASIC’s are 

orders of magnitude performance and energy more efficient 

ISCA'13 shacham@alumni.stanford.edu 4 

100 

1000 

10000 

100000 

1000000 

10000000 

IME FME IP CABAC 

En
er

gy
 (u

J)
 

RISC 
ASIC 

Sub-kernel-1 Sub-kernel-2 Sub-kernel-3 Sub-kernel-4 

* R. Hameed et. al., Understanding Sources of Inefficiency in General-Purpose Chips. ISCA ’10 

2-3 orders of magnitude 



We are solving the wrong problem! 
 Yes, ASIC is 1000X more efficient than general purpose 
 Yes, general purpose is more programmable than ASIC 
 Yes, we can make each one marginally better 

 But those are good answers to all the wrong questions! 

 The right questions: 
 Why is the RISC energy so high? 
 What type of computation can we make efficient? 
 Can we make it just 100X better but keep it programmable? 
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Anatomy of a RISC Instruction 
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ADD 70 pJ 

* Assuming a typical 32-bit embedded RISC in 45mn @ 0.9V technology  

Energy of a 32-bit ADD ≈ 0.5 pJ I-Cache access 

Register file access 

25pJ 4pJ Control 

Control overheads 
(Instr Decode, sequencing, pipeline 

management, clocking,  ….)  



Other instructions overhead 
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D-Cache accesses overhead 
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SIMD machines give some improvement 
 SIMD units amortize overhead and improve performance 

 Achieves 10X better energy and performance AND is programmable 

 Can we do 100X and keep it programmable? 

ISCA'13 9 shacham@alumni.stanford.edu 

I-Cache RF Control ADD 

I-Cache RF Control SIMD ADD 



Energy efficiency in a programmable environment 

 
 

Each memory and instruction fetch must be 
amortized by hundreds of operations 
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What we want to see 
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I-Cache Reg File Control D-Cache 

OP 

ST 

LD 

I-Cache Reg File Control D-Cache 

OP 
OP 

OP 

OP 
OP 

I-Cache Reg File Control 
I-Cache Reg File Control 
I-Cache Reg File Control 

I-Cache Reg File Control 
I-Cache Reg File Control 
I-Cache Reg File Control 

D-Cache accesses much 
narrower than functional path 

Many ops per instruction 
Many ALU instructions 
per LD/ST instruction 



Image processing looks like convolution 
 Most of the computation is performed over (overlapping) stencils 

 Looks like convolution: 
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Image processing looks like convolution 
 Most of the computation is performed over (overlapping) stencils 

 Looks like convolution: 
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Image processing looks like convolution 
 Most of the computation is performed over (overlapping) stencils 

 Looks like convolution: 
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It does not have to be convolution 
 It only looks like convolution: 
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Let’s look at some convolution-like workloads 
 De-mosaic: 
 Adaptive color plane interpolation (ACPI)*: image gradients 

followed by a three-tap filter in the direction of smallest gradient. 
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* Y. Cheng et. al. An adaptive color plane interpolation method based on edge detection.  Journal of Electronics (China), 2007.  



Let’s look at more convolution-like workloads  
 H.264 (high definition) video encoder: 
  IME: 2D-Sum of absolute differences 
 FME: Half pixel interpolation, quarter pixel interpolation, 2D SAD 
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The main computation behind H.264 
 Trying to find best match for a stencil within a small neighborhood 
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Current Frame Previous Frame 



The convolution engine must support different ops 

Map Reduce Stencil Size Data Flow 
IME SAD Abs Diff Add 4x4 2D Convolution 
FMW ½ pixel up-sample Multiply Add 6 1D Horizontal & vertical conv. 
FME ¼ pixel up-sample Average None -- 2D Matrix operation 
SIFT Gaussian blur Multiply Add 9, 13, 15 1D Horizontal & vertical conv. 
SIFT DoG Subtract None --  2D Matrix operation 
SIFT Extreme Compare Logic AND 3 1D Horizontal & vertical conv. 
Demosaic interpolation Multiply Complex 3 1D Horizontal & vertical conv. 
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Convolution Engine: 
An architecture for convolution-like kernels 
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Example from H.264’s motion estimation:  
Mapping Sum of Absolute Differences (SAD) 
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Example from H.264’s motion estimation:  
Mapping Sum of Absolute Differences (SAD) 
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Example from H.264’s motion estimation:  
Mapping Sum of Absolute Differences (SAD) 
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Example from H.264’s motion estimation:  
Mapping Sum of Absolute Differences (SAD) 
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Example from H.264’s motion estimation:  
Mapping Sum of Absolute Differences (SAD) 
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Example from H.264’s motion estimation:  
Mapping Sum of Absolute Differences (SAD) 
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Example from H.264’s motion estimation:  
Mapping Sum of Absolute Differences (SAD) 
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Example from H.264’s motion estimation:  
Mapping Sum of Absolute Differences (SAD) 
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Our Convolution Engine as implemented 
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Get full implementation details in the paper: 

•  How we accomplished complex reduce 
steps using a “fused instructions graph” 

•  How we work on BIG stencils by 
combining multiple convolution slices  

•  The details of the ISA for the engine 

•  And so on, and so forth… 



Result #1:  
 CE is user programmable in C! 
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SET_CE_OPS (CE_ABSDIFF, CE_ADD);  // Set map & reduce funcs to abs-diff and add 
SET_CE_OPSIZE(16);         // Set convolution size 16x16 
 
// Load the 16x16 current macroblock into 2D coefficients register 
for (int i=0; i<16; i++ {   

 LD_COEFF_REG_128(curMBPtr, i);    // Load 16 pixels to row i of coefficient register 
 curMBPtr += imgWidth; 

} 
// Load the first 32x16 current reference window into 2D input register 
for (int i=0; i<16; i++ {   

 LD_2D_REG_128(refPtr, 0, SHIFT_ENABLED);   // Load & shift-up 16 pixels to 2D Reg     
 LD_2D_REG_128(refPtr+16, 1, SHIFT_DISABLED);  // Load next 16 pixels 
 refPtr += imgWidth; 

} 
// Calculate one row of SAD output  
for (int x = 0; x < 16; x++) { 

 CONVOLVE_2D(ROTATE_LEFT, x);    // 16x16 2D convolution step and shift left  
}    
// Store 16 output SAD results 
ST_OUT_REG_128(outPtr); 
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Result #2:  
 CE is 100X more energy efficient than RISC 

 All variations were implemented as Tensilica extensions (TIE) 
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Conclusions 
 There are classes of computations for which we can build efficient 

hardware, and we typically build them in ASIC 

 Image and video are ubiquitous and represents one of those 
classes as their computation is convolution-like 

 But when we restrict the domain, two orders of magnitude better 
programmable engines are also possible! 

 Flexible specialized engines are not an oxymoron 
 Flexible convolution engine improves power & performance by ~100X 
 Only 2-3X worse off than a dedicated (not flexible) accelerator 
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THANK YOU FOR LISTENING! 
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BACKUP SLIDES… 
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Energy dissipation in RISC machines 

 Let’s do a breakdown of a typical RISC Instruction 

 Keep in mind (at 45nm): 
 Addition is ~0.1pJ for 8bits (ASIC) or ~0.5pJ for 32bits (RISC) 
 Multiplication is ~0.2pJ for 8bits (ASIC) or ~3.1pJ for 32bits (RISC) 
 But a single RISC instruction is 70pJ 

 Need to see where the overhead is, and how we can mitigate it 
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Processor Integration 
 Specialized Functional Unit 
 Adds about 30 instructions to the processor ISA 
 The execution flow is controlled by the processor 
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Evaluating the Convolution Engine 
 Applications 
 SIFT Feature extraction 
 Often a basic step for computational photography algorithms 

  HDR Imaging 
  Panorama stitching 
  Smart zoom / Super resolution 
  Multi-frame noise reduction 
  Synthetic aperture 
  Augmented reality 
  Flash – No-Flash photography 
  Video de-shake 
  …… 

 H.264 encoder 
 Every video system has one 
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Let’s look at some of the workloads 
 De-mosaic: 
 Adaptive color plane interpolation (ACPI)*: image gradients 

followed by a three-tap filter in the direction of smallest gradient. 
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* Y. Cheng et. al. An adaptive color plane interpolation method based on edge detection.  Journal of 
Electronics (China), 2007.  


