
SCD: A Scalable Coherence Directory with Flexible Sharer Set Encoding

Daniel Sanchez and Christos Kozyrakis

Stanford University

{sanchezd, kozyraki}@stanford.edu

Abstract

Large-scale CMPs with hundreds of cores require a

directory-based protocol to maintain cache coherence. How-

ever, previously proposed coherence directories are hard to

scale beyond tens of cores, requiring either excessive area

or energy, complex hierarchical protocols, or inexact repre-

sentations of sharer sets that increase coherence traffic and

degrade performance.

We present SCD, a scalable coherence directory that re-

lies on efficient highly-associative caches (such as zcaches)

to implement a single-level directory that scales to thousands

of cores, tracks sharer sets exactly, and incurs negligible

directory-induced invalidations. SCD scales because, unlike

conventional directories, it uses a variable number of direc-

tory tags to represent sharer sets: lines with one or few shar-

ers use a single tag, while widely shared lines use additional

tags, so tags remain small as the system scales up. We show

that, thanks to the efficient highly-associative array it relies

on, SCD can be fully characterized using analytical models,

and can be sized to guarantee a negligible number of evic-

tions independently of the workload.

We evaluate SCD using simulations of a 1024-core CMP.

For the same level of coverage, we find that SCD is 13× more

area-efficient than full-map sparse directories, and 2× more

area-efficient and faster than hierarchical directories, while

requiring a simpler protocol. Furthermore, we show that

SCD’s analytical models are accurate in practice.

1. Introduction

As Moore’s Law enables chip-multiprocessors (CMPs)

with hundreds of cores [15, 28, 30], implementing coherent

cache hierarchies becomes increasingly difficult. Snooping

cache coherence protocols work well in small-scale systems,

but do not scale beyond a handful of cores due to their large

bandwidth overheads, even with optimizations like snoop fil-

ters [18]. Large-scale CMPs require a directory-based pro-

tocol, which introduces a coherence directory between the

private and shared cache levels to track and control which

caches share a line and serve as an ordering point for con-

current requests. However, while directory-based protocols

scale to hundreds of cores and beyond, implementing direc-

tories that can track hundreds of sharers efficiently has been

problematic. Prior work on thousand-core CMPs shows that

hardware cache coherence is important at that scale [18, 20],

and hundred-core directory-coherent CMPs are already on

the market [30], stressing the need for scalable directories.

Ideally, a directory should satisfy three basic require-

ments. First, it should maintain sharer information while im-

posing small area, energy and latency overheads that scale

well with the number of cores. Second, it should represent

sharer information accurately — it is possible to improve di-

rectory efficiency by allowing inexact sharer information, but

this causes additional traffic and complicates the coherence

protocol. Third, it should introduce a negligible amount of

directory-induced invalidations (those due to limited direc-

tory capacity or associativity), as they can significantly de-

grade performance.

Proposed directory organizations make different trade-

offs in meeting these properties, but no scheme satisfies

all of them. Traditional schemes scale poorly with core

count: Duplicate-tag directories [2, 29] maintain a copy of

all tags in the tracked caches. They incur reasonable area

overheads and do not produce directory-induced invalida-

tions, but their highly-associative lookups make them very

energy-inefficient with a large number of cores. Sparse di-

rectories [13] are associative, address-indexed arrays, where

each entry encodes the set of sharers, typically using a bit-

vector. However, sharer bit-vectors grow linearly with the

number of cores, making them area-inefficient in large sys-

tems, and their limited size and associativity can produce sig-

nificant directory-induced invalidations. For this reason, set-

associative directories tend to be significantly oversized [10].

There are two main alternatives to improve sparse directory

scalability. Hierarchical directories [31, 33] implement mul-

tiple levels of sparse directories, with each level tracking the

lower-level sharers. This way, area and energy grow loga-

rithmically with the number of cores. However, hierarchi-

cal organizations impose additional lookups on the critical

path, hurting latency, and more importantly, require a more

complex hierarchical coherence protocol [31]. Alternatively,

many techniques have been explored to represent sharer sets

inexactly through coarse-grain bit-vectors [13], limited point-

ers [1, 6], Tagless directories [35] and SPACE [36]. Unfortu-

nately, these methods introduce additional traffic in the form

of spurious invalidations, and often increase coherence pro-

tocol complexity [35].

In this paper, we present the Scalable Coherence Direc-

tory (SCD), a novel directory scheme that scales to thou-

sands of cores efficiently, while incurring negligible invalida-

tions and keeping an exact sharer representation. We lever-

age recent prior work on efficient highly-associative caches

(ZCache [25] and Cuckoo Directory [10]), which, due to their

multiple hash functions and replacement process, work in



practice as if replacement candidates were selected randomly,

independently of the addresses tracked [25]. We exploit this

property to design and analyze SCD:

• First, we recognize that, to be scalable, a directory imple-

mentation only needs the number of bits per tracked sharer

to scale gracefully (e.g., remaining constant or increasing

logarithmically) with the number of cores. SCD exploits

this insight by using a variable-size sharer set represen-

tation: lines with one or few sharers use a single direc-

tory tag, while widely shared lines use additional tags. We

propose a hybrid pointer/bit-vector organization that scales

logarithmically and can track tens of thousands of cores

efficiently. While conventional set-associative arrays have

difficulties with this approach, highly-associative zcache

arrays allow SCD to work.

• We develop analytical models that characterize SCD and

show how to size it. First, we show that for a given oc-

cupancy (fraction of directory capacity used), SCD incurs

the same number of directory-induced invalidations and

average number of lookups, independently of the work-

load. Second, different workloads impose varying capac-

ity requirements, but the worst-case capacity requirement

is bounded and small. Hence, directories can be built to

guarantee a negligible number of invalidations and a small

average number of lookups in all cases, guaranteeing per-

formance and energy efficiency with just a small amount

of overprovisioning (around 5-10% depending on the re-

quirements, much smaller than what is required with set-

associative arrays [10]). These results are useful for two

reasons. First, they enable designers to quickly size di-

rectories without relying on empirical results and exten-

sive simulations. Second, they provide guarantees on the

interference introduced by the shared directory, which is

paramount to achieve performance isolation among multi-

ple competing applications sharing the chip (CMPs need

a fully shared directory even if they have private last-

level caches). This analytical characterization also applies

to sparse directories implemented with highly-associative

caches (Cuckoo Directories), which prior work has studied

empirically [10].

We evaluate SCD by simulating CMPs with 1024 cores

and a 3-level cache hierarchy. We show that, for the same

level of provisioning, SCD is 13× more area-efficient than

sparse directories and 2× more area-efficient than hierarchi-

cal organizations. SCD can track 128MB of private cache

space with a 20MB directory, taking only 3% of total die area.

Moreover, we show that the analytical models on invalida-

tions and energy are accurate in practice, enabling designers

to guarantee bounds on performance, performance isolation,

and energy efficiency.

2. Background and Related Work

In this section, we provide the necessary background for

SCD, reviewing previously proposed directory organizations

and efficient highly-associative arrays, which SCD relies on.

2.1. Directory Organizations

Cache coherence is needed to maintain the illusion of

a single shared memory on a system with multiple private

caches. A coherence protocol arbitrates communication be-

tween the private caches and the next level in the memory

hierarchy, typically a shared cache (e.g., in a CMP with per-

core L2s and a shared last-level cache) or main memory

(e.g., in multi-socket systems with per-die private last-level

caches). In this work we focus on directory-based, write-

invalidate protocols, as alternative protocols scale poorly be-

yond a few private caches [14]. These protocols use a co-

herence directory to track which caches share a line, enforce

write serialization by invalidating or downgrading access per-

missions for sharers, and act as an ordering point for con-

current requests to the same address. Implementing a direc-

tory structure that scales to hundreds of sharers efficiently

has been problematic so far. We now review different direc-

tory organizations, with a focus on comparing their scalabil-

ity. Table 1 summarizes their characteristics.

Traditional directory schemes do not scale well with core

count. Duplicate-tag directories maintain a full copy of all

the tags tracked in the lower level. Their area requirements

scale well with core count, but they have huge associativ-

ity requirements (e.g., tracking 1024 16-way caches would

require 16384 ways), so they are limited to small-scale sys-

tems [2, 29]. In contrast, sparse directories [13] are orga-

nized as an associative array indexed by line address, and

each directory tag encodes the set of sharers of a specific

address. Sparse directories are energy-efficient. However,

due to their limited associativity, sparse directories are often

forced to evict entries, causing directory-induced invalida-

tions in the lower levels of the hierarchy. This can pose large

performance overheads and avoiding it requires directories

that are significantly overprovisioned [10].

The encoding method for the sharer set is a fundamental

design choice in sparse directories. Full-map sparse directo-

ries encode the sharer set exactly in a bit-vector [13]. They

support all sharing patterns, but require storage proportional

to the number of cores, and scale poorly beyond a few tens of

cores. Alternatively, sparse directories can use a compressed

but inexact encoding of the sharer set. Traditional alterna-

tives include coarse-grain sharer bit-vectors [13], and lim-

ited pointer schemes, in which each entry can hold a small

number of sharer pointers, and lines requiring more sharers

either cause one of the existing sharers to be invalidated, a

broadcast on future invalidations and downgrades [1, 20], or

trigger an interrupt and are handled by software [6]. Inexact

sharer set schemes trade off space efficiency for additional

coherence traffic and protocol complexity.

In contrast to these techniques, hierarchical sparse direc-

tories [12, 31, 33] allow an exact and area-efficient represen-

tation of sharer sets. Hierarchical directories are organized in

multiple levels: each first-level directory encodes the sharers

of a subset of caches, and each successive level tracks di-

rectories of the previous level. A two-level organization can

scale to thousands of cores efficiently. For example, using

32 first-level directories and one (possibly banked) second-

level directory, we can track 1024 caches using 32-bit sharer

vectors, or 4096 caches using 64-bit vectors. However, hi-

erarchical directories have two major drawbacks. First, they

require several lookups on the critical path, increasing direc-

tory latency and hurting performance. Second, multi-level



Scheme Scalable area
Scalable

energy
Exact sharers

Dir-induced

invalidations

Extra protocol

complexity
Extra latency

Duplicate-tag Yes No Yes No No No

Sparse full-map No Yes Yes Yes No No

Coarse-grain/limptr No Yes No Yes Small No

Hierarchical sparse Yes Yes Yes Yes High Yes

Tagless No No No Yes Medium No

SPACE No Yes No Yes Small No

Cuckoo Directory No Yes Yes Negligible No No

SCD Yes Yes Yes Negligible No No

Table 1: Qualitative comparison of directory schemes. The first three properties are desirable, while the last three are undesirable.

coherence protocols are more complex than single-level pro-

tocols, and significantly harder to verify [7, 8].

Motivated by the shortcomings of traditional approaches,

recent work has investigated alternative directory organiza-

tions that improve scalability in a single-level directory. Tag-

less directories [35] use Bloom filters to represent sharer

sets. Tagless does not store address tags, making it highly

area-efficient (as we will see later, SCD spends more space

storing addresses than actual coherence information). Al-

though Tagless reduces area overheads, both area and energy

scale linearly with core count, so Tagless is area-efficient

but not energy-efficient at 1024 cores [10]. Additionally, it

requires significant modifications to the coherence protocol,

and incurs additional bandwidth overheads due to false pos-

itives. Moreover, Tagless relies on the tracked caches be-

ing set-associative, and would not work with other array de-

signs, such as skew-associative caches [27] or zcaches [25].

SPACE [36] observes that applications typically exhibit a

limited number of sharing patterns, and introduces a level

of indirection to reduce sharing pattern storage: a sharing

pattern table encodes a limited number of sharing patterns

with full bit-vectors, and an address-indexed sparse directory

holds pointers to the pattern table. Due to the limited sharing

pattern table size, patterns often need to be merged, and are

inexact. However, multiple copies of the sharing pattern table

must be maintained in a tiled organization, increasing over-

heads with the number of tiles [36]. Although these schemes

increase the range of sharers that can be tracked efficiently,

they are still not scalable and require additional bandwidth.

Alternatively, prior work has proposed coarse-grain co-

herence tracking [4, 9, 34]. These schemes reduce area over-

heads, but again increase the number of spurious invalida-

tion and downgrade messages, requiring additional band-

width and energy. Finally, to reduce directory overheads,

WayPoint [18] proposes to cache a sparse full-map directory

on the last-level cache, using a hash table organization. This

reduces directory overheads and works well if programs have

significant locality, but it reduces directory coverage and in-

troduces significant complexity.

As Table 1 shows, all these schemes suffer from one or

several significant drawbacks. In contrast, SCD, which we

present in this paper, represents sharer sets exactly and in a

scalable fashion (both in area and energy), does not require

coherence protocol modifications, and can be designed to

guarantee an arbitrarily small amount of invalidations. SCD’s

design relies on the flexibility provided by efficient highly-

associative caches, which we review next.

2.2. Efficient HighlyAssociative Caches

Recent work has proposed cache designs that provide

high associativity with a small number of ways. Both

ZCache [25] and Cuckoo Directory [10] build on skew-

associative caches [27] and Cuckoo hashing [24]. As shown

in Figure 1, these designs use a different hash function to

index each way, like skew-associative caches. Hits require

a single lookup, but on a replacement, these designs lever-

age the multiple hash functions to provide an arbitrarily large

number of replacement candidates in multiple steps, increas-

ing associativity. Both schemes differ in how the replacement

process is implemented.

Cuckoo Directory uses W-ary Cuckoo hashing to imple-

ment its replacement process: when inserting a new line, if

there are no unused entries, the incoming line replaces one of

the existing ones, which is taken out and then reinserted in

one of the other positions it can map to. This process is re-

peated until either an unused entry is found, or a threshold of

reinsertion attempts is reached. In this case, the line that was

last taken out is evicted. Ferdman et al. build sparse directo-

ries using this technique and empirically show that it reduces

evictions (and therefore directory-induced invalidations) to

negligible levels with arrays that are somewhat larger than

the caches they are tracking [10].

ZCache implements the replacement process differently:

it first retrieves all possible replacement candidates in a

breadth-first fashion, selects the least desirable candidate

using replacement policy information, and performs a few

moves to evict that candidate and insert the new one. This

process requires fewer lookups and far fewer moves than

Cuckoo Directory (saving energy), can be pipelined (reduc-

ing latency), and enables using a replacement policy. For

example, in a 4-way array, evaluating 52 replacement candi-

dates requires 13 lookups and at most 2 moves in a zcache,

but 17 lookups and 16 moves in a Cuckoo Directory. How-

ever, the Cuckoo Directory replacement process can stop

early, while zcaches expand a fixed number of candidates.

SCD combines the best features from both schemes to imple-

ment its replacement process.

Finally, due to the multiple hash functions and replace-

ment process, these arrays can be characterized with simple,

workload-independent analytical models that are accurate in

practice. Prior work leverages these models to show that as-

sociativity depends only on the number of replacement candi-

dates, not ways [25], and to implement scalable and efficient

cache partitioning [26]. In this paper, we extend these models



Figure 1: Example 3-way array organization used. Figure 2: SCD line formats. Field widths assume a 1024-sharer

directory.

Figure 3: Example operation: adding a sharer to a full limited pointer line.

to characterize and show how to provision directories imple-

mented with these arrays, including SCD and sparse directo-

ries, formalizing the empirical results of Ferdman et al. [10].

3. Scalable Coherence Directory

To scale gracefully, SCD exploits the insight that a direc-

tory does not need to provide enough capacity to track a spe-

cific number of addresses, but a specific number of sharers,

ideally as many as can fit in the tracked caches. However,

sparse directories use address-indexed arrays, so they use one

directory tag per address. Instead, SCD represents sharer sets

using a variable number of tags per address. Lines with one

or a few sharers use a single directory tag with a limited

pointer format, and widely shared lines employ a multi-tag

format using hierarchical bit-vectors. We first describe the

array used to hold the directory tags, then explain how SCD

represents and operates on sharer sets.

3.1. SCD Array

Figure 1 shows the structure of the SCD array. It is similar

to skew-associative caches, zcaches and Cuckoo Directories,

with one hash function per way. However, hash functions

take the concatenation of the line address and an index as in-

put instead of using just the address. Every line in the direc-

tory will have a tag with index 0. Additionally, lines that use

more than one directory tag will have those additional tags at

locations with indexes other than 0. These indexes need not

be consecutive, and are included in the hash functions so that

multiple tags representing the same line map to different sets.

SCD’s replacement process is very similar to zcache’s,

since it is more efficient than Cuckoo Directory’s, as ex-

plained in Section 2.2. However, SCD does not pipeline

the replacement process, and stops looking for candidates

as soon as an empty tag is found. As we will see, this

greatly improves directory efficiency. SCD can optionally

implement a replacement policy. However, replacement poli-

cies only make sense for underprovisioned directories — in

Section 4 we will see that SCD can be sized to cause a negli-

gible amount of evictions regardless of the workload, making

a replacement policy unnecessary.

3.2. Line Formats

SCD encodes lines using different tag formats. Figure 2

illustrates these formats for a 1024-sharer directory. Lines

with few sharers use a single-tag, limited pointer representa-

tion, with three pointers in the example. When more sharers

are needed, SCD switches to a multi-tag format using hier-

archical bit-vectors. In the example, a 32-bit root bit-vector

tag indicates which subsets of cores share the line, while a

set of 32-bit leaf bit-vectors encode the sharers in each sub-

set. Leaf bit-vectors include a leaf number field that encodes

the subset of sharers tracked by each leaf (e.g., leaf number

0 tracks sharers 0–31, 1 tracks 32–63, and so on). We will

explain SCD’s operation using this two-level representation,

but this can be easily extended to additional levels.

3.3. Directory Operations

SCD needs to support three operations on sharer sets:

adding a sharer when it requests the line, removing a sharer

when it writes back the line, and retrieving all sharers for an

invalidation or downgrade.

Adding and removing sharers: On a directory miss, the re-

placement process allocates one tag for the incoming line

with index 0 (possibly evicting another tag). This tag uses

the limited pointer format. Further sharers will use additional

pointers. When a sharer needs to be added and all the point-

ers are used, the line is switched to the multi-tag format as

follows: First, the necessary bit-vector leaves are allocated



for the existing pointers and the new sharer. Leaf tags are

then populated with the existing and new sharers. Finally, the

limited pointer tag transitions to the root bit-vector format,

setting the appropriate bits to 1. Figure 3 illustrates this pro-

cess. Removing a sharer (due to clean or dirty writebacks)

follows the inverse procedure. When a line loses all its shar-

ers, all its directory tags are marked as invalid.

Invalidations and downgrades: Invalidations are caused by

both coherence (on a request for exclusive access, the di-

rectory needs to invalidate all other copies of the line) and

evictions in the directory. Downgrades only happen due to

coherence (a request for read on an exclusive line needs to

downgrade the exclusive sharer, if any). Coherence-induced

invalidations are trivial: all the sharers are sent invalidation

messages. If the address is represented in the hierarchical

bit-vector format, all leaf bit-vectors are marked as invalid,

and the root bit-vector tag transitions to the limited pointer

format, which then encodes the index of the requesting core.

In contrast, eviction-induced invalidations happen to a

specific tag, not an address. Limited pointer and root bit-

vector tag evictions are treated like coherence-based invali-

dations, invalidating all sharers so that the tag can be reused.

Leaf bit-vector evictions, however, only invalidate the sub-

set of sharers represented in the tag. As we will see later,

eviction-induced invalidations can be made arbitrarily rare.

Additional levels and scalability: SCD can use hierarchical

bit-vector representations with more than two levels. A two-

level approach scales to 256 sharers with ∼16 bits devoted to

track sharers (pointers/bit-vectors) per tag, 1024 sharers with

∼32 bits, and 4096 sharers with ∼64 bits. A three-level rep-

resentation covers 4096 sharers with ∼16 bits, 32768 sharers

with ∼32 bits, and 256K sharers with ∼64 bits. Four-level

implementations can reach into the millions of cores. In gen-

eral, space and energy requirements increase with O(logN),
where N is the number of sharers, because the limited bit-

vectors and the extended address space increase logarithmi-

cally. Since each tag needs on the order of 40-50 bits to store

the line address anyway, having on the order of 16-32 bits of

sharer information per tag is a reasonable overhead.

3.4. Implementation Details

SCD’s multi-tag format achieves the scalability of hierar-

chical directories, but since all tags are stored in the same ar-

ray, it can be made transparent to the coherence protocol. We

now discuss how to implement SCD to make it completely

transparent to the protocol, and take the delay of additional

accesses out of the critical path, providing the performance

of a sparse directory.

Scheduling: Directories must implement some scheduling

logic to make operations appear atomic to the protocol while

ensuring forward progress and fairness. This is required in

both sparse directories and SCD. For example, in a sparse di-

rectory adding a sharer is a read-modify-write operation, and

the scheduling logic must prevent any intervening accesses

to the tag between the read and the write (e.g., due to a con-

flicting request or an eviction). However, because SCD op-

erations sometimes span multiple tags, ensuring atomicity is

more involved. Note that the access scheduling logic makes

the array type transparent to the directory: so long as the SCD

array maintains atomicity, forward progress and fairness, it

can be used as a drop-in replacement for a sparse array, with

no changes to the coherence protocol or controller.

Our SCD implementation satisfies these goals with the

following scheduling policies. First, as in conventional

sparse directories, concurrent operations to the same address

are serialized, and processed in FCFS order, to preserve

atomicity and ensure fairness. Second, as in zcaches [25], the

array is pipelined, and we allow concurrent non-conflicting

lookups and writes, but only allow one replacement at a time.

If the replacement process needs to move or evict a tag from

an address of a concurrent request, it waits until that request

has finished, to preserve atomicity. Third, similar to prior

proposals using Cuckoo hashing where insertions are some-

times on the critical path [10, 19], we introduce an insertion

queue to avoid the latency introduced by the replacement pro-

cess. Tags are allocated in the insertion queue first, then in-

serted in the array. We have observed that, in practice, a 4-

entry insertion queue suffices to hide replacement delay for

sufficiently provisioned directories, where replacements are

short, while severely underprovisioned directories require an

8-entry queue. Finally, to avoid deadlock, operations that re-

quire allocating new tags and block on a full insertion queue

are not started until they allocate their space. This way, the

replacement process is able to move or evict tags belonging

to the address of the blocking request.

Performance: With this implementation, operations on a

specific address are executed atomically once they start. Op-

erations that require allocating one or more tags (adding a

sharer) are considered completed once they have reserved

enough space in the insertion queue. Writebacks, which re-

quire removing a sharer and never allocate, are considered

complete once the root tag is accessed. Therefore, adding

and removing a sharer are typically as fast in SCD as in a

conventional sparse directory. On the other hand, coherence-

induced invalidations on widely shared addresses need to ac-

cess several leaf tags to retrieve the sharers, invalidate them,

and respond to the original requester once all invalidated

sharers have responded. This could take longer with SCD

than with a sparse directory, where the whole sharer set can

be retrieved in one access (e.g., processing 1024 vs 32 shar-

ers/cycle in our example). However, the critical-path latency

of invalidations is determined by serialization latency in the

network, as the directory can only inject one invalidation re-

quest per cycle, so SCD and sparse full-map directories per-

form similarly. Invalidation delays have a small performance

impact in our simulations (Section 6), but should they be-

come an issue, they can be reduced by processing invalida-

tions in a hierarchical fashion, using multicast networks, or

cruise-missile invalidates [2].

3.5. Storage Efficiency

We define storage efficiency as the average number of

sharers that SCD encodes per tag. Storage efficiency deter-

mines howmany directory tags are needed, and therefore how

to size the directory. When all the lines have a single sharer,

SCD has a storage efficiency of 1 sharer/tag. This is a com-

mon case (e.g., running a separate workload on each core, or

a multithreaded workload where each working set is thread-



Figure 4: Probability that a replacement results in an eviction as a function

of occupancy, for R=8, 16, 64 and 128 replacement candidates, in linear and

semi-logarithmic-scales.

Figure 5: Average lookups per replacement

as a function of occupancy for a 4-way array.

private and shared code footprint is minimal). When lines

have multiple sharers, SCD typically achieves an efficiency

higher than 1. For example, using the format in Figure 2,

a limited pointer tag with three sharers would have a stor-

age efficiency of 3, while a fully shared line would have an

efficiency of 1024 sharers/33 tags ∼= 31 sharers/tag. If the

expected efficiency is consistently higher than 1, one could

undersize or power off part of the directory and still achieve

negligible invalidations. Note that SCD has a much lower dy-

namic range of storage efficiency than sparse directories (1-

31 sharers/tag vs 1-1024 sharers/tag) but has far fewer sharer

bits per tag (∼32 bits vs ∼1024 bits).

Although, as we will see in Section 6, SCD typically

achieves a storage efficiency ≥ 1, its worst-case efficiency

is smaller than 1. In particular, the worst-case efficiency is

1/2, which happens when a single-sharer line is stored us-

ing a two-level bit-vector. Worst-case efficiency decreases as

we scale up (e.g., with N-level bit-vectors, it is 1/N), and

might be an issue if the designer wants the directory to pro-

vide strict guarantees on evictions (e.g., to avoid interference

among applications sharing the CMP). Therefore, we propose

two techniques to improve worst-case efficiency.

Line coalescing: A simple optimization is to inspect entries

that have few sharers on writebacks, and coalesce them into

a limited pointer representation if possible. For example, fol-

lowing Figure 2, if every time we remove a sharer and the

root bit-vector has two or fewer bits set, we try to coalesce

the line, the worst-case efficiency becomes 2/3. If we do this
with every line with 3 or fewer sharers, the worst-case effi-

ciency becomes 3/4. Coalescing improves storage efficiency

at the expense of additional accesses.

Pointer in root bit-vector: If strict efficiency guarantees are

necessary, we can change the tag format to guarantee a worst-

case efficiency of 1 by including a single pointer in the root

bit-vector tag. When switching a limited pointer tag to a hi-

erarchical bit-vector, the root bit-vector tag keeps one of the

sharers in the pointer. If that sharer is removed, one of the

sharers represented in the leaf bit-vector tags is moved over

to the root tag. With more than two levels, both root and in-

termediate levels would need to implement the pointer. This

guarantees that every tag represents at least one sharer, so the

worst-case efficiency is 1. As we will see in Section 4, this

enables strict guarantees on directory-induced invalidations.

However, this format improves storage efficiency at the ex-

pense of additional area. For example, using this format in

the example in Figure 2 would require 45 bits/tag for sharer

information instead of 39 to hold the extra pointer (assuming

we widen the leaf bit-vectors and narrow the root one).

4. Analytical Framework for Directories

We now show that directories built using zcache-like ar-

rays in general, and SCD in particular, can be characterized

with analytical models. First, we show that the fraction of

replacements that result in evictions and the distribution of

lookups per replacement is a function of the directory’s oc-

cupancy, i.e., the fraction of directory tags used. Second, al-

though directory occupancy is time-varying and workload-

dependent, we show that it can be easily bounded. Together,

these results show that, with a small amount of overprovi-

sioning, SCD can be designed to guarantee negligible invali-

dations and high energy efficiency in the worst case.

Uniformity assumption: In our analytical models, we rely

on the assumption that the candidates visited in the replace-

ment process have an uniform random distribution over the

cache array. We have shown that in practice, this is an ac-

curate assumption for zcaches [25, 26]. We leverage this

assumption in the derivations, and verify its accuracy in

Section 6 using simulation.

Evictions as a function of occupancy: Assume the direc-

tory has T tags, of which U are used. We define directory

occupancy as occ = U/T . Per the uniformity assumption,

replacement candidates are independent and uniformly dis-

tributed random variables, i.e., candi ∼ U [0, T − 1], and the

probability of one being used is Prob(candi used) = occ.
If the replacement process, as explained in Section 2.2, is

limited to R replacement candidates, the probability that all

candidates are being used and we are forced to evict one of

them is simply:

Pev(occ) = Prob(cand0 used ∧ ... ∧ candR−1 used)

= Prob(candi used)
R = occR (1)

Figure 4 plots this probability in linear and semi-logarithmic

scales. Note that, with a reasonably large R, the eviction pro-

bability quickly becomes negligible. For example, with R =



64, Pev(0.8) = 10−6, i.e., only one in a million replacements

will cause an eviction when the directory is 80% full.

Lookups per replacement: We now derive the distribution

and average number of lookups per replacement as a function

of occupancy and the number of ways, W . While Equation 1

characterizes worst-case behavior, this illustrates average be-

havior, and therefore average latency and energy require-

ments of the directory. First, the probability that all lines are

occupied in a single lookup (W ways) is p = occW . Second,

the maximum number of lookups is L = R/W . Therefore,

the probability of finding an empty line in the kth lookup is

pk = (1 − p)pk−1, k ≤ L. Also, the probability of doing L
lookups and not finding any empty line is Pev . Therefore, the

average number of lookups is:

AvgLookups(occ) =

L
∑

k=1

k(1− p)pk−1 + L · Pev

=
1− pL

1− p
=

1− occR

1− occW
(2)

Figure 5 plots this value for different numbers of replace-

ment candidates. Fortunately, even for high occupancies, the

average number of lookups is much lower than the worst

case (R/W ). In fact, when evictions are negligible, the aver-

age is almost independent of R, and is simply 1/(1 − p) =
1/(1− occW ). Therefore, assuming that we design for a neg-

ligible number of evictions, the maximum number of can-

didates R is irrelevant in the average case. In other words,

a reasonable design methodology is to first define the target

occupancy based on how much extra storage we want to de-

vote versus how expensive allocation operations are, then set

R high enough to satisfy a given eviction probability Pev .

Bounding occupancy: Occupancy is trivially bounded by

1.0 (the directory cannot use more lines than it has). How-

ever, if we can bound it to a smaller quantity, we can guar-

antee a worst-case eviction probability and average lookups

independently of the workload. In general, the number of

used tags is U = load/eff, where load is the number of

sharers that need to be tracked, and eff is the storage effi-

ciency. Therefore, occ = U/T =
load/T

eff
. We can bound

storage efficiency to eff ≥ 1.0 sharers/line (Section 3.5).

With a single-banked directory, the worst-case load is triv-

ially the aggregate capacity of the tracked caches (in lines),

which we denote C. Therefore, if we never want to exceed

a worst-case occupancy maxOcc, we should size the direc-

tory with T = C/maxOcc tags. This in turn limits Pev

and AvgLookups. For example, to ensure that the occu-

pancy never exceeds 90%, we would need to overprovision

the directory by 11%, i.e., have 11% more tags than lines

are tracked, and with a 4-way, 64-replacement candidate ar-

ray, this would yield worst-case Pev(0.9) = 10−3 and worst-

case AvgLookups(0.9) = 2.9 lookups/replacement. If we

wanted a lower bound on Pev (e.g., to provide stricter non-

interference guarantees among competing applications shar-

ing the CMP), we could use R = 128, which would give

Pev = 10−6, and still require 2.9 average lookups. Further-

more, most applications will not reach this worst-case sce-

nario, and the directory will yield even better behavior. Al-

ternatively, designers can provision the directory for an ex-

pected range of occupancies instead of for the worst case,

reducing guarantees but saving storage space. In contrast,

set-associative directories need to be overprovisioned by 2×

or more to reduce evictions, and provide no guarantees [10].

When directories are banked, as it is commonly done

with large-scale designs, this bound needs to be relaxed

slightly, because the tracked caches will impose a different

load on each bank. If a reasonable hash function is used, dis-

tributing addresses uniformly across the K directory banks,

from basic probability theory, load has a binomial distribu-

tion ∼ B(C, 1/K), with mean C/K and standard deviation
√

C/K · (1− 1/K). Therefore, the lower the number of

banks, the more concentrated these values will be around the

mean. In the CMP we study (C = 221 lines, K = 64 banks),

the standard deviation is only 0.5% of its mean, and it can be

assumed that the worst-case load ∼= C/K is constant across

banks. In general, both Pev and the number of lookups can

be treated as functions of random variable C to determine the

exact bounds for a given amount of overprovisioning.

In summary, we have seen that SCD can be characterized

with analytical models, and can be tightly sized: high oc-

cupancies can be achieved with efficient replacements and

incurring a negligible amount of evictions. These models ap-

ply to SCD and regular sparse directories implemented with

arrays where the uniformity assumption holds (skew-assoc-

iative caches, zcaches or Cuckoo Directories). We will show

that these models are accurate in practice using simulation.

5. Experimental Methodology

Modeled system: We perform microarchitectural, execu-

tion-driven simulation using an x86-64 simulator based on

Pin [23], and model a large-scale CMP with 1024 cores,

shown in Figure 6. Table 2 summarizes its main character-

istics. Each core is in-order and single-threaded, modeled

after Atom [11], and has split 32KB L1 instruction and data

caches and a private, inclusive, 128KB L2. All cores share

a 256MB L3, which is kept coherent using a MESI coher-

ence protocol. The CMP is divided in 64 tiles, each having

16 cores, a directory and L3 bank, and a memory controller.

Both L2 and L3 are 4-way zcaches [25] with 16 and 52 re-

placement candidates, respectively. Caches and directories

use H3 hash functions, which are simple to implement and

work well in practice [5, 25]. Tiles are connected with an 8×8

mesh network-on-chip (NoC) with physical express links.

The system we model is in line with several large-scale

CMP proposals, such as Rigel [17, 18] and ATAC [20], and

represents a reasonable scale-up of commercial designs like

Tilera’s Gx-3100 [30], which has 100 cores and 32MB of dis-

tributed, directory-coherent last-level cache that can be glob-

ally shared, and is implemented at 40 nm. We estimate that

our target CMP should be implementable at 14 or 11 nm. Us-

ing McPAT [22], we find that a scaled-down version of this

system with 8 tiles and 128 cores would require 420mm2

and 115W at 32 nm. We use the component latencies of this

scaled-down CMP in the 1024-core simulations.

Directory implementations: We compare three different di-

rectory organizations: sparse, sparse hierarchical (two-level),

and SCD. The classic sparse organization has a full-map

1024-bit sharer vector per line. The hierarchical implemen-

tation has a distributed first directory level every two tiles,



Figure 6: Simulated 64-tile, 1024-core CMP:

global tile view (including network links) and

tile organization.

Cores
1024 cores, x86-64 ISA, in-order, IPC=1 except on memory accesses,

2 GHz

L1 caches 32KB, 4-way set associative, split D/I, 1-cycle latency

L2 caches
128KB private per-core, 4-way 16-candidate zcache, inclusive, 5-cycle

latency

L3 cache
256MB NUCA, 64 banks (1 bank/tile), fully shared, 4-way

52-candidate zcache, non-inclusive, 10-cycle bank latency

Global

NoC

8×8 mesh with express physical links every 4 routers, 128-bit flits and

links, X-Y routing, 2-cycle router traversal, 1-cycle local links, 3-cycle

express links

Coherence

protocol

MESI protocol, split request-response, no forwards, no silent drops;

sequential consistency

Memory

controllers

64 MCUs (1 MCU/tile), 200 cycles zero-load latency, 5 GB/s per

controller (optical off-chip interface as in [20])

Table 2: Main characteristics of the simulated 1024-core CMP.

and a second, banked directory level. Therefore, both levels

have 32-bit sharer vectors. SCD has the same organization

as shown in Figure 2, with 3 limited pointers and a 32/32

2-level bit-vector organization. All organizations nominally

use 4-way zcache arrays with 52 replacement candidates and

H3 hash functions, so the sparse organization is similar to

a Cuckoo Directory [10]. All directories are modeled with

a 5-cycle access latency. We compare directories with dif-

ferent degrees of coverage. Following familiar terminology

for TLBs, we define coverage as the maximum number of

addresses that can be represented in the directory, as a per-

centage of the total lines in the tracked caches. Therefore,

100%-coverage Sparse and SCD have as many tags as lines in

the tracked caches, while a hierarchical directory with 100%

coverage has twice as many tags (as each address requires at

least two tags, one per level).

Workloads: We simulate 14 multithreaded workloads se-

lected from multiple suites: PARSEC [3] (blackscholes,

canneal, fluidanimate), SPLASH-2 [32] (barnes, fft, lu,

ocean, radix, water), SPECOMP (applu, equake, wupwise),

SPECJBB2005 (specjbb), and BioParallel [16] (svm). We

have selected workloads that scale reasonably well to 1024

cores and exhibit varied behaviors in the memory hierarchy

(L1, L2 and L3 misses, amount of shared data, distribution of

sharers per line, etc.). We simulate complete parallel phases

(sequential portions of the workload are fast-forwarded), and

report relative execution times as the measure of perfor-

mance. Runs have at least 200 million cycles and 100 bil-

lion instructions, ensuring that all caches are warmed up. We

perform enough runs to guarantee stable averages (all results

presented have 95% confidence intervals smaller than 1%).

6. Evaluation

6.1. Comparison of Directory Schemes

Directory size and area: Table 3 shows the directory size

needed by the different directory organizations (SCD, Sparse,

and Hierarchical) for 128 to 1024 cores. We assume line ad-

dresses to be 42 bits. Storage is given as a percentage of total

tracked cache space. All directories have 100% coverage.

As we can see, SCD significantly reduces directory size.

A 2-level SCD uses 3×–13× less space than a conventional

Cores
SCD

storage

Sparse

storage

Hier.

storage

Sparse

vs SCD

Hier.

vs SCD

128 10.94% 34.18% 21.09% 3.12× 1.93×

256 12.50% 59.18% 24.22% 4.73× 1.94×

512 13.87% 109.18% 26.95% 7.87× 1.94×

1024 15.82% 209.18% 30.86% 13.22× 1.95×

Table 3: Directory size requirements for different organiza-

tions. Size is given as a percentage of the aggregate capacity

of the tracked caches, assuming a 42-bit line address, 64-byte

lines and 100% coverage.

sparse directory, and around 2× less than a 2-level hierarchi-

cal implementation. A 3-level SCD would be even more effi-

cient (e.g., requiring 18 bits of coherence data per tag instead

of 39 at 1024 cores), although gains would be small since the

address field would take most of the tag bits.

We can approximate directory area using directory size

and assuming the same storage density for the L3 cache and

the directory. On our 1024-core CMP, SCD would require

20.2MB of total storage, taking 3.1% of die area, while a

two-level hierarchical directory would require 39.5MB, tak-

ing 6.1% of die area. Sparse directories are basically unim-

plementable at this scale, requiring 267MB of storage, as

much as the L3 cache.

Performance: Figure 7 compares execution time, global

NoC traffic and average memory access time among differ-

ent directory organizations. Each directory is simulated at

both 100% and 50% coverage. Smaller values are better for

all graphs, and results are normalized to those of an idealized

directory (i.e., one with no invalidations). Recall that all di-

rectory organizations use 4-way/52-candidate zcache arrays.

We will discuss set-associative arrays in Section 6.4.

Looking at Figure 7a, we see that both SCD and Sparse

achieve the performance of the ideal directory in all appli-

cations when sized for 100% coverage, while their 50%-

sized variants degrade performance to varying degrees (ex-

cept on canneal, which we will discuss later, where perfor-

mance increases). Underprovisioned Sparse directories per-

form slightly better than SCD because their occupancy is

lower, as they require one line per address. Hierarchical di-

rectories, on the other hand, are slightly slower even at 100%



�5

0

5

10

15

Ex
ec

. T
im

e 
(%

 o
ve

r i
de

al
)

blkscholes equake fft ocean applu wupwise radix water barnes fldanimate lu specjbb svm canneal

SCD-100
SCD-50
FM-100
FM-50
HR-100
HR-50

(a) Execution time

0
20
40
60
80

100
120
140

No
C 

Tr
af

fic
 (%

)

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

blkscholes equake fft ocean applu wupwise radix water barnes fldanimate lu specjbb svm canneal

172%170%180% 164% 187%

Eviction INVs
Coherence INVs
PUTs
GETs

(b) Inter-tile NoC traffic breakdown

0
20
40
60
80

100
120
140

AM
AT

 (%
)

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

SC
D-

10
0

SC
D-

50
FM

-1
00

FM
-5

0
HR

-1
00

HR
-5

0
SC

D-
10

0
SC

D-
50

FM
-1

00
FM

-5
0

HR
-1

00
HR

-5
0

blkscholes equake fft ocean applu wupwise radix water barnes fldanimate lu specjbb svm canneal

Main Memory
Invals
L3 Dir + L3
Network
Tile Dir (HR)
L2

(c) Average memory access time (AMAT) breakdown

Figure 7: Comparison of nominally provisioned (100% coverage) and underprovisioned (50% coverage) directory organizations:

SCD, sparse full-map (FM) and 2-level sparse hierarchical (HR). All directories use 4-way/52-candidate zcache arrays.

coverage, as they require an additional level of lookups, and

their performance degrades significantly more in the under-

sized variant. Note that the 50%-coverage Hierarchical di-

rectory has about the same area as the 100%-coverage SCD.

Figures 7b and 7c give more insight into these results.

Figure 7b breaks down NoC traffic into GET (exclusive and

shared requests for data), PUT (clean and dirty writebacks),

coherence INV (invalidation and downgrade traffic needed

to maintain coherence), and eviction INV (invalidations due

to evictions in the directory). Traffic is measured in flits.

We see that all the 100%-sized directories introduce practi-

cally no invalidations due to evictions, except SCD on can-

neal, as canneal pushes SCD occupancy close to 1.0 (this

could be solved by overprovisioning slightly, as explained

in Section 4). The undersized variants introduce signifi-

cant invalidations. This often reduces PUT and coherence

INV traffic (lines are evicted by the directory before the L2s

evict them themselves or other cores request them). How-

ever, those evictions cause additional misses, increasing GET

traffic. Undersized directories increase traffic by up to 2×.

Figure 7c shows the effect that additional invalidations have

on average memory access time (AMAT). It shows normal-

ized AMAT for the different directories, broken into time

spent in the L2, local directory (for the hierarchical orga-

nization), NoC, directory and L3, coherence invalidations,

and main memory. Note that the breakdown only shows

critical-path delays, e.g., the time spent on invalidations is

not the time spent on every invalidation, but the critical-path

time that the directory spends on coherence invalidations and

downgrades. In general, we see that the network and direc-

tory/L3 delays increase, and time spent in invalidations de-

creases sometimes (e.g., in fluidanimate and canneal). This

happens because eviction invalidations (which are not on the

critical path) reduce coherence invalidations (on the critical

path). This is why canneal performs better with underpro-

visioned directories: they invalidate lines that are not reused

by the current core, but will be read by others (i.e., canneal

would perform better with smaller private caches). Dynamic

self-invalidation [21] could be used to have L2s invalidate

copies early and avoid this issue.

In general, we see that hierarchical directories perform

much worse when undersized. This happens because both

the level-1 directories and level-2 (global) directory cause in-

validations. Evictions in the global directory are especially

troublesome, since all the local directories with sharers must

be invalidated as well. In contrast, an undersized SCD can

prioritize leaf or limited pointer lines over root lines for evic-

tion, avoiding expensive root line evictions.

Energy efficiency: Due to a lack of energy models at 11 nm,

we use the number of array operations as a proxy for energy

efficiency. Figure 8 shows the number of operations (lookups



0
20
40
60
80

100
120
140

Ar
ra

y 
op

er
at

io
ns

 (%
)

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

FM
-1

00

SC
D-

10
0

blkscholes equake fft ocean applu wupwise radix water barnes fldanimate lu specjbb svm canneal

197%

Writes
Lookups

Figure 8: Comparison of array operations (lookups and writes) of sparse full-map (FM) and SCD with 100% coverage.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Fr
ac

tio
n 

of
 li

ne
s

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

1p
-n

c
1p

-c
2p

-n
c

2p
-c

3p
-n

c
3p

-c
4p

-n
c

4p
-c

blkscholes equake fft ocean applu wupwise radix water barnes fldanimate lu specjbb svm canneal

LEAF
ROOT
LIMPTR

Figure 9: Average and maximum used lines as a fraction of tracked cache space (in lines), measured with an ideal SCD directory

with no evictions. Configurations show 1 to 4 limited pointers, without and with coalescing. Each bar is broken into line types

(limited pointer, root bit-vector and leaf bit-vector). Each dot shows the maximum instantaneous occupancy seen by any bank.

and writes) done in SCD and Sparse directories. Each bar is

normalized to Sparse. Sparse always performs fewer opera-

tions because sharer sets are encoded in a single line. How-

ever, SCD performs a number of operations comparable to

Sparse in 9 of the 14 applications. In these applications, most

of the frequently-accessed lines are represented with limited

pointer lines. The only applications with significant differ-

ences are barnes (5%), svm, fluidanimate (20%), lu (40%)

and canneal (97%). These extra operations are due to two

factors: first, operations on multi-line addresses are com-

mon, and second, SCD has a higher occupancy than Sparse,

resulting in more lookups and moves per replacement. How-

ever, SCD lines are narrower, so SCD should be more energy-

efficient even in these applications.

6.2. SCD Occupancy

Figure 9 shows average and maximum used lines in an

ideal SCD (with no evictions), for different SCD configu-

rations: 1 to 4 limited pointers, with and without coalesc-

ing. Each bar shows average occupancy, and is broken down

into the line formats used (limited pointer, root bit-vector and

leaf bit-vector). Results are given as a fraction of tracked

cache lines, so, for example, an average of 60% would mean

that a 100%-coverage SCD would have a 60% average oc-

cupancy assuming negligible evictions. These results show

the space required by different applications to have negligi-

ble evictions.

In general, we observe that with one pointer per tag, some

applications have a significant amount of root tags (which do

not encode any sharer), so both average and worst-case occu-

pancy sometimes exceed 1.0×. Worst-case occupancy can go

up to 1.4×. However, as we increase the number of pointers,

limited pointer tags cover more lines, and root tags decrease

quickly (as they are only used for widely shared lines). Aver-

age and worst-case occupancy never exceed 1.0× with two or

more pointers, showing that SCD’s storage efficiency is sat-

isfactory. Coalescing improves average and worst-case oc-

cupancy by up to 6%, improving workloads where the set of

shared lines changes over time (e.g., water, svm, canneal),

but not benchmarks where the set of shared lines is fairly

constant (e.g., fluidanimate, lu).

6.3. Validation of Analytical Models

Figure 10 shows the measured fraction of evictions (em-

pirical Pev) as a function of occupancy, on a semi-logarithmic

scale, for different workloads. Since most applications exer-

cise a relatively narrow band of occupancies for a specific

directory size, to capture a wide range of occupancies, we

sweep coverage from 50% to 200%, and plot the average

for a specific occupancy over multiple coverages. The dot-

ted line shows the value predicted by the analytical model

(Equation 1). We use 4-way arrays with 16, 52 and 104 can-

didates. As we can see, the theoretical predictions are accu-

rate in practice.

Figure 11 also shows the average number of lookups for

the 52-candidate array, sized at both 50% and 100% cover-

age. Each bar shows the measured lookups, and the red dot

shows the value predicted by the analytical model. Again,

empirical results match the analytical model. We observe

that with a 100% coverage, the number of average lookups

is significantly smaller than the maximum (R/W = 13 in

this case), as occupancy is often in the 70%-95% range. In

contrast, the underprovisioned directory is often full or close

to full, and the average number of lookups is close to the

maximum.

In conclusion, we see that SCD’s analytical models are ac-

curate in practice. This lets architects size the directory using

simple formulas, and enables providing strict guarantees on

directory-induced invalidations and energy efficiency with a

small amount of overprovisioning, as explained in Section 4.



0 20 40 60 80 100
Occupancy

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
ac

tio
n 

of
 e

vi
ct

io
ns

Z 4-way / 16-candidates

0 20 40 60 80 100
Occupancy

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
ac

tio
n 

of
 e

vi
ct

io
ns

Z 4-way / 52-candidates

0 20 40 60 80 100
Occupancy

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
ac

tio
n 

of
 e

vi
ct

io
ns

Z 4-way / 104-candidates

020406080100
Occupancy
10-610-510-410-310-210-1100

Fr
ac

tio
n 

of
 e

vi
ct

io
ns

None

blkscholes
equake
fft
ocean
applu
wupwise
radix
water
barnes
fldanimate
lu
specjbb
svm
canneal
Anl. Model

Figure 10: Measured fraction of evictions as a function of occupancy, using SCD on 4-way zcache arrays with 16, 52 and 104

candidates, in semi-logarithmic scale. Empirical results match analytical models.

0
2
4
6
8

10
12
14

Av
g 

lo
ok

up
s/

re
pl

ac
em

en
t

blkscholes equake fft ocean applu wupwise radix water barnes fldanimate lu specjbb svm canneal

SCD-50
SCD-100

Figure 11: Average lookups per replacement on a 4-way, 52-candidate array at 50% and 100% coverage. Each bar shows

measured lookups, and the red dot shows the value predicted by the analytical model. Empirical results match analytical models,

and replacements are energy-efficient with sufficiently provisioned directories.

0 20 40 60 80 100
Occupancy

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
ac

tio
n 

of
 e

vi
ct

io
ns

SetAssoc 16-way

0 20 40 60 80 100
Occupancy

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
ac

tio
n 

of
 e

vi
ct

io
ns

SetAssoc 32-way

0 20 40 60 80 100
Occupancy

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
ac

tio
n 

of
 e

vi
ct

io
ns

SetAssoc 64-way

020406080100
Occupancy
10-610-510-410-310-210-1100

Fr
ac

tio
n 

of
 e

vi
ct

io
ns

None

blkscholes
equake
fft
ocean
applu
wupwise
radix
water
barnes
fldanimate
lu
specjbb
svm
canneal
Anl. Model

Figure 12: Measured fraction of evictions as a function of occupancy, using SCD on set-associative arrays with 16, 32 and 64

ways, in semi-logarithmic scale.

6.4. SetAssociative Caches

We also investigate using SCD on set-associative arrays.

Figure 12 shows the fraction of evictions as a function of oc-

cupancy using 16, 32 and 64-way caches. All designs use

H3 hash functions. As we can see, set-associative arrays do

not achieve the analytical guarantees that zcaches provide:

results are both significantly worse than the model predic-

tions and application-dependent. Set-associative SCDs incur

a significant number of invalidations even with a significantly

oversized directory. For example, achieving Pev = 10−3 on

these workloads using a 64-way set-associative design would

require overprovisioning the directory by about 2×, while a

4-way/52-candidate zcache SCD needs around 10% overpro-

visioning. In essence, this happens because set-associative

arrays violate the uniformity assumption, leading to worse

associativity than zcache arrays with the same candidates.

These findings essentially match those of Ferdman et

al. [10] for sparse directories. Though not shown, we have

verified that this is not specific to SCD — the same patterns

can be observed with sparse and hierarchical directories as

well. In conclusion, if designers want to ensure negligible

directory-induced invalidations and guarantee performance

isolation regardless of the workload, directories should not

be built with set-associative arrays. Note that using zcache

arrays has more benefits in directories than in caches. In

caches, zcaches have the latency and energy efficiency of a

low-way cache on hits, but replacements incur similar energy

costs as a set-associative cache of similar associativity [25].

In directories, the cost of a replacement is also much smaller

since replacements are stopped early.

7. Conclusions

We have presented SCD, a single-level, scalable coher-

ence directory design that is area-efficient, energy-efficient,

requires no modifications to existing coherence protocols,

represents sharer sets exactly, and incurs a negligible num-

ber of invalidations. SCD exploits the insight that directo-

ries need to track a fixed number of sharers, not addresses,



by representing sharer sets with a variable number of tags:

lines with one or few sharers use a single tag, while widely

shared lines use additional tags. SCD uses efficient highly-

associative caches that allow it to be characterized with sim-

ple analytical models, and enables tight sizing and strict prob-

abilistic bounds on evictions and energy consumption. SCD

requires 13× less storage than conventional sparse full-map

directories at 1024 cores, and is 2× smaller than hierarchical

directories while using a simpler coherence protocol. Using

simulations of a 1024-core CMP, we have shown that SCD

achieves the predicted benefits, and its analytical models on

evictions and energy efficiency are accurate in practice.

Acknowledgements

We sincerely thank Christina Delimitrou, Jacob Leverich,

David Lo, and the anonymous reviewers for their useful feed-

back on earlier versions of this manuscript. This work was

supported in part by the Stanford Pervasive Parallelism Lab-

oratory. Daniel Sanchez was supported by a Hewlett-Packard

Stanford School of Engineering Fellowship.

References
[1] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An eval-

uation of directory schemes for cache coherence. In Proc. of the
15th annual Intl. Symp. on Computer Architecture, 1988.

[2] L. Barroso, K. Gharachorloo, R. McNamara, et al. Piranha: A
scalable architecture based on single-chip multiprocessing. In
Proc. of the 27th annual Intl. Symp. on Computer Architecture,
2000.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC bench-
mark suite: Characterization and architectural implications. In
Proc. of the 17th intl. conf. on Parallel Architectures and Compi-
lation Techniques, 2008.

[4] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving Multipro-
cessor Performance with Coarse-Grain Coherence Tracking. In
Proc. of the 32nd annual Intl. Symp. on Computer Architecture,
2005.

[5] J. L. Carter and M. N. Wegman. Universal classes of hash func-
tions (extended abstract). In Proc. of the 9th annual ACM Sympo-
sium on Theory of Computing, 1977.

[6] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS direc-
tories: A scalable cache coherence scheme. In Proc. of the conf.
on Architectural Support for Programming Languages and Oper-
ating Systems, 1991.

[7] X. Chen, Y. Yang, G. Gopalakrishnan, and C. Chou. Reducing
verification complexity of a multicore coherence protocol using
assume/guarantee. In Formal Methods in Computer Aided Design,
2006.

[8] X. Chen, Y. Yang, G. Gopalakrishnan, and C. Chou. Efficient
methods for formally verifying safety properties of hierarchical
cache coherence protocols. Formal Methods in System Design,
36(1), 2010.

[9] N. Enright Jerger, L. Peh, and M. Lipasti. Virtual tree coher-
ence: Leveraging regions and in-network multicast trees for scal-
able cache coherence. In Proc. of the 41st Annual IEEE/ACM intl.
symp. on Microarchitecture, 2008.

[10] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo
Directory: A scalable directory for many-core systems. In Proc.
of the 17th IEEE intl. symp. on High Performance Computer Ar-
chitecture, 2011.

[11] G. Gerosa et al. A sub-1W to 2W low-power IA processor for
mobile internet devices and ultra-mobile PCs in 45nm hi-K metal
gate CMOS. In IEEE Intl. Solid-State Circuits Conf., 2008.

[12] S. Guo, H. Wang, Y. Xue, C. Li, and D. Wang. Hierarchical Cache
Directory for CMP. Journal of Computer Science and Technology,
25(2), 2010.

[13] A. Gupta, W. Weber, and T. Mowry. Reducing Memory and Traf-
fic Requirements for Scalable Directory-Based Cache Coherence
Schemes. In Proc. of the Intl. Conf. on Parallel Processing, 1990.

[14] J. L. Hennessy and D. A. Patterson. Computer Architecture - A
Quantitative Approach (4th ed.). Morgan Kaufmann, 2007.

[15] J. Howard et al. A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS. In IEEE Intl. Solid-State Circuits Conf.,
2010.

[16] A. Jaleel, M. Mattina, and B. Jacob. Last Level Cache (LLC)
Performance of Data Mining Workloads On A CMP. In Proc. of
the 12th intl. symp. on High Performance Computer Architecture,
2006.

[17] J. Kelm, D. Johnson, M. Johnson, et al. Rigel: An architecture
and scalable programming interface for a 1000-core accelerator.
In Proc. of the 36th annual Intl. Symp. on Computer Architecture,
2009.

[18] J. Kelm, M. Johnson, S. Lumetta, and S. Patel. WayPoint: scaling
coherence to 1000-core architectures. In Proc. of the 19th intl.
conf. on Parallel Architectures and Compilation Techniques, 2010.

[19] A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hash-
ing: Cuckoo hashing with a stash. In Proc. of the European Sym-
posium on Algorithms, 2008.

[20] G. Kurian, J. Miller, J. Psota, et al. ATAC: A 1000-core cache-
coherent processor with on-chip optical network. In Proc. of the
19th intl. conf. on Parallel Architectures and Compilation Tech-
niques, 2010.

[21] A. Lebeck and D. Wood. Dynamic Self-Invalidation: Reduc-
ing Coherence Overhead in Shared-Memory Multiprocessors. In
Proc. of the 22nd annual Intl. Symp. in Computer Architecture,
1995.

[22] S. Li, J. H. Ahn, R. D. Strong, et al. McPAT: an integrated power,
area, and timing modeling framework for multicore and manycore
architectures. In Proc. of the 42nd annual IEEE/ACM intl. symp.
on Microarchitecture, 2009.

[23] C.-K. Luk, R. Cohn, R. Muth, et al. Pin: building customized
program analysis tools with dynamic instrumentation. In Proc. of
the ACM SIGPLAN conf. on Programming Language Design and
Implementation, 2005.

[24] R. Pagh and F. F. Rodler. Cuckoo hashing. In Proc. of the 9th
annual European Symp. on Algorithms, 2001.

[25] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling Ways and
Associativity. In Proc. of the 43rd annual IEEE/ACM intl. symp.
on Microarchitecture, 2010.

[26] D. Sanchez and C. Kozyrakis. Vantage: Scalable and Efficient
Fine-Grain Cache Partitioning. In Proc. of the 38th annual Intl.
Symp. in Computer Architecture, 2011.

[27] A. Seznec. A case for two-way skewed-associative caches. In
Proc. of the 20th annual Intl. Symp. on Computer Architecture,
1993.

[28] J. Shin et al. A 40nm 16-core 128-thread CMT SPARC SoC pro-
cessor. In Intl. Solid-State Circuits Conf., 2010.

[29] Sun Microsystems. UltraSPARC T2 supplement to the Ultra-
SPARC architecture 2007. Technical report, 2007.

[30] Tilera. TILE-Gx 3000 Series Overview. Technical report, 2011.

[31] D. A. Wallach. PHD: A Hierarchical Cache Coherent Protocol.
Technical report, Cambridge, MA, USA, 1992.

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations. In Proc. of the 22nd annual Intl. Symp. on Computer
Architecture, 1995.

[33] Q. Yang, G. Thangadurai, and L. Bhuyan. Design of an adaptive
cache coherence protocol for large scale multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 3(3), 1992.

[34] J. Zebchuk, E. Safi, and A. Moshovos. A framework for coarse-
grain optimizations in the on-chip memory hierarchy. In Proc.
of the 40th annual IEEE/ACM intl. symp. on Microarchitecture,
2007.

[35] J. Zebchuk, V. Srinivasan, M. Qureshi, and A. Moshovos. A tag-
less coherence directory. In Proc. of the 42nd annual IEEE/ACM
intl. symp. on Microarchitecture, 2009.

[36] H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE: Sharing
pattern-based directory coherence for multicore scalability. In
Proc. of the 19th intl. conf. on Parallel Architectures and Com-
pilation Techniques, 2010.


