
Hardware Acceleration of
Transactional Memory on
Commodity Systems

Jared Casper, Tayo Oguntebi,

Sungpack Hong, Nathan Bronson,

Christos Kozyrakis, Kunle Olukotun

Pervasive Parallelism Laboratory
Stanford University

1

TM Design Alternatives
!  Software (STM)

!  “Barriers” on each shared load and store update
data structures

!  Hardware (HTM)
!  Tap hardware data paths to learn of loads and

stores for conflict detection
!  Buffer speculative state or maintain undo log in

hardware, usually at the L1 level
!  Hybrid

!  Best effort HTM falls back to STM
!  Generally target small transactions

!  Hardware accelerated
!  Software runtime is always used, but accelerated
!  Existing proposals still tap the hardware data path

2

TMACC: TM Acceleration
on Commodity Cores
!  Challenges facing adoption of TM

!  Software TM requires 4-8 cores just to break even
!  Hardware TM is expensive and risky

!  Sun’s Rock provides limited HTM for small transactions
!  Support for large transactions requires changes to core
!  Optimal semantics for HTM is still under debate

!  Hybrid schemes look attractive, but still modify the core
!  No systems available to attract software developers

!  Accelerate STM without changing the processor
!  Leverage much of the work on STMs
!  Much less risky and expensive
!  Use existing memory system for communication

3

TMACC: TM Acceleration
on Commodity Cores
!  Conflict detection

!  Can happen after the fact
!  Can nearly eliminate expensive read barriers

!  Checkpointing
!  Needs access to core internals

!  Version management
!  Latency critical operations
!  Common case when load is not in store buffer

must take less than ~10 cycles

!  Commit
!  Could be done off-chip, but would require

removing everything from the processor’s cache

4

"
"

"

Protocol Overview
!  Reads

!  Send address to HW

!  Check for value in write buffer

!  Writes
!  Add to the write buffer

!  Same as STM

!  Commit
!  Send HW each address in write set

!  Ask permission to commit

!  Apply write buffer

!  Violation notification
!  Must be fast to check for violation in

software

TMACC
HW

Thread2

Read A

Read B
To write B

OK to
commit?

You’re
Violated

Yes

5

Thread1

Problem of Being Off-Core
!  Variable latency to

reach the HW
!  Network latency
!  Amount of time in the

store buffer

!  How can we determine
correct ordering? Read A

To write A

OK to
commit?

6

TMACC
HW

Thread2 Thread1

OK to
commit?

Yes

Global and Local Epochs

A

!!!!!B

C C

B

A

!  Global Epochs
!  Each command embeds epoch number (a global variable).
!  Finer grain but requires global state

!  Know A < B,C but nothing about B and C

!  Local Epochs
!  Each thread declares start of new epoch

!  Cheaper, but coarser grain (non-overlapping epochs)
!  Know C < B, but nothing about A and B or A and C

Global Epochs Local Epochs

Epoch N Epoch N+1 Epoch N-1

7

"

"

Two TMACC Schemes
!  We proposed two TM schemes.

!  TMACC-GE uses global epochs
!  TMACC-LE uses local epochs

!  Trade-Offs

!  Details in the paper

TMACC-GE TMACC-LE

More accurate conflict detection

 $ less false positives #

No global data in software

 $ less SW overhead #
Global epoch management

 $ more SW overhead "
Less information for ordering

 $ more false positives "

8

TMACC Hardware
!  A set of generic BloomFilters + control logic

!  BloomFilter: a condensed way to store ‘set’ information

!  Read-set: Addresses that a thread has read
!  Write-set: Addresses that other threads have written

!  Conflict detection
!  Compare read-address against write-set
!  Compare write-address against read-set

9

!  First implementation of FARM single node configuration
!  From A&D Technology, Inc.
!  CPU Unit (x2)

!  AMD Opteron Socket F (Barcelona)
!  DDR2 DIMMs x 2

!  FPGA Unit (x1)
!  Altera Stratix II, SRAM, DDR

!  Each unit is a board
!  All units connected via cHT backplane

!  Coherent HyperTransport (ver 2)
!  We implemented cHT compatibility for

 FPGA unit (next slide)

Procyon System

10

Base FARM Components

2MB
L3 Shared Cache

…

Hyper
Transport

2MB
L3 Shared Cache

Hyper
Transport

32 Gbps

32 Gbps
~60ns

AMD Barcelona

6.4 Gbps cHTCore™
Hyper Transport (PHY, LINK) !

Altera Stratix II FPGA (132k Logic Gates) !
"

Configurable
Coherent Cache

Data
Transfer Engine

Cache IF

Data Stream IF

TMACC
MMR

IF
!"#$%
&'()%*%
+,-%.!%

/!0-1%
.0%

&234)%

!"#$%
&'()%5%
+,-%.!%

/!0-1%
.0%

&234)%

…
!"#$%
&'()%*%
+,-%.!%

/!0-1%
.0%

&234)%

!"#$%
&'()%5%
+,-%.!%

/!0-1%
.0%

&234)%

!  Block diagram of Procyon system

!  FPGA Unit = communication logics + user application

!  Three interfaces for user application

!  Coherent cache interface

!  Data stream interface

!  Memory mapped register interface

*cHTCore is from University of Heidelberg

11

FARM: A Prototyping Environment for Tightly-
Coupled, Heterogeneous Architectures. Tayo
Oguntebi et. al. FCCM 2010.

6.4 Gbps
~380ns

Communication
!  Sending addresses

!  FARM’s streaming interface

!  Address range marked as “write-
combing” causes non-temporal store

!  As close to “fire-and-forget” as is
available

!  630MB/s

!  Commit request
!  Read from memory mapped register

!  Approx. 700ns, 1000s of cycles!

!  Violation notification
!  FPGA writes to cacheable address

!  Common case of no violation is fast,
just as cache hit for the processor

TMACC
HW

Thread2

Read A

Read B
To write B

OK to
commit?

You’re
Violated

Yes

12

Thread1

Implementation Result
!  Full prototype of both TMACC schemes on FARM

!  HW Resource Usage

13

Common TMACC-GE TMACC-LE

4Kb BRAM 144 (24%) 256 (42%) 296 (49%)

Registers 16K (15%) 24K (22%) 24K (22%)

LUTs 20K 30K 35K

FPGA Altera Stratix II EPS130 (-3)

Max Freq. 100 MHz

Microbenchmark Analysis
!  Two random array accesses

!  Partitioned (non-conflicting)
!  Fully-shared (possible

conflicts)

!  Free from pathologies and 2nd-
order effects

!  Decouple effects of parameters
!  Size of Working Set (A1)
!  Number of Read/Writes (R,W)

!  Degree of Conflicts (C, A2)

Parameters: A1, A2, R, W, C

TM_BEGIN
 for I = 1 to (R + W) {
 p = (R / R + W)

 /* Non-conflicting Access */
 a1 = rand(0, A1 / N) + tid * A1/N;
 if (rand_f(0,1) < p))
 TM_READ(Array1[a1])
 else
 TM_WRITE(Array1[a1])

 /* Conflicting Access */
 if (C) {
 a2 = rand(0, A2);
 if (rand_f(0,1) < p))
 TM_READ(Array2 [a2])
 else
 TM_WRITE(Array2[a2])
 }
 }
TM_END 14

EigenBench: A Simple Exploration Tool
for Orthogonal TM Characteristics.
Sungpack Hong et. al. IISWC 2010

Microbenchmark Results"

15

Working set size Transaction size
!  The knee is overflowing the cache

!  Constant spread out of speedup
!  All violations are false positives

!  Sharp decrease in performance
for small transactions

!  TMACC-LE begins to suffer from
false positives

~10%

Microbenchmark Results"

16

Write set size Number of threads
!  TMACC-GE suffers from lock

migration as the number of
writes goes up

!  Medium sized transactions
scale well

!  Small transactions are not
accelerated

!  TL2 suffers across chip
boundary

~22%
+76%

STAMP Benchmark Results

17

Vacation Genome

!  Transactions with few conflicts, a lot of reads, and few writes

!  Bread and butter of transactional memory apps

!  Barrier overhead primary cause of slowdown in TL2

+85% +50%

STAMP Benchmark Results

18

K-means low K-means high
!  Few reads per transaction

!  Not much room for acceleration

!  Large number of writes
!  Hurts TMACC-GE

!  Violations dominating factor

!  Still not many reads to
accelerate

-8%

!  Simulated processor greatly exaggerated
penalty from extra instructions
!  Modern processors much more tolerant of

extra instructions in the read barriers
!  Simulated interconnect did not model

variable latency and command
reordering
!  No need for epochs, etc.

!  Real hardware doesn’t have “fire-and-
forget” stores
!  We didn’t model the write-combining buffer

!  Smaller data sets looked very different
!  Bandwidth consumption, TLB pressure, etc.

Prototype vs. Simulation

19

Summary: TMACC

!  A hardware accelerated TM scheme
!  Offloads conflict detection to external HW
!  Accelerates TM without core modifications
!  Requires careful thinking about handling latency

and ordering of commands

!  Prototyped on FARM
!  Prototyping gave far more insight than simulation.

!  Very effective for medium-to-large sized
transactions
!  Small transaction performance gets better with

ASIC or on-chip implementation.
!  Possible future combination with best-effort HTM

20

