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TM Design Alternatives 
!  Software (STM) 

!  “Barriers” on each shared load and store update 
data structures 

!  Hardware (HTM) 
!  Tap hardware data paths to learn of loads and 

stores for conflict detection 
!  Buffer speculative state or maintain undo log in 

hardware, usually at the L1 level 
!  Hybrid 

!  Best effort HTM falls back to STM 
!  Generally target small transactions 

!  Hardware accelerated 
!  Software runtime is always used, but accelerated 
!  Existing proposals still tap the hardware data path 
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TMACC: TM Acceleration 
on Commodity Cores 
!  Challenges facing adoption of TM 

!  Software TM requires 4-8 cores just to break even 
!  Hardware TM is expensive and risky 

!  Sun’s Rock provides limited HTM for small transactions 
!  Support for large transactions requires changes to core 
!  Optimal semantics for HTM is still under debate 

!  Hybrid schemes look attractive, but still modify the core  
!  No systems available to attract software developers 

!  Accelerate STM without changing the processor 
!  Leverage much of the work on STMs 
!  Much less risky and expensive 
!  Use existing memory system for communication 
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TMACC: TM Acceleration 
on Commodity Cores 
!  Conflict detection 

!  Can happen after the fact 
!  Can nearly eliminate expensive read barriers 

!  Checkpointing 
!  Needs access to core internals 

!  Version management 
!  Latency critical operations 
!  Common case when load is not in store buffer 

must take less than ~10 cycles 

!  Commit 
!  Could be done off-chip, but would require 

removing everything from the processor’s cache 
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Protocol Overview 
!  Reads 

!  Send address to HW 

!  Check for value in write buffer 

!  Writes 
!  Add to the write buffer 

!  Same as STM 

!  Commit 
!  Send HW each address in write set 

!  Ask permission to commit  

!  Apply write buffer 

!  Violation notification 
!  Must be fast to check for violation in 

software 

TMACC 
HW 

Thread2 

Read A 

Read B 
To write B 

OK to 
commit? 

You’re 
Violated 

Yes 
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Problem of Being Off-Core 
!  Variable latency to 

reach the HW 
!  Network latency 
!  Amount of time in the 

store buffer 

!  How can we determine 
correct ordering?  Read A 

To write A 

OK to 
commit? 
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Global and Local Epochs 

A 

!!!!!B 

C C 

B 

A 

!  Global Epochs 
!  Each command embeds epoch number (a global variable). 
!  Finer grain but requires global state 

!  Know A < B,C but nothing about B and C 

!  Local Epochs 
!  Each thread declares start of new epoch 

!  Cheaper, but coarser grain (non-overlapping epochs) 
!  Know C < B, but nothing about A and B or A and C 

Global Epochs Local Epochs 

Epoch N Epoch N+1 Epoch N-1 
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Two TMACC Schemes 
!  We proposed two TM schemes. 

!  TMACC-GE uses global epochs 
!  TMACC-LE uses local epochs 

!  Trade-Offs  

!  Details in the paper 

TMACC-GE TMACC-LE 

More accurate conflict detection  

      $ less false positives # 

No global data in software 

     $ less SW overhead # 
Global epoch management 

      $ more SW overhead " 
Less information for ordering 

     $ more false positives " 
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TMACC Hardware 
!  A set of generic BloomFilters + control logic 

!  BloomFilter: a condensed way to store ‘set’ information 

!  Read-set: Addresses that a thread has read 
!  Write-set: Addresses that other threads have written 

!  Conflict detection 
!  Compare read-address against write-set 
!  Compare write-address against read-set 
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!  First implementation of FARM single node configuration 
!  From A&D Technology, Inc. 
!  CPU Unit (x2) 

!   AMD Opteron Socket F (Barcelona) 
!   DDR2 DIMMs x 2 

!  FPGA Unit (x1) 
!   Altera Stratix II, SRAM, DDR 

!  Each unit is a board 
!  All units connected via cHT backplane 

!  Coherent HyperTransport (ver 2) 
!  We implemented cHT compatibility for  

 FPGA unit (next slide) 

Procyon System 
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Base FARM Components 

2MB 
L3 Shared Cache 

… 

Hyper 
Transport 

2MB 
L3 Shared Cache 

Hyper 
Transport 

32 Gbps 

32 Gbps 
~60ns 

AMD Barcelona 

6.4 Gbps cHTCore™ 
Hyper Transport (PHY, LINK) ! 

Altera Stratix II FPGA   (132k Logic Gates) ! 
"
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!  Block diagram of Procyon system 

!  FPGA Unit = communication logics + user application 

!  Three interfaces for user application 

!  Coherent cache interface 

!  Data stream interface 

!  Memory mapped register interface 

*cHTCore is from University of Heidelberg 
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FARM: A Prototyping Environment for Tightly-
Coupled, Heterogeneous Architectures.  Tayo 
Oguntebi et. al. FCCM 2010. 

6.4 Gbps 
~380ns 



Communication 
!  Sending addresses 

!  FARM’s streaming interface 

!  Address range marked as “write-
combing” causes non-temporal store 

!  As close to “fire-and-forget” as is 
available 

!  630MB/s 

!  Commit request 
!  Read from memory mapped register 

!  Approx. 700ns, 1000s of cycles! 

!  Violation notification 
!  FPGA writes to cacheable address 

!  Common case of no violation is fast, 
just as cache hit for the processor 

TMACC 
HW 

Thread2 

Read A 

Read B 
To write B 

OK to 
commit? 

You’re 
Violated 

Yes 
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Implementation Result 
!  Full prototype of both TMACC schemes on FARM 

!  HW Resource Usage 
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Common TMACC-GE TMACC-LE 

4Kb BRAM 144 (24%) 256 (42%) 296 (49%) 

Registers 16K (15%) 24K (22%) 24K (22%) 

LUTs 20K 30K 35K 

FPGA Altera Stratix II EPS130 (-3) 

Max Freq. 100 MHz 



Microbenchmark Analysis 
!  Two random array accesses 

!  Partitioned (non-conflicting) 
!  Fully-shared  (possible 

conflicts)  

!  Free from pathologies and 2nd-
order effects 

!  Decouple effects of parameters 
!  Size of Working Set (A1) 
!  Number of Read/Writes (R,W) 

!  Degree of Conflicts (C, A2) 

Parameters: A1, A2, R, W, C 

TM_BEGIN 
  for I = 1 to (R + W) { 
      p = (R / R + W) 

       /* Non-conflicting Access */ 
       a1 = rand(0, A1 / N) + tid * A1/N; 
       if (rand_f(0,1) < p))  
              TM_READ( Array1[a1] ) 
        else 
              TM_WRITE( Array1[a1] ) 

        /* Conflicting Access */ 
        if (C) { 
             a2 = rand(0, A2); 
             if (rand_f(0,1) < p))  
                    TM_READ( Array2 [a2] ) 
             else 
                    TM_WRITE( Array2[a2] ) 
        } 
  } 
TM_END 14 

EigenBench: A Simple Exploration Tool 
for Orthogonal TM Characteristics. 
Sungpack Hong et. al. IISWC 2010 



Microbenchmark Results"
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Working set size Transaction size 
!  The knee is overflowing the cache 

!  Constant spread out of speedup 
!  All violations are false positives 

!  Sharp decrease in performance 
for small transactions 

!  TMACC-LE begins to suffer from 
false positives 

~10% 



Microbenchmark Results"
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Write set size Number of threads 
!  TMACC-GE suffers from lock 

migration as the number of 
writes goes up 

!  Medium sized transactions 
scale well 

!  Small transactions are not 
accelerated 

!  TL2 suffers across chip 
boundary 

~22% 
+76% 



STAMP Benchmark Results 
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Vacation Genome 

!  Transactions with few conflicts, a lot of reads, and few writes 

!  Bread and butter of transactional memory apps 

!  Barrier overhead primary cause of slowdown in TL2 

+85% +50% 



STAMP Benchmark Results 
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K-means low K-means high 
!  Few reads per transaction  

!  Not much room for acceleration 

!  Large number of writes 
!  Hurts TMACC-GE 

!  Violations dominating factor 

!  Still not many reads to 
accelerate 

-8% 



!  Simulated processor greatly exaggerated 
penalty from extra instructions 
!  Modern processors much more tolerant of 

extra instructions in the read barriers 
!  Simulated interconnect did not model 

variable latency and command 
reordering 
!  No need for epochs, etc. 

!  Real hardware doesn’t have “fire-and-
forget” stores 
!  We didn’t model the write-combining buffer 

!  Smaller data sets looked very different 
!  Bandwidth consumption, TLB pressure, etc. 

Prototype vs. Simulation 
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Summary: TMACC 

!  A hardware accelerated TM scheme 
!  Offloads conflict detection to external HW 
!  Accelerates TM without core modifications 
!  Requires careful thinking about handling latency 

and ordering of commands 

!  Prototyped on FARM 
!  Prototyping gave far more insight than simulation. 

!  Very effective for medium-to-large sized 
transactions  
!  Small transaction performance gets better with 

ASIC or on-chip implementation. 
!  Possible future combination with best-effort HTM 
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