Implementing and Evaluating Nested
Parallel Transactions in STM

Woongki Baek, Nathan Bronson,
Christos Kozyrakis, Kunle Olukotun

Stanford University

% Introduction

// Parallelize the outer loop
for(1=0; i<numCustomer;i++){

atomic{

// Can we parallelize the i1nner loop?
for(J=0; j<numOrders;j++)
~_processOrder(1,],..);

13,

O Transactional Memory (TM) simplifies parallel programming

* Atomic and isolated execution of transactions
Q Current practice: Most TMs do not support nested parallelism

1 Nested parallelism in TM is becoming more important
* To fully utilize the increasing number of cores
* To integrate well with programming models (e.g., OpenMP)

Previous Worl: NP in STM

 [ECOOP 09] NePalLTM with practical support for nested parallelism

* Serialize nested transactions

d [PPoPP 08] CWSTM that supports nested parallel transactions
* With the lowest upper bound of time complexity of TM barriers

* No (actual) implementation / (quantitative) evaluation

 [PPoPP 10] a practical, concrete implementation of CWSTM
* With depth-independent time complexity of TM barriers

* Use rather complicated data structures such as concurrent stack

J Remaining question: Extend a timestamp-based, eager-versioning STM

* To support nested parallel transactions

Contributions

1 Propose NesTM with support for nested parallel transactions

* Extend a timestamp-based, eager-versioning STM

(Discuss complications of concurrent nesting
* Describe subtle correctness issues

* Motivate further research on proving / verifying nested STMs

 Quantify NesTM across different use scenarios

* Admittedly, substantial runtime overheads to nested transactions

" E.g., Repeated read-set validation

* Motivate further research on performance optimizations

Outline

O Introduction

 Background

 NesTM Algorithm

(1 Complications of Nesting

O Evaluation

J Conclusions

% Background: Semantics of Nesting

1 Definitions
* Transactional hierarchy has a tree structure
= Ancestors(T) = Parent(T) [¥] Ancestors(Parent(T))

* Readers(o): a set of active transactions that read “o”

(1 ”

* Writers(o): a set of active transactions that wrote to

[Conflicts
* T reads from “o0”: R/W conflict
(M)writers(o), T'#T, and T'{¥]ancestors(T)

* T writes to “0”: RI'W or W/W conflict

= |f there exists T” such that T’{W]readers(o){¥]}writers(o), T'#T, and
Wlancestors(T)

" |f there exists T’ such that T'])

Background: Example of Nesting

N N
0 l*,‘Tl @72
1 1N N

’
2 10N
3 NTL 2
; 9
5
6 » 1 StA
7 O
8 TsStA
9 T7T1.1 <)
10 - Fork
11 ld A Join
12 1 . Begin
13 O Commit
1 >X Abort
- |d/st

-
(%)

O TI and T2 are top-level
e TI.I, TI1.2: TI’s children

O T=6: R/W conflict
* T2 writes to A
* TI.I [¥] Readers(A)
* TI.I {¥] Ances(T2)

O T=8: No conflict
* T1I1.2 writes to A
* Readers(A)=Writers(A)=

1 Serialization order

T T

A
% NesTM Overview

O Extend an eager data-versioning STM
* In-place update =» No need to look up parent’s write buffer
* Useful property: Once acquire ownership, keep it until commit / abort

L Global data structures
* A global version clock (GC)

* A set of version-owner locks (volLocks):
® T LSBs: Owner’s TID / Remaining bits: Version Number

U Transaction descriptor
* Read-version (RV): GC value sampled when the txn starts
* R/W sets: Implemented using a doubly linked list
* Pointer to parent’s transaction descriptor

* Commit-lock: to synchronize concurrent commits of children

% TxLoad

TxLoad(Self,addr){
vi=getVoLock(addr) ;

owner=getOwner(vl):

if(owner==Self){ // Read data }

} else i1f(isAnces(SelfT,owner)){
cv=getTS(vl);
if(cv>Selft.rv){ 7/ Abort }
else{ // Read data }

_} else{; // Abort };}

(1 If the owner (of the memory object) is the transaction itself
* Read the memory value
 Else if the owner is an ancestor of the transaction
* |f the version number is newer than the transaction’s RV = Abort

* Else = Read the memory value

] Else = Abort

&

TxStore

TxStore(Self,addr,val){
owner=getOwner (addr);

iIf(owner==Self){ // Write data }

else if(isAnces(SelT,owner)){

1T(atomicAcgOwnership(SeltT,owner ,addr)==success
1f(validateReaders(Self,owner,addr)==success){
// \Write data }
else{ // Abort }
} else { // Abort }}
else ort

O If the owner is the transaction itself = Write
[Else if the owner is an ancestor of the transaction

* If the atomic acquisition of the ownership is successful

® |f the validation of all the readers in the hierarchy is successful = Write
" Else =» Abort

* Else = Abort
] Else = Abort

10

% TxCommit

TxCommit(Self){
wv=IncrementGC(Q);

for each e 1n Self.RS {
// Perform the same check

in TxLoad

// ITf fails, the transaction aborts }

mergeRWSetsToParent(Self);

for each e 1In SeltT.WS {

// Increment version number using “wv” and
// transfer ownership to parent }

3

(J Validate every memory object in RS
* Using the same conditions checked in TxLoad = [f fails, abort
[Merge R/W sets to the parent = Linking the pointers
* Loss of temporal locality on these entries
O Validation / Merging is protected by parent’s commit-lock
* To address the issue with non-atomic commit (See the paper)
L Increment version number / transfer ownership for the objects in WS

11

%

TxAbort

TxAbort(Self){

for each e In Self.WS {
// Restore the memory value to the previous value

for each e In Self_.WS {
// Restore the volLock value to the previous value
1

// Retry the transaction

}

1 For every memory object in WS
* Restore the memory value to the previous value
1 For every memory object in WS

* Restore the volLock value to the previous value

" Refer to the paper for the “invalid read” problem

(Retry the transaction

12

Outline

O Introduction

 Background

1 NesTM Algorithm

(1 Complications of Nesting

O Evaluation

J Conclusions

13

% Complications of Nesting

 Subtle correctness issues discovered while developing NesTM

* |nvalid read, non-atomic commit, zombie transactions

(Current status: No hand proof of correctness/liveness of NesTM

1 Model checking: ChkTM [ICECCS 10]

* Checked correctness with a very small configuration

" Thread configuration: [, 2, I.1, 1.2] / Two memory op’s per txn

* Failed to check with larger configurations due to large state space

" Motivate reduction theorem / partial order reduction techniques

(d Random tests: Using the implemented NesTM code
* Tested with larger configurations (e.g., nesting depth of 3)

14

% Evaluating NesTM

1 QI: Runtime overhead for top-level parallelism
* Used STAMP applications (Baseline STM vs. NesTM)

* Maximum performance difference is ~25%

® Due to the extra code in NesTM barriers

d Q2: Performance of nested transactions

* More in the following slides

1 Q3: Using nested parallelism to improve performance
* Used a u-benchmark based on two-level hash tables

* If single-level parallelism is limited (e.g., frequent conflicts)

" Exploiting nested parallelism can be beneficial

15

A
% Q2: Performance of Nested Txns

Flat version Nested version (N1)
lé/ Parallelize this loop atomic{
for(1=0; 1<numOps; 1+=C){ // Parallelize this loop
atomic{ Ffor(1=0; 1<numOps; 1+=C){
Tfor(J=0;j<C;j++){ atomic{
accessHT(1,}),.):} Tfor(=0;j3<C;j++){
} accessHT(1,}),.):}
+ 1
be

O hashtable: perform operations on a concurrent hash table
* Two types of operations: Look-up (reads) / Insert (reads/writes)
1 Subsumed: Sequentially perform all the operations in a single txn
* Emulate an STM that flattens and serializes nested transactions
O Flat: Concurrently perform operations using top-level txns

 Nested: Repeatedly add outer-level transactions
* NI, N2, and N3 versions

16

Q

2

Performance of Nested Txns

~1.8 :
5 3% \ \ Idle
014 - \ .
2 1.2 \ LR \ Non-leaf Cmt
£ 1.0 B, =\ =Commit-Lock
E1. “A . ommit-Loc
8 g a”; ‘\ < = Commit
208 T s Abort
§0'2 il | =WB
o V- [TR =1 -
Z 0.0 - - L - i = RB

1’16 1’16 1|16 1‘16 ® Busy

Flat N1 N2 N3

(Scale up to 16 threads (NI with |6 threads =» 3x faster)

[Performance issues

* Non-parallelizable, linearly-increasing overheads
" E.g., Repeated read-set validation

* More expensive read/write barriers (loss of temporal locality)
* Contention on commit-lock (Many nested txns simultaneously commit)

Conclusion

1 Propose NesTM with support for nested parallel transactions

* Extend a timestamp-based, eager-versioning STM

(Discuss complications of concurrent nesting
* Describe subtle correctness issues

* Motivate further research on proving / verifying nested STMs

 Quantify NesTM across different use scenarios

* Admittedly, substantial runtime overheads to nested transactions
" E.g., Repeated read-set validation

* Motivate further research on performance optimizations
" Software: more efficient algorithm / implementation

" Hardware: cost-effective hardware acceleration [ICS 10]

18

