
Implementing and Evaluating Nested
Parallel Transactions in STM

Woongki Baek, Nathan Bronson,

Christos Kozyrakis, Kunle Olukotun

Stanford University

Introduction

Transactional Memory (TM) simplifies parallel programming

• Atomic and isolated execution of transactions

Current practice: Most TMs do not support nested parallelism

Nested parallelism in TM is becoming more important

• To fully utilize the increasing number of cores

• To integrate well with programming models (e.g., OpenMP)

// Parallelize the outer loop

for(i=0;i<numCustomer;i++){

 atomic{

 // Can we parallelize the inner loop?

 for(j=0;j<numOrders;j++)

 processOrder(i,j,…);

 }}

Previous Work: NP in STM

[ECOOP 09] NePaLTM with practical support for nested parallelism

• Serialize nested transactions

[PPoPP 08] CWSTM that supports nested parallel transactions

• With the lowest upper bound of time complexity of TM barriers

• No (actual) implementation / (quantitative) evaluation

[PPoPP 10] a practical, concrete implementation of CWSTM

• With depth-independent time complexity of TM barriers

• Use rather complicated data structures such as concurrent stack

Remaining question: Extend a timestamp-based, eager-versioning STM

• To support nested parallel transactions

Contributions

Propose NesTM with support for nested parallel transactions

• Extend a timestamp-based, eager-versioning STM

Discuss complications of concurrent nesting

• Describe subtle correctness issues

• Motivate further research on proving / verifying nested STMs

Quantify NesTM across different use scenarios

• Admittedly, substantial runtime overheads to nested transactions

E.g., Repeated read-set validation

• Motivate further research on performance optimizations

Outline

Introduction

Background

NesTM Algorithm

Complications of Nesting

Evaluation

Conclusions

Background: Semantics of Nesting

Definitions

• Transactional hierarchy has a tree structure

Ancestors(T) = Parent(T) Ancestors(Parent(T))

• Readers(o): a set of active transactions that read “o”

• Writers(o): a set of active transactions that wrote to “o”

Conflicts

• T reads from “o”: R/W conflict

If there exists T’ such that T’ writers(o), T’ T, and T’ ancestors(T)

• T writes to “o”: R/W or W/W conflict

If there exists T’ such that T’ readers(o) writers(o), T’ T, and

T’ ancestors(T)

Background: Example of Nesting

T1 and T2 are top-level

• T1.1, T1.2: T1’s children

T=6: R/W conflict

• T2 writes to A

• T1.1 Readers(A)

• T1.1 Ances(T2)

T=8: No conflict

• T1.2 writes to A

• Readers(A)=Writers(A)=

Serialization order

• T2 T1

st A

T1 T2

T1.2 T1.1

st A

ld B

ld A

ld A

T1.1

NesTM Overview

Extend an eager data-versioning STM

• In-place update No need to look up parent’s write buffer

• Useful property: Once acquire ownership, keep it until commit / abort

Global data structures

• A global version clock (GC)

• A set of version-owner locks (voLocks):

T LSBs: Owner’s TID / Remaining bits: Version Number

Transaction descriptor

• Read-version (RV): GC value sampled when the txn starts

• R/W sets: Implemented using a doubly linked list

• Pointer to parent’s transaction descriptor

• Commit-lock: to synchronize concurrent commits of children

TxLoad

If the owner (of the memory object) is the transaction itself

• Read the memory value

Else if the owner is an ancestor of the transaction

• If the version number is newer than the transaction’s RV Abort

• Else Read the memory value

Else Abort

TxLoad(Self,addr){

 vl=getVoLock(addr);

 owner=getOwner(vl);

 if(owner==Self){ // Read data }

 } else if(isAnces(Self,owner)){

 cv=getTS(vl);

 if(cv>Self.rv){ // Abort }

 else{ // Read data }

 } else{ // Abort }}

TxStore

If the owner is the transaction itself Write

Else if the owner is an ancestor of the transaction

• If the atomic acquisition of the ownership is successful

If the validation of all the readers in the hierarchy is successful Write

Else Abort

• Else Abort

Else Abort

TxStore(Self,addr,val){

 owner=getOwner(addr);

 if(owner==Self){ // Write data }

 else if(isAnces(Self,owner)){

 if(atomicAcqOwnership(Self,owner,addr)==success){

 if(validateReaders(Self,owner,addr)==success){

 // Write data }

 else{ // Abort }

 } else { // Abort }}

 else { // Abort }}

TxCommit

Validate every memory object in RS

• Using the same conditions checked in TxLoad If fails, abort

Merge R/W sets to the parent Linking the pointers

• Loss of temporal locality on these entries

Validation / Merging is protected by parent’s commit-lock

• To address the issue with non-atomic commit (See the paper)

Increment version number / transfer ownership for the objects in WS

TxCommit(Self){

 wv=IncrementGC();

 for each e in Self.RS {

 // Perform the same check in TxLoad

 // If fails, the transaction aborts }

 mergeRWSetsToParent(Self);

 for each e in Self.WS {

 // Increment version number using “wv” and

 // transfer ownership to parent }

 …}

TxAbort

For every memory object in WS

• Restore the memory value to the previous value

For every memory object in WS

• Restore the voLock value to the previous value

Refer to the paper for the “invalid read” problem

Retry the transaction

TxAbort(Self){

 for each e in Self.WS {

 // Restore the memory value to the previous value

 }

 for each e in Self.WS {

 // Restore the voLock value to the previous value

 }

 // Retry the transaction

}

Outline

Introduction

Background

NesTM Algorithm

Complications of Nesting

Evaluation

Conclusions

Complications of Nesting

Subtle correctness issues discovered while developing NesTM

• Invalid read, non-atomic commit, zombie transactions

Current status: No hand proof of correctness/liveness of NesTM

Model checking: ChkTM [ICECCS 10]

• Checked correctness with a very small configuration

Thread configuration: [1, 2, 1.1, 1.2] / Two memory op’s per txn

• Failed to check with larger configurations due to large state space

Motivate reduction theorem / partial order reduction techniques

Random tests: Using the implemented NesTM code

• Tested with larger configurations (e.g., nesting depth of 3)

Evaluating NesTM

Q1: Runtime overhead for top-level parallelism

• Used STAMP applications (Baseline STM vs. NesTM)

• Maximum performance difference is ~25%

Due to the extra code in NesTM barriers

Q2: Performance of nested transactions

• More in the following slides

Q3: Using nested parallelism to improve performance

• Used a u-benchmark based on two-level hash tables

• If single-level parallelism is limited (e.g., frequent conflicts)

Exploiting nested parallelism can be beneficial

Q2: Performance of Nested Txns

hashtable: perform operations on a concurrent hash table

• Two types of operations: Look-up (reads) / Insert (reads/writes)

Subsumed: Sequentially perform all the operations in a single txn

• Emulate an STM that flattens and serializes nested transactions

Flat: Concurrently perform operations using top-level txns

Nested: Repeatedly add outer-level transactions

• N1, N2, and N3 versions

// Parallelize this loop

for(i=0;i<numOps;i+=C){

 atomic{

 for(j=0;j<C;j++){

 accessHT(i,j,…);}

 }

}

Flat version

atomic{

 // Parallelize this loop

 for(i=0;i<numOps;i+=C){

 atomic{

 for(j=0;j<C;j++){

 accessHT(i,j,…);}

 }}

}

Nested version (N1)

Q2: Performance of Nested Txns

Scale up to 16 threads (N1 with 16 threads 3x faster)

Performance issues

• Non-parallelizable, linearly-increasing overheads
E.g., Repeated read-set validation

• More expensive read/write barriers (loss of temporal locality)

• Contention on commit-lock (Many nested txns simultaneously commit)

Conclusion

Propose NesTM with support for nested parallel transactions

• Extend a timestamp-based, eager-versioning STM

Discuss complications of concurrent nesting

• Describe subtle correctness issues

• Motivate further research on proving / verifying nested STMs

Quantify NesTM across different use scenarios

• Admittedly, substantial runtime overheads to nested transactions

E.g., Repeated read-set validation

• Motivate further research on performance optimizations

Software: more efficient algorithm / implementation

Hardware: cost-effective hardware acceleration [ICS 10]

