Building Hardware
Systems for Information
Flow Tracking

Hari Kannan

Computer Systems Laboratory
Stanford University

N
The Computer Security Crisis %

m More systems are online, vulnerable
= Banking, Power, Water, Government

= Threats have multiplied
» XSS, SQL Injection, Phishing, ...

m Old challenges remain
= Buffer overflows, broken access control

A Blast from the Past?

Ehe New Hork Times oy o PRAILER

nytimes.com

October 23, 2008
ttack code for critical Microsoft bug surfaces
By ROBERT MCMILLAN, IDG

Just hours after Microsoft posted details of a critical Windows bug, new attack code that exploits the flaw has surfaced.

It took developers of the Immunity security testing tool two hours to write their exploit, after Microsoft released a patch for the issue Thursday morning. Software developed
by Immunity is made available only to paying customers, which means that not everyone has access to the new attack, but security experts expect that some version of the code
will begin circulating in public very soon.

Microsoft took the unusual step of rushing out an emergency patch for the flaw Thursday, two weeks after noticing a small number of targeted attacks that exploited the bug.

The vulnerability was not publicly known before Thursday; however, by issuing its patch, Microsoft has given hackers and security researchers enough information to develop
their own attack code.

The flaw lies in the Windows Server service, used to connect different network resources such as file and print servers over a network. By sending malicious messages to a
Windows machine that uses Windows Server, an attacker could take control of the computer, Microsoft said.

Apparently, it doesn't take much effort to write this type of attack code.

"It is very exploitable," said Immunity Security Researcher Bas Albert¥ "It's a very controllable stack overflow."

Stack overflow bugs are caused when a programming error allows the attacker to write a command on parts of the computer's memory that would normally be out of limits and
then cause that command to be run by the victim's computer.

Wave of the Future?

October 13th, 2008

The Image Group Website Hacked Through
SQL-Injection, Credit Cards Data Stolen

From January to August 2008, hackers through an SQL injection flaw were able to access names and credit or debit card
information of the persons who placed orders on The Image Group e-commerce website. The Image Group
(http://www.theimagegroup.net) is a firm for promotional products and corporate merchandise headquartered in Ohio.

The Image Group has notified the New Hampshire State Attorney General and online customers that their e-commerce
site fell victim to a series of successful SQL injection attacks. The compromised database contained sensitive personal
and financial information belonging to customers of the company.

While this was discovered in August, it appears that the unauthorized access began in January and occurred again in
August of this year. Names, credit cards/debit cards numbers, expiration dates, addresses and the CVV codes were
accessed by hackers. No social security numbers or dates of birth were involved.

Upon learning of the breach, the firm shut down the web site through which the unauthorized access occurred. In
addition, they had a forensic audit performed. Currently they are working with the merchant bank and the Card
Associations to address issues associated with the credit card information taken and to notify the issuing banks for those
cards.

It seems that the website domain related to this incident is theideacatalog.com, for which the registrant and administrative
contact is Target Marketing. The IP address for the www.ideacatalog.com website is 74.84.205.104 and belongs to the
block 74.84.205.0 - 74.84.205.255, which is assigned to Target Marketing. The site may have been developed and/or
managed by Target Marketing.

Toll-free number for questions is 866-272-5162.

Source: cyberinsecure.com

Motivation %

m Security research

= Provide simple & practical abstractions for expressing
and enforcing security policies

m The resulting system must be
= Robust: protects against wide range of threats
Flexible: can be adjusted for future threats
Practical: works with all types of existing SW
End-to-end: protects both user and kernelspace code
Fast: no significant runtime overheads

N
Why Hardware Support? %

= Advantages of HW support
= Better performance
= Fine-granularity protection

= Lowest level of the system stack
= Difficult to bypass, can build upon its guarantees

= Simplify the SW security framework

m Our focus: combine the best of HW + SW
= HW: low-level operations and enforcement
= SW: high-level policies and analysis

DIFT: Dynamic Information Flow (4]
Tracking %

m DIFT taints data from untrusted sources
= Extra tag bit per word marks if untrusted

® Propagate taint during program execution
= Operations with tainted data produce tainted results

m Check for unsafe uses of tainted data
= Tainted code execution
= Tainted pointer dereference (code & data)
= Tainted SQL command

m Can detect both low-level & high-level threats

Thesis Overview %

m Design practical hardware systems implementing Dynamic
Information Flow Tracking (DIFT) for software security

m Thesis contributions

= Co-developed a flexible hardware design for efficient, practical
DIFT on binaries
Including a real full-system prototype (HW+SW)

Developed hardware mechanisms for DIFT to allow for practical,
cost-effective implementation

Implemented a DIFT coprocessor (real full-system prototype)
Developed a mechanism for safe DIFT on multi-threaded binaries

Leveraged DIFT mechanisms and co-developed a flexible hardware
design for information flow control

Hardware directly enforces application security policies
Allows for significant reduction in size of OS’ trusted computing base
Including a real full-system prototype (HW+SW)

8

Outline

m DIFT overview

Raksha: hardware support for DIFT [wDDD'06, 1ISCA'07]
= Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DsN'09]
= Using a coprocessor to minimize changes to the main core

Multi-processor DIFT micro'09]
= Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [osbros]
= Enforcement of app security policies with minimal trusted code

DIFT Example: Memory
Corruption

Vulnerable C Code
char buf[1024];

strcpy(buf, input) ;//buffer overflow

/\ T

load r2 M M[ri]
store M[r3] [¥] r2

Jmp M[retaddr} ,

TRAP

Data

ri: input+1024

r2: bad

r3: buf+1024

retaddr: bad

Tainted pointer dereference @ security trap

DIFT Example: SQL Injection

Username:

christos’ OR ‘1'=1
Password:

1

Vulnerable SQL Code
SELECT * FROM table

WHERE name= ‘usemtashé&R ‘1'="1";

T Data

—l WHERE name=

christos

OR
1=1

Tainted SQL command 9 security trap

L

Q

Implementing DIFT on Binaries

m Software DIFT [Newsome’05, Quin’06]
= Use Dynamic Binary Translation (DBT) to implement DIFT
» Runs on existing hardware, flexible security policies

High overheads (3—40x), incompatible with threaded or self-
modifying code, limited to a single core

= Hardware DIFT [Suh’04, Crandall’04, Chen’05]
= Modify CPU caches, registers, memory consistency, DRAM
= Negligible overhead, works for all types of binaries, multi-core
Inflexible policies (false positives/negatives), cannot protect OS

= Best of both worlds
= HW for tag propagation and checks
= SW for policy management and high-level analysis
= Robust, flexible, practical, end-to-end, and fast

Outline

m DIFT overview

Raksha: hardware support for DIFT [wbDD'06, 1ISCA'07]
= Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DsN'09]
= Using a coprocessor to minimize changes to the main core

Multi-processor DIFT micro'09]
= Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [osbros]
= Enforcement of app security policies with minimal trusted code

Raksha System Overview

Unmodified binaries

AN
- I

User 1 User 2 User 3

App
Binary

Tag
Aware

App
Binary

App
Binary

Operating System

Security Manager

HW Architecture

{
{

1

Save/restore tags
Cross-process info flow

Set HW security policies
Further SW analysis

4 tag bits per word
Programmable check/propagate
User-level security traps

2\
HW/SW Interface for DIFT Policies %

m A pair of policy registers per tag bit
= Set by security manager (SW) when and as needed

= Policy granularity: operation type
= Select input operands to be checked for taint
= Select input operands that propagate taint to output
= Select the propagation mode (and, or, Xor)

m |ISA instructions decomposed to =1 operations
= Types: ALU, comparison, insn fetch, data movement,

= Makes policies independent of ISA packaging
« Same HW policies for both RISC & CISC ISAs

« Don’t care how operations are packaged into ISA insns

Propagate Policy Example:

1oad

l1oad

r2 M[rl+offset]

Propagate Enables

1. Propagate only from source register

Tag(r2)

W

Tag(rl)

2. Propagate only from source address

Tag(r2)

W

Tag(M[r1+offset])

3. Propagate only from both sources
OR mode: Tag(r2) (¥jTag(rl) | Tag(M[r1+offset])
AND mode: Tag(r2) (¥]JTag(rl) & Tag(M[rl1+offset])
XOR mode: Tag(r2) (¥jTag(rl) * Tag(M[r1+offset])

Check Policy Example: 1oad

load r2 M[rl+offset]

Check Enables

1. Check source register
If Tag(r1l)==1 then security trap

2. Check source address
If Tag(M[r1+offset])==1 then security trap

Both enables may be set simultaneously
Support for checks across multiple tag bits

Raksha Hardware

-

|-Cache -§> Decode -} RegFile ALU-‘ D-Cache -5) Traps -» 5

H H -
Policy
5 Decode § 5 5 ; s

® Registers, caches & memory extended with tag bits
= 4 tag bits per word of memory

m Tags flow through pipeline along with corresponding data
= No changes in forwarding logic

Tag Storage

m Simple approach: +4 bits/word in registers, caches, memory

= 12.5% storage overhead

= Used in our original prototype
= Multi-granular tag storage scheme

u dallaYl 2 lacalit

[aerovr o

Memory Page Table

Entry 1

Page 1

Entry 2

Entry 3

U Page 2

Entry 4

Tag Cache

Raksha Prototype %

Hardware
= Modified SPARC V8 CPU (LEON-3)
= Mapped to FPGA board

Software
= Full-featured Gentoo Linux workstation
= Used with =14k packages (LAMP, etc)

Design statistics

R oA A E ; .
o ;:” Efg\‘g&”et 3 = Clock frequency: same as original

= Logic: +4.3% overhead

= Performance: <1% slowdown
=« Across a wide range of applications
= SW DIFT is 3-40x slowdown

N
Security Policies Overview %

Buffer Overflow Identify all pointers,

Policy and track data taint.
Check for illegal
tainted ptr use.

Offset-based Track data taint,
attacks and bounds check
(control ptr) to validate.

Format String Check tainted args
Policy to print commands.

SQL/XSS Check tainted
commands.

Red zone Policy Sandbox heap data.

Sandboxing Policy Protect the security
handler.

Security Experiments

tar

Attack

Detected Vulnerability

Directory Traversal

Open tainted dir

gzip

Directory Traversal

Open tainted dir

Wu-FTPD

Format String

Tainted ‘%n’ in vfprintf string

SUS

Format String

Tainted ‘%n’ in syslog

quotactl
syscall

User/kernel pointer
dereference

Tainted pointer to kernelspace

sendmail

Buffer (BSS) Overflow

Tainted code ptr

polymorph

Buffer Overflow

Tainted code ptr

OpenSSH

Command Injection

Execve tainted file

ProFTPD

SQL Injection

Tainted SQL command

htdig

Cross-site Scripting

Tainted <script> tag

Scr

Cross-site Scripting

Tainted <script> tag

= Unmodified SPARC binaries from real-world programs
= Basic/net utilities, servers, web apps, search engine

Security Experiments

Program Lang.

Attack

Detected Vulnerability

tar C

Directory Traversal

Open tainted dir

gzip

Directory Traversal

Open tainted dir

Wu-FTPD

Format String

Tainted ‘%n’ in vfprintf string

SUS

Format String

Tainted ‘%n’ in syslog

quotactl
syscall

User/kernel pointer
dereference

Tainted pointer to kernelspace

sendmail

Buffer (BSS) Overflow

Tainted code ptr

polymorph

Buffer Overflow

Tainted code ptr

OpenSSH

ProFTPD

SQL Injection

Execve tainted file

ainted SQL command

htdig

Cross-site Scripting

ainted <script> tag

Scry

Cross-site Scripting

ainted <script> tag

m Protection is independent of programming language
= Propagation & checks at the level of basic ops

Security Experiments

Program

Lang.

Attack

Detected Vulnerability

tar

C

Directory Traversal

Open tainted dir

gzip

Directory Traversal

Open tainted dir

Wu-FTPD

SUS

Format String

Format String

Tainted ‘%n’ in vfprintf string

ainted ‘%n’ in syslog

quotactl
syscall

C
C
C
C

User/kernel pointer
dereference

ainted pointer to kernelspace

sendmail

Buffer (BSS) Overflow

ainted code ptr

polymorph

OpenSSH

Buffer Overflow

Command Injection

ainted code ptr

Execve tainted file

ProFTPD

C
C
C
C

SQL Injection

Tainted SQL command

htdig

C++

Cross-site Scripting

Tainted <script> tag

Scry

PHP

Cross-site Scripting

Tainted <script> tag

m Protection against low-level memory corruptions
= Both control & non-control data attacks

Security Experiments

Program

Lang.

Attack

Detected Vulnerability

tar

C

Directory Traversal

Open tainted dir

gzip

Directory Traversal

Open tainted dir

Wu-FTPD

Format String

Tainted ‘%n’ in vfprintf string

SUS

Format String

Tainted ‘%n’ in syslog

quotactl
syscall

User/kernel pointer
dereference

Tainted pointer to kernelspace

sendmail

Buffer (BSS) Overflow

Tainted code ptr

polymorph

Buffer Overflow

Tainted code ptr

OpenSSH

ProFTPD

Command Injection

SQL Injection

Execve tainted file

Tainted SQL command

htdig

Cross-site Scripting

Tainted <script> tag

Scry

Cross-site Scripting

Tainted <script> tag

m 1St hardware DIFT system to detect high-level attacks

= No false positives observed

Outline

m DIFT overview

Raksha: hardware support for DIFT [wpbp'os, 1SCA'07]
m Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DsN'09]
= Using a coprocessor to minimize changes to the main core

Multi-processor DIFT micro'09]
= Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [ospros]
= Enforcement of app security policies with minimal trusted code

N
HW Option 1: In-core DIFT %

I-Cache - Decode -p RegFile

H H -
Policy
5 Decode § 5 5 ; s

m Integrated DIFT hardware [Dalton’07, Suh’04, Chen’05]
+ No performance, minor power, and minor area overhead
+ Invasive changes to processor
+ High design and validation costs

ALU-‘ D-Cache -g-} Traps -+ \IISV

+ Synchronizes metadata and data per instruction

N
HW Option 2: Offloading DIFT &

General General
Purpose corel Core2 pyrpose

Core (App) (DIFT) Core
Capture Analyze

Trace Trace

Log buffer
(L2 cache)

= SW DIFT on modified multi-core chip (e.g., CMU’s LBA)
+ Flexible support for various analyses
- Large area & power overhead (2"d core, trace compress)
+ Large performance overhead (DBT, memory traffic)
+ Significant changes to processor & memory hierarchy

2\
Our Proposal: DIFT Coprocessors

General |
Purposel
Core |

DIFT
Coprocessor

—————d Y

b

L2 Cache

m Off-core DIFT coprocessor (similar to watchdog processors)
» Small performance, power, and area overhead
¢ Minor changes to processor
Reuse across processor designs

What happens without e
Proc/Coproc Synchronization? %

Vulnerable C Code

iInt 1dx = tainted input;

buffer[1dx] = x; // memory corruption

Data

set rl <&tainted input

rl:&input

load r2 € M[rl

r2:i1dx=input

i

r3:&buffer

r4:&buffer+idx

COMPROMISE

_ e

r5:x

exec (sys call)

m Attacker executes system call @ system compromise

2\
System Calls as Sync points %

m Key lIdea: Main core and coproc sync at system calls

m Security:
= This prevents attacker from executing system calls
= Application’s corrupted address space can be discarded
= Does not weaken the DIFT model
« DIFT detects attack only at time of exploit, not corruption

m Performance:

= Synchronization overhead typically tens of cycles
« Function of decoupling queue size
= Lost in the noise of system call overheads (hundreds of cycles)

2\
System Call Synchronization %

Vulnerable C Code

iInt 1dx = tainted input;

buffer[1dx] = x; // memory corruption

Data
rl:&input

set rl <&tainted input

load r2 < MIril r2:idx=input

add ria < r2 + r3 r3:&buffer
store M[r4] < r5 r4:&buffer+idx

| [l

]

exec (sys call)

m Tainted pointer dereference 9 security exception

Coprocessor Design

l Security exception
Decoupling

Processor Stall _queue
<4— I I I Policy
—_ Decode
| PC
D Inst Encoding
Cache Physical Address

Core

DIFT Coprocessor

L2 Cache

= DIFT functionality in a coprocessor
= 4 tag bits of metadata per word of data

m Coprocessor Interface (via decoupling queue)
s Pass committed instruction information
= Instruction encoding could be at micro-op granularity (in x86)
= Physical address obviates need for MMU in coprocessor

Prototype

eEEL 1 Ethernet

3
* o

m Hardware

= Paired with simple SPARC V8 core (Leon-3)

= Mapped to FPGA board

= Fully-featured Linux 2.6

"= Design statistics
= Clock frequency: same as original
= Logic: +7.5% overhead

AcE W'm Security
= Catches same attacks as Raksha
= No false positives or negatives

= ... of simple in-order core with no speculatior

System Performance Overheads

1.00%

0.80%
0.60%
0.40%
0.20%
0.00%

gzip gap crafty parser vortex b2|p2 twolf

Runtime Overhead (20)

® Runtime overhead < 1920 over SPEC benchmarks

= 512 byte tag cache
m 6-entry decoupling queue

23]
Coprocessors for complex cores (%

1.2 #gzip

1.15 7 Hgcc

— 7 twolf

©
®
Q
L
[
O
>
O
O]
IE
-
o
Q
x

1 1.5 2

Ratio of main core's clock to
coprocessor's clock

® Modest overheads with higher IPC cores

= Because main core rarely achieves peak IPC (=1)
m Coprocessor performs very simple operations

= Implies coprocessor can be paired with complex cores_

Outline

m DIFT overview

Raksha: hardware support for DIFT [wpbp'os, 1SCA'07]
m Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DsN09]
m Using a coprocessor to minimize changes to the main core

Multi-processor DIFT micro'09]
= Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [ospros]
= Enforcement of app security policies with minimal trusted code

L
The Consistency Problem %

= Decoupling metadata breaks atomicity between data/tags
= Leads to consistency issues in multiprocessors

Proc 1 Proc 2 Tag Proc 1 Tag Proc 2

9 tag(x) = tag(u)

© tag(u) = tag(t)

Inconsistency between data and metadata (x updated first)

= Can cause false positives/negatives
= Spurious detections/miss real attacks

Fundamental Idea %

m Keep track of data coherence requests
= Provides log of memory races between threads

m Enforce same ordering on metadata
= Core A requests data from Core B Q)
Tag Core A requests metadata from Tag Core B

= Intervening accesses delayed for consistency

m Ensures atomic view of (data, metadata)
= Replaying memory ordering ensures consistency

Consistency Mechanism

iIil—
— Core

Metadata

|—> PTRT $ PTAT 4—‘
| |

Memory Interconnect

m Every instruction associated with unique 1D

= Inflight Operations
= Maintains information about the instruction in flight
= Similar to decoupling queue for DIFT coprocessor

40

Consistency Mechanism

Inflight
Ops

—_— Metadata
| >

B Core

I
I |
PTRT) $ PTAT 4—‘
|

Memory Interconnect

= PTRT = Pending Tag Request Table
m Logs app core’s coherence requests

m Metadata core indexes PTRT by instruction ID
= Directs metadata request to associated core

41

Consistency Mechanism

Inflight
Ops

—_— Metadata
>

B Colre

I I
-
l

Memory Interconnect

m PTAT = Pending Tag Acknowledgement Table
m Logs last instruction ID to update data value

® On corresponding metadata request
= Check if insn tag processing complete before replying

Consistency Protocol

Inflight Inflight
ID 5

AcC2 —JII— Mc2

‘ PTAT
ID=1, Delay =1

(a) Update PTAT of responder and PTRT of requestor

Consistency Protocol

Inflight
ID 5

I— wmcC1 AcC2 —JII— Mc2

PTAT
ID=1, Delay =0

IC

(b) Reset delay bit in PTAT of responder

Inflight

‘ PTAT
ID=1, Delay =0

[

(c) Issue metadata request, receive response

Consistency Protocol

Il— wmcC1

PTAT
ID=1, Delay =1

(d) Early metadata request NACKed

System Performance Overheads %

Performance of canneal

1 ®FIFO
- Set of FIFOs
5 ; | lVer5|on
o Mgmt
2 32

Number of Processors

Execution Overhead

m Different configurations for PTAT:
» BHIQDRMQERETATaneEs e dlics AfTe besioees idaty alue

47

Worst-case Overheads %

8%
7%
6%0 " FIFO
5%
4%
3%
2%
1%

Set of FIFOs

B Version Mgmt

Exceution Overhead

m Performance overheads < 7%6 with 32 processors

m Even simple FIFO design has good performance

48

/)
Scaling the Hardware Tables %

4%

3%

2%

1%

0%

Runtime Overhead
(relative to infinite PTAT/PTRT)

Scaling of HW tables (gap=20)

PTAT stalls

B PTRT stalls

¥ Runtime

I

l overhead

1

5

10

25

50

Number of entries in PTAT and PTRT
m Worst-case lock contention micro-benchmark

= Simulates the coprocessor environment

2\
Scaling the Hardware Tables %

Scaling of HW tables (gap=100)

PTAT stalls

B PTRT stalls

Runtime
overhead

Runtime Overhead
(relative to infinite PTAT/PTRT)

1 5 10 25 50

Number of entries in PTAT and PTRT
m Worst-case lock contention micro-benchmark

= Simulates the log-based architecture environment

Outline

m DIFT overview

Raksha: hardware support for DIFT [wbbbpos, 1ISCA'07]
m Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DsN'09]
m Using a coprocessor to minimize changes to the main core

Multi-processor DIFT [MICRO09]
m Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [osbros]
= Enforcement of app security policies with minimal trusted code

2\
Dynamic Information Flow Control (‘@

m Single abstraction across all system layers

= Security policies as restrictions on data movement

m Basic idea
= Every object is marked with a label

= On accesses, look up label to get a R/W/X permission

= Building upon flow control
= App policy expressed using labels directly

= Labels describe protection domains with flexible sharing

52

Loki: HW Support for Info _,
Control %

= Loki implements tagged memory
= Each word of physical memory associated with a 32-bit tag
= Tags map to access permissions (R/W/X) for protection domain
= Fine-grained access control

m Simplifies security enforcement
= SW manages tags, but HW enforces security policies
= Helps maintain security in face of compromised OS

m Ties security policies to physical resources
= Physical resource policies avoid ambiguity

= Allows for a smaller TCB
= Reduced the TCB of HiStar by over a factor of two

Conclusion %

m Hardware DIFT is a promising security solution
= Prevents HL/LL attacks, is fast, does not need src code

m Co-developed Raksha, a flexible hardware design
for efficient, practical DIFT on binaries
= DIFT coprocessor to minimize changes to main core/cache
= Mechanism for safe DIFT on multithreaded binaries

= Including real full-system prototypes (HW+SW)

m Extended hardware DIFT techniques to implement
iInformation flow control

= Allows for significant reduction in size of OS’ TCB

Bibliography %

m "Deconstructing Hardware Architectures for Security," Michael Dalton,
Hari Kannan, Christos Kozyrakis. 5" Annual Workshop on Duplicating,
Deconstructing, and Debunking (WDDD) at ISCA, Boston, MA, June 2006.

"Raksha: A Flexible Information Flow Architecture for Software
Security," Michael Dalton, Hari Kannan, Christos Kozyrakis. Proceedings of
the 34" Intl. Symposium on Computer Architecture (ISCA), San Diego, CA,
June 2007.

"Raksha: A Flexible Architecture for Software Security," Hari Kannan,
Michael Dalton, Christos Kozyrakis. Technical Record of the 19t Hot Chips
Symposium, Palo Alto, CA, August 2007.

"Thread-Safe Dynamic Binary Translation Using Transactional
Memory," JaeWoong Chung, Michael Dalton, Hari Kannan, Christos
Kozyrakis. Proceedings of the 14t Intl. Symposium on High-Performance
Computer Architecture (HPCA), Salt Lake City, UT, February 2008.

Bibliography cont’d %

"Real-World Buffer Overflow Protection for Userspace and
Kernelspace," Michael Dalton, Hari Kannan, Christos Kozyrakis. Proceedings
of the 17t Usenix Security Symposium, San Jose, CA, July 2008.

"Hardware Enforcement of Application Security Policies," Nickolai
Zeldovich, Hari Kannan, Michael Dalton, Christos Kozyrakis. Proceedings of
the 8t Usenix Symposium on Operating Systems Design & Implementation
(OSDI), San Diego, CA, December 2008.

"Decoupling Dynamic Information Flow Tracking with a Dedicated
Coprocessor," Hari Kannan, Michael Dalton, Christos Kozyrakis. Proceedings
of the 39t Intl. Conference on Dependable Systems and Networks (DSN),
Estoril, Portugal, June 2009.

“Ordering Decoupled Metadata Accesses in Multiprocessors," Hari
Kannan, Proceedings of the 42 Intl. Symposium on Microarchitecture
(MICRO), New York City, NY, December 2009.

