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The Computer Security Crisis 

More systems are online, vulnerable 

Banking, Power, Water, Government 

Threats have multiplied 

XSS, SQL Injection, Phishing, ... 

Old challenges remain 

Buffer overflows, broken access control 
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A Blast from the Past?  
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Wave of the Future? 

4 

Source: cyberinsecure.com 



Motivation 

 Security research 
Provide simple & practical abstractions for expressing 
and enforcing security policies 

The resulting system must be 
Robust: protects against wide range of threats 

Flexible: can be adjusted for future threats 

Practical: works with all types of existing SW 

End-to-end: protects both user and kernelspace code  

Fast: no significant runtime overheads 
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Why Hardware Support? 

Advantages of HW support 

Better performance 

Fine-granularity protection 

Lowest level of the system stack 
Difficult to bypass, can build upon its guarantees 

Simplify the SW security framework  

Our focus: combine the best of HW + SW 

HW: low-level operations and enforcement 

SW: high-level policies and analysis 
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DIFT: Dynamic Information Flow 
Tracking 

DIFT taints data from untrusted sources  

Extra tag bit per word marks if untrusted 

Propagate taint during program execution 

Operations with tainted data produce tainted results 

Check for unsafe uses of tainted data 

Tainted code execution 

Tainted pointer dereference (code & data) 

Tainted SQL command 

Can detect both low-level & high-level threats 
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Thesis Overview 
Design practical hardware systems implementing Dynamic 
Information Flow Tracking (DIFT) for software security 

Thesis contributions 

Co-developed a flexible hardware design for efficient, practical 
DIFT on binaries 

Including a real full-system prototype (HW+SW) 

Developed hardware mechanisms for DIFT to allow for practical, 
cost-effective implementation 

Implemented a DIFT coprocessor (real full-system prototype) 

Developed a mechanism for safe DIFT on multi-threaded binaries 

Leveraged DIFT mechanisms and co-developed a flexible hardware 
design for information flow control 

Hardware directly enforces application security policies 

Allows for significant reduction in size of OS’ trusted computing base 

Including a real full-system prototype (HW+SW) 
8 



Outline 

DIFT overview 

Raksha: hardware support for DIFT [WDDD’06, ISCA’07]  

Flexible HW design for efficient, practical DIFT on binaries 

Decoupling DIFT from the processor [DSN’09] 

Using a coprocessor to minimize changes to the main core 

Multi-processor DIFT [MICRO’09] 

Ensuring consistency between data and metadata under decoupling 

Loki: hardware support for information flow control [OSDI’08] 

Enforcement of app security policies with minimal trusted code 
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 r1:input+1020  

 r2:0  

 r3: buf+1024  

 retaddr: safe   

 Data   T 

DIFT Example: Memory 
Corruption  

Tainted pointer dereference     security trap 

char buf[1024];  

strcpy(buf,input);//buffer overflow 

Vulnerable C Code 

r1  r1 + 4 

load  r2  M[r1] 

store M[r3]  r2 

jmp M[retaddr] 

 retaddr: bad   

 r1: input+1024  

 r2: bad  

TRAP 
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DIFT Example: SQL Injection  

Vulnerable SQL Code 

Username: christos’ OR ‘1’=‘1 

  SELECT * FROM table 

  WHERE  name= ‘christos’ OR ‘1’=‘1’ ; 

 Data   T 

WHERE name=   

username   

OR 

1=1 

christos   

TRAP 

  SELECT * FROM table 

  WHERE  name= ‘username’; 

Password: 

Tainted SQL command   security trap 
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Implementing DIFT on Binaries 

Software DIFT [Newsome’05, Quin’06] 

Use Dynamic Binary Translation (DBT) to implement DIFT 

Runs on existing hardware, flexible security policies  

High overheads (3–40x), incompatible with threaded or self-
modifying code, limited to a single core 

Hardware DIFT [Suh’04, Crandall’04, Chen’05] 

Modify CPU caches, registers, memory consistency, DRAM  

Negligible overhead, works for all types of binaries, multi-core 

Inflexible policies (false positives/negatives), cannot protect OS 

Best of both worlds 

HW for tag propagation and checks  

SW for policy management and high-level analysis  

Robust, flexible, practical, end-to-end, and fast 
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Raksha System Overview 

HW Architecture Tags 

Operating System 
Tag 

Aware 

App 

Binary 

4 tag bits per word 

Programmable check/propagate 

User-level security traps 

App 

Binary 

Security Manager 

User 1 User 2 

Save/restore tags 

Cross-process info flow 

Set HW security policies 

Further SW analysis 

Unmodified binaries 

App 

Binary 

User 3 

14 



HW/SW Interface for DIFT Policies 

A pair of policy registers per tag bit 

Set by security manager (SW) when and as needed 

Policy granularity: operation type 

Select input operands to be checked for taint 

Select input operands that propagate taint to output  

Select the propagation mode (and, or, xor) 

ISA instructions decomposed to 1 operations 

Types: ALU, comparison, insn fetch, data movement,  …  

Makes policies independent of ISA packaging 

 Same HW policies for both RISC & CISC ISAs 

 Don’t care how operations are packaged into ISA insns 
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Propagate Policy Example: 
load 

load  r2  M[r1+offset] 

Propagate Enables  

1. Propagate only from source register 

 Tag(r2) Tag(r1) 

2. Propagate only from source address 
Tag(r2) Tag(M[r1+offset]) 

3. Propagate only from both sources 
OR mode: Tag(r2) Tag(r1) | Tag(M[r1+offset]) 

AND mode: Tag(r2) Tag(r1) & Tag(M[r1+offset]) 

XOR mode: Tag(r2) Tag(r1) ^ Tag(M[r1+offset]) 

load  r2  M[r1+offset] load  r2  M[r1+offset] load  r2  M[r1+offset] 
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Check Policy Example: load 

load  r2  M[r1+offset] 

Check Enables  

1. Check source register 

 If Tag(r1)==1 then security_trap 

2. Check source address 
If Tag(M[r1+offset])==1 then security_trap 

Both enables may be set simultaneously 

Support for checks across multiple tag bits  

load  r2  M[r1+offset] load  r2  M[r1+offset] 
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Raksha Hardware 

Policy 
Decode 

Tag 
ALU 

Tag 
Check 

Decode D-Cache RegFile ALU I-Cache Traps 
W

B 
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Registers, caches & memory extended with tag bits 

4 tag bits per word of memory 

Tags flow through pipeline along with corresponding data 

No changes in forwarding logic 



Tag Storage 

Simple approach: +4 bits/word in registers, caches, memory 

12.5% storage overhead 

Used in our original prototype 

Multi-granular tag storage scheme  

Exploit tag locality to reduce storage overhead (~1-2%) 

Page-level tags  cache line-level tags  word-level tags 

Page 1 

Page 2 

Memory Page Table 

Entry 1 

Entry 2 

Entry 3 

Entry 4 

Cache 

Line 1 

Line 2 

Line 3 

Line 4 

Tag Page 

Tag Cache 

Fine 

C 

C 

C 

C 

F 
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Raksha Prototype 

Hardware  

Modified SPARC V8 CPU (LEON-3) 

Mapped to FPGA board 

Software 

Full-featured Gentoo Linux workstation 

Used with >14k packages (LAMP, etc) 

Design statistics 

Clock frequency: same as original 

Logic: +4.3% overhead 

Performance: <1% slowdown 

Across a wide range of applications 

SW DIFT is 3-40x slowdown 
GR-CPCI-XC2V 

Leon-3 

@40MH
z 

512MB 

DRAM 

Ethernet

AoE 

  Ethernet 

AoE 

Leon-3 

@65MHz 

512MB 

DRAM 

20 



Security Policies Overview 
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P Bit T Bit B Bit S Bit 

Buffer Overflow 

Policy 

Identify all pointers, 

and track data taint. 
Check for illegal 

tainted ptr use.  Y  Y 

Offset-based 

attacks 
(control ptr) 

Track data taint, 

and bounds check 
to validate. 

Y 

Format String 

Policy 

Check tainted args 

to print commands.  Y Y 

SQL/XSS Check tainted 

commands.  Y Y 

Red zone Policy Sandbox heap data. Y 

Sandboxing Policy Protect the security 

handler. Y 



Security Experiments 

Unmodified SPARC binaries from real-world programs 

Basic/net utilities, servers, web apps, search engine 
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Program Lang. Attack Detected Vulnerability 

tar C Directory Traversal Open tainted dir 

gzip C Directory Traversal Open tainted dir 

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string 

SUS C Format String Tainted ‘%n’ in syslog 

quotactl 

syscall 

C User/kernel pointer 

dereference 

Tainted pointer to kernelspace 

sendmail C Buffer (BSS) Overflow Tainted code ptr 

polymorph C Buffer Overflow Tainted code ptr 

OpenSSH C Command Injection Execve tainted file 

ProFTPD C SQL Injection Tainted SQL command 

htdig C++ Cross-site Scripting Tainted <script> tag 

Scry PHP Cross-site Scripting Tainted <script> tag 



Security Experiments 

Protection is independent of programming language 

Propagation & checks at the level of basic ops 
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tar C Directory Traversal Open tainted dir 

gzip C Directory Traversal Open tainted dir 
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SUS C Format String Tainted ‘%n’ in syslog 

quotactl 

syscall 

C User/kernel pointer 

dereference 

Tainted pointer to kernelspace 

sendmail C Buffer (BSS) Overflow Tainted code ptr 

polymorph C Buffer Overflow Tainted code ptr 

OpenSSH C Command Injection Execve tainted file 

ProFTPD C SQL Injection Tainted SQL command 

htdig C++ Cross-site Scripting Tainted <script> tag 

Scry PHP Cross-site Scripting Tainted <script> tag 



Security Experiments 

Protection against low-level memory corruptions 

Both control & non-control data attacks 
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Program Lang. Attack Detected Vulnerability 

tar C Directory Traversal Open tainted dir 

gzip C Directory Traversal Open tainted dir 

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string 

SUS C Format String Tainted ‘%n’ in syslog 

quotactl 

syscall 

C User/kernel pointer 

dereference 

Tainted pointer to kernelspace 

sendmail C Buffer (BSS) Overflow Tainted code ptr 

polymorph C Buffer Overflow Tainted code ptr 

OpenSSH C Command Injection Execve tainted file 

ProFTPD C SQL Injection Tainted SQL command 

htdig C++ Cross-site Scripting Tainted <script> tag 

Scry PHP Cross-site Scripting Tainted <script> tag 



Security Experiments 

1st hardware DIFT system to detect high-level attacks 

No false positives observed 
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Program Lang. Attack Detected Vulnerability 

tar C Directory Traversal Open tainted dir 

gzip C Directory Traversal Open tainted dir 

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string 

SUS C Format String Tainted ‘%n’ in syslog 

quotactl 

syscall 

C User/kernel pointer 

dereference 

Tainted pointer to kernelspace 

sendmail C Buffer (BSS) Overflow Tainted code ptr 

polymorph C Buffer Overflow Tainted code ptr 

OpenSSH C Command Injection Execve tainted file 

ProFTPD C SQL Injection Tainted SQL command 

htdig C++ Cross-site Scripting Tainted <script> tag 

Scry PHP Cross-site Scripting Tainted <script> tag 
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DIFT overview 

Raksha: hardware support for DIFT [WDDD’06, ISCA’07]  

Flexible HW design for efficient, practical DIFT on binaries 

Decoupling DIFT from the processor [DSN’09] 

Using a coprocessor to minimize changes to the main core 

Multi-processor DIFT [MICRO’09] 

Ensuring consistency between data and metadata under decoupling 

Loki: hardware support for information flow control [OSDI’08] 

Enforcement of app security policies with minimal trusted code 
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HW Option 1: In-core DIFT 

Policy 
Decode 

Tag 
ALU 

Tag 
Check 

Decode D-Cache RegFile ALU I-Cache Traps 
W

B 
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Integrated DIFT hardware [Dalton’07, Suh’04, Chen’05] 

No performance, minor power, and minor area overhead 

Invasive changes to processor 

High design and validation costs 

Synchronizes metadata and data per instruction 



Core 1 

(App) 

HW Option 2: Offloading DIFT 

Capture 

Trace 

Log buffer 

(L2 cache) 
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Core 2 

(DIFT) 

Analyze 

Trace 

SW DIFT on modified multi-core chip (e.g., CMU’s LBA) 

Flexible support for various analyses 

Large area & power overhead (2nd core, trace compress) 

Large performance overhead (DBT, memory traffic) 

Significant changes to processor & memory hierarchy 

General 
Purpose  
Core 

General 
Purpose  
Core 



Our Proposal: DIFT Coprocessor 
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Off-core DIFT coprocessor (similar to watchdog processors) 

Small performance, power, and area overhead 

Minor changes to processor 

Reuse across processor designs 

L2 Cache 

Cache 

Main 

Core 

Tag 

Cache 

Tag 

Core 

Instructions 

Exceptions 

DIFT 
Coprocessor 

General 
Purpose  
Core 



 r1:0   

 r2:idx  

 r3:&buffer   

 r4:0   

 Data   T 

 r5:x   

What happens without  
Proc/Coproc Synchronization? 

int idx = tainted_input; 

buffer[idx] = x; // memory corruption 

Vulnerable C Code 

set   r1 &tainted_input 

load  r2  M[r1] 

add   r4  r2 + r3 

store M[r4]  r5   r4:&buffer+idx   

 r1:&input   

 r2:idx=input   

EXPLOIT 
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    … 

  exec (sys call) 

Attacker executes system call   system compromise 

SYSTEM 
COMPROMISE 



System Calls as Sync points 

Key Idea: Main core and coproc sync at system calls 

Security: 
This prevents attacker from executing system calls 

Application’s corrupted address space can be discarded 

Does not weaken the DIFT model 

DIFT detects attack only at time of exploit, not corruption 

Performance: 
Synchronization overhead typically tens of cycles 

Function of decoupling queue size 

Lost in the noise of system call overheads (hundreds of cycles) 
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 r1:0   

 r2:idx  

 r3:&buffer   

 r4:0   

 Data   T 

 r5:x   

System Call Synchronization 

int idx = tainted_input; 

buffer[idx] = x; // memory corruption 

Vulnerable C Code 

set   r1 &tainted_input 

load  r2  M[r1] 

add   r4  r2 + r3 

store M[r4]  r5   r4:&buffer+idx   

 r1:&input   

 r2:idx=input   

TRAP 
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    … 

  exec (sys call) STALL 

Tainted pointer dereference     security exception 



Coprocessor Design 

DIFT functionality in a coprocessor 

4 tag bits of metadata per word of data 

Coprocessor Interface (via decoupling queue) 

Pass committed instruction information 

Instruction encoding could be at micro-op granularity (in x86) 

Physical address obviates need for MMU in coprocessor 

Processor  

Core 

I 
Cache 

D 
Cache 

Policy 
Decode 

Tag 
ALU 

Tag 
Check Tag 

Cache 

Tag RF W
B 

DIFT Coprocessor PC 
     Inst Encoding 
    Physical Address 

Security exception 

L2 Cache 
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Decoupling 
 queue Stall 



Prototype 

Leon-3 

@40MH
z 

512MB 

DRAM 

Ethernet

AoE 

Ethernet

AoE 

Leon-3 

@65MHz 

512MB 

DRAM 
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Hardware  

Paired with simple SPARC V8 core (Leon-3) 

Mapped to FPGA board 

Software 

Fully-featured Linux 2.6 

Design statistics 

Clock frequency: same as original 

Logic: +7.5% overhead 

… of simple in-order core with no speculation 

Security 

Catches same attacks as Raksha 

No false positives or negatives 



System Performance Overheads 

Runtime overhead < 1% over SPEC benchmarks 

512 byte tag cache 

6-entry decoupling queue 
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Coprocessors for complex cores 

Modest overheads with higher IPC cores 
Because main core rarely achieves peak IPC (=1) 

Coprocessor performs very simple operations 

Implies coprocessor can be paired with complex cores 
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Outline 

DIFT overview 

Raksha: hardware support for DIFT [WDDD’06, ISCA’07]  

Flexible HW design for efficient, practical DIFT on binaries 

Decoupling DIFT from the processor [DSN’09] 

Using a coprocessor to minimize changes to the main core 

Multi-processor DIFT [MICRO’09] 
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Enforcement of app security policies with minimal trusted code 
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The Consistency Problem 

      Proc 1       Proc 2       Tag Proc 1         Tag Proc 2 
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1 

4 

3 
2 

u = t 

x = u 

tag(x) = tag(u) 

tag(u) = tag(t) 

Inconsistency between data and metadata (x updated first) 

Decoupling metadata breaks atomicity between data/tags 
Leads to consistency issues in multiprocessors   

Can cause false positives/negatives 

Spurious detections/miss real attacks 



Fundamental Idea 

Keep track of data coherence requests 

Provides log of memory races between threads 

Enforce same ordering on metadata 
Core A requests data from Core B 

   Tag Core A requests metadata from Tag Core B 

Intervening accesses delayed for consistency 

Ensures atomic view of (data, metadata) 
Replaying memory ordering ensures consistency 
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Consistency Mechanism 
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App 

Core 

Metadata 

Core 

  Inflight   
     Ops 

 Memory Interconnect 

$ $ PTRT PTAT 

Every instruction associated with unique ID 

Inflight Operations 
Maintains information about the instruction in flight 

Similar to decoupling queue for DIFT coprocessor  



Consistency Mechanism 
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App 

Core 

Metadata 

Core 

  Inflight   
     Ops 

 Memory Interconnect 

$ $ PTRT PTAT 

PTRT = Pending Tag Request Table 

Logs app core’s coherence requests 

Metadata core indexes PTRT by instruction ID  
Directs metadata request to associated core 



Consistency Mechanism 
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App 

Core 

Metadata 

Core 

  Inflight   
     Ops 

 Memory Interconnect 

$ $ PTRT PTAT 

PTAT = Pending Tag Acknowledgement Table 

Logs last instruction ID to update data value 

On corresponding metadata request 
Check if insn tag processing complete before replying 



Consistency Protocol 
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PTRT 

ID=1, Delay = 1 

AC1 MC1 

  Inflight  
    ID 1 

                             IC 

          ID=5 

AC2 MC2 

  Inflight  
    ID 5 

PTAT 

(a) Update PTAT of responder and PTRT of requestor 



Consistency Protocol 

44 

PTRT 

ID=1, Delay = 0 

AC1 MC1 

  Inflight  
     ---- 

IC 

          ID=5 

AC2 MC2 

  Inflight  
    ID 5 

PTAT 

(b) Reset delay bit in PTAT of responder 



Consistency Protocol 
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PTRT 

ID=1, Delay = 0 

AC1 MC1 

  Inflight   
     ---- 

                                      IC 

          ID=5 

AC2 MC2 

  Inflight  
     ---- 

PTAT 

(c) Issue metadata request, receive response 

OK 



Consistency Protocol 
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PTRT 

ID=1, Delay = 1 

AC1 MC1 

  Inflight   
     ID 1 

                       IC 

          ID=5 

AC2 MC2 

  Inflight  
     ---- 

PTAT 

(d) Early metadata request NACKed 

NACK 



Set of FIFOs: PTAT maintains a FIFO for every address Versioning: Reqs served out of order. PTAT stores tag value 

System Performance Overheads 
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Different configurations for PTAT: 

FIFO: Metadata requests serviced in same order as data 



Worst-case Overheads 
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Even simple FIFO design has good performance 
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Scaling the Hardware Tables 
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Worst-case lock contention micro-benchmark 

Simulates the coprocessor environment  



Scaling the Hardware Tables 
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Worst-case lock contention micro-benchmark 

Simulates the log-based architecture environment  

Scaling of HW tables (gap=100) 

PTAT stalls 

PTRT stalls 

Runtime 
overhead 
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Enforcement of app security policies with minimal trusted code 
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Dynamic Information Flow Control 

Single abstraction across all system layers 

Security policies as restrictions on data movement 

Basic idea 

Every object is marked with a label  

On accesses, look up label to get a R/W/X permission 

Building upon flow control 

App policy expressed using labels directly 

Labels describe protection domains with flexible sharing 
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Loki: HW Support for Info 
Control 

Loki implements tagged memory 
Each word of physical memory associated with a 32-bit tag 

Tags map to access permissions (R/W/X) for protection domain 

Fine-grained access control 

Simplifies security enforcement 
SW manages tags, but HW enforces security policies 

Helps maintain security in face of compromised OS 

Ties security policies to physical resources 

Physical resource policies avoid ambiguity 

Allows for a smaller TCB 
Reduced the TCB of HiStar by over a factor of two 
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Conclusion 

Hardware DIFT is a promising security solution 

Prevents HL/LL attacks, is fast, does not need src code 

Co-developed Raksha, a flexible hardware design 

for efficient, practical DIFT on binaries 

DIFT coprocessor to minimize changes to main core/cache 

Mechanism for safe DIFT on multithreaded binaries 

Including real full-system prototypes (HW+SW) 

Extended hardware DIFT techniques to implement 

information flow control 

Allows for significant reduction in size of OS’ TCB 54 
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