
Building Hardware

Systems for Information

Flow Tracking

Hari Kannan

Computer Systems Laboratory

Stanford University

The Computer Security Crisis

More systems are online, vulnerable

Banking, Power, Water, Government

Threats have multiplied

XSS, SQL Injection, Phishing, ...

Old challenges remain

Buffer overflows, broken access control

2

A Blast from the Past?

3

Wave of the Future?

4

Source: cyberinsecure.com

Motivation

 Security research
Provide simple & practical abstractions for expressing
and enforcing security policies

The resulting system must be
Robust: protects against wide range of threats

Flexible: can be adjusted for future threats

Practical: works with all types of existing SW

End-to-end: protects both user and kernelspace code

Fast: no significant runtime overheads

5

Why Hardware Support?

Advantages of HW support

Better performance

Fine-granularity protection

Lowest level of the system stack
Difficult to bypass, can build upon its guarantees

Simplify the SW security framework

Our focus: combine the best of HW + SW

HW: low-level operations and enforcement

SW: high-level policies and analysis

6

DIFT: Dynamic Information Flow
Tracking

DIFT taints data from untrusted sources

Extra tag bit per word marks if untrusted

Propagate taint during program execution

Operations with tainted data produce tainted results

Check for unsafe uses of tainted data

Tainted code execution

Tainted pointer dereference (code & data)

Tainted SQL command

Can detect both low-level & high-level threats
7

Thesis Overview
Design practical hardware systems implementing Dynamic
Information Flow Tracking (DIFT) for software security

Thesis contributions

Co-developed a flexible hardware design for efficient, practical
DIFT on binaries

Including a real full-system prototype (HW+SW)

Developed hardware mechanisms for DIFT to allow for practical,
cost-effective implementation

Implemented a DIFT coprocessor (real full-system prototype)

Developed a mechanism for safe DIFT on multi-threaded binaries

Leveraged DIFT mechanisms and co-developed a flexible hardware
design for information flow control

Hardware directly enforces application security policies

Allows for significant reduction in size of OS’ trusted computing base

Including a real full-system prototype (HW+SW)
8

Outline

DIFT overview

Raksha: hardware support for DIFT [WDDD’06, ISCA’07]

Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DSN’09]

Using a coprocessor to minimize changes to the main core

Multi-processor DIFT [MICRO’09]

Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [OSDI’08]

Enforcement of app security policies with minimal trusted code

9

 r1:input+1020

 r2:0

 r3: buf+1024

 retaddr: safe

 Data T

DIFT Example: Memory
Corruption

Tainted pointer dereference security trap

char buf[1024];

strcpy(buf,input);//buffer overflow

Vulnerable C Code

r1 r1 + 4

load r2 M[r1]

store M[r3] r2

jmp M[retaddr]

 retaddr: bad

 r1: input+1024

 r2: bad

TRAP

10

DIFT Example: SQL Injection

Vulnerable SQL Code

Username: christos’ OR ‘1’=‘1

 SELECT * FROM table

 WHERE name= ‘christos’ OR ‘1’=‘1’ ;

 Data T

WHERE name=

username

OR

1=1

christos

TRAP

 SELECT * FROM table

 WHERE name= ‘username’;

Password:

Tainted SQL command security trap
11

Implementing DIFT on Binaries

Software DIFT [Newsome’05, Quin’06]

Use Dynamic Binary Translation (DBT) to implement DIFT

Runs on existing hardware, flexible security policies

High overheads (3–40x), incompatible with threaded or self-
modifying code, limited to a single core

Hardware DIFT [Suh’04, Crandall’04, Chen’05]

Modify CPU caches, registers, memory consistency, DRAM

Negligible overhead, works for all types of binaries, multi-core

Inflexible policies (false positives/negatives), cannot protect OS

Best of both worlds

HW for tag propagation and checks

SW for policy management and high-level analysis

Robust, flexible, practical, end-to-end, and fast
12

Outline

DIFT overview

Raksha: hardware support for DIFT [WDDD’06, ISCA’07]

Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DSN’09]

Using a coprocessor to minimize changes to the main core

Multi-processor DIFT [MICRO’09]

Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [OSDI’08]

Enforcement of app security policies with minimal trusted code

13

Raksha System Overview

HW Architecture Tags

Operating System
Tag

Aware

App

Binary

4 tag bits per word

Programmable check/propagate

User-level security traps

App

Binary

Security Manager

User 1 User 2

Save/restore tags

Cross-process info flow

Set HW security policies

Further SW analysis

Unmodified binaries

App

Binary

User 3

14

HW/SW Interface for DIFT Policies

A pair of policy registers per tag bit

Set by security manager (SW) when and as needed

Policy granularity: operation type

Select input operands to be checked for taint

Select input operands that propagate taint to output

Select the propagation mode (and, or, xor)

ISA instructions decomposed to 1 operations

Types: ALU, comparison, insn fetch, data movement, …

Makes policies independent of ISA packaging

 Same HW policies for both RISC & CISC ISAs

 Don’t care how operations are packaged into ISA insns
15

Propagate Policy Example:
load

load r2 M[r1+offset]

Propagate Enables

1. Propagate only from source register

 Tag(r2) Tag(r1)

2. Propagate only from source address
Tag(r2) Tag(M[r1+offset])

3. Propagate only from both sources
OR mode: Tag(r2) Tag(r1) | Tag(M[r1+offset])

AND mode: Tag(r2) Tag(r1) & Tag(M[r1+offset])

XOR mode: Tag(r2) Tag(r1) ^ Tag(M[r1+offset])

load r2 M[r1+offset] load r2 M[r1+offset] load r2 M[r1+offset]

16

Check Policy Example: load

load r2 M[r1+offset]

Check Enables

1. Check source register

 If Tag(r1)==1 then security_trap

2. Check source address
If Tag(M[r1+offset])==1 then security_trap

Both enables may be set simultaneously

Support for checks across multiple tag bits

load r2 M[r1+offset] load r2 M[r1+offset]

17

Raksha Hardware

Policy
Decode

Tag
ALU

Tag
Check

Decode D-Cache RegFile ALU I-Cache Traps
W

B

18

Registers, caches & memory extended with tag bits

4 tag bits per word of memory

Tags flow through pipeline along with corresponding data

No changes in forwarding logic

Tag Storage

Simple approach: +4 bits/word in registers, caches, memory

12.5% storage overhead

Used in our original prototype

Multi-granular tag storage scheme

Exploit tag locality to reduce storage overhead (~1-2%)

Page-level tags cache line-level tags word-level tags

Page 1

Page 2

Memory Page Table

Entry 1

Entry 2

Entry 3

Entry 4

Cache

Line 1

Line 2

Line 3

Line 4

Tag Page

Tag Cache

Fine

C

C

C

C

F

19

Raksha Prototype

Hardware

Modified SPARC V8 CPU (LEON-3)

Mapped to FPGA board

Software

Full-featured Gentoo Linux workstation

Used with >14k packages (LAMP, etc)

Design statistics

Clock frequency: same as original

Logic: +4.3% overhead

Performance: <1% slowdown

Across a wide range of applications

SW DIFT is 3-40x slowdown
GR-CPCI-XC2V

Leon-3

@40MH
z

512MB

DRAM

Ethernet

AoE

 Ethernet

AoE

Leon-3

@65MHz

512MB

DRAM

20

Security Policies Overview

21

P Bit T Bit B Bit S Bit

Buffer Overflow

Policy

Identify all pointers,

and track data taint.
Check for illegal

tainted ptr use. Y Y

Offset-based

attacks
(control ptr)

Track data taint,

and bounds check
to validate.

Y

Format String

Policy

Check tainted args

to print commands. Y Y

SQL/XSS Check tainted

commands. Y Y

Red zone Policy Sandbox heap data. Y

Sandboxing Policy Protect the security

handler. Y

Security Experiments

Unmodified SPARC binaries from real-world programs

Basic/net utilities, servers, web apps, search engine
22

Program Lang. Attack Detected Vulnerability

tar C Directory Traversal Open tainted dir

gzip C Directory Traversal Open tainted dir

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

SUS C Format String Tainted ‘%n’ in syslog

quotactl

syscall

C User/kernel pointer

dereference

Tainted pointer to kernelspace

sendmail C Buffer (BSS) Overflow Tainted code ptr

polymorph C Buffer Overflow Tainted code ptr

OpenSSH C Command Injection Execve tainted file

ProFTPD C SQL Injection Tainted SQL command

htdig C++ Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

Security Experiments

Protection is independent of programming language

Propagation & checks at the level of basic ops
23

Program Lang. Attack Detected Vulnerability

tar C Directory Traversal Open tainted dir

gzip C Directory Traversal Open tainted dir

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

SUS C Format String Tainted ‘%n’ in syslog

quotactl

syscall

C User/kernel pointer

dereference

Tainted pointer to kernelspace

sendmail C Buffer (BSS) Overflow Tainted code ptr

polymorph C Buffer Overflow Tainted code ptr

OpenSSH C Command Injection Execve tainted file

ProFTPD C SQL Injection Tainted SQL command

htdig C++ Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

Security Experiments

Protection against low-level memory corruptions

Both control & non-control data attacks
24

Program Lang. Attack Detected Vulnerability

tar C Directory Traversal Open tainted dir

gzip C Directory Traversal Open tainted dir

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

SUS C Format String Tainted ‘%n’ in syslog

quotactl

syscall

C User/kernel pointer

dereference

Tainted pointer to kernelspace

sendmail C Buffer (BSS) Overflow Tainted code ptr

polymorph C Buffer Overflow Tainted code ptr

OpenSSH C Command Injection Execve tainted file

ProFTPD C SQL Injection Tainted SQL command

htdig C++ Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

Security Experiments

1st hardware DIFT system to detect high-level attacks

No false positives observed
25

Program Lang. Attack Detected Vulnerability

tar C Directory Traversal Open tainted dir

gzip C Directory Traversal Open tainted dir

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

SUS C Format String Tainted ‘%n’ in syslog

quotactl

syscall

C User/kernel pointer

dereference

Tainted pointer to kernelspace

sendmail C Buffer (BSS) Overflow Tainted code ptr

polymorph C Buffer Overflow Tainted code ptr

OpenSSH C Command Injection Execve tainted file

ProFTPD C SQL Injection Tainted SQL command

htdig C++ Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

Outline

DIFT overview

Raksha: hardware support for DIFT [WDDD’06, ISCA’07]

Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DSN’09]

Using a coprocessor to minimize changes to the main core

Multi-processor DIFT [MICRO’09]

Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [OSDI’08]

Enforcement of app security policies with minimal trusted code

26

HW Option 1: In-core DIFT

Policy
Decode

Tag
ALU

Tag
Check

Decode D-Cache RegFile ALU I-Cache Traps
W

B

27

Integrated DIFT hardware [Dalton’07, Suh’04, Chen’05]

No performance, minor power, and minor area overhead

Invasive changes to processor

High design and validation costs

Synchronizes metadata and data per instruction

Core 1

(App)

HW Option 2: Offloading DIFT

Capture

Trace

Log buffer

(L2 cache)

28

Core 2

(DIFT)

Analyze

Trace

SW DIFT on modified multi-core chip (e.g., CMU’s LBA)

Flexible support for various analyses

Large area & power overhead (2nd core, trace compress)

Large performance overhead (DBT, memory traffic)

Significant changes to processor & memory hierarchy

General
Purpose
Core

General
Purpose
Core

Our Proposal: DIFT Coprocessor

29

Off-core DIFT coprocessor (similar to watchdog processors)

Small performance, power, and area overhead

Minor changes to processor

Reuse across processor designs

L2 Cache

Cache

Main

Core

Tag

Cache

Tag

Core

Instructions

Exceptions

DIFT
Coprocessor

General
Purpose
Core

 r1:0

 r2:idx

 r3:&buffer

 r4:0

 Data T

 r5:x

What happens without
Proc/Coproc Synchronization?

int idx = tainted_input;

buffer[idx] = x; // memory corruption

Vulnerable C Code

set r1 &tainted_input

load r2 M[r1]

add r4 r2 + r3

store M[r4] r5 r4:&buffer+idx

 r1:&input

 r2:idx=input

EXPLOIT

30

 …

 exec (sys call)

Attacker executes system call system compromise

SYSTEM
COMPROMISE

System Calls as Sync points

Key Idea: Main core and coproc sync at system calls

Security:
This prevents attacker from executing system calls

Application’s corrupted address space can be discarded

Does not weaken the DIFT model

DIFT detects attack only at time of exploit, not corruption

Performance:
Synchronization overhead typically tens of cycles

Function of decoupling queue size

Lost in the noise of system call overheads (hundreds of cycles)

31

 r1:0

 r2:idx

 r3:&buffer

 r4:0

 Data T

 r5:x

System Call Synchronization

int idx = tainted_input;

buffer[idx] = x; // memory corruption

Vulnerable C Code

set r1 &tainted_input

load r2 M[r1]

add r4 r2 + r3

store M[r4] r5 r4:&buffer+idx

 r1:&input

 r2:idx=input

TRAP

32

 …

 exec (sys call) STALL

Tainted pointer dereference security exception

Coprocessor Design

DIFT functionality in a coprocessor

4 tag bits of metadata per word of data

Coprocessor Interface (via decoupling queue)

Pass committed instruction information

Instruction encoding could be at micro-op granularity (in x86)

Physical address obviates need for MMU in coprocessor

Processor

Core

I
Cache

D
Cache

Policy
Decode

Tag
ALU

Tag
Check Tag

Cache

Tag RF W
B

DIFT Coprocessor PC
 Inst Encoding
 Physical Address

Security exception

L2 Cache

33

Decoupling
 queue Stall

Prototype

Leon-3

@40MH
z

512MB

DRAM

Ethernet

AoE

Ethernet

AoE

Leon-3

@65MHz

512MB

DRAM

34

Hardware

Paired with simple SPARC V8 core (Leon-3)

Mapped to FPGA board

Software

Fully-featured Linux 2.6

Design statistics

Clock frequency: same as original

Logic: +7.5% overhead

… of simple in-order core with no speculation

Security

Catches same attacks as Raksha

No false positives or negatives

System Performance Overheads

Runtime overhead < 1% over SPEC benchmarks

512 byte tag cache

6-entry decoupling queue
35

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

gzip gap vpr gcc mcf crafty parser vortex bzip2 twolf

R
u

n
ti

m
e
 O

v
e
r
h

e
a
d

 (
%

)

Coprocessors for complex cores

Modest overheads with higher IPC cores
Because main core rarely achieves peak IPC (=1)

Coprocessor performs very simple operations

Implies coprocessor can be paired with complex cores
36

0.9

0.95

1

1.05

1.1

1.15

1.2

1 1.5 2

R
e
la

ti
v
e
 O

v
e
r
h

e
a
d

Ratio of main core's clock to
coprocessor's clock

gzip

gcc

twolf

Outline

DIFT overview

Raksha: hardware support for DIFT [WDDD’06, ISCA’07]

Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DSN’09]

Using a coprocessor to minimize changes to the main core

Multi-processor DIFT [MICRO’09]

Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [OSDI’08]

Enforcement of app security policies with minimal trusted code

37

The Consistency Problem

 Proc 1 Proc 2 Tag Proc 1 Tag Proc 2

38

1

4

3
2

u = t

x = u

tag(x) = tag(u)

tag(u) = tag(t)

Inconsistency between data and metadata (x updated first)

Decoupling metadata breaks atomicity between data/tags
Leads to consistency issues in multiprocessors

Can cause false positives/negatives

Spurious detections/miss real attacks

Fundamental Idea

Keep track of data coherence requests

Provides log of memory races between threads

Enforce same ordering on metadata
Core A requests data from Core B

 Tag Core A requests metadata from Tag Core B

Intervening accesses delayed for consistency

Ensures atomic view of (data, metadata)
Replaying memory ordering ensures consistency

39

Consistency Mechanism

40

App

Core

Metadata

Core

 Inflight
 Ops

 Memory Interconnect

$ $ PTRT PTAT

Every instruction associated with unique ID

Inflight Operations
Maintains information about the instruction in flight

Similar to decoupling queue for DIFT coprocessor

Consistency Mechanism

41

App

Core

Metadata

Core

 Inflight
 Ops

 Memory Interconnect

$ $ PTRT PTAT

PTRT = Pending Tag Request Table

Logs app core’s coherence requests

Metadata core indexes PTRT by instruction ID
Directs metadata request to associated core

Consistency Mechanism

42

App

Core

Metadata

Core

 Inflight
 Ops

 Memory Interconnect

$ $ PTRT PTAT

PTAT = Pending Tag Acknowledgement Table

Logs last instruction ID to update data value

On corresponding metadata request
Check if insn tag processing complete before replying

Consistency Protocol

43

PTRT

ID=1, Delay = 1

AC1 MC1

 Inflight
 ID 1

 IC

 ID=5

AC2 MC2

 Inflight
 ID 5

PTAT

(a) Update PTAT of responder and PTRT of requestor

Consistency Protocol

44

PTRT

ID=1, Delay = 0

AC1 MC1

 Inflight

IC

 ID=5

AC2 MC2

 Inflight
 ID 5

PTAT

(b) Reset delay bit in PTAT of responder

Consistency Protocol

45

PTRT

ID=1, Delay = 0

AC1 MC1

 Inflight

 IC

 ID=5

AC2 MC2

 Inflight

PTAT

(c) Issue metadata request, receive response

OK

Consistency Protocol

46

PTRT

ID=1, Delay = 1

AC1 MC1

 Inflight
 ID 1

 IC

 ID=5

AC2 MC2

 Inflight

PTAT

(d) Early metadata request NACKed

NACK

Set of FIFOs: PTAT maintains a FIFO for every address Versioning: Reqs served out of order. PTAT stores tag value

System Performance Overheads

47

Different configurations for PTAT:

FIFO: Metadata requests serviced in same order as data

Worst-case Overheads

48

0%

1%

2%

3%

4%

5%

6%

7%

8%

FIFO

Set of FIFOs

Version Mgmt

Performance overheads < 7% with 32 processors

Even simple FIFO design has good performance

0%

1%

2%

3%

4%

N
o
rm

a
l

N
o
is

e

N
o
rm

a
l

N
o
is

e

N
o
rm

a
l

N
o
is

e

N
o
rm

a
l

N
o
is

e

N
o
rm

a
l

N
o
is

e

1 5 10 25 50

Scaling of HW tables (gap=20)

PTAT stalls

PTRT stalls

Runtime
overhead

Scaling the Hardware Tables

49

Worst-case lock contention micro-benchmark

Simulates the coprocessor environment

Scaling the Hardware Tables

50

Worst-case lock contention micro-benchmark

Simulates the log-based architecture environment

Scaling of HW tables (gap=100)

PTAT stalls

PTRT stalls

Runtime
overhead

Outline

DIFT overview

Raksha: hardware support for DIFT [WDDD’06, ISCA’07]

Flexible HW design for efficient, practical DIFT on binaries

Decoupling DIFT from the processor [DSN’09]

Using a coprocessor to minimize changes to the main core

Multi-processor DIFT [MICRO’09]

Ensuring consistency between data and metadata under decoupling

Loki: hardware support for information flow control [OSDI’08]

Enforcement of app security policies with minimal trusted code

51

Dynamic Information Flow Control

Single abstraction across all system layers

Security policies as restrictions on data movement

Basic idea

Every object is marked with a label

On accesses, look up label to get a R/W/X permission

Building upon flow control

App policy expressed using labels directly

Labels describe protection domains with flexible sharing
52

Loki: HW Support for Info
Control

Loki implements tagged memory
Each word of physical memory associated with a 32-bit tag

Tags map to access permissions (R/W/X) for protection domain

Fine-grained access control

Simplifies security enforcement
SW manages tags, but HW enforces security policies

Helps maintain security in face of compromised OS

Ties security policies to physical resources

Physical resource policies avoid ambiguity

Allows for a smaller TCB
Reduced the TCB of HiStar by over a factor of two

53

Conclusion

Hardware DIFT is a promising security solution

Prevents HL/LL attacks, is fast, does not need src code

Co-developed Raksha, a flexible hardware design

for efficient, practical DIFT on binaries

DIFT coprocessor to minimize changes to main core/cache

Mechanism for safe DIFT on multithreaded binaries

Including real full-system prototypes (HW+SW)

Extended hardware DIFT techniques to implement

information flow control

Allows for significant reduction in size of OS’ TCB 54

Bibliography

"Deconstructing Hardware Architectures for Security," Michael Dalton,
Hari Kannan, Christos Kozyrakis. 5th Annual Workshop on Duplicating,
Deconstructing, and Debunking (WDDD) at ISCA, Boston, MA, June 2006.

"Raksha: A Flexible Information Flow Architecture for Software

Security," Michael Dalton, Hari Kannan, Christos Kozyrakis. Proceedings of
the 34th Intl. Symposium on Computer Architecture (ISCA), San Diego, CA,

June 2007.

"Raksha: A Flexible Architecture for Software Security," Hari Kannan,
Michael Dalton, Christos Kozyrakis. Technical Record of the 19th Hot Chips
Symposium, Palo Alto, CA, August 2007.

"Thread-Safe Dynamic Binary Translation Using Transactional
Memory," JaeWoong Chung, Michael Dalton, Hari Kannan, Christos

Kozyrakis. Proceedings of the 14th Intl. Symposium on High-Performance
Computer Architecture (HPCA), Salt Lake City, UT, February 2008.

55

Bibliography cont’d

"Real-World Buffer Overflow Protection for Userspace and
Kernelspace," Michael Dalton, Hari Kannan, Christos Kozyrakis. Proceedings
of the 17th Usenix Security Symposium, San Jose, CA, July 2008.

"Hardware Enforcement of Application Security Policies," Nickolai
Zeldovich, Hari Kannan, Michael Dalton, Christos Kozyrakis. Proceedings of
the 8th Usenix Symposium on Operating Systems Design & Implementation
(OSDI), San Diego, CA, December 2008.

"Decoupling Dynamic Information Flow Tracking with a Dedicated
Coprocessor," Hari Kannan, Michael Dalton, Christos Kozyrakis. Proceedings

of the 39th Intl. Conference on Dependable Systems and Networks (DSN),
Estoril, Portugal, June 2009.

“Ordering Decoupled Metadata Accesses in Multiprocessors," Hari
Kannan, Proceedings of the 42nd Intl. Symposium on Microarchitecture
(MICRO), New York City, NY, December 2009.

56

