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Abstract—There are a significant number of Transactional
Memory(TM) proposals, varying in almost all aspects of the
design space. Although several transactional benchmarks have
been suggested, a simple, yet thorough, evaluation framework is
still needed to completely characterize a TM system and allow for
comparison among the various proposals. Unfortunately, TM sys-
tem evaluation is difficult because the application characteristics
which affect performance are often difficult to isolate from each
other. We propose a set of orthogonal application characteristics
that form a basis for transactional behavior and are useful in
fully understanding the performance of a TM system.

In this paper, we present EigenBench, a lightweight yet power-
ful microbenchmark for fully evaluating a transactional memory
system. We show that EigenBench is useful for thoroughly
exploring the orthogonal space of TM application characteristics.
Because of its flexibility, our microbenchmark is also capable of
reproducing a representative set of TM performance pathologies.
In this paper, we use Eigenbench to evaluate two well-known TM
systems and provide significant insight about their strengths and
weaknesses. We also demonstrate how EigenBench can be used
to mimic the evaluation coverage of a popular TM benchmark
suite called STAMP.

I. INTRODUCTION

Since the onset of transactional memory (TM) research,
there has been an explosion in the number and variety of
proposed TM systems. There are many design choices for
TM, including how much functionality to put in hardware,
types of conflict detection and resolution, choices for version
management, overflow handling techniques, and many more
[1]. The design space is now varied enough that evaluation of
TM systems is an independent and interesting problem.

Attributes of a TM system affect the performance of a
transactional application in different ways depending on the
characteristics of the application. For example, applications
with many shared transactional accesses may behave quite dif-
ferently than applications with few. Application-based bench-
marks are important since their patterns attempt to represent
realistic workloads, but they have a limited ability to isolate
the effect of each characteristic on the overall performance.
For example, an application’s working-set size is often tied
to the size of its transactions, but these two characteristics
may be completely orthogonal in terms of how they affect
system performance. Current evaluation frameworks do not
fully account for this reality.

In our approach, we first propose a set of orthogonal
characteristics of TM applications, which we call eigen-
characteristics. We show how together these characteristics

form a basis for all TM applications in the same way that a
basis in linear algebra spans a vector space. Ideal TM evalu-
ation requires the ability to decouple the eigen-characteristics
from each other and vary them independently, a methodology
which we call orthogonal analysis. To this end, we have devel-
oped EigenBench, a simple yet thorough microbenchmark for
fully evaluating a transactional memory system (Section II).
EigenBench provides insight into a TM system’s performance
by fully exploring the eigen-characteristics, evaluating corners
of the application space not easily reached by existing bench-
marks (Section III).

In addition to application characteristics, it is useful to un-
derstand an implementation’s susceptibility to pathologies, as
they have been shown to significantly affect performance [2].
We show that EigenBench can easily reproduce a representa-
tive set of pathological cases (Section IV).

Finally, we show that the performance of TM applications
can be easily explained in terms of their eigen-characteristics.
We demonstrate how given these characteristics, EigenBench
can closely approximate the execution behavior of that appli-
cation for the purposes of evaluating a TM system. We then
perform examples of this mimicry using benchmarks from the
STAMP TM suite [3] (Section V).

A. Related Work

Other researchers have released TM microbenchmarks and
benchmark suites. TM microbenchmarks are usually structured
as a parameterizable set of transactions that operate on a shared
data structure like a red-black tree or a hash table [4]–[8].
These tools are small, portable, and useful. However, they do
not aim to parameterize across the entire TM design space
and have not been shown to reproduce all applicable, known
pathologies.

The STAMP benchmark suite [3] consists of eight con-
figurable applications and exercises a wide range of trans-
actional behaviors. Although STAMP successfully provides
a representative set of TM applications, each application’s
transactional characteristics are strongly tied to its parameters
and are thus difficult to decouple from each other. Being a full
benchmark suite, STAMP is also more complex and requires
more configuration before being used. In addition, STAMP
has not been shown to exercise all pathological cases. We will
demonstrate that EigenBench is flexible enough to mimic the
transactional characteristics of the STAMP benchmark suite.



Other TM benchmark suites have been proposed, including
those from Kestor et al. [9], Ansari et al. [10], and Guerraoui et
al. [11]. These suites focus on particular application domains
and are not designed to exercise the full breadth of TM
behavior. Our approach is most like STMBench7 [11] in that
we provide a single parameterized microbenchmark that can
be easily configured to mimic a wide variety of workloads.
However, our approach aims to be much more general and
cover a larger portion of the TM application space by avoiding
any particular underlying data structure. As an example, Swiss-
TM outperformed TL2 by 3x in all STMBench7 results but
only by 1.1 – 1.9x in STAMP results [12], which shows
that STMBench7 did not produce performance behaviors of
STAMP applications

Other researchers have also defined a set of characteristics to
analyze and reproduce behaviors of existing benchmarks [13],
[14]. However, their selection of characteristics were not or-
thogonal; they instead relied on principle component analysis
(PCA) for their choices. Thus, orthogonal analysis such as
what we present in Section III is not possible with those
characteristics.

The specific contributions of this paper are:
• We define a set of orthogonal characteristics of TM

applications, and show that an orthogonal analysis along
these characteristics is extremely useful in understanding
a TM system’s behavior.

• We present EigenBench, a lightweight yet thorough mi-
crobenchmark designed for such an orthogonal analysis.

• We show that one can explain a TM application’s per-
formance given its eigen-characteristics and demonstrate
how EigenBench can be used to approximate the behavior
of real applications.

• We show that EigenBench can easily reproduce all of the
pathological cases delineated by Bobba et al. [2] for the
evaluated TMs.

II. EIGENBENCH’S ORTHOGONAL CHARACTERISTICS

In this section, we first define the eigen-characteristics: the
set of orthogonal attributes that characterize TM applications.
We then present EigenBench, a microbenchmark designed
to orthogonally explore these attributes. Finally, we describe
how to systematically vary those characteristics using the
EigenBench parameters.

A. Eigen-Characteristics

It is well understood that applications having different
characteristics vary in behavior within a single TM system [3],
[13], [15]. However, there is no consensus on a standard set of
characteristics by which to describe TM applications. Previous
proposals have used sets of characteristics that are far from
orthogonal; one may be strongly determined by others. For
example, a set composed of transaction size, read set size,
and write set size do not form an orthogonal basis, since the
first depends on the others.

We propose eigen-characteristics, a set of orthogonal char-
acteristics that can form a basis for all TM applications. Table I

presents the eight characteristics: concurrency, working-set
size, transaction length, pollution, temporal locality, con-
tention, predominance, and density. While there can be alter-
native selections of orthogonal characteristics, our experience
found this specific choice was intuitive and very useful in
practice. By our definition, predominance presents the ratio of
shared reads and writes to the entire application including all
non-shared instructions, while density dictates, as a comple-
mentary measure, what fraction of the non-shared instructions
are executed inside transactions.

A conventional (non-orthogonal) characteristic can now
be expressed as a combination of eigen-characteristics. For
example, read set size is a function of transaction length,
pollution, and temporal locality. A small read set size can
be obtained by having a small number of shared accesses, a
small portion of reads among many shared accesses, or many
repeated accesses to a few addresses. TM systems might vary
substantially in how they handle these three cases.

Also, we are deliberate in our choice of adjectives used to
describe the characteristics in Table I. We especially avoided
the terms ’big’ and ’small’ since they are too vague: a ’big’
transaction could mean a long one (having many shared
reads and writes), a long but non-repetitive one (having large
read/write set), or even a sparse one (having many instructions,
either shared accesses or not, inside the TX).

Section III will show in detail how these characteristics are
helpful in understanding the performance of a TM system.

B. EigenBench

Pseudocode for the main functions in EigenBench is dis-
played in Figure 1. At its core, the benchmark is fairly simple;
each thread performs a pre-defined number of transactions then
exits. A transaction consists of a set number of transactional
reads and writes (Lines 12 - 18), with some non-transactional
“local” operations interspersed (Line 20). Additional local
operations are performed between each transaction (Line 24).
Parameters used in the code, most of which are arguments
to the test_core function, are described in Table II. Note
that throughout the code we occasionally modify the dummy
variable val simply to prevent the compiler from optimizing
code away.

Three separate arrays are accessed in the code. Array1

is the hot array, meaning it is shared between all threads.
Array2 is the mild array, which is also accessed transactionally.
Each thread accesses its own partition of Array2, however,
so accesses will not cause conflicts. Array3, the cold array,
is partitioned like Array2 but is used for non-transactional
accesses. As we discuss in the next section, using three
distinct arrays allows us to control the contention between the
transactions and the amount of influence the non-transactional
code has on the caching behavior of the workload.

The rand_actions function decides if the transaction should
perform a read or a write and whether to access the hot or
mild array. This function guarantees that the precise number
of reads and writes to each array, as given parameter values,
are eventually performed but the order in which they are



TABLE I
ORTHOGONAL TM CHARACTERISTICS

Characteristic Definition Descriptive Adjectives
Concurrency Number of concurrently running threads high-concurrent/low-concurrent
Working-set size Size of frequently used memory wide/narrow
Transaction length Number of shared accesses per TX∗ long/short
Pollution Fraction of shared writes to shared accesses dirty/clean
Temporal locality Probability of repeated address per shared access repeating/non-repeating
Contention Probability of conflict of a transaction contentious/low-conflicting
Predominance Fraction of shared access cycles to total execution cycles significant/insignificant
Density‡ Fraction of non-shared cycles executed outside transactions dense/sparse

to total non-shared cycles†
∗ Shared accesses means reads/writes that should be protected by TM. Shared cycles is execution cycles consumed by such accesses.
† Non-shared cycles is execution cycles consumed by any other instruction than shared accesses.
‡ We define density as 1.0 if there is no non-shared instructions in the application, which does not happen in practice.

1 void test_core(tid, loops, pesist, lct, R1, W1, R2, W2
2 R3_i, W3_i, Nop_i, k_i, R3_o, W3_o, Nop_o, k_o) {
3 long val=0;
4 long total = W1 + W2 + R1 + R2;
5 for (i=0; i<loops; i++) {
6 Save_Random_Seed;
7 BEGIN_TM();
8 if (persist) Restore_Random_Seed;
9 (r1,r2,w1,w2) = (R1,R2,W1,W2);

10 Reset_History_Buffers;
11
12 for (j=0; j<total ; j++) {
13 (action, array) = rand_action(r1, w2, r2, w2);
14 index = rand_index(tid, lct, array);
15 if (action == READ)
16 val += TM_READ(array[index]);
17 else
18 TM_WRITE(array[index], val);
19 if ((j%k_i)==0)
20 val += local_ops(R3_i, W3_i, Nop_i, val, tid);
21 }
22 END_TM();
23 if ((i%k_o)==0)
24 val += local_ops(R3_o, W3_o, Nop_o, val, tid);
25 } }

26 static long A1, A2, A3, N;
27 static long *Array1, *Array2, *Array3;
28 void init_arrays() {
29 Array1 = malloc(A1 * sizeof(long));
30 Array2 = malloc(A2 * N * sizeof(long));
31 Array3 = malloc(A3 * N * sizeof(long));
32 }
33 (Action, Array) rand_action(r1, w1, r2, w2) {
34 // With uniform random probability based on r1,w1,r2,w2
35 // randomly choose one among: {(Read Array1),
36 // (Write Array1), (Read Array2), {Write Array2}}
37 // And decrease corresponding variable by one.
38 }
39 long rand_index(tid, lct, array) {
40 // With probability of lct, choose a saved index
41 // from the history buffer of array, or
42 // randomly choose an index from range
43 // (0~A1) or (tid*A2 ~ (tid+1)*A2)
44 // and save it to the history buffer of array
45 }
46 long local_ops(R3, W3, NOP, val, tid) {
47 // Perform R3 reads and W3 writes
48 // on Array3[tid*A3 ~ (tid+1)*A3] in random order.
49 // Then perform NOP number of nops.
50 }

Fig. 1. PseudoCode description of EigenBench.

performed is randomized. local_ops performs a given number
of read/write operations on the cold array, then performs nops.
The call to this function on line 20 splits up the transactional
accesses within a transaction, and the call on line 24 splits
up the transactions themselves. Note that k_i and k_o are
scalers; local operations can be either more (k=1) or less (k>1)
numerous than shared operations.

The address accessed is expressed as an index to the se-
lected array, which is determined by the function rand_index.
Depending on the lct parameter which determines temporal
locality, this will be either a random index in the range or an
index previously used and saved in the history buffer.

Note that we abstracted out all instructions other than
transactional reads and writes but captured their effects (e.g.
instruction mix, ILP, or branches) simply with the parameters
α and nops. We did this because our goal was to qualify the
performance characteristics of TM systems specifically, not
those of general systems. We thus provide the key knobs that
directly affect the TM systems. We remind the reader that
to a TM system, a user application is fundamentally just a
series of random reads and writes in concurrent transactions;
EigenBench abstracts the application as such.

C. Deriving Eigen-characteristics from EigenBench

In this section, we explain how EigenBench can be used
to generate a specific application execution pattern with the
desired transactional characteristics.

Table III summarizes how the eigen-characteristics can be
derived from EigenBench parameters1, with the exception of
contention. For contention, we use an approximate expected
value, which we compute as follows. Let us denote the number
of unique addresses in hot array accesses as W ′

1 and R′
1. 2 We

start with the estimate that a given access will cause a conflict
with probability (N −1)∗ (W ′

1))/A1, or the number of writes
performed by all other transactions combined divided by the
size of the shared array. 3 The complement of that event is
an access not causing a conflict, which must happen W ′

1 +R′
1

times, giving us the probability of no conflicts. Finally, we take

1We defined working-set size based on per-thread memory usage. An
alternative is to use total aggregated memory size. In that case, working-set
size is derived as A1 + A2 ∗ N + A3 ∗ N .

2W ′
1 is defined as follows: If lct = 1 then W ′

1 is 1. Else W ′
1 is

dW1 ∗ (1 − lct)e. R′
1 is defined similarly.

3This expression approximates the probability and is only valid when
A1 >> W ′

1. For a better approximation, you can use Ŵ ′, the expected
number of addresses occupied by N-1 other threads. This value can be
obtained by the solution of the coupon collector’s problem [16].



TABLE II
PARAMETERS USED IN EIGENBENCH

Name Meaning Name Meaning Name Meaning
N Number of Threads R_1 Reads/tx of Hot array W_3o Writes of Cold array btwn TXs
S Random Seed W_1 Writes/tx of Hot array Nop_i No-ops between TM accesses
tid Thread id R_2 Reads/tx of Mild array Nop_o No-ops outside TX
loops Number of TX per thread W_2 Writes/tx of Mild array K_i Scaler for in-TX local ops
A_1 Size of Array1 (Hot array) R_3i Reads of Cold array inside TX K_o Scaler for out-TX local ops
A_2 Size of Array2 (Mild array) W_3i Writes of Cold array inside TX persist Restore random seed if violated
A_3 Size of Array3 (Cold array) R_3o Reads of Cold array btwn TXs lct Probability of address repetition

TABLE III
EIGENBENCH PARAMETERS USED TO DERIVE SPECIFIC CHARACTERISTICS

Characteristic Eigenbench Parameters Characteristic Eigenbench Parameters
Concurrency N Working-set size A1 + A2 + A3
Transaction length R1 + R2 + W1 + W2 =(Tlen) Pollution (W1 + W2)/Tlen

Temporal locality lct Contention see Equation (1)
Predominance Tlen ∗ α/(Tlen ∗ α + Cin + Cout) Density Cout/(Cin + Cout)

Read set Size∗ (R1 + R2) ∗ (1− lct) Write set Size∗ (W1 + W2) ∗ (1− lct)

Nin = ((R3i + W3i) ∗ α + Nopi) ∗ Tlen/Ki, Oin = β ∗ Tlen ∗ (1 + (R3i + W3i)/Ki), Cin = Nin + Oin

Nout = ((R3o + W3o) ∗ α + Nopo)/Ko, Oout = β ∗ (R3o + W3o)/Ko, Cout = Nout + Oout

α: the average memory access latency β: overhead of random address generation and action decision in CPU cycles†

∗ We also include derivations for two important non-orthogonal characteristics: read set size and write set size.
† For simplicity of explanation, we assume (α, β) = (1,0) in the remaining of the paper.

the complement of that to get the probability of a conflict as
shown in Equation 1. We remind the reader that the equation
below estimates the degree of conflict induced by EigenBench
with the given parameter values and not by any other general
application. The validity of this equation will be demonstrated
in Section III.

Pconf = 1−
(

1−min
{

1,
(N − 1)W ′

1(1− lct)
A1

})W ′
1+R′

1

(1)
With EigenBench, it is always possible to adjust only one

eigen-characteristic value while keeping the others fixed since
there is always at least one free parameter for each attribute.
For example, one can increase transaction length or pollution
without increasing contention by controlling R2 and W2 only.

EigenBench is not limited to deploy uniformly characterized
transactions across all threads. Rather, one can mix and match
various characteristics in a single execution. For example,
one thread can execute test_core function with one set of
parameter values (e.g. long and dirty) while other threads
execute with a different set of values (e.g. short and clean).
Each thread can also execute different parameter sets over
time, depending on modeled program ’phases’. Furthermore,
one can slightly extend the code in Figure 1 such that the
active parameters (e.g. R1, W1) become random variables
themselves.

Finally, EigenBench can be easily extended to address other
TM aspects such as nesting, strong atomicity and object-based
TM. To address (the performance aspects of enforcing) strong
atomicity, one can add accesses of shared arrays (Array1 and
Array2) outside the transactions. A nested transaction can be

implemented as recursive callings of test_core(). Object-based
TM can also be addressed by replacing the long-typed arrays
with an array of objects.

III. ORTHOGONAL ANALYSIS CASE STUDY: TL2 AND
SWISSTM

In this section, we demonstrate how to perform orthogo-
nal analysis using EigenBench to thoroughly analyze a TM
system. Our evaluation features two high-performing STMs:
TL2-x86 [5] (version 0.9.6 provided with STAMP [17] using
the default GV4 versioned locks) and SwissTM [12] (version
2009-09-10 [18]). All systems are compiled with the -m64 -O3

options. Our experiments were run on an HP ProLiant DL140
with two quad-core 2.33GHz Intel Xeon E5345 processors and
32GB of RAM. The E5345 has a total of 8MB of shared L2
cache. Throughout this section, we will italicize the names of
eigen-characteristics as found in Table I.

Since our analysis involves a high-dimensional search space,
we only vary one dimension (i.e. characteristic) at a time while
fixing the others to their typical values. Table IV displays
our choices for typical values. We are interested in medium
length (transaction length of 100) and relatively clean (10%
pollution) transactions. We also use independent transactions
(zero contention) when inspecting the overhead of the TM
system; we will analyze the effect of contention separately.
Finally, we fix density and predominance to be their maximum
values (1.0) in order to focus on TM overhead only. Of
course, one may select other typical values and perform similar
analyses according to his interests (e.g., focusing on very short
transactions with transaction length < 10). We remind the
readers EigenBench allows for variation of any characteristic



TABLE IV
DEFAULT CHARACTERISTICS IN FIGURE 2

Characteristics Value Characteristics Value Characteristics Value Characteristics Value
Concurrency 8 Working-set size 256 (KB/thread) Transaction length 100 Pollution 0.10
Temporal locality 0.0 Contention 0.00 Predominance 1.00 Density 1.00

TABLE V
VARIED EIGENBENCH PARAMETERS IN FIGURE 2.

Graph N A1 A2 A3 R1 W1 R2 W2 R3i W3i R3o W3o lct Range
(default) 8 0 32k 0 0 0 90 10 0 0 0 0 0
(a) - - Var - - - - - - - - - - A2=1k ... 32m
(b) - - - - - - Var Var - - - - - W2 + R2=10 ... 520
(c) - - - - - - - Var - - - - - W2=0 ... 100
(d) - - - - - - - - - - - - Var lct=0.125 ... 1.0
(e),(f) - Var Var - 45 5 45 5 - - - - - A1 + A2=32k, A1=1k ... 24k
(g) - - 16k 16k - - - - - - Var - - R3o=1 ... 100
(h) - 512 31k 512 8 2 82 8 Var - Var - - Nin + Nout=100, R3o= 1 ... 90
(i) Var - - - - - - - - - - - - N=1... 8
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Fig. 2. Orthogonal analysis of two TM systems using EigenBench. For (h), (0.24, 0.83) were used for Contention and Predominance, respectively.



while keeping others fixed since there is always one or more
free parameters to accomplish this.

Figure 2 depicts the results of the orthogonal analysis. The
x-axis denotes the value of the characteristic in question;
Table V describes the values used in each graph. The y-
axis denotes the speedup results with eight threads (higher is
better). We plot three lines: TL2, SwissTM, and Unprotected
speedup which represents the case of a multi-threaded exe-
cution without the protection of a TM system or even locks
(i.e. TM reads/writes are mapped to direct loads/stores and
TM begin/end to null statements). The unprotected execution
thus serves as an upper bound of available performance,
even though the bound is loose since no atomic execution
is guaranteed. Note that EigenBench trivially allows the un-
protected execution since it never suffers crashes or infinite
loops due to a breach of atomicity; the same is not true
for some benchmarks due to their dependence on complex
data structures (e.g. rb-tree insertion). Also, note that when
contention is zero, the unprotected execution then represents
a hard upper bound.

Graph (a) shows the effect of different working-set sizes.
The dramatic drop for all systems at 2MB/thread is an effect
of the cache hierarchy; four threads execute concurrently
on a quad-core chip with a shared 8MB L2 size of 8MB.
This is seen even in the unprotected version because the
performance is bounded by off-chip memory access. However,
we also observe other interesting performance patterns for TL2
and SwissTM: When the working set fits on-chip, SwissTM
performs much better than TL2 but performs worse when the
working set outgrows the caches. This phenomenon seems to
be caused by SwissTM’s larger locktable size.

Graph (b) explores the effect of transaction length. The
first four x-values shown are 10, 20, 30, and 40 with all
subsequent values spaced evenly by 40. We see immediately
that TL2 is extremely susceptible to transaction length; it
performs poorly for very small transactions (10) and also
degrades quickly again after a certain threshold value (1̃20).
On the other hand, SwissTM handles all lengths equally well.
The original SwissTM paper [12] explains how it handles
different transaction lengths with different strategies.

Graph (c) shows the effect of pollution, or fraction of trans-
actional writes. As we increase the number of writes, TL2’s
performance first drops quickly and then flattens; SwissTM’s
drops much more slowly and thus performs better overall due
to its better write buffer structure.

Graph (d) shows the effect of temporal locality, or frac-
tion of re-used addresses in a transaction. The graph shows
that SwissTM’s performance drops somewhat as we increase
locality, indicating that the system is optimized for unique
addresses. Both systems perform well when only a single
address is used in a transaction (lct=1.0).

Previous discussion has focused on TM system overhead in
the absence of contention. We now examine behavior when
this is not the case. Before discussing the results, we note
two things. First, the horizontal axis is the value of expected
contention, as calculated by Equation 1. Second, since the

unprotected execution does not stall or rollback and thus
results in an overly loose bound, we normalize by dividing the
measured execution time by one minus the expected amount
of contention. This normalized execution time is still not a
true bound, but a more reasonable approximation.

Graph (e) shows the effect of contention. One may notice
that all speedups, including unprotected, are now far below 8,
even when expected contention is very low. This is an effect of
the system’s ccNUMA architecture. Since the hot array (size
of A1 « 8MB) is shared by eight cores on two CPUs, about
half of the accesses to that array will be served from the other
CPU, even when the access may not result in a conflict for
the current transaction.

The difference in measured speedup between TL2 and
SwissTM in graph (e) is also interesting. We see that Swis-
sTM performs only slightly better than TL2 when there are
few conflicts and becomes worse with increasing degrees of
contention. This is the result of two factors. First, SwissTM
is more sensitive to the off-chip accesses induced by the cc-
NUMA architecture, as we saw in graph (a). Second, SwissTM
rolls back more transactions than TL2, as will be seen in graph
(f).

Graph (f) depicts the rate of transaction rollbacks as we
vary the degree of expected contention. The graph shows that
SwissTM has a higher rollback rate than both TL2 and the
expected number of conflicts for the regular access patterns of
the benchmark. This is because SwissTM detects conflict with
quadword granularity while TL2 does so with word granularity
and thus SwissTM exhibits false positives. The case of more
irregular accesses will be discussed in Section V.

The results in graph (e) and (f) shows that SwissTM’s
performance is comparable to or better than TL2, even when
it has twice high rollback rates. This suggests to TM designers
that it makes sense to trade-off more false positives in conflict
detection for less barrier overhead, since TM mostly targets
low-conflicting applications.

Note that graph (f) serves to validate Equation (1). The
graph clearly shows the high correlation between estimated
degree of conflict (dotted line) and two actual violation rates
reported by two STMs (solid lines); A TM design may allow
a higher violation rate (e.g. false-positive filters) or a lower
rate (e.g. transactional locks) than the ’real’ conflicts.

Graph (g) shows the effect of predominance. As we
decrease the predominance factor, the performance of both
systems approaches that of the unprotected execution. Thus
if shared accesses are rare, it makes no difference which
system is used. As predominance increases, however, the plot
indicates a measure of overall TM system overhead. SwissTM
introduces less overhead than TL2 for the accompanying set
of typical values.

Graph (h) depicts the effect of density. Note that we
changed two of the typical values for this measurement. First,
we set predominance to be 0.5. That is, in the entire program,
there are as many non-TM instructions as there are TM
instructions. In changing density, we change the proportion
of non-TM instructions located outside transactions, with 1



being the maximum. Second, we choose a non-zero value for
expected contention, 0.19, because it increases the re-execution
penalty for adding more instructions inside transactions.

In graph (h), as we decrease density (i.e. putting more
instructions into transactions), the performance drops slowly
due to increased rollback penalty, but not much. The re-
execution is cheaper than the first execution since much of
fetched data still remain in its cache. Thus, a TM programmer
may consider merging two short transactions interleaved by
a short non-transactional section of code, since very small
transactions may pose larger overhead in some TM systems
(See graph (b)).

Graph (i) exhibits the scalability of two TM systems. Both
systems scaled well with the non-conflicting transactions while
SwissTM still maintained much less overhead as in previous
graphs.

We now summarize our findings from the orthogonal anal-
ysis case study. We showed that TL2’s performance drops
quickly with long or dirty transactions (graphs (b) and (c))
while SwissTM is neutral to these characteristics. We also
showed that SwissTM performs much better than TL2 only
when the working-set size fits in the cache, but can get worse
otherwise (graph (a)). Also SwissTM is shown to rollback
more transactions than TL2 for regular data access pattern,
mostly due to false positives in conflict detection. The results
also indicate that it is reasonable to trade off barrier overhead
and conflict detection accuracy (graphs (e) and (f)). Note that
benchmark studies in the original SwissTM paper [12] did not
reveal all these aspects but merely stated SwissTM performed
better than TL2 in all cases.

We omit further in-depth analysis on why one STM per-
forms better than the other in specific cases, since this re-
quires a thorough understanding of the details of the STM
implementations and is out of scope of this paper. A TM
system designer, however, would be able to use this analysis to
properly evaluate trade-offs and gain more insight. One may
even continue to analyze additional design spaces using dif-
ferent sets of typical values, or a mixture of transactions with
different characteristics. Examples of such further exploration
can be found in the Appendix.

IV. PATHOLOGY GENERATION

In the previous section, we showed how EigenBench can
be used to analyze TM systems using orthogonal analysis.
EigenBench can also be used to generate particular workloads
which exercise TM systems in specific ways. In this section,
we generate workloads that generate pathological TM behav-
ior.

Transactional memory performance pathologies degrade
performance by unnecessarily hindering the progress of trans-
actions. Bobba et al. [2] showed that hardware TM per-
formance notably improves by addressing the potential for
pathologies in the system. Refer to the original paper [2] for
detailed descriptions of all the pathologies.

Based on Bobba et. al.’s description of the pathologies,
we built a set of EigenBench parameters that can generate
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Fig. 3. Diagram of Observed Pathological Executions: The y-axis shows
timestamps. Solid lines indicate the duration of a transaction; the dots
represent begin/end for a transaction; and crosses are the re-start of
a transaction.

each pathological behavior, depending on the underlying TM
system implementation. The set of parameters is found in
Table VI. Note that our choice of parameter values were arbi-
trary as long as they matched the description of the pathology
situation in the paper [2]; any similar values produced the
same pathology.

We present verification of the EigenBench parameters for
three of the pathologies: StarvingElder, RestartConvoy and
FriendlyFire. Our verification platform is the default TL2-x86,
which uses lazy conflict detection, and its eager variant. Both
versions use lazy version management and are provided with
the STAMP benchmark suite, as in the previous section. For
verification, we first add a simple global time stamp to the
system; a dedicated thread increases this global variable on a
regular basis. When a thread begins or ends a transaction, the
event is stored in a local event history buffer with the current
time stamp value. We analyze the data off-line to create a
graphical representation of the execution sequence, as shown
in Figure 3.

The pathology signatures are evident in the figure. In (a)
StarvingElder, a long transaction (T1) cannot make progress
due to shorter transactions (T2 ∼ T4) constantly violating it.
In (b) RestartConvoy, a commit (e.g. T4 after 540) rolls back
many other transactions and they all restart at about the same
time. In (c) FriendlyFire, two threads (T1 and T2) violate each
other continuously.

We omit verifications for other pathologies; SerializedCom-
mit applies only to HTMs and all the others only to TM
systems that use eager conflict detection and eager version
management. If provided these systems, however, one could
easily utilize EigenBench with its simplicity and flexibility to
generate the remaining pathologies.

V. CHARACTERIZATION OF ACTUAL WORKLOADS

In previous sections, we have shown that by varying the
eigen-characteristics using EigenBench, we can effectively
analyze a TM system. We will now demonstrate that there
is an actual mapping from a real application to a set of char-
acteristics. Of course, real applications usually have a mix of
various transaction types and exhibit complex memory access
patterns. In this section, we address these while answering the
following three questions:



TABLE VI
EIGENBENCH PARAMETERS FOR GENERATION OF PATHOLOGICAL CASES

Pathology EigenBench Parameters
(TM Design Point) N A1 A2 A3 R1 W1 R2 W2 R3i W3i R3o W3o lct persist∗

FriendlyFire (EL) 2 1k 16k 8k 100 20 400 0 200 0 0 0 0 1
StarvingElder (LL) 1 1k - 8k 128 32 0 0 0 0 100 100 0 0

7 1k - 8k 2 2 0 0 0 0 100 100 0 0
RestartConvoy (LL) 8 8 4k 8k 4 2 20 20 5 0 100 100 0 1
SerializedCommit(LL) 8 - 16k 8k 0 0 10 500 0 0 0 0 0 0
StarvingWriter (EE) 1 32 - 1m 0 30 0 0 500 0 0 0 0 0

7 32 - - 30 0 0 0 0 0 0 0 0 0
FutileStall (EE) 8 1k 16k - 80 20 10 10 0 0 0 0 0 0
DuelingUpgrade (EE) 2 128 - 2m 80 10 0 0 20 0 0 0 0.75 0
∗ The persist option compels the transaction to repeat the same address sequence if it retries (see Fig. 1). This causes some
pathologies occur more frequently.

• Can we get (or approximate) eigen-characteristics for real
applications?

• If so, what characteristic (or sets of characteristics) dic-
tates the performance of those applications?

• Can Eigenbench reproduce the performance behavior of
those applications, given their eigen-characteristics?

In this analysis, we use applications from the STAMP
benchmark suite [3]. We are first able to identify some of
the eigen-characteristics through profiling: transaction length,
working-set size, pollution, and locality.When measuring lo-
cality, we use a unit of four words. STMs based on manual
instrumentation provide an easy way to achieve this profiling:
We simply log shared accesses in single-threaded execution
and perform off-line analysis. Appropriate values for predom-
inance and density are estimated from application documenta-
tion or using source code analysis, although exact values could
be obtained via instrumentation-based profiling or simulation.
Recall from Section III that predominance is simply a scaling
factor for all TM systems, and performance sensitivity to
density is small. Finally, since an exact value for contention is
hard to capture, we use the rollback percentage, reported by the
TM system, as a good approximation. Table VII summarizes
the results.

Please note that certain applications exhibit large variations
in characteristic values; some could be described as having
several modes of operation. For example, the first column
in Figure 4 shows a histogram of transaction lengths for the
five STAMP applications featured. The transaction lengths of
Genome and Intruder have long “tails” in the graph, while
Labyrinth is rather uniformly distributed. On the other hand,
Vacation-Low has a normal distribution and SSCA2 is single-
valued. In the second column of Figure 4, we provide diagrams
of the access frequency per address region; this illustrates
the memory access pattern and working-set size of each
application.

Our next question is determining what characteristics dic-
tate the performance behaviors of these applications. We
answer this question while reproducing these behaviors using
EigenBench. In this study, we manually obtained EigenBench

parameters that capture the collected eigen-characteristics in
Table VIII, since they are discrete abstractions of the con-
tinuous characteristics shown in the first two columns of
Figure 4. Note that a single parameter set was enough to
abstract some applications, while multiple sets were needed
for others, depending on the variance of the characteristics.

We present the EigenBench result in the third column of
Figure 4; the graphs display the speedup and transaction
rollback rates for each application. We plot four lines for each
graph: two solid lines from the original application executed
with TL2 and SwissTM as well as two dotted lines from the
EigenBench executions with the parameters in Table VIII.

For Genome, the governing characteristic was transaction
length or, more precisely, a mixture of different lengths. In
Genome, the dominant transaction length is relatively small (<
100); however, it has a long tail, meaning larger transaction
lengths are used with nontrivial frequency. We capture this
dynamic property by using three different parameter sets
(Table VII); this was essential to capture the performance
behavior. SwissTM’s better scalability with 8 threads is a
result of its sophisticated conflict resolution mechanism which
prevents overly frequent aborting of long transactions. Also
note that, due to this mechanism, SwissTM now exhibits a
lower rollback rate than TL2, unlike the analysis in Section III.

Vacation-Low exhibits very different key characteristics.
Transaction length is somewhat normally distributed, but the
application uses a much wider range of memory. As a result,
the limitation becomes cache miss latency resulting from
large working-set sizes. We captured this with a single set
of parameter values as shown in Table VII.

Labyrinth has a uniform distribution over transaction
length and a narrow memory footprint, as in the case of
Genome. Although the transaction size is relatively long for
this application, it has an extremely low density (meaning
many non-TM instructions inside transactions) and low pre-
dominance (many non-TM operations overall). This suggests
that it is not the overhead of transactional read/write opera-
tions, but rather the efficiency of conflict detection that governs
its performance.
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Fig. 4. Characteristics and Performance of STAMP Applications and EigenBench: The first two columns are histograms; each presents an Eigen-
characteristic (TX length and Working-set size) for the application in each row. The last column compares the measured performance and
rollback ratio of the original STAMP application (solid lines) and EigenBench executions with parameters set as in Table VIII (dotted lines).
Note that the Eigen-characteristic values for EigenBench execution can be deterministically calculated from those parameters.



TABLE VII
EIGEN-CHARACTERISTICS OF STAMP APPLICATIONS

Application† Working-set TX Length Pollution Locality Contention Predominance Density∗
Genome 20 MB 88, (1..4000) 5% 0.58 0.5% High High
Vacation-low 256 MB 226, (1.. 1239) 2% 0.59 0.2% High High
Vacation-high 256 MB 180, (1.. 1878) 4% 0.55 0.4% High High
Labyrinth 16 MB 357, (3..1688) 50% 0.77 5% Low Low
SSCA2 400 MB { 3 } 33% 0.33 0.0005% Low High
Intruder 20 MB 24, (3..680) 5% 0.52 22% Low High
Kmeans-low 8MB (8KB) {2, 66} 50% 0.81 25% Low High
Kmeans-high 8MB (8KB) {2, 66} 50% 0.81 43% Low High
Yada 200MB 45 (1..2194) 28% 0.47 22% High High

∗ For working-set of Kmeans, the number inside parenthesis is the amount of memory addresses accessed inside TX. For TX length,
we present average value and range. For pollution and locality, we present measured average if the distribution is unimodal, or top
n-mode values if multi-modal. Contention is estimated by the minimum value of the percentage of transactions that roll back on the
given TM systems with 8 threads. We loosely estimated predominance and density from source code analysis. Also see the first two
columns of Figure 4 which display variance of tx-length and memory footprint.
† Bayes failed to execute in our 64-bit environment and is excluded from this study.

TABLE VIII
EIGENBENCH PARAMETERS FOR MIMICKING SELECTED STAMP APPLICATIONS.

App. A1 A2*N A3 mix(%) R1 W1 R2 W2 R3o W3o R3i W3i LCT
Genome 256k 2m 256k 97% 28 2 65 5 20 20 0 0 0.5

2% 145 5 340 10 80 80 0 0 0.5
1% 770 30 1660 40 500 500 0 0 0.5

Vacation-low 512k 32k 64k 100% 198 2 47 3 0 0 0 0 0.6
Labyrinth 128k 2m 64k 55% 10 5 0 0 5 5 0 0 0.7

15% 25 25 50 50 0 0 600 600 0.7
15% 25 25 275 275 0 0 600 600 0.7
15% 25 25 650 650 0 0 600 600 0.7

SSCA2 32m 8k 64k 100% 1 1 1 0 15 0 0 0 0
Intruder 1k 1k 64k 70% 8 2 0 0 2 2 0 0 0.5

28% 18 2 27 3 4 4 0 0 0.5
2% 20 10 90 10 10 10 0 0 0.5

SSCA2 shows a very uniform data access pattern as illus-
trated in the second column of Figure 4 and Table VII. In
this case, short transaction lengths and large working-set size
govern the performance.

Intruder displays a variety of transaction lengths and a
wide range of addresses accessed. It also displays a large
amount of contention, as shown in Table VII. The performance
is mainly limited by the contention and short transactions.

Overall, EigenBench was able to closely approximate TM
application behavior by reproducing key eigen-characteristics
of the applications. Please note that all of these applications
exhibit complex (pointer-chasing) memory access patterns, but
the approximations were still reasonably close. We remind the
reader that the goal of our analysis is not to provide 100%
identical replay of the target application; we are interested
in capturing a few key characteristics and simulating those
characteristics with EigenBench.

We omit graphs of other applications’ behavior but discuss
their key characteristics here. Vacation-High has a large
working-set size similar to Vacation-Low, and this governs its
behavior. However, it exhibits more contention than Vacation-
Low. Both versions of Kmeans have very narrow working-
set sizes, short transactions and high locality; these further
emphasize the effect of barrier overhead. Like Genome, Yada
shows large variance in transaction length, but it has a

much wider memory footprint. Also, transactions are more
contentious and more dirty than in Genome.

To summarize, we have shown that one can obtain (mixed
sets of) eigen-characteristics for real applications, but there
are only a few key characteristics that dictate the performance
behavior of an application. Along with results from an or-
thogonal analysis (as performed in Section III), knowledge
about the characteristics of TM applications can explain the
performance behavior of such applications as exemplified
in this section. A TM developer can use this information
to further improve a system. For example, to improve the
performance of the Vacation application, one must minimize
the TM system’s impact on cache pressure while efficiently
handling long transactions.

We have also shown that using EigenBench, one can rea-
sonably model certain application behaviors given (sets of)
eigen-characteristics. This is clearly evident in the similari-
ties between the EigenBench and TL2/SwissTM executions,
displayed in the third column of Figure 4. Conversely, the
performance behavior of EigenBench with a certain set of
parameters accurately represents the performance behavior
of complex applications which exhibit those characteristics.
In other words, since the eigen-characteristics successfully
explain performance behavior of a TM application, a through



exploration using EigenBench allows analysis of a TM system
across an extremely wide range of applications not covered by
other benchmarks.

VI. CONCLUSION

Previous transactional memory benchmark suites and mi-
crobenchmarks have often lacked the ability to isolate the key
attributes of an application and determine how each affects
the performance of the TM system. Additionally, there is little
consensus in the literature on which application characteristics
accurately and independently represent realistic application
behavior. In this paper, we proposed eigen-characteristics, a set
of orthogonal application characteristics which are very useful
in analyzing a TM system. Together, the eigen-characteristics
capture the dominant behavior of TM applications. To pro-
vide a simple way to explore these attributes, we presented
EigenBench, a lightweight yet powerful parameterizable mi-
crobenchmark. As a demonstration, we used EigenBench to
analyze two prominent STM systems. EigenBench allowed us
to vary each characteristic independently, providing insight
on how they affected the systems in the absence of other
interfering factors. In addition, we showed that the eigen-
characteristics can successfully specify real TM applications
by using EigenBench to accurately reproduce the behavior of
several STAMP applications. In doing so, we demonstrated
a concrete mapping between real applications and (sets of)
eigen-characteristics. We also showed how EigenBench can
be used to generate important specific execution patterns by
reproducing three TM pathological cases.
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APPENDIX

In this section, we provide a short introduction to using Eigen-
Bench for analysis of a TM system. Eigenbench is publicly available
from our website [19]. We provide source code that can be easily
executed in conjunction with any STM or HTM implementation or
simulation. The package also includes specific EigenBench parame-
ters discussed in the paper.

(1) Orthogonal analysis: The main usage of EigenBench should
be the orthogonal overhead analysis as in Section III. First, one
may specify a typical transaction description of interest (e.g. trans-
action length and pollution), making sure to use non-conflicting
characteristics. At a minimum, one should explore working-set size,
transaction length, pollution and scalability, and compare the results
against unprotected execution (see Section III). This will reveal
the true overhead induced by the TM system. Results for locality,
predominance and density may be omitted in the report if they don’t
provide further insights beyond those reported in this paper. Finally,
performance under contention and measured rollback rates should be
explored.

(2) Mixed transactions: Optionally, one may want to analyze
performance under non-uniform transactional characteristics (e.g.
long transactions mixed with short transactions). For this purpose,
we provide multiple sets of parameters in our distribution package,
based on our application analysis. Given very mixed parameters, it is
not easy to obtain an analytic model for the true degree of conflict,
as shown in equation (1). For such mixed parameters, we suggest
Monte Carlo estimation.

(3) Pathology: Optionally, one may also test TM system per-
formance under pathological transactions generated by EigenBench
parameters. This can verify if the TM system is immune to the
pathologies or susceptible to them.

(4) Explanation of TM application behavior: We believe that
the above analysis should provide enough information to explain
a certain TM application’s performance behavior, as long as one
knows its eigen-characteristics. However, one should also check if
the application is governed by non-TM aspects (e.g. Amdhal limit,
thread sync operation outside TX, etc.), which may not be explained
by any TM characteristics.


