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Goal: the parallel computing platform for 2015 
Parallel application development practical for the masses 

Joe the programmer… 

Parallel applications without parallel programming 

PPL is a collaboration of  
Leading Stanford researchers across multiple domains 

Applications, languages, software systems, architecture 

Leading companies in computer systems and software 

Sun, AMD, Nvidia, IBM, Intel, NEC, HP 

PPL is open 
Any company can join; all results in the public domain 



1. Finding independent tasks 

2. Mapping tasks to execution units 

3. Implementing synchronization 

Races, livelocks, deadlocks, … 

4. Composing parallel tasks 

5. Recovering from HW & SW errors 

6. Optimizing locality and communication 

7. Predictable performance & scalability 

8. … and all the sequential programming issues 

Even with new tools, can Joe handle these issues? 



Guiding observations 

Must hide low-level issues from programmer 

No single discipline can solve all problems 

Top-down research driven by applications 

Core techniques 

Domain specific languages (DSLs) 

Simple & portable programs 

Heterogeneous hardware 

Energy and area efficient computing 
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Leverage domain expertise at Stanford 

CS research groups, national centers for scientific computing 

PPL 

Media-X

NIH NCBC

DOE ASC

Environmental
Science

Geophysics

Web, Mining
Streaming DB

Graphics
Games

Mobile
HCI

Existing Stanford 
research center

Seismic modeling 

Existing Stanford CS 
research groups

AI/ML
Robotics



Next-generation web platform 

Millions of players in vast landscapes 

Immersive collaboration 

Social gaming 

Computing challenges 

Client-side game engine 

Graphics rendering 

Server-side world simulation 

Object scripting, geometric queries,  AI, 
physics computation 

Dynamic content, huge datasets 

More at http://vw.stanford.edu/ 
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High-level languages targeted at specific domains 
E.g.: SQL, Matlab, OpenGL, Ruby/Rails, … 

Usually declarative and simpler than GP languages 

DSLs  higher productivity for developers 
High-level data types & ops (e.g. relations, triangles, …) 

Express high-level intent w/o implementation artifacts  

DSLs  scalable parallelism for the system 

Declarative description of parallelism & locality patterns 

Can be ported or scaled to available machine 

Allows for domain specific optimization 

Automatically adjust structures, mapping, and scheduling  



Goal: simplify code of mesh-based PDE solvers 

Write once, run on any type of parallel machine 

From multi-cores and GPUs to clusters 

Language features 

Built-in mesh data types  

Vertex, edge, face, cell 

Collections of mesh elements 

cell.faces(), face.edgesCCW() 

Mesh-based data storage 

Fields, sparse matrices 

Parallelizable iterations 

Map, reduce, forall statements 



val position = vertexProperty[double3](“pos”) 

val A = new SparseMatrix[Vertex,Vertex] 

for (c <- mesh.cells) { 

    val center = average position of c.vertices 

    for (f <- c.faces) { 

        val face_dx = average position of f.vertices – center 

          for (e <- f.edges With c CounterClockwise) { 

               val v0 = e.tail 

               val v1 = e.head 

               val v0_dx = position(v0) – center 

               val v1_dx = position(v1) – center 

               val face_normal = v0_dx cross v1_dx 

               // calculate flux for face … 

               A(v0,v1) += … 

               A(v1,v0) -= … 



val position = vertexProperty[double3](“pos”) 

val A = new SparseMatrix[Vertex,Vertex] 

for (c <- mesh.cells) { 

    val center = average position of c.vertices 

    for (f <- c.faces) { 

        val face_dx = average position of f.vertices – center 

          for (e <- f.edges With c CounterClockwise) { 

               val v0 = e.tail 

               val v1 = e.head 

               val v0_dx = position(v0) – center 

               val v1_dx = position(v1) – center 

               val face_normal = v0_dx cross v1_dx 

               // calculate flux for face … 

               A(v0,v1) += … 

               A(v1,v0) -= … 

High-level data types & operations  

Explicit parallelism using map/reduce/forall 

Implicit parallelism with help from DSL & HW 

No low-level code to manage parallelism 



Liszt compiler & runtime manage parallel execution 
Data layout & access, domain decomposition, communication, … 

Domain specific optimizations 

Select mesh layout (grid, tetrahedral, unstructured, custom, …) 

Select decomposition that improves locality of access 

Optimize communication strategy across iterations 

Optimizations are possible because 

Mesh semantics are visible to compiler & runtime 

Iterative programs with data accesses based on mesh topology 

Mesh topology is known to runtime  
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Provide a shared framework for DSL development 

Features 

Common parallel language that retains DSL semantics 

Mechanism to express domain specific optimizations 

Static compilation + dynamic management environment 

For regular and unpredictable patterns respectively 

Synthesize HW features into high-level solutions 

E.g. from HW messaging to fast runtime for fine-grain tasks 

Exploit heterogeneous hardware to improve efficiency 



Required features 

Support for functional programming (FP) 

Declarative programming style for portable parallelism 

High-order functions allow parallel control structures 

Support for object-oriented programming (OOP) 

Familiar model for complex programs 

Allows mutable data-structures and domain-specific attributes 

Managed execution environment 

For runtime optimizations & automated memory management  

Our approach: embed DSLs in the Scala language 

Supports both FP and OOP features 

Supports embedding of higher-level abstractions 

Compiles to Java bytecode 



Calls Matrix 

DSL methods 

Delite applies 

generic & domain 

transformations to 

generate mapping  

DSL defers OP 

execution to 

Delite 
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Execution Cores 

Gaussian Discriminant Analysis 

Original + Domain Optimizations + Data Parallelism 

Low speedup due to loop dependencies 
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Execution Cores 

Gaussian Discriminant Analysis 

Original + Domain Optimizations + Data Parallelism 

Domain info used to refactor dependencies 
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Execution Cores 

Gaussian Discriminant Analysis 

Original + Domain Optimizations + Data Parallelism 

Exploiting data parallelism within tasks 
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Heterogeneous HW for energy & area efficiency 

ILP, threads, data-parallel engines, custom engines 

Q: what is the right balance of features in a chip? 

Q: what tools can generate best chip for an app/domain? 

Study: HW options for H.264 encoding 
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Revisit architectural support for parallelism 
Which are the basic HW primitives needed? 

Challenges: semantics, implementation, scalability, 
virtualization, interactions, granularity (fine-grain & bulk), … 

HW primitives 

Coherence & consistency, atomicity & isolation, memory 
partitioning, data and control messaging, event monitoring 

Runtime synthesizes primitives into SW solutions 

Streaming system: mem partitioning + bulk data messaging 

TLS: isolation + fine-grain control communication 

Transactional memory: atomicity + isolation + consistency 

Security: mem partitioning + isolation 

Fault tolerance: isolation + checkpoint + bulk data messaging 



Parallel tasks with a few thousand instructions 
Critical to exploit in large-scale chips 

Tradeoff: load balance vs overheads vs locality 

Software-only scheduling 

Per-thread task queues + task stealing 

Flexible algorithms but high stealing overheads 
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Overheads and scheduling get worse at larger scales 



Hardware-only scheduling 

HW tasks queues + HW stealing protocol 

Minimal overheads (bypass coherence protocol) 

But fixes scheduling algorithm 

Optimal approach varies across applications 

Impractical to support all options in HW 
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Simple HW feature: asynchronous direct messages 

Register-to-register, received with user-level interrupt 

Fast messaging for SW schedulers with flexible algorithms 

E.g., gtfold scheduler tracks domain-specific dependencies 

Also useful for fast barriers, reductions, IPC, …  

Better performance, simpler HW, more flexibility & uses 
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Scalable scheduling with simple HW 



Goal: make parallel computing practical for the masses 

Technical approach 

Domain specific languages (DSLs) 

Simple & portable programs 

Heterogeneous hardware 

Energy and area efficient computing 

Working on the SW & HW techniques that bridge them 

More info at: http://ppl.stanford.edu 


