
Christos Kozyrakis and Kunle Olukotun

http://ppl.stanford.edu

Hot Chips 21 – Stanford – August 2009

Applications

Ron Fedkiw, Vladlen Koltun, Sebastian Thrun

Programming & software systems

Alex Aiken, Pat Hanrahan, John Ousterhout,

Mendel Rosenblum

Architecture

Bill Dally, John Hennessy, Mark Horowitz,
Christos Kozyrakis, Kunle Olukotun (director)

Goal: the parallel computing platform for 2015
Parallel application development practical for the masses

Joe the programmer…

Parallel applications without parallel programming

PPL is a collaboration of
Leading Stanford researchers across multiple domains

Applications, languages, software systems, architecture

Leading companies in computer systems and software

Sun, AMD, Nvidia, IBM, Intel, NEC, HP

PPL is open
Any company can join; all results in the public domain

1. Finding independent tasks

2. Mapping tasks to execution units

3. Implementing synchronization

Races, livelocks, deadlocks, …

4. Composing parallel tasks

5. Recovering from HW & SW errors

6. Optimizing locality and communication

7. Predictable performance & scalability

8. … and all the sequential programming issues

Even with new tools, can Joe handle these issues?

Guiding observations

Must hide low-level issues from programmer

No single discipline can solve all problems

Top-down research driven by applications

Core techniques

Domain specific languages (DSLs)

Simple & portable programs

Heterogeneous hardware

Energy and area efficient computing

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Programmable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Virtual
Worlds

Personal
Robotics

Data
Informatics

Scientific
Engineering

Physics Scripting Probabilistic
Machine
Learning Rendering

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Applications

Domain

Specific

Languages

Heterogeneous

Hardware

DSL

Infrastructure

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Programmable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Virtual
Worlds

Personal
Robotics

Data
Informatics

Scientific
Engineering

Physics Scripting Probabilistic
Machine
Learning Rendering

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Applications

Domain

Specific

Languages

Heterogeneous

Hardware

DSL

Infrastructure

Leverage domain expertise at Stanford

CS research groups, national centers for scientific computing

PPL

Media-X

NIH NCBC

DOE ASC

Environmental
Science

Geophysics

Web, Mining
Streaming DB

Graphics
Games

Mobile
HCI

Existing Stanford
research center

Seismic modeling

Existing Stanford CS
research groups

AI/ML
Robotics

Next-generation web platform

Millions of players in vast landscapes

Immersive collaboration

Social gaming

Computing challenges

Client-side game engine

Graphics rendering

Server-side world simulation

Object scripting, geometric queries, AI,
physics computation

Dynamic content, huge datasets

More at http://vw.stanford.edu/

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Programmable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Virtual
Worlds

Personal
Robotics

Data
Informatics

Scientific
Engineering

Physics Scripting Probabilistic
Machine
Learning Rendering

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Applications

Domain

Specific

Languages

Heterogeneous

Hardware

DSL

Infrastructure

High-level languages targeted at specific domains
E.g.: SQL, Matlab, OpenGL, Ruby/Rails, …

Usually declarative and simpler than GP languages

DSLs higher productivity for developers
High-level data types & ops (e.g. relations, triangles, …)

Express high-level intent w/o implementation artifacts

DSLs scalable parallelism for the system

Declarative description of parallelism & locality patterns

Can be ported or scaled to available machine

Allows for domain specific optimization

Automatically adjust structures, mapping, and scheduling

Goal: simplify code of mesh-based PDE solvers

Write once, run on any type of parallel machine

From multi-cores and GPUs to clusters

Language features

Built-in mesh data types

Vertex, edge, face, cell

Collections of mesh elements

cell.faces(), face.edgesCCW()

Mesh-based data storage

Fields, sparse matrices

Parallelizable iterations

Map, reduce, forall statements

val position = vertexProperty[double3](“pos”)

val A = new SparseMatrix[Vertex,Vertex]

for (c <- mesh.cells) {

 val center = average position of c.vertices

 for (f <- c.faces) {

 val face_dx = average position of f.vertices – center

 for (e <- f.edges With c CounterClockwise) {

 val v0 = e.tail

 val v1 = e.head

 val v0_dx = position(v0) – center

 val v1_dx = position(v1) – center

 val face_normal = v0_dx cross v1_dx

 // calculate flux for face …

 A(v0,v1) += …

 A(v1,v0) -= …

val position = vertexProperty[double3](“pos”)

val A = new SparseMatrix[Vertex,Vertex]

for (c <- mesh.cells) {

 val center = average position of c.vertices

 for (f <- c.faces) {

 val face_dx = average position of f.vertices – center

 for (e <- f.edges With c CounterClockwise) {

 val v0 = e.tail

 val v1 = e.head

 val v0_dx = position(v0) – center

 val v1_dx = position(v1) – center

 val face_normal = v0_dx cross v1_dx

 // calculate flux for face …

 A(v0,v1) += …

 A(v1,v0) -= …

High-level data types & operations

Explicit parallelism using map/reduce/forall

Implicit parallelism with help from DSL & HW

No low-level code to manage parallelism

Liszt compiler & runtime manage parallel execution
Data layout & access, domain decomposition, communication, …

Domain specific optimizations

Select mesh layout (grid, tetrahedral, unstructured, custom, …)

Select decomposition that improves locality of access

Optimize communication strategy across iterations

Optimizations are possible because

Mesh semantics are visible to compiler & runtime

Iterative programs with data accesses based on mesh topology

Mesh topology is known to runtime

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Programmable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Virtual
Worlds

Personal
Robotics

Data
Informatics

Scientific
Engineering

Physics Scripting Probabilistic
Machine
Learning Rendering

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Applications

Domain

Specific

Languages

Heterogeneous

Hardware

DSL

Infrastructure

Provide a shared framework for DSL development

Features

Common parallel language that retains DSL semantics

Mechanism to express domain specific optimizations

Static compilation + dynamic management environment

For regular and unpredictable patterns respectively

Synthesize HW features into high-level solutions

E.g. from HW messaging to fast runtime for fine-grain tasks

Exploit heterogeneous hardware to improve efficiency

Required features

Support for functional programming (FP)

Declarative programming style for portable parallelism

High-order functions allow parallel control structures

Support for object-oriented programming (OOP)

Familiar model for complex programs

Allows mutable data-structures and domain-specific attributes

Managed execution environment

For runtime optimizations & automated memory management

Our approach: embed DSLs in the Scala language

Supports both FP and OOP features

Supports embedding of higher-level abstractions

Compiles to Java bytecode

Calls Matrix

DSL methods

Delite applies

generic & domain

transformations to

generate mapping

DSL defers OP

execution to

Delite

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

Execution Cores

Gaussian Discriminant Analysis

Original + Domain Optimizations + Data Parallelism

Low speedup due to loop dependencies

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

Execution Cores

Gaussian Discriminant Analysis

Original + Domain Optimizations + Data Parallelism

Domain info used to refactor dependencies

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

Execution Cores

Gaussian Discriminant Analysis

Original + Domain Optimizations + Data Parallelism

Exploiting data parallelism within tasks

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Programmable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Virtual
Worlds

Personal
Robotics

Data
Informatics

Scientific
Engineering

Physics Scripting Probabilistic
Machine
Learning Rendering

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Applications

Domain

Specific

Languages

Heterogeneous

Hardware

DSL

Infrastructure

Heterogeneous HW for energy & area efficiency

ILP, threads, data-parallel engines, custom engines

Q: what is the right balance of features in a chip?

Q: what tools can generate best chip for an app/domain?

Study: HW options for H.264 encoding

1.0

1.5

2.0

2.5

3.0

4 cores + ILP + SIMD + custom

inst

ASIC

Area

1

10

100

1000

4 cores + ILP + SIMD + custom

inst

ASIC

Performance

Energy Savings

Revisit architectural support for parallelism
Which are the basic HW primitives needed?

Challenges: semantics, implementation, scalability,
virtualization, interactions, granularity (fine-grain & bulk), …

HW primitives

Coherence & consistency, atomicity & isolation, memory
partitioning, data and control messaging, event monitoring

Runtime synthesizes primitives into SW solutions

Streaming system: mem partitioning + bulk data messaging

TLS: isolation + fine-grain control communication

Transactional memory: atomicity + isolation + consistency

Security: mem partitioning + isolation

Fault tolerance: isolation + checkpoint + bulk data messaging

Parallel tasks with a few thousand instructions
Critical to exploit in large-scale chips

Tradeoff: load balance vs overheads vs locality

Software-only scheduling

Per-thread task queues + task stealing

Flexible algorithms but high stealing overheads

0.0

0.3

0.5

0.8

1.0

1.3

1.5

1.8

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

SW-only HW-only ADM SW-only HW-only ADM

cg gtfold

E
x
e
c
u

ti
o

n
 T

im
e

Idle

Overhead

Running

Overheads and scheduling get worse at larger scales

Hardware-only scheduling

HW tasks queues + HW stealing protocol

Minimal overheads (bypass coherence protocol)

But fixes scheduling algorithm

Optimal approach varies across applications

Impractical to support all options in HW

0.0

0.3

0.5

0.8

1.0

1.3

1.5

1.8

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

SW-only HW-only ADM SW-only HW-only ADM

cg gtfold

E
x
e
c
u

ti
o

n
 T

im
e

Idle

Overhead

Running

Wrong scheduling algorithm makes HW slower than SW

Simple HW feature: asynchronous direct messages

Register-to-register, received with user-level interrupt

Fast messaging for SW schedulers with flexible algorithms

E.g., gtfold scheduler tracks domain-specific dependencies

Also useful for fast barriers, reductions, IPC, …

Better performance, simpler HW, more flexibility & uses

0.0

0.3

0.5

0.8

1.0

1.3

1.5

1.8

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

SW-only HW-only ADM SW-only HW-only ADM

cg gtfold

E
x
e
c
u

ti
o

n
 T

im
e

Idle

Overhead

Running

Scalable scheduling with simple HW

Goal: make parallel computing practical for the masses

Technical approach

Domain specific languages (DSLs)

Simple & portable programs

Heterogeneous hardware

Energy and area efficient computing

Working on the SW & HW techniques that bridge them

More info at: http://ppl.stanford.edu

