
Decoupling Dynamic

Information Flow Tracking

with a Dedicated Coprocessor

Hari Kannan, Michael Dalton, Christos Kozyrakis

Computer Systems Laboratory

Stanford University

Motivation

Dynamic analysis help better understand SW behavior
Security, Debugging, Full system profiling

Hardware support for such analyses very useful
Provides speed advantage over SW solutions

Systems manage metadata for analysis in hardware

Implementation challenges
Storage overheads of metadata (Suh’05)

Processing of metadata

Need fast processing (low overheads)

Need cost effective implementation

Solution: Tightly coupled coprocessor for analysis 2

Case Study – DIFT
(Dynamic Information Flow Tracking)

DIFT taints data from untrusted sources

Extra tag bit per word marks if untrusted

Propagate taint during program execution

Operations with tainted data produce tainted results

Check for suspicious uses of tainted data

Tainted code execution

Tainted pointer dereference (code & data)

Tainted SQL command

Can detect both low-level & high-level threats
3

 r1:0

 r2:idx

 r3:&buffer

 r4:0

 Data T

 r5:x

DIFT Example: Memory
Corruption

Tainted pointer dereference security trap

int idx = tainted_input;

buffer[idx] = x; // memory corruption

Vulnerable C Code

set r1 &tainted_input

load r2 M[r1]

add r4 r2 + r3

store M[r4] r5 r4:&buffer+idx

 r1:&input

 r2:idx=input

TRAP

4

HW Option 1: In-core DIFT

Policy
Decode

Tag
ALU

Tag
Check

Decode D-Cache RegFile ALU I-Cache Traps
W

B

5

Integrated DIFT hardware [Dalton’07, Suh’04, Chen’05]

No performance, minor power, and minor area overhead

Invasive changes to processor

High design and validation costs

Synchronizes metadata and data per instruction

Core 1

(App)

HW Option 2: Offloading DIFT

Capture

Trace

Log buffer

(L2 cache)

6

Core 2

(DIFT)

Analyze

Trace

SW DIFT on modified multi-core chip (e.g., CMU’s LBA)

Flexible support for various analyses

Large area & power overhead (2nd core, trace compress)

Large performance overhead (DBT, memory traffic)

Significant changes to processor & memory hierarchy

General

Purpose
Core

General

Purpose
Core

Our Proposal: DIFT Coprocessor

7

Off-core DIFT coprocessor (similar to watchdog processors)

Small performance, power, and area overhead

Minor changes to processor

Reuse across processor designs

L2 Cache

Cache

Main

Core

Tag

Cache

Tag

Core

Instructions

Exceptions

DIFT

Coprocessor

General

Purpose
Core

Outline

Motivation & Overview

Software Interface of the coprocessor

Architecture of the coprocessor

Performance & Security Evaluation

Conclusion

8

Coprocessor Setup

A pair of policy registers
Accessible via coprocessor instructions

Could also be memory-mapped

Policy granularity: operation type
Select input operands to be checked (if tainted)

Select input operands that propagate taint to output

Select the propagation mode (and, or, xor)

ISA instructions decomposed to 1 operations
Types: ALU, logical, branch, memory, compare, FP, …

Makes policies independent of ISA packaging

 Same HW policies for both RISC & CISC ISAs

9

 r1:0

 r2:idx

 r3:&buffer

 r4:0

 Data T

 r5:x

What happens without
Proc/Coproc Synchronization?

int idx = tainted_input;

buffer[idx] = x; // memory corruption

Vulnerable C Code

set r1 &tainted_input

load r2 M[r1]

add r4 r2 + r3

store M[r4] r5 r4:&buffer+idx

 r1:&input

 r2:idx=input

EXPLOIT

10

 …

 exec (sys call)

Attacker executes system call system compromise

SYSTEM

COMPROMISE

System Calls as Sync points

Key Idea: Main core and coproc sync at system calls

Security:
This prevents attacker from executing system calls

Application’s corrupted address space can be discarded

Does not weaken the DIFT model

DIFT detects attack only at time of exploit, not corruption

Performance:
Synchronization overhead typically tens of cycles

Function of decoupling queue size

Lost in the noise of system call overheads (hundreds of cycles)

11

 r1:0

 r2:idx

 r3:&buffer

 r4:0

 Data T

 r5:x

System Call Synchronization

int idx = tainted_input;

buffer[idx] = x; // memory corruption

Vulnerable C Code

set r1 &tainted_input

load r2 M[r1]

add r4 r2 + r3

store M[r4] r5 r4:&buffer+idx

 r1:&input

 r2:idx=input

TRAP

12

 …

 exec (sys call) STALL

Tainted pointer dereference security exception

Coprocessor Design

DIFT functionality in a coprocessor

4 tag bits of metadata per word of data

Coprocessor Interface (via decoupling queue)

Pass committed instruction information

Instruction encoding could be at micro-op granularity (in x86)

Physical address obviates need for MMU in coprocessor

Processor

Core

I

Cache

D

Cache

Policy
Decode

Tag
ALU

Tag
Check Tag

Cache

Tag RF W
B

DIFT Coprocessor
PC

 Inst Encoding

 Physical Address

Security exception

L2 Cache

13

Decoupling

 queue Stall

Prototype

Leon-3

@40MH
z

512MB

DRAM

Ethernet

AoE

Ethernet

AoE

Leon-3

@65MHz

512MB

DRAM

14

Hardware

Paired with simple SPARC V8 core (Leon-3)

Mapped to FPGA board

Software

Fully-featured Linux 2.6

Design statistics

Clock frequency: same as original

Logic: +7.5% overhead

… of simple in-order core with no speculation

System Performance Overheads

Runtime overhead < 1% over SPEC benchmarks

512 byte tag cache

6-entry decoupling queue
15

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

gzip gap vpr gcc mcf crafty parser vortex bzip2 twolf

R
u

n
ti

m
e
 O

v
e
r
h

e
a
d

 (
%

)

Scaling the tag cache

Worst case micro-benchmark
512-byte tag cache provides good performance

16

0%

5%

10%

15%

20%

25%

16B 32B 64B 128B 256B 512B 1K

R
u

n
ti

m
e
 O

v
e
r
h

e
a
d

 (
%

)

Size of the Tag Cache

Queue full stalls

Memory contention Stalls

Queue full Stalls

Scaling the decoupling queue

Worst case micro-benchmark
6 entry queue reduces performance overhead

17

0%

2%

4%

6%

8%

10%

12%

0 2 4 6

R
u

n
ti

m
e
 O

v
e
r
h

e
a
d

 (
%

)

Size of the Queue
(no. of entries)

Queue fill Stalls

Memory contention Stalls

Queue full Stalls

Coprocessors for complex cores

Modest overheads with higher IPC cores
Because main core rarely achieves peak IPC (=1)

Coprocessor performs very simple operations

Implies coprocessor can be paired with complex cores
18

0.9

0.95

1

1.05

1.1

1.15

1.2

1 1.5 2

R
e
la

ti
v
e
 O

v
e
r
h

e
a
d

Ratio of main core's clock to
coprocessor's clock

gzip

gcc

twolf

Security Policies Overview

19

P Bit T Bit B Bit S Bit

Buffer Overflow

Policy

Identify all pointers,

and track data taint.
Check for illegal

tainted ptr use. Y Y

Offset-based

attacks
(control ptr)

Track data taint,

and bounds check
to validate.

Y

Format String

Policy

Check tainted args

to print commands. Y Y

SQL/XSS Check tainted

commands. Y Y

Red zone Policy Sandbox heap data. Y

Sandboxing Policy Protect the security

handler. Y

Security Experiments

Program Lang. Attack Detected Vulnerability

tar C Directory Traversal Open tainted dir

gzip C Directory Traversal Open tainted dir

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

SUS C Format String Tainted ‘%n’ in syslog

quotactl

syscall

C User/kernel pointer

dereference

Tainted pointer to kernelspace

sendmail C Buffer (BSS) Overflow Tainted code ptr

polymorph C Buffer Overflow Tainted code ptr

htdig C++ Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

Unmodified SPARC binaries from real-world programs

Basic/net utilities, servers, web apps, search engine

20

Security Experiments

Protection against low-level memory corruptions

Both in userspace and kernelspace
21

Program Lang. Attack Detected Vulnerability

tar C Directory Traversal Open tainted dir

gzip C Directory Traversal Open tainted dir

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

SUS C Format String Tainted ‘%n’ in syslog

quotactl

syscall

C User/kernel pointer

dereference

Tainted pointer to kernelspace

sendmail C Buffer (BSS) Overflow Tainted code ptr

polymorph C Buffer Overflow Tainted code ptr

htdig C++ Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

Security Experiments

Protection against semantic vulnerabilities

22

Program Lang. Attack Detected Vulnerability

tar C Directory Traversal Open tainted dir

gzip C Directory Traversal Open tainted dir

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

SUS C Format String Tainted ‘%n’ in syslog

quotactl

syscall

C User/kernel pointer

dereference

Tainted pointer to kernelspace

sendmail C Buffer (BSS) Overflow Tainted code ptr

polymorph C Buffer Overflow Tainted code ptr

htdig C++ Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

Security Experiments

Protection is independent of programming language

Propagation & checks at the level of basic ops
23

Program Lang. Attack Detected Vulnerability

tar C Directory Traversal Open tainted dir

gzip C Directory Traversal Open tainted dir

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

SUS C Format String Tainted ‘%n’ in syslog

quotactl

syscall

C User/kernel pointer

dereference

Tainted pointer to kernelspace

sendmail C Buffer (BSS) Overflow Tainted code ptr

polymorph C Buffer Overflow Tainted code ptr

htdig C++ Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

Conclusions

Hardware dynamic analyses aid program understanding

Decoupling analyses from main core essential for practicality

Proposed a tightly coupled coprocessor for DIFT

Does not compromise security model

Has low performance and area overheads

Full-system FPGA prototype
Reliably catches exploits in user & kernel-space

24

