

Future Scaling of Processor-Memory Interfaces

Jung Ho Ahn^{†§}, Norman P. Jouppi[†], Christos Kozyrakis[‡], Jacob Leverich[‡], Robert S. Schreiber[†] [†]HP Labs, [‡]Stanford University, [§]Seoul National University

Executive summary

performance reliability Challenges energy efficiency

Mainmemory system

system-wide Holistic assessments

multithreaded/consolidated chipkill capacity vs. efficiency

Multicore DIMM rank subsetting Solutions efficiency/latency/ throughput tradeoffs

Issues on DRAM based main memory

- Chip Multiprocessors (CMPs) demand
 - High capacity
 - High bandwidth
- Global wires improve slowly
 - Energy efficiency challenges = DRAM power matters!
 - Performance/power variation by access patterns
- Hard/soft errors

How DRAM works

Performance/power variations

DIMM = Dual Inline Memory Module

- DRAM row size = 8kb, 8 or 16 DRAMs per DIMM
- Cache line size = 512b
- Over 99% of bits are unused if row/col = 1

6 Nov 19, 2009 SC09 – Future Scaling of Processor-Memory Interfaces

Solution = Multicore DIMM

MCDIMM features

- VMD = Virtual Memory Device : rank subsetting
- Demux register
- Over 99% of bits are unused if row/col = 1

Demux register

Alternative solution = mini-rank

MCDIMM vs. mini-rank

- Register for data path vs. control path
- Timing constraint due to access interference
- Load balancing between rank subsets

9 Nov 19, 2009 SC09 – Future Scaling of Processor-Memory Interfaces

Governing equations

Total main memory power =

 $D \cdot S \cdot R \cdot SP + E_{RW} \cdot BW_{RW} + D \cdot E_{AP} \cdot f_{AP}$

- D : # of DRAM chips per subset
- S : # of subsets per rank
- R : # of ranks per channel
- SP : static power of a DRAM chip
- E_{RW} : energy needed to read/write a bit
- BW_{RW}: read/write bandwidth per memory channel
- E_{AP} : energy to activate/precharge a row
- f_{AP} : frequency of activate/precharge per memory channel

Governing equations

$$f_{AP} = \frac{f_{AP}}{f_{CM}} \cdot f_{CM} = \frac{f_{AP}}{f_{CM}} \cdot \frac{BW_{RW}}{CL} = \beta \cdot \frac{BW_{RW}}{CL}$$

BW_{RW} : read/write bandwidth per memory channel

- f_{AP} : frequency of activate/precharge per memory channel
- f_{CM} : frequency of cache miss
- CL : line size of last-level cache
- β : row/col (bank conflict ratio)

β on multicore applications

MCDIMM reliability issues

SECDED

- Single error correction, double error detection
- Typically, (64 + 8) ECC solution is enough.
- SCCDCD
 - Single chip-error correction, double chip-error detection
 - Chipkill
 - Implementations
 - Interleaving SECDED over multiple ranks
 - Employing stronger error correcting code
 - 2b + I additional bits to correct b bits of bursty error + to detect I bits of bursty error

Multicore configuration

Experimental setup

- System architecture
 - 32nm, 2GHz in-order CMT, max IPC = 16, 64 threads
 - -64B \$ line, 4 1MB L2 \$
 - hierarchical MESI, reverse directory
- Simulator/modeling
 - Intel Pin based in-house simulator
 - -CACTI
- Applications
 - SPLASH-2/PARSEC/SPEC2006

Energy-delay product & system power with 1 rank per memory channel

Energy-delay product & system power with 1 rank per memory channel

Nov 19, 2009 SC09 – Future Scaling of Processor-Memory Interfaces

Energy-delay product & system power with 4 ranks per memory channel

Energy-delay product & system power with 4 ranks per memory channel

Nov 19, 2009 SC09 – Future Scaling of Processor-Memory Interfaces

Energy-delay product & system power with Chipkill enabled

Energy-delay product & system power with Chipkill enabled

Nov 19, 2009 SC09 – Future Scaling of Processor-Memory Interfaces

Conclusion

Challenges on main memory systems

- Performance/capacity demands
- Energy-efficiency goals
- Reliability constraints

Multicore DIMM

- Instantiation of rank subsetting
- Gain energy efficiency & concurrency
- Sacrifice serialization latency
- Advantage in EDP (energy-delay product) with proper subsetting
- Energy-efficient, capacity-inefficient reliability solution

22 Nov 19, 2009 SC09 – Future Scaling of Processor-Memory Interfaces