A Comparison of High-Level Full-System Power Models

Suzanne Rivoire, *Sonoma State University* Partha Ranganathan, *HP Labs* Christos Kozyrakis, *Stanford University*

HotPower 2008

Who needs power models?

- Component and system designers
 - How do design decisions affect power?

Users

- How do my usage patterns affect power?
- Data center schedulers
 - How will workload distribution decisions affect power?

Talk Overview

- Power modeling goals and approaches
- Models compared
- Model generation and evaluation methodology
- Evaluation results

Power modeling goals

- Goal: Online, full-system power models
- Model requirements
 - Non-intrusive and low-overhead
 - Easy to develop and use
 - Fast enough for online use
 - Reasonably accurate (within 10%)
 - Inexpensive
 - Generic and portable

Power modeling approaches

- Detailed component models
 - Simulation-based
 - Hardware metric-based

High-level full-system models

High-level models (Mantis)

- How accurate?
- □ How portable?
- □ Tradeoff between model parameters/complexity and accuracy?

Power Modeling

Models studied

 \Box Constant power (the null model): $P = C_0$

CPU utilization-based models

CPU utilization-based models

□ Linear in CPU utilization

$$P = C_0 + C_1 u$$

Empirical power model

$$P = C_0 + C_1 U + C_2 U'$$

[Fan et al, ISCA 2007]

CPU + disk utilization

$$P = C_0 + C_1 U_{CPU} + C_2 U_{disk}$$

[Heath et al, PPoPP 2005]

CPU + disk util. + performance ctrs Input: - CPU util. % - Disk util. % - CPU perfctrs Predicted power (system) $P = C_0 + C_1 u_{CPU} + C_2 u_{disk} + \sum C_i P_i$

[D. Economou, S. Rivoire, C. Kozyrakis, P. Ranganathan, MoBS 2006]

CPU performance counters

- Configurable processor registers to count microarchitectural events
- □ In this study:
 - Memory bus transactions
 - Unhalted CPU clock cycles
 - Instructions retired/ILP
 - Last-level cache references
 - Floating-point instructions

Evaluation methodology

- Run calibration suite and develop models on a variety of machines
- Run benchmarks, collecting metrics and AC power
- Compare predicted power from metrics with measured AC power

Evaluation machines

- Mobile fileserver with 1 and 13 disks
 - Highest and lowest frequencies
- 2005-era AMD laptop
 - Highest and lowest frequencies
- 2005-era Itanium server
- 2008-era Xeon server with 32 GB FBDIMM
- □ Variety in component balance, processor, domain, dynamic range

Evaluation benchmarks

- SPECcpu int and fp
 - Laptop: gcc and gromacs only
- SPECjbb
- □ Stream
- □ I/O-intensive programs
 - ClamAV
 - Nsort (mobile fileserver only)
 - SPECweb (Itanium only)

Overall mean % error

Overall mean % error

Overall mean % error

Overall mean % error

Best case for empirical CPU model (Xeon server)

Best case for performance counters

Best case for empirical CPU model

(Xeon server)

Best case for performance counters

(Xeon server and mobile fileserver-13)

Best case for performance counters

(Xeon server and mobile fileserver-13)

Future work

- Beyond CPU, memory, and disk
 - GPUs
 - Network (not a factor today)
- Model complexity
 - Combine exponential CPU model w/ perfctrs?
 - Cooling fan power is cubic function of speed

Conclusions

- Generic approach to power modeling yields accurate results
 - Simple models overall have < 10% error
 - Same parameters across very different machines
 - More information → better models
- □ Linear CPU util. model not enough for...
 - Machines and workloads that are not CPU-dominated
 - CPUs with shared resource bottlenecks
 - Aggressively power-optimized CPUs
 - ...all of which reflect hardware trends.