Real-World Buffer Overflow Protection
for User & Kernel Space

Michael Dalton, Hari Kannan, Christos Kozyrakis

Computer Systems Laboratory
Stanford University
http://raksha.stanford.edu




Motivation

1 Buffer overflows remain a critical security threat

0 Deployed solutions are insufficient
* Provide limited protection (NX bit)
* Require recompilation (Stackguard, /GS)
* Break backwards compatibility (ASLR)

L Need an approach to software security that is
* Robust - no false positives on real-world code
* Practical - works on unmodified binaries
* Safe - few false negatives
* Fast
* End-to-End



@&} DIFT: Dynamic Information Flow Tracking
s

M DIFT taints data from untrusted sources
* Extra tag bit per word marks if untrusted

 Propagate taint during program execution

* Operations with tainted data produce tainted results

1 Check for suspicious uses of tainted data
* Tainted code execution
* Tainted pointer dereference (code & data)
* Tainted SQL command

1 Potential: protection from low-level & high-level threats




% DIFT Example: Memory Corruption

Vulnerable C Code
char buf[1024];

strcpy (buf, input) ; //buffer overflow




% DIFT Example: Memory Corruption

Vulnerable C Code

char buf[1024];

strcpy (buf, input) ; //buffer overflow

:

rl «<rl + 4
load r2 «<M[rl]
store M[r3] ¢ «r2

Jmp M[retaddr]

Data

rl:input+1020

r2:0

r3: buf+l1024

retaddr: safe




% DIFT Example: Memory Corruption

Vulnerable C Code
char buf[1024];

strcpy (buf, input) ; //buffer overflow

Data

rl: input+1024

T
mﬂ,
oa E

r2:0

r3: buf+1024

Jmp M[retaddr]

store M[r3] ¢ «r2

retaddr: safe




% DIFT Example: Memory Corruption

Vulnerable C Code
char buf[1024];

strcpy (buf, input) ; //buffer overflow

Data

rl ~rl + 4 rl: input+1024

r2: bad

store M[r3] ¢ «r2

r3: buf+1024

- retaddr: safe

Jmp M[retaddr]




% DIFT Example: Memory Corruption

Vulnerable C Code
char buf[1024];

strcpy (buf, input) ; //buffer overflow

Data

rl ~rl + 4 rl: input+1024

r2: bad

m

r3: buf+1024

store M[r3] ¢ «r2

retaddr: bad

Jmp M[retaddr]




% DIFT Example: Memory Corruption

Vulnerable C Code
char buf[1024];

strcpy (buf, input) ; //buffer overflow

Data

rl ~rl + 4 rl: input+1024

r2: bad

load r2 «<M[rl]

r3: buf+l1024

store M[r3] ¢ «r2

- retaddr: bad

Jmp M[retaddr] g

TRAP

U Tainted pointer dereference =security trap




& Hardware DIFT Overview
e

[ The basic idea [Suh’04, Crandall’04, Chen’05, Dalton ‘07]
* Extend HW state to include taint bits
* Extend HW instructions to check & propagate taint bits

M Hardware Advantages
* Negligible runtime overhead
* Works with multithreaded and self-modifying binaries
* Apply tag policies to OS




Raksha Overview & Features [Dalton '07]

Unmodified binaries

(_A_\

User 1 User 2 SysAdmin

App App Security Set security policies
Binary Binary Manager { Control HW check/propagate
| ‘ Further SW analysis

Cross-process info flow
Save/restore tags

4 tag bits per word
HW Architecture Tags < HW check/propagate
User-level security traps

Operating System {




D Check Policy Example: load
e

load r2 «<M[rl+offset]

Check Enables

1. Check source register
If Tag(x1l)==1 then security trap

2. Check source address
If Tag(M[rl+offset])==1 then security trap

Both enables may be set simultaneously




% Propagate Policy Example: 1oad

load r2 <M[rl+offset]

Propagate Enables

1. Propagate only from source register
Tag(r2) +tag(rl)

2. Propagate only from source address
Tag(r2) «Tag(M[rl+offset])

3. Propagate only from both sources
OR mode: Tag(r2) <fag(rl) | Tag(M[rl+offset])

AND mode: Tag(r2) <Tag(rl) & Tag(M[rl+offset])
XOR mode: Tag(r2) dag(rl) * TagM[rl+offset])




% Raksha Prototype System

4 Full-featured Linux system

O HW: modified Leon-3 processor
* Open-source, Sparc V8 processor
* Single-issue, in-order, 7-stage pipeline
* Modified RTL for processor & system
* Mapped to FPGA board

O SW: ported Gentoo Linux distribution
* Based on 2.6 kernel (modified to be tag aware)
* Kernel preloads security manager into each process

* Over 14,000 packages in repository (GNU toolchain,
apache, sendmail, ...)




%
P

Outline

Q Preventing Buffer Overflows with DIFT
* Previous Work
* Novel DIFT buffer overflow prevention policy

1 Evaluation
* Security experiments
* Lessons learned

L Conclusions

10



%

Naive Buffer Overflow Detection

O Previous DIFT approaches recognize bounds checks

* Must bounds check untrusted information to dereference

O Taint untrusted input

O OR Propagate taint on load,store,arithmetic,logical ops

O Clear taint on bounds checks
* Comparisons against untainted info

O Check for tainted code, load/store/jump addresses
* Forbid tainted pointer deref, code execution

1"



% Problems with Naive Approach

M Not all bounds checks are comparisons
e *str++ = digits[val % 10] (glibc)
* ent = hashtbl[x & TABLESZ - 1] (GCC)
U Not all comparisons are bounds checks
* If (chunksize(sz) < FASTBIN S7)
®" malloc() code caused false negative in traceroute exploit
1 Bounds checks are not required for safety!
* return isdigit[ (unsigned char) x] (glibc)
= isdigit array is 256 entries! Don’'t need any bounds check

= But stripped binary doesn’t tell us array sizes....

U End result: unacceptable false positives in real code

12




) Preventing BOF with Pointer Identification

O New approach: prevent attackers from injecting pointers
* Tainted information should not be directly dereferenced
* Instead, use as offset combined with legitimate pointer

O Buffer overflow attacks rely on injecting pointers
* Pointers are everywhere and security-critical
* Code pointers (return address, function pointer, global offset table)

* Data pointers (malloc heap chunks, filenames, permission
structures)

O DIFT policy based on Pointer Injection
* Track untrusted data (Taint bit) and legitimate pointers (Pointer bit)
= Use two separate DIFT analyses
* 2 tag bits per word — T bit, P-bit
* Untrusted data may only be used an index to a legitimate pointer
= Forbid any dereference with T-bit set and P-bit clear

13



%

New Policy for Taint Bit

O Goal: conservatively track untrusted information
* Don't try to clear taint by recognizing bounds checks
* Only clear when reg/mem word overwritten by clean data

O Taint untrusted input

0 OR Propagate on load, store, arithmetic, logical ops

1 Check on code execution
* Trap if code is tainted

O Check on load/store/jump address
* Trap if address is tainted but does not have P-bit set

14



New Policy for Pointer Bit

O Goal: Identify all valid pointers at runtime

O Initialize P-bit for pointers to statically allocated mem at startup
* More details on next slide on how to identify these

O Initialize P-bit for all pointers to dynamically allocated mem
* Return value of mmap, shmat, brk syscalls

O Propagate P-bit during valid pointer ops
* Load/Store Pointer
* Pointer +,- Non Pointer
* Pointer +,-, OR Pointer
= Rare corner case in gcc, fprintf(“%Id”, pointer) ...
* Pointer AND non-pointer (only if pointer alignment)
* Clear P-bit on all other operations

15



Identify Pointers at Startup

1 Must set P-bit for all regs, memory with valid pointer at
startup

* Only regs with valid pointer are Stack Pointer, PC

0 Scan Data and Code of all Objects (Executable and
Libraries)

* Set P-bit for potential valid pointers

1 Object File Format (ELF, PE, etc) restricts references

* Any reference to statically allocated mem must be
relocatable

* Only a few supported relocation entry formats...
* Makes recognizing pointers in code/data practical

16



Identify Pointers cont’d

O Identifying Pointers in Data Segments

* ELF, PE restrict data references to symbol + offset
" Valid int * y = &x + 12
® Invalid int *y = &x >> 12

* |dentify word of data as a pointer if
= ObjectFile_Start <= word < ObjectFile_End

U Identifying Pointers in Code Segments
* ELF SPARC restricts code references to sethi/or pairs
* sethi instruction used to set upper 22 bits of register
e Set P bit of sethi insn if constant within current obj file
* At runtime, P-bit of sethi instructions propagates to dest

17



Protecting the Linux Operating System

O P-Bit, T-Bit initialization similar to userspace
* OS has hardcoded pointer constants for heaps, 1/O regions

O Problem: OS dereferences untrusted pointers!
* System call arguments are untrusted

* ssize t write(int fd, const wvoid * buf,
s1ze L coumt)

* Kernel must dereference buf, even though it is untrusted

O New security requirements

* Must allow legitimate, safe user pointer dereferences
* Must forbid user pointers into kernelspace

= User/Kernel pointer dereference attack (compromises OS)

18



% Protecting Linux cont’d

O Solution: _ ex table
* Only user pointer dereferences cause MMU faults
e ex table lists all instructions that may MMU fault
* Similar data structures exist in Free/Net/OpenBSD, Solaris

U Preventing kernel memory corruption
* Security exception if dereference tainted pointer

* Exception handler permits tainted deref only if
= PCisfound in __ex table
= | oad/store address is in userspace

* Prevents buffer overflows and user/kernel pointer deref

O Found one local DoS bug with this technique
* See paper for more details

19



Experiments

O Successfully running Gentoo on Raksha
* Full FPGA-based prototype
* Modern Linux distribution
* Run gcc, OpenSSH, sendmail, Apache, etc.

U Protecting all of Userspace
* Every program, every instruction
* Policy enforced by trusted userspace monitor

O Protecting Kernel Space
* Everything but first few instructions of trap handler
" These instructions enable BOF tag policy

* Protect bootup code, optimized handwritten assembly, context
switching code, etc

20



% Userspace Buffer Overflow Results

Program Attack Detection

Polymorph Stack overflow Tainted code ptr
Atphttpd Stack overflow Tainted code ptr
Nullhtpd Heap overflow Tainted data ptr
Traceroute Double free Tainted data ptr
Sendmail BSS overflow Tainted data ptr

All applications are unmodified binaries

No false positives

21



% Kernelspace Buffer Overflow Results

Module

Attack

Detection

Quotactl syscall

User/Kernel Pointer

User pointer to OS data

|20 driver

User/Kernel Pointer

User pointer to OS data

Sendmsg syscall

Stack, Heap Overflow

Tainted data pointer

Moxa driver

BSS Overflow

Tainted data pointer

Cm4040 driver

Heap Overflow

Tainted data pointer

Protection enabled for all of kernelspace

No false positives

22



%

Conclusions

O Bounds check recognition is fatally flawed
* Diversity of operations is immense (e.g. % on SPARC)

* Don’t even need to bounds check in some corner cases
= Cannot disambiguate these cases from attacks in practice

O New BOF policy — prevent pointer injection
* Track tainted data and legitimate application pointers
* Forbid dereference if T bit set and P-bit clear

O Result: protect code and data pointer with no false positives
* Prevented attacks in userspace, kernelspace

* Verified no false positives in user/kernel
®= Ran Apache, GCC, mysq|l, etc
® Untrusted sources should never supply pointers

23



% Further Information in the Paper

U Prototype implementation description
* Full summary of check, propagate modes, etc

1 Portability discussions
* How to port T-bit, P-bit rules to x86
* How to apply Linux kernel BOF rules to BSDs, Solaris

L Additional DIFT policies
* Provide better coverage by using multiple policies
* Red Zone Bounds Checking
* Bounds Check Recognition for control pointers only
* Format string protection

24




Questions?

d Want to use Raksha?
* Go to http://raksha.stanford.edu

* Raksha port to Xilinx XUP board
= $300 for academics
= $1500 for industry

* Full RTL + Linux distribution coming soon

25



% Bonus round: Why not bounds checking?

L Compatibility
* C was never meant to be bounds checked

= Ex: optimized glibc() memchr() reads out of bounds
= Context sensitive- Apache ap_alloc => malloc=>brk

* |nline assembly, Multithreading
* Dynamically loaded plugins, dynamically gen’d code
* Closed-source libraries, objects in other languages
1 Cost — recompiling is expensive
* Global recompilation of all system libs is not happening
* Just ask MS to recompile MFC...
U Performance
* Overheads must be low (single digit) to drive adoption

26






