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Abstract

Recent trends in architecture have made chip multiprocessors (CMPs) increasingly

common. CMPs provide programmers with an unprecedented opportunity for paral-

lel execution. Nevertheless, the key factor limiting their potential is the complexity

of parallel application development using primitives such as locks and condition vari-

ables. While transactional memory (TM) is a technique that helps with parallel

program development by transferring concurrency management from the user to the

system, there remain unsolved design challenges to building commercial TM systems

and unexplored opportunities to use TM beyond concurrency control.

This thesis addresses the challenges to building an efficient and practical TM

system and explores the opportunities for using it to support system software and to

improve important system metrics other than performance. The contributions of the

thesis are the followings. First, we analyze the common case transactional behavior of

multithreaded programs and draw key insights towards building efficient TM systems

tuned for the common case. Second, we present a TM virtualization mechanism that

virtualizes all aspects of transactional execution (time, space, and nesting depth) to

build correct and cost-effective TM systems for uncommon case. Third, we suggest a

practical solution to use TM for correct execution of multithreaded programs within

DBT frameworks. Fourth, we present a hardware-assisted memory snapshot system

using TM to allow for algorithmic simplicity, easy code management, and performance

at the same time. And last, we propose a scheme to accelerate software solutions for

reliability, security, and debugging with hardware resources for TM.
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Chapter 1

Introduction

1.1 Difficulty of Parallel Programming

In the past two decades, the performance of microprocessors has been improving ex-

ponentially thanks to clock frequency increases and the use of wide-issue, out-of-order

processing techniques. However, further speedup of single-core CPUs is constrained

by the limitation of instruction-level parallelism (ILP), power consumption, and de-

sign complexity [158, 153]. Recent trends in architecture have made chip multipro-

cessors (CMPs) increasingly common [72, 74, 86]. CMPs provide programmers with

an unprecedented opportunity for parallel execution. Abundant hardware parallelism

in CMPs allows parallel programs to improve performance through thread-level par-

allelism (TLP). Nevertheless, the key factor limiting their potential is the complexity

of parallel programming using primitives such as locks and condition variables.

Locks synchronize accesses to shared data by providing mutual exclusion among

concurrent threads. By acquiring a lock, a thread obtains the ownership of data asso-

ciated with the lock and blocks the other threads that want to access the data. The

difficulty of lock-based schemes is that they demand programmers deal with a tradeoff

between functional correctness and scalable performance. Coarse-grain locking is easy

to use but introduces unnecessary serialization that degrades system performance. On

the other side, fine-grain locking scales better but can easily lead to deadlocks, live-

locks, or races. Lock-based code does not automatically compose. Before making a

1



CHAPTER 1. INTRODUCTION 2

library call, a programmer must fully understand the locking behavior of the library

code. Finally, locks are not robust: a thread that fails while holding a lock may make

inconsistent memory updates and block other threads from making forward progress.

1.2 Transactional Memory

Transactional memory (TM) is a technique that helps with parallel software devel-

opment by transferring concurrency management from the user to the system [65,

60, 90, 14]. A transaction encloses a group of instructions and executes them in an

atomic and isolated way. With TM, a programmer simply declares that code seg-

ments operating on shared data should execute as atomic transactions. It is easy

for programmers to reason about the execution of a transactional program since the

transactions are executed logically sequentially according to a serializable schedule.

TM systems execute multiple transactions in parallel with optimistic concurrency

control as long as they do not conflict. Two transactions conflict if they access the

same address and one of them writes. If they conflict, one of them is aborted and

restarts. A transaction starts with register checkpointing to save the old register

values when the transaction is aborted. Transactional writes are isolated from shared

memory by maintaining an undo-log or a write-buffer (data versioning). Memory

accesses are tracked in order to detect read/write conflicts among transactions. If a

transaction completes without conflicts, its updates are committed to shared memory

atomically. If a conflict is detected between two transactions, one of them rolls back by

restoring the register checkpoint and either by applying the undo-log or by discarding

the write-buffer.

1.3 Challenges and Opportunities for Transactional

Memory

While there have been proposals to implement high-performance TM systems using

hardware support [6, 60, 76, 90, 119], there remain unaddressed important challenges
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to building an efficient and practical TM system. TM systems use hardware resources

to accelerate the basic functions such as data versioning and conflict detection. For

efficiency’s sake, it is important to balance the performance gain obtained from the

hardware resources against the additional hardware cost. To accelerate TM systems

in a cost-effective manner, we should tune the resources for the common case. Hence,

analysis on the common behavior of TM programs is an essential part of designing

efficient TM systems. On the other hand, the hardware resources for acceleration

are limited. For transactional memory (TM) to achieve widespread acceptance, it is

important to provide a practical solution to deal with uncommon cases of applications

with transactions that exceed the capabilities of the hardware.

Once an efficient and practical TM system is available, we can use it to support

system software and to improve system metrics other than performance (e.g. reliabil-

ity and security). Specifically, we are interested in the following three problems that

can be solved efficiently with TM systems. First, dynamic binary translation (DBT)

has become a versatile tool that addresses a wide range of system challenges while

maintaining backwards compatibility for legacy software. However, DBT frameworks

may incorrectly handle multithreaded programs due to races involving updates to

the application data and the corresponding metadata maintained by the DBT. Sec-

ond, the lack of concurrency in system software modules such as garbage collector

or memory analysis tools prevents us from fully exploiting the abundant resources

in chip-multiprocessors (CMPs) in order to minimize their overhead on application.

Ideally, system code could be easily changed to use spare cores in a CMP. How-

ever, parallelization is not trivial in practice because programmers must deal with

the complications of concurrency management in complex system software and the

interactions with the applications they serve. Third, reliability, security, and debug-

ging are as important as performance. There have been efforts to develop techniques

that independently provide system support for reliability, security, or debugging in

software and hardware [138, 114, 117, 36, 144, 160, 121, 122]. Software solutions are

flexible, but have performance issues. Hardware solutions require special hardware

resources to accelerate a specific feature, which makes them hard to be adopted to

commercial systems due to the lack of generality.
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1.4 Contributions

In the thesis, we address the challenges to building an efficient and practical TM

systems and explore the opportunities for using them to support system software and

to improve important system metrics other than performance (e.g. reliability and

security). The challenges and opportunities dealt with in the thesis are the following.

• Analysis of the common case behavior of TM programs

We present an analysis of the common case behavior of transactions in existing

parallel programs. We translate existing synchronization primitives to transac-

tions and measure the key metrics of transactional execution. Based on these

metrics, we make suggestions for values of key architectural parameters that

tune hardware TM systems towards the common case behavior.

• Design of the eXtented Transactional Memory (XTM) for TM virtu-

alization

We present eXtended Transactional Memory (XTM), a software-base TM vir-

tualization system that virtualizes all aspects of transactional execution (time,

space, and nesting depth). It is implemented in software using virtual memory

support in the operating system. XTM operates at page granularity. It uses pri-

vate copies of the pages overflowing the cache to buffer transactional state until

the transaction commits. It also uses snapshots of the pages to detect inter-

ference between transactions. We also describe two enhancements, XTM-g and

XTM-e, to XTM that use some hardware support to address key performance

bottlenecks.

• Multithreading support for dynamic binary translation (DBT) using

TM

We present a practical solution that uses TM to support correct execution

of multithreaded programs within DBT frameworks. The DBT uses memory

transactions to encapsulate the data and metadata accesses in a trace, within

one atomic block. This approach guarantees correct execution of concurrent

threads of the translated program, as TM mechanisms detect and correct races.
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• Improving software concurrency with hardware-assisted memory snap-

shot

We present MShot, a hardware-assisted memory snapshot system to allow for

algorithmic simplicity, easy code management, and high performance at the

same time. We use the hardware resources in TM systems to accelerate memory

snapshots of arbitrary lifetime that consist of multiple disjoint memory regions.

• Accelerating software solutions for reliability, security, and debugging

using TM

We propose a scheme to accelerate software solutions for reliability, security, and

debugging with the hardware resources for transactional memory. We provide

four acceleration primitives on top of TM hardware resources and use them to

accelerate the solutions by targeting just the common case behavior.

1.5 Organization

The thesis is organized as follows. Chapter 2 explains TM programming model and

implementation options. It also presents the outline of our approach for the challenges

and opportunities for TM systems as well. Chapter 3 describes the analysis of the

common case behavior of TM programs and shows the analysis results. Chapter 4

presents eXtended Transaction Memory (XTM) to virtualize TM systems. Chapter 5

explains how the correctness issue of dynamic binary translation frameworks with

multithreaded programs is fixed using TM. Chapter 6 describes and evaluates fast

memory snapshot built on top of TM hardware. Chapter 7 explains how TM hard-

ware resources are used to accelerate software solutions for reliability, security, and

debugging. Chapter 8 concludes the thesis.



Chapter 2

Transactional Memory

In this chapter, we review programming models and implementation options for TM

systems. A base TM system design with hardware resources is described in detail.

Then, we summarize our approach to address the challenges to building an efficient

and practical TM system and to exploit the opportunities to use TM for other than

parallel programming.

2.1 Transactional Programming Model

Transactional memory (TM) is a technique that helps with parallel software develop-

ment by transferring concurrency management from the user to the system [65, 60,

90, 14]. With TM, a programmer simply declares that code segments operating on

shared data should execute as atomic transactions. Multiple transactions may execute

in parallel and the TM system is responsible for synchronization management.

2.1.1 Semantics

A transaction encloses a group of instructions and executes them in an atomic and

isolated way. Atomicity means that either all or no instructions in the code block are

executed. Isolation means that intermediate results of transactions are not exposed

to any other code. A TM system schedules transactions logically in a serializable

6
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manner so that they look like being executed one by one at a time.

Differently from database systems [49, 107], TM systems have to deal with not

only transactions but also non-transactional memory accesses. TM systems with

weak isolation guarantee transactional isolation only between code running within

transactions [77]. Non-transactional memory writes can be visible to transactions

allowing multiple reads from the same address in a transaction to return different

values. TM systems with strong isolation provides isolation between transactions

and non-transactional memory accesses as well. Read repeatability within a trans-

action is guaranteed as well as atomicity of transactional writes. Strong isolation

makes it easy for programmers to reason the execution of transactional programs

since non-transactional accesses are ordered with transactions in a sequential sched-

ule as well [77].

2.1.2 Interface

There are different types of interfaces to provide TM features in programming lan-

guages. Implicit transactions allow programmers to declare only the transaction

boundaries [60, 90]. Hardware or the compiler are responsible for tracking all memory

locations or objects accessed with transactions. Explicit translations require program-

mers either to manually annotate memory accesses to be part of the transaction or

to use transactional objects that interact with TM systems [24, 7].

A low-level transactional interface can be provided as part of instruction set ar-

chitecture (ISA) in hardware [60, 90]. Such an interface is fast but less flexible. It

is intended as a building block for higher level APIs rather than for direct use by

programmers. A higher level interface in software can be provided either as part of

language specification [24] or through a TM library [87]. In any case, a high-level

specification should clearly explain how TM primitives interact with existing parallel

programming primitives and memory management mechanisms [67].

Some interfaces provide only basic TM primitives such as atomic block while

others may provide advanced TM primitives. Software handlers are triggered at

the events related to transactions such as transaction commit, abort, and conflict.
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Nested transaction support allows a transaction to start inside another transaction.

Some primitives interact with the internals of TM systems for performance improve-

ment [84].

2.2 Implementation Options

TM systems perform data versioning and conflict detection to support transactional

execution. A transaction starts with register checkpointing. Transactional writes

are isolated from the rest of the system by maintaining an undo-log or a write-

buffer. Memory accesses are tracked in order to detect read/write conflicts among

transactions. If a transaction completes without conflicts, its updates are committed

to shared memory atomically. If a conflict is detected between two transactions, one

of them rolls back by restoring the register checkpoint and either by restoring the

undo-log or by discarding the write-buffer.

2.2.1 Software vs. Hardware

There have been proposals to implement TM systems in software or hardware. Soft-

ware TM systems (STM) implement all TM bookkeeping in software by instrumenting

read and write accesses within a transaction [45, 62, 125]. Software read and write

barriers are instrumented per memory access to track the memory addresses accessed

by transactions. Depending on the case, the overhead of the barriers can range from

40% to 7x for each thread in the parallel program. [1, 125, 23]. In addition, most

high-performance software TM systems do not provide strong isolation without ad-

ditional compiler support [77].

Hardware TM systems (HTM) implement both data versioning and conflict detec-

tion by modifying cache and coherence protocol. It is crucial for performance to have

such hardware resources to accelerate transactional execution. HTM systems do not

require software barriers for read and write accesses within a transaction, and thus

have minimal overhead for each thread [60, 90]. Hardware performs all bookkeeping
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transparently. Transactional reads and writes are recorded using cache-line meta-

data bits or signature filters in order to help with conflict detection across concurrent

transactions. Some designs support nested transactions and fast context switching of

transactional code using multiple sets of metadata bits or transaction IDs [84, 91].

New versions of data produced by pending transactions are isolated either by buffer-

ing them in the cache or logging old values. All hardware TM systems provide strong

isolation by default.

More recently, there have been proposals for hybrid TM systems [23, 126, 136].

While they still require read and write barriers, hybrid systems use hardware signa-

tures or additional metadata in hardware caches in order to drastically reduce the

overhead of conflict detection in software transactions. They are faster than software

TM systems but slower than hardware TM systems. Some of them provide strong

isolation as well [23].

In this thesis, we focus mostly on hardware TM systems since they provide superior

performance and strong isolation.

2.2.2 Eager vs. Lazy Data Versioning

TM systems separate a new version produced by an uncommitted transaction from

the committed version. If a transaction commits, the new version becomes the last

committed version in an atomic way. If it is aborted, the new version is discarded

safely. There are two types of data versioning: eager and lazy.

TM systems with eager versioning write transactional data in place and log the

last committed version. The logged version is written back to the original place at

abort. For the new version to be in place, an exclusive right should be acquired to

prevent the other transactions and non-transactional memory accesses from reading

the version without checking for conflicts. The contention manager should deal with

the potential livelock when two transactions gain attempt to exclusive rights on two

data items in opposite orders. In addition, eager versioning may make TM systems

less resilient to faults by putting uncommitted data in place.
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TM systems with lazy versioning buffer transactional data and keep the last com-

mitted version in place. The buffered data are flushed to memory at commit. Trans-

actions are aborted simply by invalidating the buffered data. This scheme is better

in terms of error recovery, especially for software TMs that may not have complete

control of all code that the program may use (e.g., library code).

2.2.3 Pessimistic and Optimistic Conflict Detection

TM systems detect conflicts in order to produce a serializable schedule of transac-

tions. A read-set and a write-set per transaction are maintained to track transactional

memory accesses. The read-set contains memory addresses read by the transaction

and the write-set contains the addresses written. Conflicts among transactions are

detected by comparing the sets. They are two types of conflict detection: pessimistic

and optimistic.

With pessimistic conflict detection, transactional memory accesses are first checked

against the read-/write-sets of the other transactions. The accesses are allowed to

complete only when they do not lead to a conflict. Two accesses conflict if they access

the same address and one of them is a write operation. The pessimistic scheme detects

conflicts early so that the contention manager takes actions as early as possible in

order to minimize the amount of work lost by the aborting transactions. When being

implemented in hardware, pessimistic conflict detection can be integrated easily with

the cache coherence protocol [90].

With optimistic conflict detection, transactional execution splits into three phases.

In the read phase, all reads and writes are allowed without checking for conflicts.

Writes are buffered until transactions finish. In the validation phase, transactions

are validated by comparing read-/write-sets and potential conflicts are detected. In

the commit phase, all buffered writes are committed in place. Optimistic conflict

detection avoids the overhead of detecting conflicts at each memory access. It also

allows for a larger set of serializable schedules compared to the pessimistic approach.

On the other hand, the validation phase is required to be done in an atomic way,

which can pose a performance issue.
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2.3 Base Hardware TM system

Hardware TM (HTM) systems provide hardware support for basic TM tasks in order

to reduce their overhead and make them transparent to transactional applications.

While there are several HTM variations, HTMs are quite similar in their structure.

Atomicity of register state is supported using a hardware mechanism such as a shadow

register file that can take, restore, or release a hardware checkpoint within a few

clock cycles. Atomicity of memory state is supported by using the cache as an undo

log or a write buffer for the store accesses within transactions. If a transaction

commits successfully, the undo log is discarded or the write buffer is applied to the

shared memory. If the transaction is rolled back, the undo log is applied or the write

buffer’s contents are discarded. Isolation is provided by detecting conflicts between

transactions on coherence events. A conflict occurs when two transactions access the

same data and at least one of them performs a write. HTMs track the addresses

read (read-set) or written (write-set) by a transaction either by extending each cache

line with metadata bits or using separate signatures [13]. Conflicts are detected by

checking the addresses in coherence messages from other threads against the read-set

or write-set.

Early HTMs expose these mechanisms in a monolithic manner, with programs

only marking transaction boundaries. Recent proposals expose the basic mechanisms

to software [84]. Software can control when register checkpoints are taken, which

stores are versioned, and which addresses are inserted into the read-set or write-set.

Software is also invoked on conflict detection to determine if the transaction should

roll back or continue. Some HTMs provide enhanced support for nested transactions

in the form of additional shadow register files and separate cache metadata bits or

filters [84, 91]. The additional mechanisms allow independent tracking of atomicity

and isolation for nested transactions.

Figure 2.1 shows the hardware resources for the base hardware TM system that

we refer to in the thesis. It has extra register files for register checkpointing in the

beginning of transactions. A pair of a read bit and a write bit per cache line are added

for tracking transactional memory accesses. Multiple pairs of the bits are added to
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Figure 2.1: The hardware resource for a base hardware TM system.

support nested transactions. It uses cache as buffer for transactional data and perform

lazy data versioning. Conflict detection mechanism is integrated with cache coherence

protocol. Memory requests from the other cores are snooped and checked against the

metadata bits for pessimistic conflict detection. Software handlers are registered and

invoked for transaction commit, abort, and conflict.

2.4 Challenges and Opportunies for TM systems

Supporting basic TM features using hardware mechanisms is just the first step toward

commercial TM systems. There are design challenges to building an efficient and

practical TM system. On the other hand, there are great opportunities to use it

beyond concurrency control. The challenges and opportunities of interest for the

thesis are the following.
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2.4.1 How can we build an efficient hardware TM system?

It is a well-known wisdom in computer architecture to make common case fast in

order to improve system efficiency. Hence, it is a prerequisite for an efficient TM

design to understand how transactions behave in common case.

There are the key metrics that describe the common case behavior of transactions

in multithreaded programs. We would like to know how large transactions are in

order to size the buffer requirement for transactional data in the cache hierarchy.

The number of instructions within a transaction is important to decide how much

cost is required for the basic TM primitives such as transaction begin and end. The

depth of nested transactions tells us how many pairs of read bits and write bits are

needed to support enough levels of transaction nesting. In Chapter 3, we present

a methodology to measure the key metrics and use them to make suggestions for

efficient hardware TM system design.

2.4.2 How can we build a practical TM system?

Regardless of the common case characteristics, the hardware resources will always

be limited and insufficient to cover all possible cases of programs. For transactional

memory (TM) to achieve widespread acceptance, it is important to deal practically

with uncommon cases as well. A practical TM system should guarantee correct

execution even when transactions exceed scheduling quanta, overflow the capacity of

hardware caches or physical memory, or include more independent nesting levels than

what is supported in hardware.

There are architectural challenges for TM virtualization. It is wasteful to add

significant hardware resources for uncommon cases since they will be used rarely.

How can we virtualize TM systems at a low hardware cost? We may have a special

version of code with software barriers to run long-lived transactions with software

TM systems that do not have virtualization issues. However, this makes the TM

virtualization mechanism not transparent to applications by demanding two versions

of code. How can we provide TM virtualization in a way transparent to applications?

In Chapter 4, we present eXtended Transactional Memory (XTM), a software-base
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TM virtualization system that virtualizes all aspects of transactional execution (time,

space, and nesting depth) transparently to applications.

2.4.3 Can we use TM to support system software?

Dynamic binary translation (DBT) has become a versatile tool that addresses a wide

range of system challenges while maintaining backwards compatibility for legacy soft-

ware. DBT has been successfully deployed in commercial and research environments

to support full-system virtualization [147], cross-ISA binary compatibility [28, 124],

security analysis [34, 73, 102, 118, 130], debuggers [100], and performance optimiza-

tion frameworks [10, 22, 142]. However, DBT frameworks may incorrectly handle

multithreaded programs due to races involving updates to the application data and

the corresponding metadata maintained by the DBT.

It is easy to understand that transactions can help fix the atomicity issues between

user data accesses and DBT metadata accesses. However, they are the key questions

to answer for instrumenting transactions. At what granularity, should transactions be

instrumented? Is it per instruction, per basic block, or per trace? What if there are

user lock, user transactions, or I/O operations? Are software TM systems sufficient

from the performance perspective? In Chapter 5, we present a practical solution

that deals with various challenges to using TM for correct execution of multithreaded

programs within DBT frameworks.

Lack of concurrency in software modules such as garbage collector prevents us

from fully exploiting abundant parallelism in chip-multiprocessors (CMPs). Espe-

cially, linked with user code, they degrade the overall system performance despite

the existence of underutilized cores. Ideally, system code could be easily changed to

use multiple cores. However, parallelization is not trivial in practice because pro-

grammers must deal with the complications of concurrency management in complex

system software.

It is ideal if we can find programming primitives that can simplify system software

development and handle the interaction with user code. However, are there such

primitives? Moreover, if we find one, can we implement it in a cost-effective manner?
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In Chapter 6 we present MShot, a hardware-assisted memory snapshot system using

TM hardware resources to allow for algorithmic simplicity, easy code management,

and performance at the same time.

2.4.4 Can we use TM to improve important system metrics

other than performance?

Reliability, security, and debugging are as important as performance. While chip-

multiprocessors (CMPs) take advantage of Moore’s law to continue the growth of raw

computing power available, this progression does little to improve the other metrics.

In the past decades, there have been efforts to develop techniques that independently

provide system support for reliability, security, or debugging in software and hardware

[138, 114, 117, 36, 144, 160, 121, 122]. Software solutions are flexible to provide various

features at no hardware cost. However, they have performance issues since they

have to rely on the commodity hardware primitives. Hardware solutions add special

hardware resources to accelerate a specific feature. However, the more highly tuned

the resources are for the feature, the harder they are to be adopted to commercial

systems due to the lack of generality.

Are there common hardware primitives that various software solutions can benefit

from for performance improvement? Can we build such primitives in a cost effective

manner to make it easy for them to be adopted to commercial systems? How do they

interact with the software solutions? In Chapter 7, we propose a scheme that provides

common hardware acceleration primitives built on top of TM hardware resources to

accelerate software solutions for reliability, security, and debugging.



Chapter 3

Common Behavior of

Multithreaded Programs

3.1 Introduction

It is important to analyze the common case behavior of TM programs to design an

efficient TM system based on hardware or software. In this chapter, we measure

the key metrics of transactions in multithreaded programs and extract architectural

parameters to tune TM systems for common case.

The problem with such an analysis is that there are few transactional programs

available for analysis as transaction-based programming is still in early development

phases. Transactional memory researchers need to tune their implementations for the

common-case behavior of parallel programs written with transactions. On the other

hand, the application developers need efficient and complete transactional memory

systems in order to port a significant volume of applications. This is symptomatic of

a classic chicken and egg problem.

We address this problem by studying a wide range of existing parallel applications

and analyzing the common-case behavior likely to be seen in their future transactional

versions. This is reasonable since programmers have already identified parallelism

and synchronization points in these programs; hence, we can evaluate the program

behavior as if parallelism and synchronization are coded with transactions.

16
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We study 33 parallel programs from a wide range of application domains writ-

ten with Java threads, C and threads, or OpenMP. We carefully examine the prim-

itives used for concurrency control in these programming models and re-interpret

their meaning in a transactional context in order to define transaction boundaries.

This approach allows us to evaluate where transactions could be used either for non-

blocking synchronization or speculative parallelization. Once transactions have been

identified, we can measure common-case characteristics such as the length of transac-

tions, size of read- and write-set, frequency of nested transactions, and the frequency

of I/O accesses within transactions. These characteristics provide key insights on the

support necessary for buffering, committing, and nesting in hardware and software

TM systems.

This chapter is organized as follows. Section 3.2 outlines the key metrics of TM

programs that characterize common-case application behavior. In Section 3.3, we

present our experimental environment for analyzing multithreaded applications from

a transactional point of view. Section 3.4 presents the analysis results when trans-

actions are used for non-blocking synchronization. Section 3.5 presents the analysis

results when transactions are used for speculative parallelization. Section 3.6 dis-

cusses related works and Section 3.7 concludes the chapter.

3.2 Key Metrics

To build an efficient transactional memory system, a designer must tune several com-

ponents to common case application behavior. In this section, we review some of the

critical application characteristics and how they can influence design decisions.

What are the common transaction lengths? Transactions can restart due

to dependency conflicts or during context switches. Re-executing transactions after

restart incurs significant waste. To quantify the cost of retrying transactions and to

balance overhead associated with transaction creation, termination, and checkpoint-

ing, the average transaction length is important. Additionally, small transactions

would require transaction creation/destruction and register checkpointing be fast

hardware mechanisms. This study measures the distribution of transaction lengths
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in instructions.

What are the buffering requirements? To support transactional execution,

the hardware provides buffering resources to track read- and write-set. While vir-

tualizing transactional memory (that is, allowing transactional state to overflow in

main or even virtual memory) is necessary for completeness [120], it is important to

know how frequently this mechanism will be used. If it is rarely used, it should be as

simple as possible. A major design point of any transactional system will then be the

amount of physical transactional buffering it provides. Furthermore, transactional

data is tracked at a given granularity: too fine and the design will incur unnecessary

storage overheads; too coarse and excessive false conflicts will result.

What is the write-set to computation ratio? Regardless of the versioning

mechanism (eager or lazy), the write-set to computation ratio provides a way to deter-

mine commit bandwidth requirements. A lazy mechanism logically flushes all writes

to main memory on commit. Eager versioning has additional per-write overhead in

order to maintain the undo-log. We measure this ratio to help architects decide if

additional mechanisms are needed to amortize or hide the cost of these operations,

such as “double buffering” [60].

What support is needed for nested transactions? Early transactional sys-

tems do not address nested transactions, but they are necessary to support compos-

able software [84]. This study explores the nesting behavior of current multithreaded

applications in order to determine the appropriate level of nested transaction support.

We measure the nesting depth and other metrics further explained in Section 3.4.4.

How does I/O fit into a transactional environment? One of the most thorny

issues in transactional execution today is I/O, more specifically non-idempotent I/O.

Such I/O operations cannot be rolled back, but other solutions exist, such as buffer-

ing. While this study does not attempt to present a solution, it does attempt to

determine whether I/O is a significant problem in most applications. Problematic

I/O would occur inside a transaction that cannot be split into smaller transactions.

If a transaction can be safely divided, then I/O occurring inside that transaction can

be handled by forcing a commit before the I/O call, and executing the I/O within its

own atomic transaction.



CHAPTER 3. COMMON BEHAVIOR OF MULTITHREADED PROGRAMS 19

Can we use transactional memory for speculative parallelism? Because

transactions guarantee atomicity, programmers can easily expose parallelism by plac-

ing separate items of parallel work into different transactions (e.g., iterations in a

parallel loop). If the work is truly parallel, then transactions will commit with few

conflicts and speedup will be obtained. If not, transactions will conflict frequently and

execution will be very similar to sequential ordering. Using speculative parallelism,

programmers will be less conservative in sizing transactions. Therefore, we expect

the resources required for transactional execution (those listed above) to increase if

speculative parallelism is used. We briefly evaluate this increase in resources.

3.3 Methodology

To study transactional application behavior, we selected 33 multithreaded programs

written in widely-used parallel programming models. After collecting a trace of each

program, we translated the existing parallel programming primitives into transac-

tional demarcations, and from there, we extracted the common case transactional

behavior. This section describes the applications, traces, demarcation, and analysis.

3.3.1 Applications

Table 3.1 shows the multithreaded applications covering four programming models:

Java, OpenMP [39], Pthreads, and the Argonne National Laboratory’s (ANL) parallel

processing macros [81]. Java is becoming more and more prevalent and includes mul-

tithreading as part of the language specification. OpenMP is a widely adopted model

for semi-automatic parallelization with easy-to-use compiler directives. Pthreads is a

widely available multithreading interface for POSIX systems. ANL, used extensively

in SPLASH-2, is designed to provide a simple, concise, and portable interface covering

a variety of parallel and distributed applications. The key insight of our approach

is that the language primitives of these four models mark where the programmer

wants synchronization and parallelism; from this information, we can manually ex-

tract representative transactions (entirely automatic methods may produce incorrect
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code [15]). For example, a critical section protected by a lock and unlock pair may

be interpreted as a transaction since this region is required to be executed atomically

in isolation from other threads.

The 33 multithreaded applications allow us to study a wide range of application

characteristics. Included are not only scientific kernels and applications, but also

commercial programs including web servers, web proxies, relational databases, and

e-commerce systems. Additionally, the abundant parallelism in graphics and multime-

dia applications make them ideal candidates for transactional systems. Applications

from robotics and artificial intelligence (AI) further extend the coverage of our study.

We obtained the programs from a wide variety of sources. All ANL [81] appli-

cations were obtained from the SPLASH-2 benchmark suite [155]. Most of the Java

applications are from the Java Grande benchmark suite [69]. hsqldb and PMD are

from the DaCapo benchmark suite [38] and SPECjbb2000 is from the Standard Per-

formance Evaluation Corporation (SPEC) [140]. All OpenMP applications are from

either SPEComp [141] or the NASA Advanced Supercomputing (NAS) benchmark

suite [95]. Pthread applications are each from a different source: Apache web server

is from the Apache website [9], Kingate web proxy and the Tic-Tac-Toe (uttt) game

were obtained from SourceForge.net [139], BP-vision was available from the Univer-

sity of Chicago website [20], localize was available as part of the CARMEN project

[145], and the original sequential version of MPEG-2 was provided by the MPEG

Software Simulation Group [93], and then parallelized as in Iwata [68].

3.3.2 Transactional Boundaries

The applications use well-defined primitives for multithreading; however, we mapped

these primitives into 13 abstract annotations to mark transaction boundaries as shown

in Table 3.2. Each abstract primitive represents actual programming interface ele-

ments in the four programming models. For example, the abstract primitive Lock

represents the LOCK() macro in ANL; the opening bracket of a Synchronized block in

Java; the pthread mutex lock(), pthread mutex rdlock(), and pthread mutex wr

lock() in Pthreads; and the opening brackets of CRITICAL and ATOMIC pragmas and
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Prog. 
Model

App name Problem size Source Domain Description Key Algorithm / Data 
Structures

MolDyn 2,048 Particles JavaGrande Scientific Molecular Dynamics N-body under Lennard-Jones 
Potential

MonteCarlo 10,000 Runs JavaGrande Scientific Finance Monte Carlo Simulation
RayTracer 150x150 Pixels JavaGrande Graphics 3D Raytracer 3D Ray Tracing

Crypt 200,000 Bytes JavaGrande Kernel Encryption and 
Decryption

IDEA (International Data 
Encryption Algorithm)

LUFact 500x500 Matrix JavaGrande Kernel Solving NxN Linear 
System

LU Factorization

Series 200 Coefficients JavaGrande Kernel First N Fourier Coefficient Iteration for Fourier Coefficient 
of f(x) = (x+1)^x

SOR 1,000x1,000 Grid JavaGrande Kernel Successive Over-
Relaxation

Red-Black Ordering on NxN 
Grid

SparseMatmult 250,000x250,000 Matrix JavaGrande Kernel Matrix Multiplication Sparse Matrices

SPECjbb2000 8 Warehouses SPECjbb2000 Commercial E-Commerce Binary Trees

PMD 18 Java Files DaCapo Commercial Java Code Checking Static Code Analysis
HSQLDB 10 Tellers, 1,000 

Accounts
DaCapo Commercial Banking with hsql 

database
Database with JDBC API

Apache PerChild MPM, 20 
Worker Threads

Apache Commercial HTTP web server, worker 
MPM

Thread pool, task queuing

Kingate 10,000 HTTP Requests SourceForge Commercial Web proxy Thread pool, task queuing
Bp-vision 384x288 Image Belief 

Propagation
Machine 
Learning

Loopy Belief Propagation Efficient Belief Propagation for 
Early Vision

Localize 477x177 Map CARMEN Robotics Finding a Robot Position 
In a Map

Master-Slave Task 
Assignment

Ultra Tic Tac 
Toe

5x5 Board, 3 Step 
LookAhead

SourceForge AI Tic Tac Toe Game AI Engine with Decision Tree

MPEG2 640x480 Clip MPEG S.S.G. MultiMedia MPEG2 Decoder MPEG2
APPLU 30x30x30 Matrix SPEComp Scientific Parabolic / Elliptical PDEs Dense Matrices

Equake 380K Nodes SPEComp Scientific Seismic Wave 
Propagation Simulation

Sparse Matrices

Art 640x480 Image 
(c756hel.in)

SPEComp Scientific Neural Network 
Simulation

Adaptive Resonance Theory

IS 1M Keys NAS Scientific Large-scale Integer Sort Buckets

Swim 1,900x900 Matrix SPEComp Scientific Shallow Water Modeling Dense Matrices

Barnes 16K Particles SPLASH-2 Scientific Evolution of Galaxies Barnes-Hut; octree

Mp3d 3,000 Molecules, 50 
Steps

SPLASH-2 Scientific Rarefied Hypersonic Flow Monte Carlo

Ocean 258x258 Ocean SPLASH-2 Scientific Eddy Currents in an 
Ocean Basin

Red-black Gauss-Seidel

Radix 1M Ints., Radix 1024 SPLASH-2 Kernel Radix Sort Radix Sort

FMM 2,049 Particles SPLASH-2 Kernel N-body Simulation Adaptive Fast Multipole 
Method

Cholesky TK23.0 SPLASH-2 Kernel Sparse Matrix 
Factorization

Blocked Sparse Cholesky 
Factorization

Radiosity Room SPLASH-2 Graphics Equilibrium of Light 
Distribution

Rapid Hierarchical Radiosity 
Algorithm

FFT 256K points SPLASH-2 Kernel 1-D version of the radix-
N2 FFT

Fast Fourier Transfrom

Volrend Head-Scaledown 4 SPLASH-2 Graphics 3-D Volumn Rendering Ray Casting
Water-N2 512 molecules SPLASH-2 Scientific Evolution of a System of 

Water Molecules
Direct, Cutoff Radius, Predictor

Corrector
Water-Spatial 512 molecules SPLASH-2 Scientific Evolution of a System of 

Water Molecules
Direct, Cutoff Radius

Java

OpenMP

Pthreads

ANL Macros

* The results from the TPC benchmarks will be available shortly.

Table 3.1: 33 programs used for the common case behavior analysis.
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Category Abstract Primitive Atomicity Demarcation Description
Task 

Parallelization
Thread Creation Non-Critical BEGIN Launching new Threads

Thread Join Non-Critical END Waiting for the End of Threads
Thread Entry Non-Critical BEGIN The Entry Point of Threads
Thread Exit Non-Critical END The Exit Point of Threads

Parallel Loop BEGIN Non-Critical BEGIN Beginning of Auto-Parallelized Loops 
Parallel Loop END Non-Critical END End of Auto-Parallelized Loops

Exclusive Access Lock Critical BEGIN Beginning of Critical Section
Unlock Critical END End of Critical Section

Task 
Synchronization

Barrier Non-Critical NEW Barrier
Wait Critical NEW Wait for a Signal, then move on

Notify Non-Critical END Signalling to Waiting Threads
Explicit 

Communication
I/O Non-Critical NEW I/O Calls

Flush Non-Critical NEW Flushing cached data to all Threads

Table 3.2: The transactional language primitives. “Critical” means it cannot be split
into smaller transactions, and “Non-Critical” means it can be split. BEGIN and END
create and destroy transactions and NEW ends the previous transaction and begins
a new one immediately.

omp locks() in OpenMP.

We mapped the parallel programming primitives to three transactional primitives.

BEGIN starts a new transaction, END ends the current transaction, and NEW causes

the current transaction to end and a new one to begin immediately.

To further characterize the transactions created in our study, we categorized them

according to their atomicity type. A transaction can be one of two atomicity types:

A critical transaction that encapsulates a critical section or a non-critical transaction

that consists of any other parallel regions. A critical transaction cannot be split into

smaller transactions, since the application’s algorithm enforces atomic execution of

the code segment mapped to the transaction.

The abstract primitives are divided into four categories, according to their be-

havior. The first group concerns itself with the proper task parallelization of the

application. For example, Thread creation naturally maps to the transaction BEGIN

marker; while Thread termination maps to transaction END.

The second group of the primitives is for mutual exclusion, or critical sections. A

critical section is a group of instructions executed in an atomic manner, so critical

sections map directly to transactions. All four programming models use lock-based
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operations to protect critical sections, and we map the acquisition and the release of

locks to the beginning and end of transactions, respectively.

The third group of primitives is for synchronization between threads (generally

waiting for a condition to be satisfied before moving on to the next phase of exe-

cution). Since these primitives set a boundary between two consecutive phases of

execution, two transactions are mapped to the code: one before and after the prim-

itive. An interesting observation about the Java conditional wait implemented with

java.lang.Object.wait() follows: Java requires a thread to obtain a monitor for an

object before it calls wait(). This requirement can be satisfied by making the call in-

side a synchronized block. The key point is that when wait() is called in the block,

the thread releases the monitor, which means the synchronized block is split into

two exclusive regions. To reflect this properly, we map wait() to NEW: ending the

previous transaction and beginning a new transaction. Without this, commonly-used

barrier patterns in code such as SPECjbb2000 will not function properly.

The last group of the primitives provides communication between threads or gen-

erates I/O. We use these communication primitives as boundaries between two tasks

and split non-critical transactions into two separate transactions, because non-critical

transactions can be split arbitrarily without violating atomicity requirements. This

is not the case with critical transactions, and we address that issue in Section 3.4.5.

The translation between abstract primitives and transactional demarcations allows

us to easily recast the semantics of the original code to a transactional programming

environment. Since the markers help express the parallelism of applications with

transactions, they can also be considered a new transaction programming interface,

in a preliminary form.

3.3.3 Trace-based Analysis

Before tracing the execution of each application, we annotated it with the transac-

tional primitives, as described in the previous section. For the Java applications, we

used the Jikes Research Virtual Machine (RVM) 2.3.4 [5] and modified the just-

in-time (JIT) compiler to automatically insert the transaction markers. The ANL
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applications were also annotated automatically using macros. For the OpenMP and

Pthread applications, we simply went through the source code and inserted transac-

tion markers manually. After annotation, we gathered execution traces on PowerPC

machines using amber, which is part of Apple’s Computer Hardware Understanding

Developer (CHUD) tools [30].

We analyzed the traces to extract the following transactional characteristics:

transaction size, read- and write-set, write-set to computation ratio, transaction nest-

ing, and transactional I/O. To measure transaction sizes in words, lines, and pages,

the analyzer simulates 4-Byte words, 32-Byte lines, and 4-KByte pages. The write-

set to computation ratio is obtained by dividing the write-set size by the number

of instructions. For nested transactions, the analyzer has a stack to push and pop

transactional contexts according to BEGIN and END events.

3.3.4 Discussion

Our methodology makes the measurement of transactional properties largely impleme

ntation-independent. For example, instead of measuring the number of buffer over-

flows due to the limitation of a specific buffer, we provide the distribution of transac-

tion sizes for the design and evaluation of transactional memory systems. From the

distribution, we can say how many buffer overflows may happen with a given buffer

size and what percentage of transactions will be covered with such a buffer. This

allows system designers to evaluate performance/cost tradeoffs.

This study doesn’t include measurements regarding transaction rollback caused

by conflicts. Because they are dynamic, rollbacks can only be detected after selec-

tion a schedule among transactions, a conflict detection scheme, and a contention

management policy. We could attempt to arrange the extracted transactions in time,

but this would amount to an implementation-specific measurement. However, we can

infer the impact of conflicts on system performance by measuring the size of critical

transactions: under the assumption that critical transactions modify shared data,

long critical transactions modify more shared data (thus increasing the probability of

rollback) and have higher rollback penalties (because they take longer to re-execute),
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creating performance bottlenecks.

When these applications are re-written with Transactional Memory from scratch,

the observed characteristics may change. However, the existing versions provide good

indicators of where parallelism exists and where synchronization is needed. Hence, it

is likely that transactional behavior will be similar.

3.4 Analysis for Non-blocking Synchronization

This section presents results from analyzing the traces looking for common-case, non-

blocking transactional behavior, as described in the previous section. Section 3.5

describes our results with speculative parallelization. We do not include OpenMP

applications nor uttt because they do not use locking primitives and consequently,

have no critical transactions. We discuss a different methodology for dealing with

non-critical transactions in the next section.

Throughout this section, we present tables with averages taken over whole ap-

plication groups, e.g., an average over all Java applications. We also select outliers

to present alongside the averages, so one table may contain an average for all Java

applications as well details about one or two specific applications.

3.4.1 Transaction Lengths

Table 3.3 shows the distribution of critical transaction lengths. As shown in the

table, most transactions tend to be small. For most programs, up to 95% of critical

transactions have less than 5,000 instructions. However, the distribution of lengths

exhibits a long tail, and a small number of transactions become quite large.

ANL applications tend to have small transactions, since they are mostly fine tuned

for high scalability; they display small atomic critical regions. radix and fft, with

their few small critical transactions, are typical examples of barrier-oriented applica-

tions, rarely using locks. mpeg2 has large critical transactions because in the main

parallel loop, it locks a slice of a video stream and does not release it until completing

operations on that slice.
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Mean 50% Tile 95% Tile Max
ANL avg 256           114            772           16,782             

fft 157           157            157           157                  
radix 9               9               9               9                     

Java avg 5,949        149            4,256        13,519,488       
sparsematmult 2,723        41              34,987      53,736             

series 7,756        97              43,250      524,636           
Pthread avg 879           805            1,056        22,591             

mpeg2 93,694      101,327     167,267    347,339           
apache 209           147            233           2,766               

Size in Instructions
Application

Table 3.3: The table shows the average transaction lengths of ANL, Java, and Pthread
applications. The applications with unusual characteristics are not included in the
average and presented separately.

Most Java applications share a similar distribution of transaction sizes. Trans-

actions tend to be larger than in other programming models due partly to medium

sized Jikes RVM critical sections whose main tasks include scheduling, synchroniza-

tion, class loading, and memory management. Furthermore, the Java applications

themselves exhibit even longer transactions.

Apache is an application that exemplifies the behavior of well-tuned commercial

applications; most of its critical regions are small to maximize scalability.

Conclusion: The results in this section indicate a wide distribution of transaction

sizes across programming model boundaries. In highly tuned parallel applications,

transactions can be quite small; thus the overheads associated with starting, abort-

ing, and ending transactions should be small and there should be support for hard-

ware register checkpointing. This means that software transactional memory systems

may not be attractive due to their high overheads. Other applications exhibit long

transactions—rolling back these transactions due to conflicts or context switches may

be expensive and should be avoided.
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Figure 3.1: Cumulative distribution function of read-set, in 32-Byte lines.

3.4.2 Read- and Write-set Size

Understanding the read- and write-set distributions can help in elucidating the common-

case transactional buffering size requirements. Figure 3.1 shows that in most appli-

cations, a 16-KByte buffer is sufficient to hold the read set from 98% of critical

transactions. If we exclude Java applications, a 2-KByte buffer is sufficient.

The buffering requirement for writes is smaller than that for reads, shown in Figure

3.2, since writes are generally less frequent. A 6-KByte write buffer can deal with

up to 98% of critical transactions and if we exclude Java applications and mpeg2,

a 2-KByte buffer can handle 100% of critical transactions. This observation leads

to the conclusion that most transactions are small and buffering can be provided in

first-level caches.

An astute reader will point out that even though most transactions are small, the

remaining transactions could be the bulk of computation. We measured the number

of cycles that a buffer of a specific size can contain all the transactional state without
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Figure 3.2: Cumulative distribution function of write-set, in 32-Byte lines.

overflowing. This allows us to quantify the time spent in each size transaction. In

Figure 3.3, a 24-KByte read buffer covers more than 60% of the execution time in

ANL and Pthread applications. For most other applications, a 48-KByte buffer is

required to cover 80% or more of the execution time. Figure 3.4 paints a similar

picture as Figure 3.3 for the write-set. hsqldb has a few transactions with large read-

and write-sets because they open JDBC [71] connections and execute SQL queries.

These results tell us that most transactions are small, fitting in L1-sized buffers, but

hardware designers should support longer-running transactions with L2-sized read-

and write-sets. However, virtualization mechanisms can afford to be cost-effective

and software-based because they will be rarely used.

Table 3.4 shows the ratio of read- and write-set sizes in words per line and lines per

page, which is an interesting characteristic because it hints at the right granularity

to track reads and writes. Words are 4 bytes and lines are 32 bytes. For most

applications, only 2 out of the 8 words in a cache line are read. The ratio for writes

is higher, around 3, meaning nearly half of a cache line is touched. This leads us to



CHAPTER 3. COMMON BEHAVIOR OF MULTITHREADED PROGRAMS 29

0

10

20

30

40

50

60

70

80

90

100

0K
B

24
KB

48
KB

72
KB

Size of Read set in KB

N
or

m
al

iz
ed

 ti
m

e 
in

 C
yc

le
s

ANL Java Pthread
mpeg2 pmd hsqldb

Figure 3.3: Normalized cycles of critical transactions spent with various read-set sizes.

two conclusions: first, a transactional system may suffer from false conflicts between

transactions, if the reads and writes are tracked at cache line granularity. Second,

since tracking granularity at line level means flushing entire lines for lazy versioning

schemes or logging entire lines for eager versioning schemes, tracking state at word

level uses over 50% less bandwidth, since only half of each line will be flushed on

average.

The ratio of read- and write-set sizes in lines per page is also important for VM-

based transactional memory systems that store a significant portion of transactional

state in virtual memory. Since those systems have a higher per-page-access overhead

than hardware transactional memory systems, an application with high spatial local-

ity in pages will benefit from such systems. In Table 3.4, mpeg2 shows a high spatial

locality, which makes it suitable for VM-based systems. On the other hand, most

applications have very sparse access patterns, making VM systems unattractive.

Conclusion: Most transactions are small, so virtualization will be rarely used.

But designers should support L2-sized read- and write-sets. Furthermore, techniques

that allow transactional state to overflow into virtual memory will not be performance

critical and can be implemented in software.
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Figure 3.4: Normalized cycles of critical transactions spent with various write-set
sizes.

Words / Line Lines / Page Words / Line Lines / Page
ANL avg 1.65 3.69 1.69 4.29
Java avg 2.02 3.83 3.52 8.50

Pthread avg 2.14 6.80 2.30 7.86
sparsematmult 1.32 1.65 2.14 3.00

mpeg2 7.77 71.17 2.30 7.86

Read Set Write Set
Application

Table 3.4: The table shows the ratio of read- and write-set sizes in words per line and
lines per page.

3.4.3 Write-set to Computation ratio

Transactional memory systems with lazy versioning generate an inherently bursty

traffic pattern and eager versioning systems have overheads per unique address writ-

ten. Therefore, it is crucial to bound the network bandwidth during commit phases

and cache write bandwidth during execution for eager systems. Figure 3.5 shows the

ratio of the write-set, in words, to the number of instructions in critical and non-

critical transactions. The ratio is under 25% in most critical transactions and around

10% in more than 60% of critical transactions. In Figure 3.6, 95% of non-critical
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Figure 3.5: Write-set to Computation ratio of critical transactions.

transactions have a lower ratio, about 15%, which identifies an interesting trait of

critical sections in multithreaded programs: they tend to perform more writes than

non-critical sections. This is natural because shared data are read and written in

critical sections, while computation is done in non-critical sections. The high ratio of

radix is from a high communication-to-computation ratio caused by the key exchange

at each radix sorting iteration, as found in [155].

Conclusion: There are many applications with high ratios, hinting that software

transactional memory systems are unattractive because it is difficult to amortize the

cost of making clean copies before performing writes. Additionally, systems with lazy

versioning may need some mechanism to hide the latency of commits, such as double

buffering or a two phase commit scheme [60]. Eager versioning systems will also need

techniques to avoid excessive cache write bandwidth problems.
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Figure 3.6: Write set to Computation ratio of non-critical transactions.

3.4.4 Transaction Nesting

Large-scale programs are built on external libraries and the resulting multi-layer soft-

ware structure naturally calls for nested synchronization. For applications written

using a transactional programming model, nesting may no longer be a requirement.

Table 3.5 shows four characteristics of nested transactions: average size, breadth,

depth, and distance. Figure 3.7 shows the definition of each property. Breadth is the

number of immediate child transactions. Depth is the level of nesting a transaction

has above itself. Distance is the number of instructions between the beginning of a

transaction and that of its children. Only applications with more than 1% nested

transactions appear in the table.

Only one C application displayed any nesting behavior: radix had one nested

transaction. All the applications in Table 3.5 are Java applications. Furthermore, the

nested transactions described in the table actually come from Jikes RVM, and not
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Figure 3.7: The figure explains the definition of nesting depth, nesting breadth, and
nesting distance.

the applications themselves. There are several sources of these nested transactions;

one is class loading. The Java Virtual Machine defines a tree-like Java class loader

structure. While the Jikes RVM finds, loads, and resolves classes, it searches up the

tree with nested calls to synchronized methods. If the loaded class is an array, the call

stack enters another round of these nested calls. This is the major source of nested

transactions with a deep nesting depth. Another source is the optimizing compiler. At

first, all source code is compiled by the base compiler without optimization. While

running the application, often-run sections of code are recompiled, and there are

many locking operations through this process. Thread management and scheduling

also generates nested transactions. For example, when a thread is created and enters

the ready queue for execution, most of these operations are done with locks.

The table shows that Java applications have an average of 2.2 immediate child

transactions. The importance of breadth depends on the way nesting is implemented.

If true transaction nesting is supported, the transactional metadata from all nested

transactions should be held in buffers up to the commit of the outermost transaction.

In this case, the number of buffers required is equal to the number of all nested

transactions. If all nested transactions are flattened to the outermost transaction,

the breadth and the depth do not matter because no additional buffers are required.

The penalty for flattening can be measured by the nesting distance, since a greater

distance means conflicts are more costly. In the table, Java applications have a long

average distance of 140,000 instructions, which reinforces the necessity of nesting
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1 2  >  2 1 2 >  2
moldyn 22 16 42 41 13 7 3 1065 291889

montecarlo 14 99 0 0 0 0 14 144 2784
raytracer 14 36 41 23 7 4 3 1168 99262

crypt 18 45 37 19 10 2 4 1023 56211
lufact 18 39 38 23 12 3 6 1071 87913
series 14 40 51 8 7 2 4 1047 68782

sor 16 48 4 48 9 3 5 1013 75400
sparsematmult 13 87 11 2 6 1 6 155 10440

specjbb 9 63 35 2 1 4 4 1148 58855
pmd 17 19 30 52 8 4 5 2158 659871

hsqldb 1 3 97 0 0 0 1 134 6538826
bp-vision 4 100 0 0 5 0 0 436 165
localize 2 100 0 0 2 0 0 439 641

Mean Nesting DistanceApplication
% of Trans. With 

Nesting
Nesting Depth (in % of Trans.) Nesting Breadth (in %) 90% Tile 

Nested Size

Table 3.5: The table shows the characteristics of transaction nesting. Only the ap-
plications with more than 1% nested transactions are presented.

water-spatial 5.26 0 5.26 0 0
moldyn 0.35 0.35 0 0 0

raytracer 0.4 0.4 0 0 0
crypt 0.4 0.4 0 0 0
series 0.31 0.31 0 0 0

sor 0.35 0.35 0 0 0
pmd 0.49 0.49 0 0 0

kingate 1.31 0 1.31 0 0
mpeg2 20 20 0 0 0

% of Trans. 
With Rd then 

Wr. I/O

% of Trans. 
With Wr. Then 

Rd. I/OApplication
% of Trans. 

With I/O
% of Trans. 
With Rd I/O

% of Trans. 
With Wr I/O

Table 3.6: The table shows the breakdown of transactions with I/O.

support.

Conclusion: Our analysis presents a mixed picture of the need for hardware

based nested transaction support. If our goal is to support all existing applications,

then explicit nesting support is useful.

3.4.5 Transactions and I/O

In this study, we count only I/O operations in critical transactions. Since non-critical

transactions can be split, we assume that an I/O operation in a non-critical transac-

tion is easily dealt with by ending the transaction and executing the I/O operation

in a new transaction. Table 3.6 shows the percentage of transactions with I/O and a
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Mean 50% Tile 95% Tile Max
equake 244                  9                1,134          40,750,634  

art 70,062,948       71,978,851 74,117,449  74,824,088  
is 129                  3                3                 19,844,217  

swim 62,130             68,467        91,296        91,296         

Size in Instructions
Application

Table 3.7: The table shows the transaction size of speculatively-parallelized programs.

breakdown of those I/O operations. Most applications have few critical transactions

with I/O, which is natural because a long I/O operation is unattractive, and usually

unneeded, within a critical section. mpeg2 and water-spatial are the only applica-

tions with a high percentage of critical transactions with I/O operations. The high

ratio of mpeg2 is due to its algorithm of holding a lock while reading a slice in a video

stream. All output operations of water-spatial are for printing intermediate results

to console. Additionally, we did not observe any reads followed by writes or writes

followed by reads within one transaction, thus deadlocks resulting from I/O buffering

are unlikely to occur.

Conclusion: I/O is not likely to be a problem in transactional systems since

most transactions in which it occurs can be split to accommodate it.

3.5 Analysis for Speculative Parallelization

In Section 3.4, we analyzed mature parallel programs—ones whose critical sections

have been fine-tuned to lower contention between threads. Since transactions shift the

burden of correctness from the programmer to the hardware, we expect transactional

developers to rely more on speculative parallelism instead of carefully identifying par-

allel regions. Speculative parallelism is identifying roughly parallel regions, enclosing

them in transactions, and allowing the system to dynamically resolve conflicts, hope-

fully resulting in speedup.

To observe the changes in transactional behavior due to this coding paradigm,
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Figure 3.8: Distribution of read-set sizes. Cache lines are 32 bytes.

we re-investigate the OpenMP applications with a different interpretation of trans-

actional primitives. OpenMP #pragmas deliver two kinds of information: first, which

segments are parallel, and second, information about shared variables (which ones are

shared, private, used in reductions). Since classifying variables and protecting them

with critical sections is exactly what transactions allow us to avoid, we simply use

omp parallel loops to identify critical transactions and compare the result from the

new interpretation with that from Section 3.4.

Table 3.7 shows sizes of critical transactions for the four OpenMP programs.

The studied applications tend to fall into two groups according to their distinctive

characteristics shown in Figure 3.8 and Figure 3.9. The flat lines of art and swim in

the figures indicate that the parallel loops are large and of the same size; the source

code confirms this. It is obvious that buffering requirements for read- and write-set
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Figure 3.9: Distribution of write-set sizes. Cache lines are 32 bytes.

will be larger for this group than we observed in the previous section. The other

group, equake and is has ascending lines that look similar to those in the previous

section, indicating that their loops are mostly small and of various sizes.

With speculative parallelism, we observed larger transactions, and this might lead

us to change the way we think about parallelism. In these traditional applications,

generally outer loops are parallelized. Thus, when converted to transactions, the

transactions are large. Perhaps parallelizing the inner loops is a better practice for

transactional systems, because it limits the buffering requirements.

Figure 3.10 shows a much lower write-set to computation ratio than that of the

previous section. This is because the critical transactions in the previous section

are small, coming from programmer-identified and -tuned critical sections, so their

ratios are higher. On the other hand, in this section, we map large parallel regions
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Figure 3.10: The write-set-to-computation ratio of speculatively-parallelized pro-
grams.

to critical transactions, so they have lower ratios. Finally, none of the four programs

had noticeable nesting, as no nested parallelism is exploited in these applications.

Conclusion: When you use transactions for speculative parallelization, even

though an applications’ data-set may no longer fit in an L1-sized transactional buffer,

they still would fit in an L2-sized transactional buffer. Because of this increase in

transaction size, perhaps new ways of defining transactions would better suit trans-

actional systems. Moreover, since the write-set to computation ratio decreases no-

ticeably, extra bandwidth resources will not be needed—the bandwidth management

techniques needed for general transactional execution (discussed in Section 3.4.3) will

suffice for speculative parallelism.
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3.6 Related Work

There are been efforts to develop transactional programs from the scratch. STAMP

is a comprehensive benchmark suite for evaluating TM systems [88]. It includes

seven applications and twenty variants of input parameters and data sets in order

to cover a wide range of transactional execution cases. Compared to our results

with existing multithreaded programs, they report longer transaction lengths and

larger read-/write-set sizes on the average. This is mainly due to the fact that the

benchmark is designed to stress TM systems with active usage of transactions for

system evaluation. However, the numbers from both results are not order-different.

This confirms our assumption that the inherent parallelism does not change much

regardless of the programming primitives used to express the parallelism.

In [11], the usage of I/O and system calls within critical sections are analyzed in

two large applications. The analysis shows the implication of their usage for TM that

the large majority of syscalls performed within critical sections can be handled with

a range of existing techniques in a way transparent to the application developer. This

coincides with our suggestion for handling I/O in transaction boundaries.

3.7 Conclusion

In this chapter, we analyze the transactional behavior of lock-based multithreaded

programs by extracting the transactions from parallel regions and critical sections

already marked in the original programs. We find most transactions are small, but

significant execution time is spent within larger transactions. Write-set to computa-

tion ratio shows that commit bandwidth will be an issue and clever techniques might

be required. We also conclude that only limited nesting support would be required.

Additionally, using speculative parallelism increases buffering requirements, but they

remain reasonable and commit bandwidth is not an issue. Finally, we make two

conclusions about software transactional memory systems: with the high write-set

to computation ratios observed, such systems will have significant overhead and sim-

ilarly, small transaction sizes will expose the high overhead of transaction creation
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and destruction. Taking advantage of the observations made in this chapter (i.e.,

short-lived transactions, small read-/write-set sizes, and shallow nesting in the com-

mon case), we present a practical solutions for TM virtualization that handles the

uncommon case in a cost-effective manner in the next chapter.



Chapter 4

Virtualizing Transactional Memory

4.1 Introduction

While hardware acceleration for TM systems is crucial for performance, the hardware

resources are limited. For transactional memory (TM) to achieve widespread accep-

tance, it is important to deal practically with the uncommon case of applications with

transactions that exceed the capabilities of hardware resources. Transactions must

not be limited to the physical resources of any specific hardware implementation.

There are challenging uncommon cases for TM systems. Hardware TMs typically

use the cache as buffer for transactional data and metadata [60, 90]. What if there

is a long transaction that overflows the buffer capacity? Multiple pairs of read and

write metadata bits are used to support nested transactions. What if transactions

are nested deeper than what the hardware can support? TM systems should interact

with the operating system. How can we allow a transaction to keep executing in the

presence of various system events such as interrupt handling, context switch, paging,

and thread migration?

A practical TM system should guarantee correct execution even when transactions

exceed scheduling quanta, overflow the capacity of hardware caches or physical mem-

ory, or include more independent nesting levels than what is supported in hardware.

Existing proposals for TM virtualization are either incomplete or rely on complex and

inflexible hardware-based implementations, which is often an overkill for the common

41
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case behavior where virtualization is invoked infrequently.

This chapter presents eXtended Transactional Memory (XTM), a software-base

TM virtualization system that virtualizes all aspects of transactional execution (time,

space, and nesting depth). It is implemented in software using virtual memory sup-

port in the operating system. XTM operates at page granularity, using private copies

of overflowed pages to buffer transactional state until the transaction commits and

snapshots of pages to detect interference between transactions. We also describe two

enhancements, XTM-g and XTM-e, to XTM that use some hardware support to

address key performance bottlenecks.

This chapter is organized as follows. Section 4.2 discusses the limitation of hard-

ware TM systems. Section 4.3 reviews the requirements and design space for TM

virtualization. Section 4.4 describes the base XTM design, while Section 4.5 presents

the two enhanced XTM systems. Sections 4.6 and 4.7 present qualitative and quan-

titative comparisons between XTM and hardware virtualization schemes. Finally,

Section 4.8 presents related work and Section 4.9 concludes the chapter.

4.2 Limitation of Hardware TM Systems

There are several proposals for TM systems that use hardware resources for data ver-

sioning and coherence protocols for conflict detection [119, 60, 6, 90]. While the hard-

ware is essential for accelerating transactional processing, for TM to become useful

to programmers and achieve widespread acceptance, it is important that transactions

are not limited to the physical resources of any specific hardware implementation.

There are three types of limitations in TM systems using the hardware resources.

• TM Space: Typically, the cache is used as buffer for transactional data and

metadata. There are the cases where transactional data escape the cache. Long-

lived transactions can overflow the capacitance of the cache. Virtual memory

support requires paging that needs to move transactional data from cache to

disk. In multi-core and multi-processor systems, the operating system may

migrate threads from a core/processor to another.
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• TM Time: There are the cases where transactions have to relinquish the

resouces. Operating system may preempt threads for fair sharing of system

resources. Long-lived transactions may last longer than the OS time quanta

and get context-switched. The OS may also preempt a user threads in order to

deal with external events such as interrupts.

• TM Depth: There are the cases where TM systems need additional resources

to manage transactions inside another transactions. Programs are built on

libraries and the composition of multiple software modules can generate nested

transactions.

TM systems should guarantee correct execution even when transactions exceed

scheduling quanta, overflow the capacity of hardware caches or physical memory, or

include more independent nesting levels than what the hardware supports. In other

words, TM systems should transparently virtualize time, space, and nesting depth.

While recent application studies have shown that the majority of transactions will be

short-lived and will execute quickly with reasonable hardware resources [6, 32], the

infrequent long-lived transactions with large data sets must also be handled correctly

and transparently.

Existing TM proposals are incomplete with respect to virtualization. None of

the proposals supports nesting depth virtualization, and most do not allow con-

text switches or virtual memory paging inside a transaction (TCC [60], LTM [6],

LogTM [90]). UTM [6] and VTM [120] provide time and space virtualization but

require complex hardware to manage overflow data structures in memory and to fa-

cilitate safe sharing among multiple processors. However, since long-lived transactions

are not the common case [32], perhaps such a complex and inflexible approach is not

optimal. There are proposals to switch to software TM systems at the demand on TM

virtualization [41]. They require two versions of application code: one for hardware

TM system and the other for software TM system. They also do not provide strong

isolation.
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4.3 Design Considerations for TM Virtualization

While the various TM architectures differ in the way they operate, their hardware

structure is similar. They all track the transaction read-set and write-set in the pri-

vate caches (L1 and potentially L2) of the processor executing the transaction [119,

60, 6, 90]. Membership in either set is indicated using additional state bits (meta-

data) associated with each cache line. The data for the write-set are also stored in the

caches. Conflicts between concurrently executing transactions are detected during co-

herence actions for cache lines that belong to the write-set of one transaction and the

read-set of another. More recent proposals support nested transactions that can roll-

back independently [84]. Tracking the read-set and write-set for nested transactions

requires an additional tag per cache line to identify the nesting depth.

TM virtualization allows transactions to survive cache overflows, virtual memory

paging, context switches, thread migration, and extended nesting depths. Virtual-

ization is achieved by placing transactional state (read-sets and write-sets) in virtual

memory, which provides processor-independent and practically infinite storage. De-

pending on the case, we may place some of the transactional state in virtual memory

(e.g., on a cache overflow) or all of it (e.g., on a context switch).

A good virtualization scheme should satisfy the following requirements with re-

spect to correctness and performance. First, it should be completely transparent to

the user. Second, it should preserve transactional atomicity and isolation under all

circumstances. Third, it should not affect the performance of the common case when

virtualization is not needed. Fourth, it should maintain strong isolation between

transactional and non-transactional codes. Finally, virtualized transactions should

have no significant effect on the performance of non-virtualized transactions execut-

ing concurrently.

While the data for virtualized transactions always go through virtual memory,

there are several design options to consider for the mechanisms that implement data

versioning, conflict detection, and commit for virtualized transactions1. Table 4.1

summarizes the advantages of the major alternatives for each mechanism. The basic

1There are similar design options for hardware support for TM. However, the thesis focuses
exclusively on the design tradeoffs in TM virtualization.
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Data Conflict Commit
Versioning Detection

Impleme- HW Low per Overlap with Low overhead
tation access overhead other work

SW No ISA/HW Flexibility in Supports
changes needed conflict resolution transactional I/O

Granul- Cache Low memory Less false Low overhead
arity Line & BW overhead sharing

Page Reuse paging No ISA/HW Amortize
mechanisms changes needed overheads better

Timing Eager Fast commits Early detection N/A
Lazy Fast aborts Deadlock-free N/A

Table 4.1: TM virtualization options for data versioning, conflict detection, and trans-
action commit. Each cell summarizes the advantage of the corresponding implemen-
tation, granularity, or timing option.

choices are between a) hardware vs. software implementation (performance vs. cost

and flexibility), b) cache line vs. page granularity (storage efficiency and performance

vs. complexity), and c) eager vs. lazy operations (performance vs. isolation). While it

is difficult to quantitatively evaluate all reasonable combinations of the above options,

this thesis aims at characterizing the design space for TM virtualization sufficiently

so that major conclusions can be drawn.

If performance was the only optimization metric, it is obvious that a virtualization

system should be hardware-based, should handle data at cache line granularity, and

should perform all operations eagerly. However, a virtualization system is by nature

a backup mechanism, only invoked when the hardware mechanisms are no longer

sufficient. Recent studies show that the majority of transactions will not exceed the

hardware capabilities [6, 32]. In Chapter 3, we showed that, when transactions are

used for non-blocking synchronization, 98% of them require less than 22 Kbytes for

read-set and write-set buffering. About 95% of transactions include less than 5,000

instructions and are unlikely to be interrupted by external events (context switches,

interrupts, paging, etc.). When transactions are used for speculative parallelization,

they showed that read- and write-sets get significantly larger, but that the capac-

ity of an L2 cache (e.g., 128 Kbytes) is rarely exceeded. The rare occurrence of
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transactions requiring virtualization implies that one’s choices in architecting a vir-

tualization system should better balance performance and cost. We propose such

systems in Sections 4.4 and 4.5.

4.4 eXtendend Transactional Memory (XTM)

The XTM system provides space, time, and nesting depth virtualization while meeting

all the requirements introduced in Section 4.3. XTM is software-based and operates

at the OS level. The only hardware requirement for XTM is that an exception is

generated when a transaction overflows hardware caches or exceeds the hardware-

supported nesting depth. XTM handles transaction read-sets and write-sets at page

granularity. It uses lazy versioning and optimistic conflict detection.

4.4.1 XTM Overview

With XTM, a transaction has two execution modes: all in hardware (no virtual-

ization) or all in software (virtualized). When the hardware caches are filled, XTM

catches the overflow exception and switches to virtualized mode, where it uses private

pages from virtual memory as the exclusive buffer for read- and write-set. Switching

first aborts the transaction in hardware mode, which clears all transactional data from

hardware caches, and then restarts it in virtualized mode. While aborting introduces

re-execution overhead, it eliminates the need for an expensive hardware mechanism

to transfer the physically-addressed transactional data in caches to virtual memory.

XTM also clears the data TLB for the processor executing the overflowed transaction.

No other transactions are affected by the switch.

In virtualized mode, XTM catches the first access to each page through a page-

fault and creates on-demand copies of the original page in virtual memory. By oper-

ating on copies, the virtualized transaction is isolated from any other transactional or

non-transactional code. We create two copies of the original page: the private copy is

created on first access (load or store) by copying the private page, and the snapshot

page is created just before the first store. Essentially, the snapshot is a pristine copy
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Figure 4.1: The Virtualization Information Table (VIT). The white box belongs to
level 0, and the gray boxes belong to level 1.

of the original page in memory at the time the transaction started accessing it, and

it is used for rolling back and conflict detection. If a page is never written, we avoid

creating the snapshot as the private page is sufficient.

Once the necessary copies are created by XTM, the transaction can access data

directly through loads/stores, without the need for XTM to intervene. The transac-

tion makes all writes to its private page (lazy versioning). When creating the copies,

XTM uses non-cached accesses to avoid thrashing caches. A virtualized transaction

checks for conflicts when it is ready to commit (lazy conflict detection). Detection is

performed by comparing each snapshot page to the original page in virtual memory

similar to backward-oriented validation developed in database literature [59]. If the

contents of the two pages differ, a conflict is signaled and the virtualized transaction is

rolled back by discarding all private pages. If all snapshots are validated, we commit

the transaction by copying its private pages to their original locations.

XTM uses two private data structures to track transactional state. First, a per-

transaction page table provides access to the private copies of pages in the read-set

or write-set of the transaction. Assuming a hierarchical organization, this page-table

is not fully populated. Instead, it is allocated on demand and consists only of the

translation entries necessary for TM virtualization. For every virtual page, the page

table points to the physical location of the private copy. The second structure is the

Virtualization Information Table (VIT), which is shown in Figure 4.1. The VIT is

organized as a hash table and contains one entry per page accessed at each nesting
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Figure 4.2: Example of space and nesting depth virtualization with XTM. ¶ When
an overflow first occurs, a per-transaction page table (PT) and a VIT are allocated.
· On the first transactional read, a private page is allocated, and ¸ a snapshot is
created on the first transactional write. ¹ When a nested transaction begins, a new
PT and VIT entry are created. º A nested read uses the same private page, and a
» nested write creates a new snapshot for rolling back the nested transaction.

level. An entry holds pointers to the private and snapshot pages, metadata indicating

if it belongs in the read-set or write-set, and the pointers necessary for the hash table

and to link related entries (see Section 4.4.2). The VIT is queried using a virtual

address and a nesting depth. It can also be traversed to identify all private copies for

a transaction at a specific depth.

4.4.2 XTM Space and Depth Virtualization

Figure 4.2 presents an example of space and depth virtualization using XTM. After

an overflowing transaction is aborted, XTM allocates a per-transaction page-table

and a VIT, both initially empty (¶). When the transaction restarts in virtualization

mode and attempts to read its first page, XTM creates a private page copy and a

VIT entry. The newly allocated private page is pointed to by both the VIT and the

page table, and the R bit is also set in the VIT entry (·). On the first transactional

write to the page, a snapshot page is created, the VIT entry is updated, and the W

bit is set (¸). If the first transactional access had been a write instead of a read,

XTM would have executed steps (·) and (¸) together.

When a nested transaction begins in virtualized mode, we need to independently

track its read- and write-set. Hence, we allocate a new per-transaction page table

independent from that of its parent transaction (¹). With the new table, XTM
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catches the first read/write to a page by the nested transaction without walking the

parent’s table to change access permissions. The new page table is also only partially

populated. On the other hand, we do not allocate a new VIT. Nested reads (º) and

nested writes (») are handled like those of the parent transaction. The first nested

read creates a new VIT entry that points to the parent’s private page. If this is the

first time this page is accessed at any depth, we create a new private page. On the

first nested write, a new snapshot of the private page is created, and the modification

goes to the private page. If multiple transactions in the nest access the same page,

we have multiple linked VIT entries and multiple snapshots, but the private page is

shared among the parent and all its nested children.

When the nested transaction needs to commit, it validates its read-set. The

read-set is all snapshot pages and all read-only private pages. Validation involves

comparing all pages in the read-set to the current state of the pages in memory.

If validation is successful (no differences), the transaction commits by merging its

transactional metadata with that of its parent. Finally, the per-transaction page

table for the nested transaction is discarded. If validation fails, the transaction is

rolled back by discarding all VIT entries at that level and its page table. Modified

private pages are rollback back with snapshots. When the outermost transaction

(nesting depth 0) commits, we copy all private pages to the original locations and

merge the private page table’s metadata bits into the master page table.

To make the outermost commit atomic, a transaction must gain exclusive access

of all its virtualized pages. In some TM architectures, this involves TLB shootdowns

which can be expensive. In the TCC system [60], it is sufficient for the virtualized

transaction to retain the commit token; however, this serializes commits. One can

devise an adaptive protocol that selects between the two options, if available, based on

the number of pages committed and the expected impact of serialization. The writes

used to copy private pages into original locations must be snooped by hardware to

check conflicts for pending hardware-mode transactions.
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Figure 4.3: The process for handling interrupts in XTM.

4.4.3 XTM Time Virtualization

XTM also handles events that require process swapping (e.g., context switches or

process migration). Once a transaction is in virtualization mode, all its state is in

virtual memory and can be paged in and out on demand 2.

Other events, like I/O interrupts, require interrupt handling, before resuming user

code. Existing TM virtualization schemes [6, 120] propose swapping out transactional

state on such interrupts. Since most transactions are short [32], XTM uses an alter-

nate approach, shown in Figure 4.3, that avoids swapping overhead in most cases.

On an interrupt, we wait for one of the processors to finish its current transaction

and then assign it to interrupt processing. Since most transactions are short, this

will probably happen quickly. If the interrupt is real-time or becomes critical, we

abort the youngest transaction and use its processor for interrupt handling. When

we restart the transaction, we use the hardware mode. If a transaction is restarted

many times due to interrupts, we restart it virtualized so further interrupts will not

cause aborts. The latter case only happens if all transactions in the system are long.

4.4.4 Discussion

XTM can be implemented either in the OS as part of the virtual memory manager

or between underlying TM systems and the OS, like virtual machines [151]. Its only

2Long virtualized transactions are more likely to abort due to interference. The same problem
can occur with long transactions in hardware mode. To avoid livelock one must introduce some
aging mechanism as in [60].
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Figure 4.4: Example of space virtualization with XTM-g. This example starts with
a transaction with three transactionally-modified blocks. ¶ When a line is evicted
because of overflows, the transaction is not aborted. A private page is allocated, a
snapshot is made (since the line is modified), the OV bit is set in the PT, and the
line is copied. · When the evicted line is reloaded in the cache, the line’s OV bit is
set. ¸ The line is re-evicted to the private page without an eviction exception. ¹

XTM-g commits first, then º the hardware TM (HTM) commits.

hardware requirements are exceptions for virtualization events (e.g., cache overflow,

exceeding nesting depth, etc.). XTM implements per-transaction page tables, which

can be cheaply realized by copying and modifying only the portion of the master page

table containing the addresses accessed by the overflowed transaction. For example,

XTM in x86 starts with a 4KB empty page directory and augments it with second-

level 4KB page tables as needed. Since XTM is software-only, all its policies and

algorithms can be tuned or changed without affecting the processor ISA. In addition,

we do not need to escape from the context of an overflowed transaction in order to

perform XTM-related operations on an overflow exception. Non-transactional loads

and stores [84] are sufficient for the operations.

4.5 Hardware Acceleration for XTM

We now introduce XTM-g and XTM-e to improve performance by using a few key

hardware features. XTM-g and XTM-e are essentially hybrid hardware/software

schemes for TM virtualization.
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4.5.1 XTM-g

On a cache overflow in the base XTM design, we abort the transaction and switch to

virtualized mode; this incurs large penalties. In XTM-g, a transaction overflows to

virtual memory gradually, without an abort. Hardware handles the data previously

accessed, and any new data are tracked in the virtual memory system. XTM-g is

especially beneficial when the hardware caches are almost sufficient to to hold all

transactional state.

When virtualized, a transaction buffers state in both hardware and virtual mem-

ory. To distinguish the two, we introduce the overflow or OV bit to page table entries,

TLB entries, and cache lines. If OV is set, the corresponding data have been virtu-

alized. Upon eviction, data that do not belong in the read-set or write-set of any

transaction are evicted as usual. If a line accessed by a transaction is evicted, XTM-g

copies the line to a private page and marks its OV bit in the page table. It is possible

for virtualized lines to re-enter the hardware caches, in which case the OV bit is set

in the cache. Lines with the OV bit set can simply be evicted from the cache, since

they are already virtualized.

Figure 4.4 illustrates XTM-g. In this example, the hardware cache has three lines

written by a transaction, where two of them belong to the same page. When one

of the two lines is evicted because of an overflow, an exception is raised and the

XTM-g software starts. It first uses reverse translation to find the virtual address

for the overflowed line. Then it allocates a private page, creates a snapshot, updates

the VIT, and writes the evicted data to the private page. Before returning, XTM-g

queries the cache about other lines from the same virtual page and finds the other

line. It is also evicted to the private page and their metadata are placed in the VIT.

Finally, the OV bit of the page is set in the page table so cache lines that re-enter

the cache will have their OV bit set. By the end of this process, the transaction has

one page in virtual memory while the rest is still in the hardware cache (¶). If other

overflows occur, more pages can be moved to virtual memory as needed. Once evicted,

the cache lines are reloaded with the private page address and their OV bit set in the

cache (·). When they are re-evicted, cache eviction logic checks their OV bits. Since

the bits are set, they are allowed to be evicted to the private page without an eviction
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exception (¸). To properly commit such a transaction, the hardware TM system must

support a two-phase commit protocol [84]. Once validation of hardware-tracked data

is complete, control is transferred to XTM-g to validate the pages in virtual memory.

If that validation passes, we first commit the data in virtual memory (¹) and then

return to the hardware system to commit the cache data (º). Essentially, XTM-g

runs as a commit handler [84].

4.5.2 XTM-e

XTM and XTM-g operate at page granularity and are prone to aborts due to false

sharing: a transaction may abort because it read a word in the same page as a word

committed by another transaction. XTM-e allows cache line-level tracking of read-

and write-sets, even for overflowed data. First, each VIT entry is made longer to

have one set of R and W bits per cache line in the page. XTM-e evicts cache lines to

virtual memory similar to XTM-g, but also sets the fine-grain R/W bits in the VIT

using the metadata found in the cache. Second, XTM-e must handle the case where

a cache line in a virtualized page is accessed later.

A näıve wait solution would be to switch to software on every access to a page

with the OV bit set in the TLB. To avoid this unnecessary overhead, XTM-e uses an

eviction log buffer (ELB). The ELB is a small hardware cache, addressed by cache line

address, that stores a tag and the R and W bits for a cache line. When a line from an

OV page is accessed, we note the R or W metadata in the ELB without interrupting

the user software. When the ELB overflows due to associativity or capacity issues,

we merge the metadata in all valid ELB entries into the proper VIT entries. In

other words, the ELB allows us to amortize the cost of an exception over multiple

cache lines. If the ELB does not fill until the transaction completes, we transfer

metadata from the ELB to the VIT before the validation step. During validation,

XTM-e uses the fine-grain R/W bits available to determine which cache lines within

a snapshot or private page should be compared with the original page in memory to

check for conflicts. Overall, XTM-e improves on XTM-g by eliminating most of the

false sharing, which is common if pages are sparsely accessed by transactions.
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XTM XTM-g XTM-e VTM
Virtual- space, time, nesting depth space, time
ization
HW Cost OV exception OV exception, OV exception, XADT walker,

OV bit OV bit, ELB XADT cache,
virtual tags in
caches

SW Cost VIT, page tables, extra copies per accessed page XADT, XSW,
overflow count,
XF

Switch transaction abort OS handler HW handler
Overhead transaction abort
Other page copying, page copying, accessing
Overheads page comparisons cache line XADT/XF,

comparisons XF/count
consistency

Sensitivity page occupancy, false-sharing page occupancy XF miss ratio
Flexibility pure SW mostly SW mostly HW

Table 4.2: A qualitative comparison of XTM, XTM-g, XTM-e, and VTM.

4.6 Qualitative Comparison

This section presents a qualitative comparison between XTM systems and VTM sys-

tem [120], a performance-oriented hardware virtualization solution. The basic mech-

anism of VTM is explained first. Then various aspects of XTM, XTM-g, and XTM-e

are compared with those of VTM.

4.6.1 VTM

VTM uses mostly hardware mechanisms to provide virtualization at cache line gran-

ularity with eager conflict detection and lazy versioning [120]. It supports space and

time virtualization, but does not virtualize nesting depth. For each process, VTM de-

fines the XADT data structure in virtual memory. The XADT is organized as a hash

table and contains an overflow count, the overflowed data (including metadata), and

a bloom filter (called the XF) that describes which addresses have overflowed to the

XADT. When a hardware cache overflows, VTM evicts a cache line into the XADT
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and appropriately updates the overflow count and the filter. On a context switch,

VTM evicts the entire read- and write-set for the transaction to the XADT. Conflict

detection and refills for evicted data occur on demand when transactions experience

cache misses. However, the XADT is only searched if the overflow count is non-zero

and the XF filter returns a hit. Commits or aborts for data in the XADT happen

lazily: VTM atomically sets the status of transactions to committed or aborted and

does the transfer to memory or XADT clean up at a later point.

VTM provides fast execution when virtualization is not needed by caching the

overflow count and XF in an additional hardware cache. It also provides for fast

execution when virtualizing, as it uses hardware to evict cache lines to the XADT

and search the XADT for conflicts or refills. Nevertheless, the performance advantages

of VTM comes at a significant complexity cost. First, the hardware must be aware of

the organization of the XADT, so the XADT must be defined in the instruction set,

similar to how the page table organization is defined in ISAs if hardware TLB refills

are desired. Second, in order to allow evictions to the XADT without trapping into

the OS for reverse translation, VTM must append each cache line with its virtual

page number. For 32-byte cache lines, this implies a 10% area increase for data

caches. Third, the hardware must provide coherence for the cached copies of the

overflow count and the XF in each processor. Also, these cached copies must be

consistent with updates to the XADT. For example, a processor incurring a miss

must receive the answer to its coherence miss requests before checking the overflow

counter. Otherwise, one can construct cases where a conflict is missed due to a race

between an XADT eviction and a counter update. Overall, updating the counter

and the XF must be done carefully and, in several cases, accesses to these structures

should act like memory barriers or acquire/release instructions for relaxed consistency

models.

4.6.2 Comparision

Table 4.2 summarizes the key differences. Note that VTM does not provide virtual-

ization of nesting depth.



CHAPTER 4. VIRTUALIZING TRANSACTIONAL MEMORY 56

Hardware Cost and Memory Usage: The only HW requirement for XTM

is an exception when virtualization is needed. XTM-g requires OV bits in page-

tables and caches, while XTM-e adds the ELB as well. On the other hand, VTM

require significant hardware components and complexity: a cache for its overflow

structure (XADT), hardware walkers for XADT, and hardware to enforce coherence

and consistency for the overflow counter and the filter. Unfortunately, the complexity

of VTM goes beyond microarchitecture. The XADT organization and any software

visible issues about the way it is cached (e.g., consistency) must become part of the

ISA.

On the other hand, XTM can lead to memory usage issues as it requires storage

for the per-transaction page-table, the VIT and the private/snapshot copies. Even

though the page-tables are not fully populated, the XTM space requirements will be

higher than that for VTM, particularly if transactions overflow hardware caches by a

few cache lines. VTM uses memory space only for XADT, which is a hash-table for

evicted cache lines.

Implementation Flexibility: XTM is implemented purely in software. XTM-

g and XTM-e have small and simple hardware requirements. Since most of these

three systems is in software, there is significant flexibility in tuning their policies and

integrating them with the operating system. On the other hand, VTM is mostly

in hardware, which means that there is no flexibility in data-structure organization,

underlying coherence protocols for XADT caching, etc. Nevertheless, the hardware

implementation of VTM allows for better performance isolation between virtualized

transactions and non-virtualized transactions. With XTM, making the software com-

mit atomic can cause stalls to other transactions from the same process. Nevertheless,

processors executing transactions from other processes are never affected, which is

particularly important.

Performance: So far we have argued that XTM and its enhancements provide

lower hardware cost and better flexibility than VTM. Hence the question becomes

how they compare in performance. If the software-based XTMs can also provide

competitive performance, then they have an edge over the hardware-based VTM.
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The base XTM system can introduce significant overheads. When XTM vir-

tualizes a transaction, it starts with an abort. The necessary re-execution can be

expensive for long transactions. Of course, these overheads are important if virtual-

ization events are often. If this is the case, XTM-g (eliminates aborts for switch) and

XTM-e (reduces aborts due to false sharing) will be necessary for the XTM approach

to be competitive. XTM also benefits from applications that access most of the data

in each page they touch, as this makes page copying operations for versioning or

commit less wasteful.

On the other hand, VTM’s overhead comes mostly from accessing the XADT

when the XF filter misses. Hence, the case when VTM can be slow (despite all the

hardware support) is when many transactions overflow and searching, inserting, and

deleting in a large XADT becomes too slow. Note that manipulating the VIT is

faster as each entry is for a whole page, not a cache line. Furthermore, the VIT is

private to each transaction, while the XADT is shared within a process; hence, some

synchronization is needed for the XADT across processors. In all other cases, VTM

provides fast virtualization as it avoids switching to OS handlers and operates on

data at fine granularity. Again, this is particularly important if virtualization events

are often.

For time virtualization, XTM has a better process that avoids swapping transac-

tions in many cases. On the other hand, VTM always swaps out transactional state,

even to run a short interrupt handler. Hence, VTM can be inefficient for handling

frequent interrupts.

4.7 Quantitative Comparison

We compared XTM to VTM using an execution-driven simulator. To our knowl-

edge, this is the first quantitative analysis of TM virtualization. Table 4.3 shows the

simulation parameters for our experiments. The simulator models a CMP with 16

single-issue PowerPC processors. For an underlying hardware TM system, we used

TCC because it allows transactions to be used for both non-blocking synchronization

and thread-level speculation [60]. The latter case leads to larger transactions likely to
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Feature Description

CPU
16 PowerPC cores,
200 cycle exception handling overhead

Cache Private, 4-way, 32KB, with 32B lines
Victim Cache 16 entries
Main memory 4KB page, 100 cycle transfer latency

Bus
16B wide, 3 cycle arbitration,
3 cycle transfer latency

Table 4.3: Parameters for the simulated CMP architecture.

stress hardware resources. Each processor can track transactional state in its 32KB,

4-way associative L1 data cache (32B lines). A 16-entry victim cache is used to elim-

inate most of the conflict misses [83]. The simulator captures the memory hierarchy

timing, including all contention and queuing. We implemented VTM as a hardware

extension to the simulator (XADT walker, coherence for XF and overflow count, etc.).

We implemented XTM by running OS-level code on top of the simulator when a vir-

tualization exception is triggered. For XTM-g and XTM-e, we implemented the OV

bit and the ELB, and also provided software with instructions to take advantage of

them. Our experiments focus on virtualization events when a single application runs

on the CMP—we did not conduct multiprogramming experiments.

We used three parallel benchmarks from SPLASH2 (radix, volrend, and water-

spatial) and one from SPLASH (mp3d), which used transactions to replace locks

for non-blocking synchronization (so transactions from these programs will likely be

small). We also used two SPEC benchmarks (equake and tomcatv), which use trans-

actions for speculative parallelization at the outer-most loop level (likely to produce

many long transactions). To explore other interesting patterns not generated by the

six applications, we also designed a microbenchmark to produce randomized accesses

with a desired average transaction length, size of read-/write-sets, and nesting depth.

4.7.1 Space Virtualization

Figure 4.5 presents the comparison between XTM and VTM for space virtualization

(i.e., overflow of hardware caches). We have omitted mp3d, water-spatial, and equake
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Figure 4.5: Comparison of overhead for space virtualization.

because they never overflow with the 32KB cache (0% overhead in those cases). The

microbenchmark was configured with three average read-/write-set sizes, where -Pn

means accessing a uniformly random number of pages between 1 and n, inclusive.

Figure 4.5 shows the overhead introduced by each design as the percentage of total

cycles for the program execution. The overhead is broken down into time spent

for data versioning, committing, and validation (conflict detection). For radix and

micro-P10, the base XTM works well and introduces overhead of less than 5%. For

the rest of the programs, XTM introduces significant overhead due to the transaction

aborts when switching to virtualized mode and due to the time necessary to make

the private and snapshot copies. However, XTM-g and XTM-e reduce the overhead

of XTM significantly (less than 0.5% for several cases) and make it comparable to

VTM.

The overhead breakdown of radix and volrend is shown enlarged in Figure 4.6.

For volrend, VTM performs better, while for radix, XTM-e is the fastest. The reason

is the time spent searching for overflowed data. VTM’s data versioning cycles come

from time spent overflowing data to the XADT and then accessing it again later. On
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Figure 4.6: Comparison of overheads between XTM-g, XTM-e, and VTM.

the other hand, the XTMs’ data versioning cycles come from changing the address

mapping of overflowed pages to point directly to the corresponding private pages. For

programs that repeatedly access overflowed data, search time is more significant than

overflow time.

In tomcatv, all virtualization schemes have relatively large overheads. Other pro-

grams contain only a few transactions that overflow, but in tomcatv, a larger number

of transactions invoke virtualization. Even the hardware-heavy VTM cannot reduce

the overhead of virtualization any further than 6%. This is due to many transactions

overflowing concurrently, which increases the size of the shared XADT and adds to

the search time. Even though they are mostly software, XTM-e and XTM-g perform

reasonably well at 9%.

So far we have assumed that hardware can buffer transactional state only in the

32KB, L1 data cache. However, one can also place transactional state in the L2

cache, reducing the frequency of overflow. Figure 4.7 shows the impact of HW buffer

sizes on the comparison between XTM and VTM. If 64KB are available, tomcatv,

volrend, and micro-P10 do not generate any overflows (0% overhead). For the other

benchmarks, larger HW capacity means less-frequent overflow, hence the overhead

of virtualization drops. At 128KB, no real application has any overflows and only

micro-P30 requires 256KB before it shows the same behavior. Overall, the conclusion
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Figure 4.7: Influence of HW capacity of transactional state buffers on the overhead
of TM virtualization.

is that if the L2 cache is used to buffer transactional state, even applications that

use TM for speculative parallelization of outer loops will rarely overflow hardware

resources. Hence, the small overhead increase of a software system like XTM is no

longer significant.

4.7.2 Memory Usage

Table 4.4 measures the memory requirements of the virtualization schemes. For XTM,

we measure the maximum number of VIT entries and extra pages needed for copies

(in parenthesis) per transaction. For VTM, we count the maximum number of XADT

entries per transaction, and we compare the number of VIT and XADT entries, which

affect the searching latency for both data structures. Since the XTM has a VIT entry

per page, the number of VIT entries is much smaller than the number of VTM’s

XADT entries. No benchmark uses more than 39 VIT entries, while some benchmarks

use up to 17,000 XADT entries. The bulk of the memory overhead for XTM comes

from the private and snapshot page copies. However, no benchmark uses more than

700 copies for base XTM (2.8MB) or 386 pages for XTM-e and XTM-g (1.5MB). For
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Benchmark XTM XTM-g XTM-e VTM
Tomcatv 21 (439) 15 (257) 15 (254) 4025
Volrend 33 (316) 19 (136) 19 (139) 238
Radix 21 (124) 7 (23) 8 (27) 779
Micro-P10 19 (350) 9 (86) 9 (90) 1396
Micro-P20 29 (495) 18 (207) 18 (202) 8039
Micro-P30 39 (700) 28 (386) 28 (380) 17319

Table 4.4: Memory pressure. This table shows the maximum number of XADT
entries for VTM and the maximum number of VIT entries XTM. The maximum
number of extra pages used by XTM is enclosed in parenthesis.

VTM, the XADT must store 32B cache lines and metadata. Hence, for a maximum

of 17,300 entries, the XADT will occupy about 650KB. In summary, despite using

page granularity, XTM does not have unreasonable memory usage requirements for

any modern system.

4.7.3 Time Virtualization

To compare XTM to VTM with time virtualization, we simulated the arrival of I/O

interrupts every 100,000 cycles. On an interrupt, we need to find a processor to

execute its handler. We set the handler size to zero cycles, so all the overhead is

due to switching in and out of the handler. VTM suggests that when an interrupt

arrives, a transaction is swapped out to virtual memory to provide a processor for

the handler. For XTM, we evaluated two policies. One is the VTM policy (abort

transaction, restart later in virtualized mode). The other is the three-stage interrupt

handling process explained in Section 4.4.3 that avoids virtualization unless necessary

to guarantee forward progress.

Figure 4.8 shows the overhead introduced by the virtualization scheme as inter-

rupts occur within a program. The XTM, XTM-g, and XTM-e bars assume the

VTM swap-based policy. The XTM+, XTM-g+, and XTM-e+ bars assume the pro-

posed approach that first attempts to abort and retry (in hardware mode) a young

transaction. The absolute percentage of overhead is not particularly interesting as
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Figure 4.8: Time virtualization overhead as a percentage of the total execution time.
‘+’ stands for our time virtualization mechanism described in Section 4.4.3.

we set the handler to be empty. What is interesting is the relative comparison be-

tween the different schemes. In all cases, using XTM with the policy that favors

aborts over swapping leads to lower overhead even when compared to the hardware-

based VTM. The proposed approach essentially eliminates swapping overhead. Using

VTM’s swapping approach with the XTM system leads to the highest overheads as

swapping in XTM is expensive.

4.7.4 Depth Virtualization

None of our programs use a nesting depth that exceeds what the hardware can sup-

port (2 to 4 nesting levels) [84]. Hence, to measure nesting virtualization overhead

we used a microbenchmark that generates nesting depths that exceed the hardware

support. We varied the frequency of deeply nested transactions from 0.5% to 5%

(Table 4.5). This range is reasonable given that Chung et.al. [32] found that most

programs have less than 1% nested transactions overall and the average nesting depth

is 2.2. For this case, we measure only the base XTM: VTM does not support nesting

depth virtualization and XTM-g and XTM-e behaves identically to the base XTM for
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Nesting
Versioning Validation Commit Total

Frequency
5% 42.86% 2.32% 0.42% 45.60%
2% 16.61% 0.84% 0.16% 17.61%
1% 5.54% 0.27% 0.06% 5.87%
0.5% 2.60% 0.12% 0.02% 2.74%

Table 4.5: Nesting depth virtualization overhead.

nesting. XTM added only 5.9% performance overhead to process a 1% frequency of

deeply nested transactions and 2.7% overhead for a 0.5% frequency of deeply nested

transactions. Hence, XTM can efficiently virtualize the uncommon case of deep nest-

ing depth. If deeply nested transactions become very common, we should probably

revisit the HW support as virtualizing frequent nested transactions through XTM

can incur significant overheads. Note that in many cases, it is functionally correct to

flatten nested transactions when the hardware support is exceeded. Nesting virtual-

ization should be reserved for cases where independent abort may change the program

functionality (the nested transaction need not be re-executed after aborting).

4.8 Related Work

The UTM system was the first to recognize the importance of virtualizing trans-

actional memory [6]. It uses cache line granularity, eager versioning, and conflict

detection. UTM supports space and time virtualization, but does not virtualize nest-

ing depth. Unlike most other proposals that start with a limited hardware TM system

and add virtualization support, UTM starts with a virtualized system and provides

some acceleration through caching. UTM relies on the XSTATE data structure in

virtual memory, which is a log with information on the read- and write-set of exe-

cuting transactions. Portions of the XSTATE can be cached by each processor for

faster access. The UTM implementation is rather idealized as it assumes all memory

locations are appended with a pointer to XSTATE. On cache misses, a processor must

always follow the pointer to detect conflicts. It also relies on the availability of global

virtual addresses, which are not available in most popular architectures. Overall,
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UTM is space inefficient and incurs significant overheads even in some common cases

(e.g., cache miss, no conflict). The same paper introduces LTM, a more practical

TM system that allows transactions to overflow caches, but does not allow them to

survive virtual memory paging, context switches, or migration [6].

LogTM operates at cache line granularity and uses eager versioning and conflict

detection [90]. It allows transactions to survive cache overflows, but not paging,

context switches, or excessive nesting. LogTM uses a cacheable, in-memory log to

record undo information that is used if a transaction aborts. Evicted log entries leave

a bit set in the cache, which enables the processor to continue to check for conflicts

on that line when requests arrive from other processors.

Proposed software TM implementations also provide transactional semantics with-

out hardware constraints as they are always built on top of virtual memory [134, 62,

64, 82, 1]. This thesis focuses on virtualization for hardware TM systems because

they provide transactional semantics with minimal overheads and make the imple-

mentation details transparent to software. XTM can also be seen as a hybrid TM

system, as it support transactions in both hardware and software modes. Unlike [75]

and [89] that use user-level software and compiler support, XTM uses kernel-mode

software. XTM is completely transparent to all levels of user software (application

and compiler).

HybridTM [41] switches to software TM systems at the demand on TM virtualiza-

tion. They require two versions of application code: one for hardware TM system and

the other for software TM system. Page-based TM (PTM) maintains in hardware a

shadow page table when transactional data overflow hardware caches [29]. When a

cache-line with transactional data or metadata is evicted, PTM allocates a new page

(shadow page) to store the last committed version of the data and uses the old page

to store the overflowed data. The shadow page table maintains the proper mapping

information including a per page write summary vector that indicates which blocks

in the page have overflowed.

XTM builds upon the research on page-based, cache-coherent DSM systems [143,

129]. Unlike page-based DSM, XTM is a backup mechanism utilized only in the

uncommon case when hardware resources are exhausted. XTM also draws on research
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that uses virtual memory to implement transactional semantics for the purpose of

persistent storage [128, 79].

4.9 Conclustion

This chapter propose eXtended Transactional Memory (XTM) that virtualizes all

three TM aspects: space, time, and nesting depth. XTM is a software-only approach

that requires no hardware support since, in the common case, virtualization will be

invoked infrequently. XTM operates at the operating system level and handles trans-

actional state at the granularity of pages. We also present two enhancements to the

base XTM, XTM-g and XTM-e, that use limited hardware support to address basic

performance overheads. Finally, we provide the first quantitative evaluation of TM

virtualization schemes, which included all three XTM schemes and a hardware-based

alternative (VTM). We find that, despite their being software based, the XTM designs

provide similar performance to VTM with the cache sizes easily affordable in modern

CMPs (e.g., 32KB). Even for demanding applications, emulated by microbenchmarks

in our experiments, XTM-g and XTM-e show competitive or better performance.

Overall, XTM provides a fully-featured and flexible solution for the virtualization of

TM hardware at a low hardware cost. Using XTM, software developers can use TM

to simplify parallel code without implementation-specific constraints.



Chapter 5

Thread-Safe DBT Using TM

5.1 Introduction

Dynamic binary translation (DBT) has become a versatile tool that addresses a wide

range of system challenges while maintaining backwards compatibility for legacy soft-

ware. DBT has been successfully deployed in commercial and research environments

to support full-system virtualization [147], cross-ISA binary compatibility [28, 124],

security analysis [34, 73, 102, 118, 130], debuggers [100], and performance optimiza-

tion frameworks [10, 22, 142]. DBT facilitates deployment of new tools by eliminating

the need to recompile or modify existing software. It also enables the use of newer

hardware which need not be fully compatible with the old software architecture.

However, DBT frameworks may incorrectly handle multithreaded programs due

to races involving updates to the application data and the corresponding metadata

maintained by the DBT. Existing DBT frameworks handle this issue by serializing

threads, disallowing multithreaded programs, or requiring explicit use of locks [18,

100].

This chapter presents a practical solution to use TM for correct execution of

multithreaded programs within DBT frameworks. We use TM to eliminate races

involving metadata. The DBT uses memory transactions to encapsulate the data

and metadata accesses in a trace, within one atomic block. This approach guarantees

correct execution of concurrent threads of the translated program, as TM mechanisms

67
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detect and correct races.

This chapter is organized as follows. Section 5.2 summarizes DBT technology

and the challenges posed by multithreaded binaries. Sections 5.3 and 5.4 present the

use of TM for DBT metadata atomicity. Section 5.5 describes our prototype system

for DBT-based secure execution of multithreaded programs. Section 5.6 presents the

performance evaluation, Section 5.7 discusses related work.

5.2 Dynamic Binary Translation (DBT)

5.2.1 DBT Overview

DBT relies on runtime code instrumentation to dynamically translate and execute

application binaries. Before executing a basic block from the program, the DBT

copies the block into a code cache and performs any required instrumentation. The

DBT system controls all code execution and only translated code from the code

cache is executed. Any control flow that cannot be resolved statically, such as indirect

branches, invokes the DBT to ensure that the branch destination is in the code cache.

Frequently executed basic blocks in the code cache may be merged into a longer trace.

This reduces runtime overhead by allowing common hot paths to execute almost

completely from the code cache without invoking the DBT system.

DBT may arbitrarily add, insert, or replace instructions when translating code.

This powerful capability allows DBT to serve as a platform for dynamic analysis tools.

DBT-based tools have been developed for tasks such as runtime optimization [22], bug

detection [100], buffer overflow protection [73], and profiling [80]. A general-purpose

DBT framework implements basic functionality such as program initialization, code

cache management, and trace creation. It also provides developers with an interface

(API) that they can use to implement tools on top of the DBT. Using the API,

developers specify which, how, and when instruction sequences are instrumented.

Finally, the DBT typically performs several optimizations on the instrumented code

such as function inlining, common subexpression elimination, and scheduling.

DBT tools often maintain metadata that describe the state of memory locations
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during program execution. For example, metadata can indicate if a memory location

is allocated, if it contains secure data, or the number of times it has been accessed.

The granularity and size of metadata can vary greatly from one tool to another.

Some tools may keep instrumentation information at a coarse granularity such as

function, page, or object, while other tools may require basic block, word, or even

bit-level granularity. The popular Memcheck tool for the Valgrind framework uses

a combination of heap object, byte and bit-level metadata to detect uninitialized

variables, memory corruption, and memory leaks [99, 133]. Metadata are allocated

in a separate memory region to avoid interference with the data layout assumed by

the original program. Whenever the program code operates on data, the DBT tool

inserts code to perform the proper operations on the corresponding metadata. The

additional code can be anything from a single instruction to a full function call,

depending on the tool.

5.2.2 Case Study: DBT-based DIFT Tool

In this thesis, we use dynamic information flow tracking (DIFT) as a specific example

of a metadata-based DBT tool. However, the issues with multithreaded programs

are the same for all other metadata-based DBT tools (profiling, bug detection, fault

recovery, etc.). DIFT is particularly interesting because it provides security features

that are important for multithreaded server applications such as web servers.

DIFT is a powerful dynamic analysis that can prevent a wide range of security

issues [37, 102]. DIFT tracks the flow of untrusted information by associating a

taint bit with each memory byte and each register. The OS taints information from

untrusted sources such as the network. Any instruction that operates on tainted data

propagates the taint bit to its destination operands. Malicious attacks are prevented

by checking the taint bit on critical operations. For example, checking that code

pointers and the code itself are not tainted allows for the prevention of buffer overflows

and format string attacks.

There are several DBT-based DIFT systems [18, 33, 102, 118]. The metadata

maintained by the DBT tool are the taint bits. Code is instrumented to propagate
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// Thread 1
swap t,u
   ...
   ...
swap taint(t), taint(u)

1

Initially t is tainted and u is untainted.

1

4

// Thread 2
   ...
z = u
taint(z) = taint(u)
   ...

2
3

(a) Race on metadata swap (data updated first)

// Thread 1
taint(u) = taint(t)
   ...
   ...
u = t

1

1

4

// Thread 2
   ...
taint(z) = taint(u)
z = u
   ...

2
3

(b) Race on metadata store (metadata updated first)

Figure 5.1: Two examples of races on metadata (taint bit) accesses.

taint bits on arithmetic and memory instructions and check the taint bits on indirect

jumps. The research focus has been primarily on reducing overheads using optimiza-

tions such as eliminating propagation and checks on known safe data and merging

checks when possible [118]. For I/O-bound applications, the overhead of DBT-based

DIFT over the original runtime (without DBT) is as low as 6% [118]. However, none of

the DBT-based DIFT tools provide highly performant, safe support for multithreaded

programs.

5.2.3 Metadata Races

DBTs cannot be readily applied to multithreaded binaries because of races on meta-

data access. Metadata are stored separately from the regular data. They are also

operated upon by separate instructions. Since the DBT metadata can be of arbitrary

size and granularity, it is impossible to provide hardware instructions to atomically

update data and metadata in the general case. The original program is unaware of

the DBT metadata and thus, cannot use synchronization to prevent metadata races.

Hence, if the DBT does not provide additional mechanisms for synchronization, any

concurrent access to a (data, metadata) pair may lead to a race.

Figure 5.1 provides two examples of races for a DBT-based DIFT tool. Consider

a multithreaded program operating on variables t and u. The DBT introduces the

corresponding operations on the metadata, taint(t) and taint(u). Initially, t is

tainted (untrusted) and u is untainted (trusted). In Figure 5.1.(a), thread 1 swaps t

and u using a single atomic instruction (¶). The DBT inserts a subsequent instruction

that swaps taint(t) and taint(u) as well (¹). However, the pair of swaps is not
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an atomic operation. As thread 2 is concurrently reading u (·), it gets the new value

of u and the old value of taint(u) (¸). Even though thread 2 will use the untrusted

information derived from t, the corresponding taint bit indicates that this is safe

data. If z is later used as code or as a code pointer, an undetected security breach

will occur (false negative) that may allow an attacker to take over the system.

Figure 5.1.(b) shows a second example in which the DBT updates the metadata

before the actual data. Thread 1 uses a single instruction to copy t into u (¹).

The previous instruction does the same to the metadata (¶). However, the pair of

instructions is not atomic. As thread 2 is concurrently reading u, it gets the new

value of the metadata (·) and the old value of the data (¸). Even though thread 2

will use the original, safe information in u, the corresponding taint bit indicates that

it is untrusted. If z is later used as a code pointer or code, an erroneous security

breach will be reported (false positive) that will unnecessarily terminate a legitimate

program.

In general, one can construct numerous scenarios with races in updates to (data,

metadata) pairs. Depending on the exact use of the DBT metadata, the races can lead

to incorrect results, program termination, undetected malicious actions, etc. Current

DBT systems do not handle this problem in a manner that is both functionally-

correct and fast. Some DBTs support multithreaded programs by serializing threads,

which eliminates all performance benefits of multithreading [100]. Note that in this

case, thread switching must be carefully placed so that it does not occur in the

middle of a non-atomic (data, metadata) update. Other DBTs assume that tool

developers will handle this problem using locks in their instrumentation code [22, 80].

If the developer uses coarse-grain locks to enforce update atomicity, all threads will

be serialized. Fine-grain locks are error-prone to use. They also lead to significant

overheads if a lock acquisition and release is needed in order to protect a couple of

instructions (data and metadata update). More importantly, since locks introduce

memory fences, their use reduces the efficiency of DBT optimizations such as common

sub-expression elimination and scheduling.
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5.2.4 Implications

Metadata races can be an important problem for any multithreaded program. Even

if the application is race-free to begin with, the introduction of metadata breaks the

assumed atomicity of basic ISA instructions such as aligned store or compare-and-

swap. Numerous multithreaded applications rely on the atomicity of such instructions

to build higher-level mechanisms such as locks, barriers, read-copy-update (RCU) [85],

and lock-free data-structures (LFDS) [63]. It is unreasonable to expect that the DBT

or tool developers will predict all possible uses of such instructions in legacy and future

binaries, and properly handle the corresponding metadata updates. For instance, it is

difficult to tell if the program correctness relies on the atomicity of an aligned store.

We discuss the DBT-based DIFT tool as an illustrating example. Metadata races

around locks and barriers do not pose a security threat, as lock variables are not

updated with user input. On the other hand, RCU and LFDS manipulate pointers

that control the correctness and security of the application and may interact with

user input. Hence, metadata races can allow an attacker to bypass the DIFT security

mechanisms.

Read-copy update (RCU) is used with data-structures that are read much more

frequently than they are written. It is a common synchronization technique used in

several large applications including the Linux kernel. RCU directly updates pointers

in the protected data structure, relying on the atomicity of aligned, word-length

stores. These pointers may be influenced by user input and may reference objects

that include critical code pointers. For instance, Linux uses RCU to protect core

components such as IPv4 route caches, directory caches, and file descriptors. NSA’s

Security Enhanced Linux uses RCU to protect access control information [131].

Lock-free data structures use atomic instructions such as compare-and-swap (CAS)

to allow concurrent access without conventional locking [63]. While they are complex

to implement, LFDS versions of queues, lists, and hash-tables are often part of li-

braries used in performance-critical software. Since they manipulate pointers within

data structures, LFDS may access data from untrusted sources.

Additionally, attackers may use memory safety vulnerabilities to deliberately in-

troduce race conditions into race-free applications. Attacks such as buffer overflows



CHAPTER 5. THREAD-SAFE DBT USING TM 73

and format string vulnerabilities give the attacker the ability to write anywhere in

the program’s address space. For example, if network input is used as an array index,

the attacker can use one thread to overwrite thread-private or stack data in other

threads. This essentially bypasses any techniques used to guarantee race-freedom in

the original code. Moreover, an attacker can target metadata races in order to bypass

security checks in DBT tools such as DIFT. By having one thread write malicious

code or data to another thread’s stack or thread-local data, an attacker can induce

false negatives similar to the one in Figure 5.1.(a). Hence, the attacker may be able to

overwrite critical pointers such as return addresses without setting the corresponding

taint bit. This attack would not be possible on a single-threaded program as the

DIFT propagation and checks would flag the overwritten data as untrusted.

5.3 DBT + TM = Thread-Safe DBT

To address metadata races in multithreaded programs, we propose the use of transac-

tional memory (TM) within DBT systems. This section concentrates on the functional

correctness of this approach, while Section 5.4 focuses on performance issues.

5.3.1 Using Transactions in the DBT

DBT systems can eliminate metadata races by wrapping any access to a (data, meta-

data) pair within a transaction. Figure 5.2 and 5.3 show the code for the two race

condition examples in Section 5.2.3, instrumented with transactions. The additional

code defines transaction boundaries and provides the read/write barriers required by

STM and hybrid systems. In Figure 5.2, thread 1 encloses the data and metadata

swaps within one transaction. Hence, even if thread 2 attempts to read u in between

the two swaps, the TM system will detect a transaction conflict. By rolling back one

of the two transactions, the TM system will ensure that thread 2 will read either the

old values of both u and taint(u), or the new values for both after the swap. Sim-

ilarly, transactions eliminate the race in Figure 5.3. Since transactions are atomic,

the order of data and metadata accesses within a transaction does not matter.
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Initially t is tainted and u is untainted.

// Thread 1

Tx_Begin
wrbarrier(t)
wrbarrier(u)
swap t,u
...
...
wrbarrier(taint(t))
wrbarrier(taint(u))
swap taint(t), taint(u)

Tx_End

// Thread 2

...
Tx_Begin
rdbarrier(u)
wrbarrier(z)
z = u
rdbarrier(taint(u))
wrbarrier(taint(z))
taint(z) = taint(u)

Tx_End
...

Figure 5.2: Using transactions to eliminate the metadata swap race. The read and
write barriers are necessary for STM and hybrid TM systems, but not for HTM
systems.

For now, we assume that all data and metadata accesses are tracked for trans-

actional conflicts in order to guarantee correctness. This is the default behavior of

hardware TM systems. For software and hybrid TM systems, this requires at least

one barrier for each address accessed within a transaction. We revisit this issue

in Section 5.4 when we discuss optimizations. We focus here on the placement of

transaction boundaries. To guarantee correctness, data and corresponding metadata

accesses must be enclosed within a single transaction. Fine-grain transactions, how-

ever, lead to significant performance loss as they do not amortize the overhead of

starting and ending transactions. Moreover, they interfere with many DBT optimiza-

tions by reducing their scope. To partially alleviate these problems, our base design

introduces transactions at basic block boundaries, enclosing multiple accesses to data

and metadata pairs as shown in Figure 5.4.(a). The Tx Begin statement is added at

the beginning of the block. In most cases, the Tx End statement is added after the

last non control-flow instruction in the block (branch or jump).

The Tx End placement is complicated for any DBT-based tool that associates

metadata operations with the control-flow instruction that ends a basic block. For

instance, DIFT must check the address of any indirect branch prior to taking the

branch. If the address is tainted, a security attack is reported. In this case, the
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Initially t is tainted and u is untainted.

// Thread 1

Tx_Begin
rdbarrier(taint(t))
wrbarrier(taint(u))
taint(u) = taint(t)
...
...
rdbarrier(t)
wrbarrier(u)
u = t

Tx_End

// Thread 2

...
Tx_Begin
rdbarrier(taint(u))
wrbarrier(taint(z))
taint(z) = taint(u)
rdbarrier(u)
wrbarrier(z)
z = u

Tx_End
...

Figure 5.3: Using transactions to eliminate the metadata store race. The read and
write barriers are necessary for STM and hybrid TM systems, but not for HTM
systems.

DBT must introduce code that checks the metadata for the jump target in the same

transaction as the control flow instruction to avoid metadata races. We handle this

case by introducing the Tx End statement at the beginning of the basic block that

is the target of the indirect jump. For conditional branches, we introduce Tx End

at the beginning of both the fall-through block and the target block as shown in

Figure 5.4.(b). If the target block includes a transaction to cover its own metadata

accesses, Tx End is immediately followed by a Tx Begin statement.

5.3.2 Discussion

The DBT transactions may experience false conflicts due to the granularity of conflict

detection in the underlying TM system, and the layout of data and metadata in

memory. False conflicts can be a performance issue, but do not pose correctness

challenges. Even if the contention management policy of the TM system does not

address fairness, the DBT can intervene and use fine-grain transactions to avoid these

issues.

The original binary may also include user-defined transactions. If a user-defined

transaction fully encloses a DBT transaction (or vice versa), the TM system will
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Tx_Begin
    ...
    ...
check_taint (BB3, flags)
branch (BB3, flags)
Tx_End

BB1:

Tx_Begin
    ...
    ...
Tx_End

BB2:

fall-
through

taken
branch

Tx_End
Tx_Begin
    ...
Tx_End

BB3:

BB1: Tx_Begin
    ...
swap t,u
swap taint(t), taint(u)
    ...
taint(u) = taint(t)
u=t
    ...
Tx_End

(a) Transaction at basic block
boundaries

(b) Correct instrumentation for
conditional branches

Figure 5.4: Transaction instrumentation by the DBT.

handle it correctly using mechanisms for nested transactions (subsuming or nesting

with independent rollback). Partial overlapping of two transactions is problematic.

To avoid this case, the DBT can split its transactions so that partial overlapping

does not occur. As long as the accesses to each (data, metadata) pair are contained

within one transaction, splitting a basic block into multiple transactions does not

cause correctness issues.

A challenge for transactional execution is handling I/O operations. For DBT

transactions, I/O is not an issue as the DBT can terminate its transactions at I/O

operations. Such operations typically terminate basic blocks or traces, and act as

barriers for DBT optimizations. Handling I/O operations within user-defined trans-

actions is beyond the scope of this work.

A final issue that can occur if DBT transactions span multiple basic blocks (see

Section 5.4), is that of conditional synchronization in user code. Figure 5.5 presents

a case where transactions enclose code that implements flag-based synchronization.

Without transactions, this code executes correctly. With transactions, however, ex-

ecution is incorrect as the two transactions are not serializable. For correctness,

statement ¶ must complete after statement · and statement ¸ after statement ¹.
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// Thread 1
Tx_Begin
   ...
while (!done2){}
done1=true
   ...
Tx_End

1
4

// Thread 2
Tx_Begin
   ...
done2=true
while (!done1){}
   ...
Tx_End

2
3

initially done1=done2=false

Figure 5.5: The case of a conditional wait construct within a DBT transaction.

Once transactions are introduced, statements ¶ and ¹ must complete atomically.

Similarly, statements · and ¸ must complete atomically. Regardless of the type of

the TM system and the contention management policy used, the code in Figure 5.5

will lead to a livelock or deadlock. We handle this case dynamically. If the DBT

runtime system notices that there is no forward progress (timeout on a certain trace

or repeated rollbacks of transactions), it re-instruments and re-optimizes that code

to use one transaction per basic block.

5.4 Optimizations for DBT Transactions

The use of transactions in DBT eliminates metadata races for multithreaded pro-

grams. However, transactions introduce three sources of overhead: the overhead of

starting and ending transactions; that of the read and write barriers for transac-

tional bookkeeping; and the cost of rollbacks and re-execution. This section focuses

on the first two sources of overhead, which are particularly important for STM and

hybrid systems. In Section 5.6, we show that rollbacks and are not common for DBT

transactions.

5.4.1 Overhead of Starting/Ending Transactions

Longer transactions improve performance in two ways. First, they amortize the cost

of starting and ending a transaction. Starting a transaction includes checkpointing

register state. Ending a transaction requires clean up of any structures used for
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versioning and conflict detection. Second, long transactions increase the scope of DBT

optimizations, such as common subexpression elimination, instruction scheduling, and

removal of redundant barriers [1].

There are two ways to increase the length of DBT transactions:

• Transactions at trace granularity: Modern DBT frameworks merge multi-

ple basic blocks into hot traces in order to increase the scope of optimizations

and reduce the number of callbacks to the DBT engine [18, 80, 100]. We exploit

this feature by introducing transactions at the boundaries of DBT traces. As

the DBT creates or extends traces, it also inserts the appropriate Tx Begin and

Tx End statements.

• Dynamic transaction merging: We can also attempt to dynamically merge

transactions as DBT traces execute. In this case, the DBT introduces instru-

mentation to count the amount of work per transaction (e.g., the number of

instructions). When the transaction reaches the Tx End statement, the STM

checks if the work thus far is sufficient to amortize the cost of Tx Begin and

Tx End. If not, the current transaction is merged with the succeeding one.

Dynamic transaction merging is especially helpful if DBT transactions are rel-

atively common, as is the case with a DBT-based DIFT tool.

While both methods produce longer transactions, they differ in their behavior.

Trace-level transactions incur additional overhead only when traces are created. How-

ever, the transaction length is limited by that of the DBT trace. Dynamic transaction

merging incurs some additional overhead as traces execute, but can create transactions

that span multiple traces. Both approaches must take into account that increasing

the transaction length beyond a certain point leads to diminishing returns. More-

over, very long transactions are likely to create more conflicts. The ideal length of

transactions depends on the underlying TM system as well. Hardware and hybrid

TM systems typically use hardware mechanisms for register checkpointing and allow

shorter transactions to amortize the fixed overheads.
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Figure 5.6: An example showing the need for TM barriers on data accesses even in
race-free programs.

5.4.2 Overhead of Read/Write Barriers

For STM and hybrid TM systems, the DBT must introduce read and write barriers in

order to implement conflict detection and data versioning in transactions. Despite op-

timizations such as assembly-level tuning of barrier code, inlining, and elimination of

repeated barriers, the performance overhead of software bookkeeping is significant [1].

Hence, we discuss techniques that reduce the number read and write barriers for DBT

transactions.

Basic Considerations for Barrier Use

In Section 5.3, we stated that all data and metadata accesses in a DBT transaction

should be protected with a TM barrier. This is definitely the case for DBT-based

DIFT tools. During a buffer overflow attack, a thread may access any location in the

application’s address space (see Section 5.2.4). Unless we use barriers for all addresses,

we may miss metadata races that lead to false negatives or false positives in the DIFT

analysis. For other DBT-based tools that require metadata, it may be possible to

eliminate several barriers on data or metadata accesses based on knowledge about

the sharing behavior of threads. One has to be careful about barrier optimizations,

as aggressive optimization can lead to incorrect execution. One must also keep in
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mind that TM barriers implement two functions: they facilitate conflict detection

and enable rolling back the updates of aborted transactions.

For instance, assuming that the original program is race-free, one may be tempted

to insert barriers on metadata accesses but eliminate all barriers on the accesses to

the original data. Figure 5.6 shows a counter example. The two threads use a lock

to increment variable a in a race-free manner. The DBT introduces transactions

that enclose the lock-protected accesses. The transactions include TM barriers for

metadata but not for a. At runtime, thread 1 sets a to 1 at timestep 4 and thread

2 updates a to 2 at timestep 7. At timestep 10, the TM system detects a conflict

between the transaction in thread 1 and another thread due to a different metadata

access. The system decides to rollback the transaction of thread 1. Since there was

no barrier on the access to a, its value cannot be rolled back as there is no undo-log

or write-buffer entry.

Now, assume that we execute the same code with a TM barrier on a that does data

versioning (e.g., creates an undo-log entry) but does not perform conflict detection

on a. At timestep 4, thread 1 will log 0 as the old value of a. When the system

rolls back thread 1 at timestep 10, it will restore a to 0. This is incorrect as it also

eliminates the update done by thread 2. The correct handling of this case is to insert

TM barriers for a that perform both conflict detection and data versioning, even

though the original code had locks to guarantee race-free accesses to a.

Optimizations Using Access Categorization

For DBT-based tools unlike DIFT, it is possible to eliminate or simplify certain TM

barriers by carefully considering data access types. Figure 5.7 presents the five access

types we consider and the least expensive type of TM barrier necessary to guarantee

correct atomic execution of the code produced by the DBT:

• Stack and Idempotent stack accesses: For accesses to thread-local vari-

ables on the stack [54], we need barriers for data versioning but not for conflict

detection. Moreover, if the access does not escape the scope of the current

transaction (Idempotent stack) there is no need for TM barriers at all.
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Figure 5.7: The five data access types and their required TM barriers.

• Private accesses: Similar to stack variables, certain heap-allocated variables

are thread-local. Their accesses do not require barriers for conflict detection. If

the transaction updates the variable, a TM barrier is needed for data versioning.

• Benign race accesses: There are access to shared variables that are not

protected through synchronization in the original program. Assuming a well-

synchronized application, any races between accesses to these variables are be-

nign. Hence, there is no need for TM barriers for conflict detection, but there

may be barriers for data versioning on write accesses.

• Shared accesses: Any remaining access must be assumed to operate on truly

shared data. Hence, the DBT framework must insert full read and write barriers

depending on the type of access. The only optimization possible is to eliminate

any repeated barriers to the same variable within a long transaction [1].

The DBT framework classifies accesses during trace generation using well-known

techniques such as stack escape and dynamic escape analysis [54, 135]. It also adds in-

strumentation that collects the information necessary for runtime classification [135].

The success of the classification partially depends on the nature of the DBT. For

example, the information available in object-based binaries such as Java bytecode

increases the analysis accuracy and provides additional optimization opportunities.

To identify Benign race accesses, the DBT must know the synchronization prim-

itives used by the application. It can be the case that the lack of synchronization is
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Instruction Type Example Taint Propagation
ALU r3 = r1 + r2 Taint[r3] = Taint[r1]
operation OR Taint[r2]
Load r3 = M[r1+r2] Taint[r3] = Taint[M[r1+r2]]
Store M[r1+r2] = r3 Taint[M[r1+r2]] = Taint[r3]
Register clear r1 = r1 xor r1 Taint[r1] = 0
Bounds check cmp r1, 256 Taint[r1] = 0

Table 5.1: Taint bit propagation rules for DIFT.

actually a bug. The translated code may change if and when the bug manifests in

the execution. This problem is not specific to DBTs. Any small system perturbation

such as the use of a faster processor, the use of more threads, or a change in memory

allocation may be sufficient to mask or expose a race.

5.5 Prototype System

To evaluate the use of transactions in DBT, we used the Pin dynamic binary translator

for x86 binaries [80]. We implemented DIFT as a Pintool and ran it on top of a

software TM system.

5.5.1 DIFT Implementation

The analysis in our DIFT tool is similar to the one in [102, 118]. We maintain a

taint bit for every byte in registers and main memory to mark untrusted data. Any

instruction that updates the data must also update the corresponding taint bit. Table

5.1 summarizes the propagation rules. For instructions with multiple source operands,

we use logical OR to derive the taint bit for the destination operand. Hence, if any

of the sources are tainted, the destination will be tainted as well.

To execute real-world binaries without false positives, register clearing and bounds

check instructions must be recognized and handled specially. For the x86 architecture,

instructions such as sub %eax, %eax and xor %eax, %eax are often used to clear

registers as they write a constant zero value to their destination, regardless of the

source values. The DIFT tool recognizes such instructions and clears the taint bit
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for the destination register. Programs sometimes validate the safety of untrusted

input by performing a bounds check. After validation, an input can be used as a

jump address without resulting in a security breach. We recognize bounds checks by

untainting a register if it is compared with a constant value [102, 118].

To prevent memory corruption attacks, taint bits are checked on two occasions.

First, when new code is inserted into the code cache, we check the taint bits for

the corresponding instructions. This check prevents code injection attacks. Sec-

ond, we check the taint bit for the operands of indirect control-flow operations (e.g.,

register-indirect jump or procedure call/return). This ensures that an attacker cannot

manipulate the application’s control-flow.

5.5.2 Software TM System

We implemented an STM system similar to the one proposed in [1]. For read accesses,

the STM uses optimistic concurrency control with version numbers. For writes, it

uses two-phase locking and eager versioning with a per-thread undo-log. The conflict

detection occurs at word granularity using a system-wide lock table with 210 entries.

Each lock word contains a transaction ID when locked and a version number when

unlocked. The least significant bit identifies if the word is locked or not. Given a

word address, the corresponding lock word is identified using a hash function. This

approach may lead to some false conflicts but can support transactional execution of

C and C++ programs.

Figure 5.8 shows the pseudocode for the STM. Tx Begin() clears the per-transaction

data structures for data versioning and conflict detection and takes a register check-

point using the Pin API. Three barrier functions are provided to annotate transac-

tional accesses. RD barrier() adds the address to the read-set for conflict detection.

WR barrier() adds the address to the write-set for conflict detection and creates an

undo-log entry with the current value of the address. WRlocal barrier() does not

create an undo-log entry but adds the address into the write-set. This barrier is used

for the Stack, Private, and Benign race access types.

WR barrier() first checks the lock word for the address using compare-and-swap.
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Tx_Begin (){
PIN:: Checkpoint(buf);
RdSet.clear ();
WrSet.clear ();
UndoQ.clear ();}

Tx_Commit (){
foreach addr in RdSet{
lock=lockTable.get(addr);
if(lock!=myID &&

lock!= RdSet.get(addr))
{
Tx_Abort ();} }

foreach addr in WrSet{
nextVer=WrSet.get(addr )+2;
lockTable.set(addr ,

nextVer );}}

Tx_Abort (){
foreach addr in UndoQ{
*addr=UndoQ.get(addr );}

foreach addr in WrSet{
nextVer=WrSet.get(addr )+2;
lockTable.set(addr ,

nextVer );}
PIN:: Restore(but);}

WR_barrier(addr){
lock=lockTable.get(addr);
if(lock==myID){
UndoQ.insert(addr ,*addr);
return;

} elif(lock %2==0 &&
CAS(myID ,lock ,addr))

{
WrSet.insert(addr ,lock);
UndoQ.insert(addr ,*addr);
return ;}

Tx_Abort ();}

RD_barrier(addr){
lock=lockTable.get(addr);
if(lock==myID){
return;

} elif(lock %2==0){
RdSet.insert(addr ,lock);
return ;}

Tx_Abort ();}

Figure 5.8: The pseudocode for a subset of the STM system.

If it is locked by another transaction, a conflict is signaled. If not, the transaction

remembers the current version number and sets its ID in the lock word. It then

creates the undo-log entry. Note that there can be multiple entries for the same

address because we do not check for duplicates. Since the transactions generated the

DBT are typically small (50 to 200 instructions), duplicates are not common. Hence,

we prefer to waste some storage on the occasional duplicate rather than take the

time to search through the undo-log on each WR barrier() call. RD barrier starts by

checking the corresponding lock word. If it is locked, a conflict is signaled. If not, the

version number is recorded in the read-set.
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Register Conflict Data
Checkpointing Detection Versioning

STM SW SW read-set SW
(multi-cycle) /write-set undo-log

STM+ HW SW read-set SW
(single-cycle) /write-set undo-log

HybridTM HW HW SW
(single-cycle) signatures undo-log

HTM HW HW read-set HW
(single-cycle) /write-set undo-log

Table 5.2: The characteristics of the four TM systems evaluated in this thesis.

Tx End() first validates the transaction. The lock words for all addresses in the

read-set are checked. If any entry has a different version number than the one in the

read-set, or is locked by another transaction, a conflict is signaled. Once the read-set

is validated, the transaction commits by releasing the locks for all addresses in the

write-set. The version numbers in the corresponding lock words are incremented by 2

to indicate that the data has been updated. On a conflict, the transaction rolls back

by applying the undo-log and then releasing the locks for addresses in its write-set.

It then restores the register checkpoint. We re-execute aborted transactions after a

randomized backoff period.

5.5.3 Emulation of Hardware Support for TM

We also evaluated the overhead of DBT transactions by emulating three systems

with hardware support for transactional execution. Table 5.2 summarizes their char-

acteristics. We used emulation instead of simulation because Pin is available only in

binary form. Hence, it is very difficult to run Pin on a hardware simulator with ISA

extensions that control the TM hardware support.

The first hardware system, STM+, is the same as our initial STM but uses a

fast, hardware-based mechanism for register checkpointing. Such mechanisms are

generally useful for speculative execution and are likely to be common in out-of-order
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processors [3]. We emulate the runtime overhead of hardware-based checkpointing by

substituting the call to the Pin checkpointing function with a single load instruction.

The second hardware system, HybridTM, follows the proposals for hardware acceler-

ation of software transaction conflict detection [23, 126, 136]. Specifically, we target

the SigTM system that uses hardware signatures for fast conflict detection [23]. We

emulate HybridTM by substituting the read and write barrier code in Figure 5.8 with

the proper number of arithmetic and load/store instructions needed to control the

SigTM signatures. HybridTM uses a hardware checkpoint as well but maintains the

undo-log in software just like STM. At commit time, it does not need to traverse

the read-set or write-set for conflict detection. The final hardware system, HTM,

represents a full hardware TM system [60, 90]. We emulate it by eliminating the read

and write barriers as HTM systems perform transactional bookkeeping transparently

in hardware. Register checkpointing takes a single cycle and a successful transaction

commit takes 2 cycles (one for validation and one to clear the cache metadata).

When executing a program using STM+, HybridTM, or HTM, we cannot roll back

a transaction, as we simply emulate the runtime overhead of transactional bookkeep-

ing without implementing the corresponding functionality. This did not cause any

correctness problems during our experiments as we did not launch a security attack

against our DIFT tool at the same time. In terms of accuracy, our results for the

hardware TM systems do not include the overhead of aborted transactions. As shown

in Section 5.6, the abort ratio for DBT transactions is extremely low (less than 0.03%

on average). We also do not account for the overhead of false conflicts in hardware sig-

natures or overflows of TM metadata from hardware caches. Since DBT transactions

are fairly small, such events are also rare. Hence, we believe that the performance

results obtained through HW emulation are indicative of the results that would be

obtained if detailed simulation were an option.

5.6 Evaluation

Table 5.3 describes our evaluation environment, which is based on an 8-way SMP

x86 server. Our DIFT tool is implemented using the Pin DBT framework [80]. Pin
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CPU 4 dual-core Intel Xeon CPUs, 2.66 GHz
L2 Cache 1 MByte per dual-core CPU
Memory 20 GBytes shared memory
Operating System Linux 2.6.9 (SMP)
DBT framework Pin for IA32 (x86) Linux

Table 5.3: The evaluation environment.

runs on top of Linux 2.6.9 and GCC 3.4.6. We used nine multithreaded applications:

barnes, fmm, radix, radiosity, water, and water-spatial from SPLASH-2 [155]; equake,

swim, and tomcatv from SPEComp [141]. These applications are compute-bound and

achieve large speedups on SMP systems. They are well-suited for our performance

experiments, as the overhead of introducing transactions cannot be hidden behind

I/O operations. All applications make use of the Pthreads API.

Table 5.4 presents the basic characteristics of the transactions introduced by our

DBT tool when using one transaction per DBT trace. Transactions are relatively

short, with the average length varying between 50 and 250 instructions, including

those needed for DIFT. The SPEComp benchmarks have longer transactions because

Pin extracts longer traces from loop-based computations. When using an STM system

without the optimizations in Section 5.4.2, our tool introduces transactions with 10

read barriers and 5 write barriers on average. Transactions rarely abort (less than

0.03% on average). This is expected as these are highly parallel applications with

little sharing between parallel threads.

5.6.1 Baseline Overhead of Software Transactions

Figure 5.9 presents the baseline overhead for our DBT tool when using software (STM)

transactions without any hardware support for TM. These results are indicative of the

performance achievable on existing multiprocessor systems. We measure the overhead

by comparing the execution time of the DIFT tool with STM transactions (thread-

safe) to the execution time of the DIFT tool without transactions (not thread-safe).

Lower overheads are better. The DBT uses one transaction per trace in this case.
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Application # Instr. # LD # ST # RD # WR Abort
# Instr. # LD # ST Barriers Barriers Abort
per Tx per Tx per Tx per Tx per Tx Ratio (%)

Barnes 81.21 9.07 5.49 5.61 3.60 0.01
Equake 118.68 15.42 4.90 9.93 3.35 0.02
Fmm 111.42 14.60 8.28 8.77 5.68 0.03
Radiosity 61.85 7.27 5.44 4.02 3.18 0.00
Radix 118.70 18.89 12.30 11.00 l7.29 0.02
Swim 249.76 34.20 6.79 20.81 4.92 0.03
Tomcatv 118.77 13.19 6.13 8.78 4.13 0.00
Water 55.25 7.31 3.09 4.33 2.07 0.00
Water-spatial 60.93 8.03 3.79 4.81 2.53 0.00

Table 5.4: The characteristics of software (STM) transactions introduced by our DBT
tool.

The average runtime overhead for software transactions is 41%. The cost of trans-

actions is relatively low, considering that they make the DBT thread-safe and allow

speedups of 4x to 8x on the measured system systems. The STM overhead varies

between 26% (radix) and 56% (fmm). This variance is significantly lower than that

observed in previous STM systems. This is because the tool introduces transactions

at the level of DBT traces (a few basic blocks) where the influence of the algorithmic

difference between applications is diluted to some extent. The exact value of the over-

head does not always follow the transaction length and number of read/write barriers

presented in Table 5.4 for two reasons. First, STM transactions have a higher impact

on cache-bound applications, particularly when the STM barriers have low locality.

Second, the averages in Table 5.4 hide significant differences in the exact distribution

of the statistics.

5.6.2 Effect of Transaction Length

The results in Figure 5.9 assume one transaction per DBT trace, the largest trans-

actions our DBT environment can support without significant modifications. Fig-

ure 5.10 illustrates the importance of transaction length. It shows the overhead of
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Figure 5.9: Normalized execution time overhead due to the introduction of software
(STM) transactions.
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Figure 5.10: The overhead of STM transactions as a function of the maximum number
of basic blocks per transaction.

STM transactions in the DBT-based DIFT tool as a function of the maximum num-

ber of basic blocks per transaction (1 to 8). If the DBT trace includes fewer basic

blocks than the maximum allowed per transaction, the transaction covers the whole

trace. Otherwise, the trace includes multiple transactions.

As expected, the overhead of using one basic block per transaction is excessive,

more than 70%, for the majority of applications. The computation in one basic block

is not long enough to amortize the overhead of STM transactions. As the maximum

number of basic blocks per transaction grows, the overhead decreases, as the cost of

starting and ending transactions is better amortized. Moreover, larger transactions

increase the scope of DBT optimizations and benefit more from locality. At up to 8
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Figure 5.11: The overhead of STM transactions when optimizing TM barriers for
Stack and Benign race accesses.

basic blocks per transaction, several applications reach the low overheads reported in

Figure 5.9 because most of their traces include less than 8 basic blocks, or 8 blocks

include sufficient computation to amortize transactional overheads. This is not the

case for Barnes, Radiosity, Water, and Water-spatial which have longer traces and

benefit from longer transactions.

As the results for STM+ suggest in Section 5.6.4, most applications would also

benefit from transactions that span across trace boundaries. To support multi-trace

transactions, we would need dynamic support for transaction merging as traces exe-

cute (see Section 5.4.1).

5.6.3 Effect of Access Categorization

The baseline STM transactions in Figure 5.9 use read and write barriers to protect

all accesses to data and metadata. In Section 5.4.2, we discussed how, in certain

cases, we can use additional analysis of access types in order to reduce the overhead

of STM instrumentation. To measure the effectiveness of these optimizations, we

implemented two simple analysis modules in our DBT system that identify Stack and

Benign race accesses respectively. We classify all accesses that are relative to the

stack pointer, as Stack. To identify Benign race accesses, we use the DBT to add a

per-thread counter that is incremented on pthread mutex lock() and decremented on

pthread mutex unlock(), the only synchronization primitives used in our applications.

A memory access is classified as a Benign race if it occurs when the counter is zero.
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Figure 5.12: Normalized execution time overhead with various schemes for hardware
support for transactions.

This analysis requires a priori knowledge of the synchronization functions used by

the application. Note that in both analyses, we optimize the STM overhead for data

accesses. All metadata accesses are fully instrumented to ensure correctness.

Figure 5.11 shows the impact of the two optimizations on the runtime overhead

of STM transactions. The left-most bar (unoptimized) represents the results with

full STM instrumentation from Section 5.6.1. Figure 5.11 shows that optimizing

STM barriers for Stack accesses reduces the overhead of transactions by as much as

15% (radix) and 7% on the average. Optimizing the STM barriers for Benign race

accesses reduces the overhead by 5% on the average. Overall, the results indicate that

software optimizations based on access-type classification can play a role in reducing

the overhead of transaction use in DBT-based tools.

5.6.4 Effect of Hardware Support for Transactions

Finally, Figure 5.12 shows the reduction in the overhead as the amount of hardware

support for hardware execution increases. As explained in Section 5.5.3, we emu-

late three hardware schemes: STM+, which provides hardware support for register

checkpointing in STM transactions; HybridTM, which uses hardware signatures to

accelerate conflict detection for STM transactions; and HTM, a fully-featured hard-

ware TM scheme that supports transactional execution without the need for read or

write barriers. For reference, we also include the original results with software-only
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transactions.

STM+ reduces the average overhead from 41% to 28%. Hardware checkpointing

is particularly useful for small traces for which a software checkpoint of registers

dominate execution time. HybridTM reduces the average overhead to 12% as it

reduces the overhead of conflict detection in the read and write barriers (read-set and

write-set tracking). The full HTM support reduces the overhead of using transactions

in the DBT-based DIFT tool down to 6% by eliminating read and write barriers

within the traces. Overall, Figure 5.5.3 shows that hardware support is important in

reducing the overhead of transactions in DBT tools. Nevertheless, it is not clear if

a fully-featured HTM is the most cost-effective approach. The biggest performance

benefits come from hardware register checkpointing and hardware support for conflict

detection in software transactions.

5.7 Related Work

There have been significant efforts to develop general-purpose DBT systems, such

as Dynamo [10], DynamoRIO [22], Valgrind [100], Pin [80], StarDBT [18], and HD-

trans [142]. Apart from DIFT-based security tools, these frameworks have been used

for performance optimizations [10, 142], profiling [80], memory corruption protec-

tion [73], and software bug detection [99, 133]. To the best of our knowledge, no

existing DBT framework supports a functionally-correct, low-overhead method for

handling metadata consistency issues in multithreaded programs. They require ex-

plicit locking by the tool developer, thread serialization, or disallow multithreaded

programs altogether. This work provides the first in-depth analysis of the issue and

proposes a practical solution.

Significant effort has also been made to develop DIFT as a general purpose tech-

nique for protecting against security vulnerabilities. DIFT has been implemented

using static compilers [157], dynamic interpreters [103, 109], DBTs [18, 118, 33], and

hardware [37, 40]. The advantage of the DBT-based approach is that it renders

DIFT applicable to legacy binaries without requiring hardware modifications. The

LIFT system proposed a series of optimizations that drastically reduce the runtime
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overhead of DBT-based DIFT [118]. Our work complements LIFT by proposing a

practical method to extend DBT-based DIFT to multithreaded programs.

The popularity of multi-core chips has motivated several TM research efforts.

HTM systems use hardware caches and the coherence protocol to support conflict

detection and data versioning during transactional execution [60, 90]. HTMs have

low bookkeeping overheads and require minimal changes to user software. STM sys-

tems implement all bookkeeping in software by instrumenting read and write accesses

within transactions [45, 62, 125]. STMs run on existing hardware and provide full flex-

ibility in terms of features and semantics. To address the overhead of STM instrumen-

tation, researchers have proposed compiler optimizations [1] and hybrid TM systems

that provide some hardware support for conflict detection in STM code [23, 126, 136].

More recently, there have also been efforts to use TM mechanisms beyond concur-

rency control. In [96], TM supports complex compiler optimizations by simplifying

compensation code.

5.8 Conclusion

This chapter presents a practical solution for correct execution of multithreaded pro-

grams within dynamic binary translation frameworks. To eliminate races on metadata

accesses, we proposed the use of transactional memory techniques. The DBT uses

transactions to encapsulate all data and metadata accesses within a trace into one

atomic block. This approach guarantees correct execution as TM mechanisms detect

and correct races on data and metadata updates. It also maintains the high perfor-

mance of multithreaded execution as DBT transactions can execute concurrently.

To evaluate this approach, we implement a DBT-based tool for secure execution

of x86 binaries using dynamic information flow tracking. This is the first such tool

that correctly handles multithreaded binaries without serialization. We show that

the use of software transactions in the DBT leads to runtime overhead of 40%. We

also demonstrate that software optimizations in the DBT and hardware support for

transactions can reduce the runtime overhead to 6%. Overall, we show that TM

allows metadata-based DBT tools to practically support multithreaded applications.



Chapter 6

Hardware-assisted Memory

Snapshot

6.1 Introduction

Lack of concurrency in system software modules such as garbage collectors and

memory profilers prevents us from fully exploiting abundant parallelism in chip-

multiprocessors (CMPs). Such modules run in concurrently with application code,

causing performance degradation due to multiplexing. Ideally, system code could be

easily changed to use spare cores in a CMP in order to remove its performance over-

head. However, parallelization is not trivial in practice because programmers must

deal with the complications of concurrency management in complex system software

and its interaction application code that runs concurrently.

This chapter presents MShot, a hardware-assisted memory snapshot system to

allow for algorithmic simplicity, easy code management, and performance at the same

time. Our key observation is that the hardware requirements for MShot are already

supported in hardware TMs as well [65, 60, 90, 25]. Hence, we use the hardware

resources in TM to accelerate a memory snapshot of arbitrary lifetime that consist

of multiple disjoint memory regions. With a single call to the MShot interface, the

system takes an atomic snapshot of a set of regions and isolates it from further

memory updates by the application. The snapshot image can be shared by multiple

94
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threads that operate on the snapshot data using normal load/store instructions. The

potential uses include, but not limited to, fast concurrent backup, checkpointing,

debugging, concurrent garbage collectors, dynamic profilers, fast copy-on-write, and

in-memory databases.

We applied memory snapshot to three interesting system software modules: garbage

collection, dynamic profiling, and copy-on-write. We build prototypes of these system

modules and show that MShot allows us to use additional cores in a CMP to hide

their overhead without complex code that manages their interactions with the main

application.

This chapter is organized as follows. Section 6.2 provides the use and potential

applications of a fast snapshot mechanism. Section 6.3 describes the interface and

base design for MShot. Section 6.4 explains how to implement MShot on top of

HTM. Section 6.5 explains the use of snapshots in system software modules. Sec-

tion 6.6 presents the quantitative evaluation and Section 6.7 discusses related work

and Section 6.8 concludes the chapter.

6.2 Memory Snapshot

Memory snapshots are an old idea widely used in many useful applications. In this

section, we provide their use and potential applications.

6.2.1 Basic Idea

In multi-core and multi-processor systems, concurrent threads are allowed to read

and write word-granular data atomically. However, if multiple threads read and

write multiple words, systems do not guarantee a consistent view of memory. For

applications where consistency is required, a “snapshot” of m memory elements can be

created to provide such a view across p processors [8, 2]. Processors are then allowed

to execute two types of operations: update to write a memory element in the snapshot

and scan to read memory elements. A snapshot should meet two conditions: (1) any

operations on a snapshot are linearizable in a sequential order, and (2) a processor
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completes its operations without waiting for other processors to participate.

Memory snapshot is useful to deal with semantically unnecessary contentions to

shared data where some threads need to have a recent and consistent view on them

while other threads keep updating them. For example, a system may use a memory

profiler to analyze the object reference graph of an active application. Since the graph

changes continuously as the application makes progress, it is necessary to pause it so

that the profiler has an opportunity to process a consistent memory image. Even if

the system runs on a CMP, the application and the profiler run sequentially. One

could recode both the profiler and the application to insert the synchronization neces-

sary for the two to run in parallel using locks or memory transactions; however, this is

particularly difficult and introduces additional runtime overhead for synchronization.

What the profiler really needs to see, is not the up-to-date data in memory, but just

a consistent view on the object reference graph at recent time. Using a snapshot, the

memory profiler can save a recent image of the object reference graph fast and atom-

ically and safely analyze the graph in parallel with the application threads working

on the up-to-date image of the graph. There is no need to recode the application or

the profiler. Excluding the calls necessary to initiate and terminate a snapshot, the

profiler code is the same as when we assumed that it stopped the application before

running.

A number of efficient software implementations have been proposed for snapshots

[53, 70, 8, 2]. Some proposals use normal memory read and write operations and

require O(mp) time for update and scan[8, 2], where m is the number of data items in

the snapshot and p is the number of processors. Update refers to a write operation

and scan to a read operation. Others use synchronization primitives available in

present CPUs such as compare-and-swap and load-linked/store-conditional to reduce

the runtime overhead of update to O(1) and scan to O(m) [53, 70].

While these proposals provide a consistent view of large data sets, the high runtime

overhead prevents snapshots from being used in performance-critical applications.

Our proposal seeks to provide fast snapshots in order to speed up and simplify tasks

such as parallel and concurrent garbage collection, dynamic profiling, and copy-on-

write. Specifically, we aim to provide O(1) update (as fast as single memory write
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operation) and O(p) scan in O(m) space. Moreover, we want to avoid the explicit use

of synchronization in application code.

6.2.2 Applications

The potential applications of snapshot include, but not limited to, fast concurrent

backup, checkpointing, debugging parallel programs, concurrent garbage collection,

dynamic profilers, fast copy-on-write, and in-memory databases [8, 70]. We briefly

summarize the use of snapshots in the following cases in the following use cases.

Garbage Collection (GC) plays a key role in automated memory management.

There has been significant research on efficient GC algorithms [156, 66, 47, 46, 16, 43].

Stop-the-world GC is easy to develop and maintain but pauses the application during

collection. Parallel GC reduces the pause time by using additional cores during

collection [156]. Nevertheless, pauses are still required, which can be a problem for

outline servers with guaranteed response time and QoS. Parallel and concurrent GC

removes the pause time by running mutator and collector threads concurrently [66,

47, 46]. However, it is not deployed widely as it is difficult to develop and maintain

the complex code that safely separates mutators from collectors.

Snapshot makes it easy to develop parallel and concurrent GC. Collectors (GC

threads) take a memory snapshot at the beginning of collection and work on the

recent object reference graph in the snapshot image. They share the snapshot image

and keep running on spare cores to collect garbage concurrently and continuously,

while application threads continue to operate on main memory.

Dynamic profilers run during program execution to tune application perfor-

mance. Call path profilers [51, 57] provide useful information on hot execution paths

but add run-time overhead by either inserting profiling code in function prologues

and epilogues [57] or by stalling threads to walk the stack [51]. Memory profilers

are widely used to analyze memory usage and find leaks, but cause slow down the

application while traversing memory [97, 98].

Snapshot aids call path profilers by providing a private copy of the stack for

analysis. Parallel and concurrent memory profilers are supported by allowing multiple
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profiler threads to traverse a single snapshot image.

Copy-on-write (COW) has been widely used for efficient data management.

For example, it enables fast fork() by providing shared virtual to physical page map-

pings [137] and disk block sharing between virtual machines [146]. COW allows

processes or thread to share data until one attempts a write. At that point, COW

saves the old data by making a new copy before applying the update. The advantage

of COW is the reduced cache and memory pressure as sharing is maximized. The

disadvantage of COW is that it must block the update while data is actually copied.

The delay gets longer when the operation involves I/O and is done at large granular-

ities, such as pages. Snapshot enables COW without the need to delay the update as

it maintains the old value of the data that can be copied in the background.

In-memory database systems achieve good performance by loading the whole

data schema into main memory [52, 107]. They are not only attractive for server-side

database systems but also useful for embedded systems such as cell phones that sup-

port many features with a limited storage system. Such systems already use software

snapshots to generate reports on data usage, replicate the data in a database cluster,

and support the isolation-level necessary for database transactions. Hardware-assisted

snapshots can significantly improve the performance of such tasks.

6.3 MShot Specification

MShot’s goal is to provide hardware-assisted memory snapshot for large datasets.

System software mudules can use snapshots to improve concurrency without the need

for significant code changes in their code or any applications they are applied to.

In this section, we present the MShot design objectives, its software interface, and

a stand-alone implementation.

6.3.1 Design Objectives

There are three major objectives for MShot: usability, performance, and cost- effec-

tiveness. We take the following approach to accomplish these objectives:
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Figure 6.1: An example of using memory snapshot. A snapshot is taken on two
regions. The updates to the snapshot regions are applied only to the master image.

• Versatile interface for usability: MShot provides a programming tool. It

should be easy to use and versatile enough to cover practical applications, in-

cluding those suggested in Section 6.2.2. This leads to an interface that differs

from the one used in traditional software snapshot formulations (scan and up-

date) [8]. We present the simple interface for MShot in Section 6.3.2.

• Hardware acceleration for performance: Since MShot is used for perfor-

mance improvements, it should be fast. Otherwise, its overhead will cancel out

any benefits from improved concurrency. Specifically, we target O(1) update

time—as fast as a single memory write operation—and O(p) scan time (p is the

number of cores). For this purpose, we use additional hardware resources such

as per cache-line metadata bits to accelerate data versioning (see Section 6.3.3).

• Cost-effective implementation on HTM: To be practical, MShot should be

cost-effective to implement. Toward this goal, Section 6.4 shows to implement

MShot on top of an HTM system so that hardware resources are shared between

the two systems, making them both more cost-effective.

6.3.2 Definition and Interface

MShot provides a snapshot of the memory image at a certain point in time. Multiple

disjoint address regions can be part of a snapshot. Once a snapshot is taken on the

regions (i.e., equivalent to a scan operation of software snapshots), MShot maintains

two memory images for the regions: a master image with the up-to-date data and the
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read-only snapshot image. To read from the snapshot image, threads first join the

snapshot. Any number of threads can join a single snapshot. Until the user threads

leave the snapshot, normal read operations to the snapshot regions return snapshotted

data. The separation of taking and joining a snapshot makes it possible to snapshot

in a performance critical section and analyze the image later using additional cores.

Figure 6.1 shows a simple example of a snapshot with two regions involved, one that

covers elements 2 and 3 and one that covers just the 6th element. After the snapshot

is taken, update operations are performed on elements 1, 3, 6, and 7. Updates to the

elements not covered by the snapshot (elements 1 and 7) are applied to both images.

Updates to the snapshot regions (elements 2 and 6) are applied only to the master

image.

An MShot image is read-only like software snapshots [8, 2, 70]. User threads

are not allowed to write to the snapshot regions. If they do, the system generates

a write-protection exception (e.g., SIG SEGV). Other threads that do not join the

snapshot are allowed to write to the snapshot regions (i.e., equivalent to the update

operation in software snapshots) and update the master image. Their read operations

to the snapshot region return up-to-date data from the master image. In other words,

MShot is transparent to any thread or application code that did not explicitly use its

services.

MShot also provides an image of the register values in cores at the moment the

snapshot is taken. This is useful for analyzing the image later on. There can be mul-

tiple snapshots active at any moment. To simplify hardware, MShot does not allow

overlapping snapshot regions. Hence, the system must maintain only two versions per

address: the up-to-date version and the snapshot version. In the same spirit, MShot

supports cache-line granularity in specifying regions to avoid the additional hardware

resources required for per-word version management. These design choices did not

complicate the applications we studied.

Table 6.1 shows the operations supported by MShot. There are two groups of

operations: one to control the snapshot lifetime and the other to access the snap-

shot. A snapshot is taken by take snapshot() using a simple data structure called

snapshot info shown in Figure 6.2. The snapshot regions field points to an array of
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Group Method Function
Snapshot take snapshot Take a snapshot on the address regions
Control (snapshot info*) specified by snapshot info.snapshot regions.

New snapshot id (SID) is set at
snapshot info.SID.
Saved register values are pointed to
by snapshot info.saved regs.

destroy snapshot (SID) Destroy the snapshot of SID.
Snapshot join snapshot (SID) Start using the snapshot of SID.
Sharing leave snapshot (SID) Stop using the snapshot of SID.

Table 6.1: MShot interface.

snap sho t i n f o {
short SID ; // unique snapshot id .
double [ ] [ 2 ] ∗ snapsho t r eg i on s ; // array o f ( s t a r t address ,

// end address ) pa i r s .
void∗ s aved r eg s ; // saved r e g i s t e r va l u e s .
short TID ; // op t iona l , Thread id

// to i s o l a t e s e l e c t i v e l y .
}

Figure 6.2: snapshot info data structure used for take snapshot().

pairs of virtual addresses that demarcate the beginning and the end of an address

region belonging to the snapshot. The addresses should be aligned to cache lines.

Once a programmer sets snapshot regions and invokes take snapshot(), MShot takes

a snapshot of the address regions and returns a unique snapshot ID through the SID

field. Register values are saved in a system-dependent data structure and pointed

to by saved regs. In our prototype, we used the ucontext, originally for use with OS

signal handlers. If the call fails due to any reason, SID is set to 0. Note this reserves

SID 0 for an invalid snapshot. The thread ID, TID, field is optional and can be used

for optimization when the address regions of the snapshot are private to a thread

(e.g., stack and thread local storage). For these regions, MShot does not need to

interact with other threads. For single-threaded programs, this parameter is ignored

since there is just one thread. If programmers are not sure if a snapshot region is

thread-local or not, they set TID to -1 to disable the optimization.
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Figure 6.3: MShot hardware and software structures.

Threads can use the snapshot by joining it with join snapshot() and leave it by

calling leave snapshot(). The snapshot is destroyed using destroy snapshot(). De-

struction is allowed only after all user threads have left the snapshot. MShot checks

this condition and returns an error to prevent threads from using a destroyed snap-

shot.

6.3.3 Base Design

Figure 6.3 shows the base MShot design, including both software and hardware struc-

tures. There are three key components: the Snapshot Information Table, the Snap-

shot information Look-aside Buffer, and Snapshot Metadata Bits.

Snapshot State Management

The Snapshot Information Table (SIT) shown in Figure 6.3-(a) is a doubly-

indexed hash table for managing all snapshot information. This software struc-

ture is indexed either by SID or virtual address. Entries are called Snapshot In-

formation Blocks (SIB), which are similar to the snapshot info structures passed to

take snapshot(). However, they do not contain the saved regs field. Instead, they
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add a new field called join list, a linked list with the threads that joined a snapshot.

MShot uses a simple counter to generate a unique SID.

The Snapshot information Look-aside Buffer (SLB) shown in Figure 6.3-(b)

is a small, fully-associative, hardware cache for accelerating the retrieval of snapshot

information. In our evaluation, we use an SLB with 64 entries. The SLB helps each

core identify if a load or store goes to an address included in a snapshot. Snapshot

regions are typically large consecutive address ranges. To exploit this fact, we organize

SLB entries so that the address tag consists of two fields. The first field is the start

virtual address of a snapshot region and the second field is the bit mask that presents

the size of the region. The size is a power of two and the bit pattern for the field

is obtained by inverting the binary expression of (size - 1). An entry can cover a

whole contiguous virtual address space (e.g. 4 Giga-bytes with an entry). The SLB is

accessed in parallel with the TLB. A matching SLB entry returns two fields: the SID

to which the snapshot region belongs and the J (join) bit indicating if the current

thread has joined the snapshot. The SLB maintains an overflow OV bit to indicate

there is an SLB entry that was evicted at some point in time due to capacity issues. If

the bit is not set, an SLB miss is ignored—there is no snapshot region associated with

the memory address. If the bit is set, the miss is handled by a software refill handler

that accesses the SIT. To support the software handler, two SLB instructions are

added: SLBI to invalidate SLB entries and SLBLD to load them. SLBI and SLBLD

are similar to TLBI and TLDLD in PowerPC [112].

Two Snapshot Metadata bits and SID bits are added per cache line for

data versioning. The MS (Modified since Snapshot) bit is set when a cache line in

a snapshot region has been modified since the snapshot. This renames the line and

separates the up-to-date data in the master image from the old data in the snapshot

image. The RS (Read from Snapshot) bit is set when a cache line in a snapshot region

is refilled with an old data version from the snapshot. Such lines should be invalidated

when the snapshot is destroyed. If both bits are reset for a cache line, it implies that

the master image and the snapshot image have the same data for the line. SID is set

when either the MS bit or RS bit is set to indicate the snapshot for which the bits are

set. Both bits cannot be set at the same time. Note that this section assumes that
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Figure 6.4: Three-way handshaking for snapshot initialization.

the data cache will never overflow snapshot information due to capacity issues. We

explain how to handle overflows using HTM virtualization mechanisms in Section 6.4.

Snapshot Operations

take snapshot() initiates the process of taking a snapshot. To make it thread-safe,

we used a simple global lock. Snapshot regions identified in the snapshot regions field

of the snapshot info argument are compared with the regions of existing snapshots

in SIT to check for overlap. If there is no overlap, the current SID counter value is

assigned to the snapshot and the counter is incremented. An SIB is created for the

snapshot by copying snapshot info to the block. The join list of the block is initially

empty. The block is inserted into the SIT and the addresses of the snapshot regions

are loaded into the SLB. A snapshot region can be mapped to multiple SLB entries

depending on the size and alignment of the region. Memory allocators or compilers

can help adjust the alignment and size of snapshot regions to save SLB entries at the

cost of higher virtual address space consumption.

Three-way handshaking is used to build the snapshot gradually with O(p) scan

time. While copying is not performed when take snapshot() is called, MShot must

ensure that all cores are aware of the snapshot information before the call returns.

This ensures any write to the snapshot after the snapshot is taken triggers data

versioning. The snapshot information is exchanged using the three-way handshake

shown in Figure 6.4. First, snapshot request messages are sent via inter-core signals

to the other threads to invoke snapshot signal handlers. The handlers copy the

saved register values of the threads to a pre-allocated data structure pointed to by
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Write to snapshot Read from snapshot
Snapshot Illegal operation. Hit if address tag matches
Threads and MS bit is not set.

Set RS bit and SID when
refilled with MS bit piggy-backed.

Other Hit if address tag matches Hit if address tag matches
Thread and RS bit is not set. and RS bit is not set.

Set MS bit and SID
when hit or refilled.

Table 6.2: Memory operations with MShot.

the saved regs field of the snapshot info argument and load the snapshot information

into the SLB. Next, the handlers send response messages back to the thread that

initiated the snapshot and wait for resume messages. On receiving the response

messages from all the handlers, the initiating thread sends a resume message that

terminates the handlers and allows application threads to resume. This process has

O(p) complexity. Note that the scan time in the previous algorithms for software

snapshot is O(m) (number of memory elements), since they also provide the wait-

free property: processors are not stalled even if messages are lost. This is desirable

if snapshots are used to help with fault-tolerance. The base MShot design does

not guarantee wait-freedom as it targets primarily concurrency. There are several

orthogonal mechanisms to ensure recovery from lost messages or other faults [4, 138]

Local synchronization is performed instead of the global synchronization described

above if the TID field of the snapshot info is not -1. The snapshot information does

not need to be propagated to the threads other than the thread of the TID, since the

memory regions covered by the snapshot are thread-private. If the thread is running,

the same three-way handshaking protocol is used but only with one thread. If the

thread is not running, the protocol is not used. We simply update the SLB with the

snapshot information when the thread is scheduled again.

join snapshot() works by updating the SIB to remember that the thread is a

new user of the snapshot. The corresponding SLB entries are reloaded to set the J

bits for the thread.
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Cache operations with the snapshot metadata bits are summarized in Table 6.2.

If a user thread writes to a snapshot, an exception is triggered since the user thread is

only allowed to read from the snapshot. The SLB detects this case. A read from the

snapshot is a hit if there is a cache line with a matching address tag and its MS bit

is 0. This indicates that the line has not been modified since the snapshot was taken.

If it is a miss, the SID bits and J bit are piggy-backed to the refill request to indicate

that the refill should come from the snapshot image. Receiving the refill request,

other caches search for a cache line with matching address tag whose MS bit is 0. If

the MS bit of the cache line with matching address is 1, the MS bit is attached to the

response message to notify the requester that the master image has deviated from

the snapshot for that address. Finding no matching cache line in other caches, the

request is sent to main memory and the data is refilled. Because we assumed no cache

overflows, this happens only when the master image and the snapshot image have the

same data for the address. Hence, there is no need to modify memory controllers.

Refilling the cache line, we set the RS bit if the MS bit is piggy-backed. The RS bit

is used to when destroying the snapshot to see if the line is to be invalidated.

A read from or a write to the snapshot by a thread not using the snapshot (i.e.,

J bit is 0) is a hit if there is a cache line with a matching address tag and RS is

reset. This indicates that the line does not contain the old data from a snapshot. If

it is a write hit, the MS bit is set to indicate that the line no longer belongs to the

snapshot image. If the write misses, the MS bit is set after the line is refilled. Note

that the function of the MS bit is to rename the up-to-date data in the master image

in order to distinguish them from the old data in the snapshot image. This renaming

is accomplished system-wide by simply setting the MS bit since the line is exclusive

to that processor. If the line is dirty, it is flushed to memory first not to lose the

old data. This makes updates O(1). A cache miss is handled similar to the case of a

thread that has joined the snapshot. The SID and J bits are piggy-backed on cache

line refill requests. The bits are used by the other caches to find a cache line whose

address tag matches and whose RS bit is 0.

leave snapshot() is called to stop using the snapshot. The ID of the thread is

removed from the SIT and the SLB entries are reloaded to clear the corresponding J
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HTM resource Usage in MShot
Data Transactional metadata bits Snapshot metadata bits
Versioning per cache line per cache line

Transaction ID (TID) Snapshot ID (SID)
per cache line per cache line
Transactional metadata bit Snapshot metadata bit
gang clear logic gang clear logic

Virtualization Shadow page table in SW, Providing access to
table access logic in HW master/snapshot images
Home/shadow pages Storage for snapshot data

that overflow the cache

Table 6.3: Hardware resource mapping between HTM and MShot.

bits.

destroy snapshot() destroys the snapshot. It starts with invalidating the SLB

entries. Cache lines with the SID of the snapshot are invalidated if the RS bit is set.

Then all metadata bits of the snapshot are gang-cleared. It completes with removing

the SIB of the snapshot from the SIT.

Note that, even though we present one design point in this section, it is obviously

possible to lower the cost by exploring other design points such as page-granular

snapshot and limiting accessibility to snapshot to a single thread at a time. We

choose to maintain full functionality and reduce hardware cost by integrating with

HTM.

6.4 MShot on Hardware Transactional Memory

HTM systems use dedicated hardware resources to accelerate transactional execution.

In this section, we propose a scheme to lower the hardware cost of MShot dramatically

by sharing the hardware resources for HTM.
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Figure 6.5: Resource sharing between HTM and MShot.

6.4.1 Resource Sharing between MShot and HTM

To a TM system, a memory snapshot looks like a read-only transaction that never

aborts. The versioning mechanism for snapshot is similar to that for HTM as it

also uses per cache-line metadata bits. Most HTMs use a pair of metadata bits to

record the addresses written or read by a transaction. Additional pairs of metadata

bits are also available to support composable nested transactions [84]. MShot uses

one of these additional pairs to implement its versioning mechanism. The remaining

pairs are used for nested transactions as usual. A cache line with transactional or

MShot metadata may be evicted due to a cache capacity overflow. We can reuse a

TM virtualization mechanism to also handle MShot overflows by pretending that an

snapshot overflow is a read-only transaction that experiences cache capacity issues.

No changes are necessary in the virtualization mechanism to support this case.

In our evaluation, we use the Page-based TM (PTM) which uses additional hard-

ware to ensure that overflow processing is fast [29]. PTM maintains in hardware
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a shadow page table when transactional data overflow hardware caches. When a

cache-line with transactional data or metadata is evicted, PTM allocates a new page

(shadow page) to store the last committed version of the data and uses the old page

to store the overflowed data. The shadow page table maintains the proper mapping

information including a per page write summary vector that indicates which blocks

in the page have overflowed. PTM refers to the vector to determine which blocks it

serves a memory request with.

Table 6.3 summarizes the resource sharing between HTM and MShot. HTM uses

metadata bits to record transactional memory accesses: W bit for data in the write-

set and R bit for data in the read-set of a transaction. Essentially, the W bit is

used to rename an address and distinguish a new value from the last committed one.

For MShot, we map the MS bit to the W bit and use it to distinguish the master

image from the snapshot. Similarly, we map the RS bit to the R bit of the HTM

system to mark old data from the snapshot image that should be invalidated when

the snapshot is destroyed. MShot uses the W and R bit pair for the highest nesting

level transaction as shown in Figure 6.5. This reduces the number of nesting level

the underlying HTM supports by one. When used by MShot, the highest nesting

level should not generate any conflicts. We can filter such conflicts either in software

(using a violation handler) or in hardware (by modifying the conflict detection logic).

It checks the bits against the accesses from the local core in addition to snooped

memory requests from the remote cores. PTM includes transaction ID in each cache

line to allow transactions from many threads to share the cache [29]. MShot uses

these bits for the SID to allow multiple snapshots to share the cache. HTMs have

gang-clear logic to reset the metadata bits. MShot uses the same logic to reset the

metadata bits at the end of snapshot.

On an overflow, PTM uses the original physical page (home page) to store the

new version of data and an additional physical page (shadow page) to buffer the last

committed version. A shadow page table maintains the metadata and provides access

to both pages. MShot uses the home page to store the master image and the shadow

page to buffer the snapshot image. When a cache line with an MS bit is evicted, the

MS bit and SID of the line are piggy-backed. PTM uses the SID as the transaction
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ID and the MS bit as the W bit. The snapshot data of the cache line is copied to a

shadow page and the evicted up-to-date data of master image goes to the home page.

MShot evicts cache lines with the RS bit set silently since the RS bit indicates that

the line should be invalidated anyway.

To reload an overflowed cache line, the hardware attaches the J bit and SID

bits with the request. PTM hardware uses the J bit to select if the home page

or the shadow page is read. If the bit is 1, the shadow page is read. If not, the

home page is read. PTM releases the shadow pages at the end of an overflowed

transaction. At the end of a snapshot, MShot sends out the transaction commit

message with the SID of the snapshot pretending that it is the end of a read-only

transaction. PTM releases the shadow pages with the snapshot image. As is the case

with metadata in hardware caches, PTM must ignore any conflict detected for the

read-only transactions of MShot. The distinction can be made easily by checking if

the transaction ID starts with a special bit prefix that MShot adds for this purpose.

Of course, there are hardware resources required for MShot that are not available

in HTM. They include the SLB structure and the additional information MShot must

associate with cache coherence messages (SID, J bit, MS bit). The size of the SLB is a

tradeoff between cost and performance. The width of coherence messages is increased

by two bytes in the system we evaluated. Note that MShot does not require a full-

fledged HTM for integration. More specifically, MShot does not require the HTM

components such as conflict detection logics, transaction abort logic, and software

handler logics.

6.4.2 Running with Transactions

We do not allow take snapshot() to be called within a transaction to avoid including

uncommitted data in a snapshot. The simplest way is to wait for all outstanding

transactions to commit, but this can cause a long delay in the presence of long trans-

actions. An alternative is to abort the transactions. This approach is cheap and

fine as long as snapshots are not taken too frequently. We use this scheme for the

evaluation in Section 6.6.
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Transactions may begin and abort within a snapshot lifetime. If they do not

abort or overflow, MShot does nothing for transactions since there is no difference for

MShot between transactional execution and non-transactional execution in this case.

If they abort, the TM system rolls back the modified data and transactional metadata

bits for the aborted transactions but does nothing for snapshot metadata bits. A

straightforward solution is for MShot to take a checkpoint of snapshot metadata bits

whenever transactions start, but it is costly to add extra storage for the checkpointed

bits. An alternative is to do nothing as these bits cannot affect correctness. The

MS bits set by the aborted transaction can be thought of as being set by idempotent

writes. The RS bits set by the transaction just cause extra cache line invalidations.

If a transaction overflows during the lifetime of a snapshot, there are two cases to

consider. If the overflowed cache lines are not modified from the snapshot image, there

is no snapshot data and metadata to manage. The TM virtualization mechanism deals

with the lines regardless of MShot. If the lines are modified, the TM virtualization

mechanism maintains three versions: snapshot version, last committed version, and

transactional version. It deals with the case as if there are two overflowed transactions.

The overflowed transaction is handled as usual. The overflowed snapshot is handled as

a transaction whose last committed version is the version of the data in the snapshot.

Supporting this scheme is problematic for PTM since it manages only two versions

per address. For our evaluated system, MShot detects this case and gives priority

to the overflowed transaction so that it is guaranteed not to abort. Hence, PTM

can ignore the last committed version, and use its capabilities to buffer the snapshot

version and the latest version produced by the transaction. This approach leads to

no performance issues if overflows are rare.

Join snapshot() and leave snapshot() select the memory image accessed by a

thread (master image or snapshot image). If one of the two is called in a trans-

action that aborts, we call the other one in the abort handler in order to compensate.

It is hard to undo destroy snapshot() since it discards the snapshot data and meta-

data. If it is called in a transaction, we defer the actual execution of the function

until the transaction commits. This is acceptable because destroy snapshot() is not

a timing-critical operation unlike take snapshot().
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6.4.3 System Issues

Just like the TLB, the SLB must be reloaded on context-switches because it is indexed

by virtual addresses. The SLB entries do not need to be saved since the SIT is always

more up-to-date than SLB. On rescheduling, the SLB can be loaded eagerly or lazily.

We use the eager approach in our evaluation.

MShot relies on the TM virtualization mechanism to maintain the overflowed

data and metadata over context switches. It also uses the same mechanism to deal

with paging the snapshot. Working with PTM, MShot flushes out the page from the

cache before paging. PTM pages to disk the home and shadow pages but remembers

the relation between the two in order to restore it when the corresponding data are

accessed again [29].

I/O operations within transactions are troublesome because they can expose un-

committed data. On the contrary, it is safe to perform I/O operations on snapshot

regions. The I/O access is served by the memory image and the snapshot is not

affected.

6.4.4 Discussion

MShot can use also any other TM virtualization mechanism to handle cache overflows

for snapshot data [31, 120]. MShot uses a TM virtualization mechanism as hardware-

acceleration for data storage in virtual memory. The basic requirement is that MShot

should be able to use SID and the address as the key to index the data structures in

the virtualization scheme.

There has been research on implementing hybrid TM systems that provide hard-

ware acceleration for some critical operations in software TM environments. MShot

can reuse the hardware resources in such systems such as the additional metadata bits

in each cache line [126]. There are also hybrid TM proposals that use signatures to

compress the transactional metadata information. While signatures are cost-effective

and performs well for TM, they cause correctness issues if used for MShot due to

their imprecise nature. Implementing MShot on top of an software TM would make

MShot only as fast as software implementations for memory snapshots.
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6.5 Using MShot in System Modules

To evaluate the effectiveness of MShot, we used it to increase the concurrency in three

important software modules. Starting with their straight-forward implementations

that either stop the world or serialize the accesses to the shared datasets in favor

of algorithmic simplicity and easy code management, we added just a few MShot

methods to enable them to run on idle cores concurrently with other software modules.

And this is the key benefit of MShot to allow for algorithmic simplicity, easy code

management, and performance at the same time.

6.5.1 Snapshot-based Garbage Collection

Snapshot GC takes advantage of the fact that “once garbage always garbage.” If a

garbage object is found in snapshot image, it is garbage in the master image as well.

Snapshot GC starts with take snapshot() to take a snapshot of the regions it wants

to collect. Initiating the snapshot introduces a small pause but, beyond this point,

mutator threads (application threads) can resume immediately and run in parallel

with the collector threads if sufficient cores are available. All collector threads join

the snapshot as well. Collector threads work in parallel to build the root-set using

the snapshot image and the saved register values. Neither the GC nor the application

programmers need to worry about synchronization between collectors and mutators

since they work on different images. The snapshot is destroyed when collection is

done.

For our evaluation, we implemented snapshot GC on top of Boehm GC [16, 43],

a conservative collector for C and C++ programs. We started from a parallel mark-

sweep collector code and used snapshot to run its threads concurrently with the

mutator. We added less than 100 lines of code to the GC to turn the original code

into a concurrent collector. Most of the lines were to prepare snapshot info data

structure. Only four call sites were added for MShot interface. The availability of the

snapshot allowed us to ignore synchronization issues between collector and mutator

threads. Nevertheless, attention was given to the allocation of GC metadata, such as

the data structure for free blocks. Boehm GC uses the same heap for the application
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and the GC itself. The GC collects garbage objects for both at the same time. While

this seems desirable, it complicates setting up the snapshot regions because the GC

metadata objects need to be updated during collection. Hence, we cannot simply

take a snapshot of the whole heap. To address the problem, we reserved a separate

memory space for GC metadata. We did not do anything special to garbage collect

TM programs. Note that the snapshot GC misses garbage created after the snapshot

is taken. Assuming spare cores, the GC can run frequently enough so that it claims

the missed objects the next time it is invoked.

6.5.2 Snapshot-based Profiler

The snapshot call-path profiler periodically walks the stack to obtain information on

the calling relationship between functions in the application code. The process starts

by taking a snapshot of the stack of the thread to be analyzed using take snapshot().

The TID field of the snapshot info argument is set to the ID of the thread to let

MShot know that the snapshot region is thread-private. Then, the SID and the

saved register values are passed to a profiling thread through a stack analysis request

queue. The profiling thread joins the snapshot and analyzes it in parallel with the

scheduled application thread. It obtains the stack pointer and frame pointer from

the saved register values and starts walking the stack following the sequence of return

addresses. The return addresses found are used as keys to look up the symbol table

of the analyzed program to locate the corresponding function names. Adding the

snapshot calls to the profiler was trivial and no special synchronization code was

needed in the function that calls the stack.

The snapshot memory profiler takes a snapshot on memory to find classes and

instances of classes and to analyze relations among objects. For our evaluation, we

implemented a snapshot memory profiler by modifying Boehm GC. Basically, the

profiler works in the same way that snapshot GC does by traversing live objects in a

snapshot image during the mark phase. On finding a live object, it records the type

of the object instead of setting a live bit for it. We changed the memory allocator so

that objects in C have type information.
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6.5.3 Snapshot-On-Write (SOW)

Snapshot makes copy-on-write (COW) seamless. COW makes a copy of the shared

data when a data update is detected. For correctness, it blocks the write until the copy

operation completes. With SOW, instead of blocking the write, a memory snapshot is

taken on the shared data using take snapshot(). The TID is set to that of the thread

that is making the update. The write operation can complete right after the snapshot

is taken. The snapshot is held until the copy operation completes and is destroyed

by a copy helper thread. This technique is beneficial for use cases of COW including

pages sharing in fast fork and disk block buffer sharing in virtual machines [146].

We developed a microbenchmark to emulate fast fork with SOW and evaluate

its performance. It launches an application with write protection on the heap, data,

and bss segments. Receiving a SIGSEGV, a signal handler takes a snapshot on the

write-protected page instead of copying the page right away. The page copy request

is sent through a queue to a copy helper thread running on another core. The write

protection on the page is removed and the application resumes without waiting for

the page to be copied.

6.6 Evaluation

6.6.1 System and Applications

We implemented MShot on top of an HTM system as explained in Section 6.4. The

base HTM detects conflicts eagerly based on the MESI protocol [90]. It uses eager

data versioning but defers logging of old data until transactional data overflows the

cache. As long as transactions fit in the cache, it commits fast by gang-clearing the

transactional bits and rolls back fast by invalidating the cache lines modified by the

transaction [60]. When transactional data overflow the cache, the log entries are saved

in a thread-private region. The HTM has multiple pairs of transactional metadata bits

per cache line to support nested transactions and uses PTM for virtualization [29].

PTM is in an on-chip directory controller located next to shared L2 cache. A pair of

W and R bits per cache line is dedicated to MShot. The snapshot metadata control
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Feature Description
CPU 2GHz, single-issue, in-order x86 core
SLB 64 entries

L1 Cache 64 KB, 4-way, 32B line, MESI, write-back
1 cycle hit time, private

L2 Cache 8 MB, 8-way, 32B block, MESI, write back
10 cycle latency, shared, 8 banks
bit vector of sharers

Memory 4 GB, 100 cycle latency
Interconnect Tiled network, 32B links, 3 cycles per hop

Table 6.4: Parameters for the simulated CMP system.

logic is augmented to the L1 cache. The SLB has 64 entries and is placed next to

TLB. We use 14-bit SIDs. Hence, attaching the SID, J bit, and MS bits on coherence

requests introduces 2 additional bytes. We implemented a library to provide the

MShot interface as explained in Section 6.3.2. If take snapshot() is called within a

transaction, we roll back all active transactions to ensure that the snapshot does not

include uncommitted data.

Table 6.4 shows the evaluation environment. We used a detailed simulator for x86

CMPs with 16 cores. The number of cores used by applications varies depending on

the test and the application. Each core has a 64KB private L1 cache with transac-

tional metadata bits. The cores are interconnected using a tiled network with 3-cycle

link delay per hop. The CMP includes an 8-MByte shared L2 cache and an on-chip

directory.

We used 12 applications and one micro benchmark. W3M is a client-side web

browser [148]. Pypy is a python interpreter [116]. Gzip is a compression tool [58].

Mpeg2 is a MPEG-2 decoder [12]. Cfrac performs continuous fraction factoriza-

tion for integers [21]. Nullhttpd is an HTTPD web server [105] . Vacation mimics

an e-commerce system and spends more than 90% of execution time in transac-

tions [23]. Vacation-L is a locking version of Vacation. Mp3d and Radix are from

SPLASH2 [155]. Tomcatv, Equake, and Swim are from SPEComp [141]. RBtree is a

micro benchmark that adds, searches, and deletes objects into and from a red-black

tree in transactions.
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Null RB Vacat Vaca Cfrac Gzip Mpeg2 Pypy W3M
httpd tree tionL tion

Snapshot 5.25 0.02 0.35 0.10 0.00 0.59 6.46 0.29 0.79
Data
Shadow 5.38 0.28 0.40 0.77 0.04 0.64 6.52 0.38 0.97
Page

Table 6.5: Memory requirement to manage overflowed snapshot data in Mbyte.

We set up the experiments to evaluate MShot for garbage collection, call-path

profiling, memory profiling, and copy-on-write. Each experiment compares the two

software implementations for the same component: non-concurrent implementations

without snapshot and snapshot-based version. The non-concurrent versions stop the

application while the system software component runs. We use a parallel GC, par-

allel memory profiler, single-threaded call graph profiler, and single-threaded copy-

on-write handler for the non-concurrent case. The snapshot-based versions run the

components concurrently with the application using additional cores in the CMP sys-

tem. We observe how efficiently they use these cores to support the system service

with minimal overhead to the application runtime. The ultimate goal is to use MShot

and the additional cores to give applications the illusion of using an ideal system with

zero overhead for GC, profiling, and COW.

We run Vacation-L, Nullhttpd, RBtree, and Vacation in parallel with 8 cores and

provide two additional cores for the snapshot-based components. We run the other

applications with one core and provide one additional core for the system components.

To provide a fair comparison, when the non-concurrent components run they use all

available cores to accelerate parallel GC and parallel profiling. The code for call-path

profiling and copy-on-write is single-threaded.

6.6.2 Garbage Collection Tests

We used 8 applications and the microbenchmark to compare parallel GC and the

snapshot-based one. To observe meaningful behavior within a reasonable simulation

time, a 32MB heap is used. While this is smaller than what a real environment would
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Figure 6.6: The graph on the left shows the run-time overhead caused by parallel
GC (Para) and snapshot GC (MShot). It is normalized to application execution time
without GC. The graph on the right shows the total execution time of Vacation-L and
Gzip. The AP bars are for the cores running applications. The AUX bars are for the
auxiliary cores used for garbage collection. Parallel applications runs with 8 cores.
Parallel GC stops the applications and uses 10 cores for the mutators. Snapshot GC
concurrently runs with 2 cores. Sequential applications run with 1 core. Parallel GC
stops the sequential applications and uses 2 cores for collection. Snapshot GC runs
concurrency with the sequential applications using on 1 core.

use, the applications still exhibit reasonable ratios of GC time over the total execution

time (from 1% for Cfrac to 18% for Gzip). We also show results for running MPEG2

with a 128MB heap.

Figure 6.6 presents the run-time overhead added to the application execution

time normalized to the execution time when running without GC using a very large

heap. Lower overhead is better. In each bar, Stop is the time spent for stopping

the system to start GC, Mark the time for the mark phase, Reclaim for the reclaim

phase, and Snapshot the time to initiate a snapshot. App time is the time spent in

the application itself. The MShot bar represents snapshot-based GC while the Para

bar represents the original parallel GC (non-concurrent). The numbers in parenthesis

is the utilization of the additional cores for each case. 10% utilization means that

the extra cores run GC for 10% of the total execution time and are idle the rest of

time. Note that, compared to the parallel GC, software-only concurrent GC typically
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shows shorter pause time at the cost of throughput loss since it has to deal with

synchronization between application threads and GC threads using software barriers

for load and store accesses [55]. The measured performance of parallel GC can be

thought of as a loose upper bound of software-only concurrent GC.

For all applications except Nullhttpd and RBtree, snapshot GC eliminates most

of the run-time overhead experienced with parallel GC. Nullhttpd and RBtree show

an increase of the application execution time itself. For Nullhttpd, this is because of

its significant memory requirements in order to load up new data to create HTML

files for HTTP responses. In the snapshot GC case, we observe increased contention

for the L2 cache between the GC and the application itself. For RBtree, it is due

to conflicts between transactions allocating memory and the GC around some GC

variables. The TM contention manager assigns a higher priority to GC, which makes

application transactions abort more often. Vacation, the other TM application, does

not show this effect since it has longer transactions than RBtree and the application

itself has a high conflict ratio. On average, snapshot GC reduces the overhead down

to 1.5%, which makes garbage collection essentially cost-free. Snapshot GC scales

well with a 128MB heap for Mpeg2. Take snapshot() adds negligible overhead to

applications and snapshot GC shows better utilization of the auxiliary cores than

parallel GC in all cases.

To further investigate the effects of garbage collection with and without snapshot,

we used Vacation-L and Gzip to measure the time breakdown for both the cores that

run application threads and the cores that run user threads. Figure 6.6 (right graph)

shows the breakdown normalized to the application execution time without GC. The

AP (application) bar is the one for the cores running application threads, and the AUX

(auxiliary) bar is for the additional cores running GC threads. For both applications,

snapshot moves the GC related cycles from the AP bar to the AUX bar, allowing the

application cores to process application threads faster. It is interesting to note that

the App time of Vacation-L has increased with parallel GC on the application core

(i.e., higher AP bar). This is because alternating between Vacation-L threads and

parallel GC threads in the non-concurrent case leads to thrashing in the L1 cache.

This is not the case for the concurrent case using snapshots, as the GC threads share
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Figure 6.7: The sensitivity of snapshot GC to different L1 cache sizes. It is normalized
to the application execution time with a 64K L1 cache and without GC.

only the L2 with the application threads.

Table 6.5 shows the memory requirements to maintain the overflowed data for

the snapshot-based GC. Since we use PTM for TM virtualization, additional physical

pages are required for shadow pages even if a single cache line overflows within each

page. In the table, Snapshot Data is for the actual snapshot data at cache line

granularity and Shadow Page is for the number of shadow pages times the 4-KByte

page size. For all applications except Nullhttpd and Mpeg2, the memory requirements

for snapshot data is under 1 MBytes. The worse case is still under 7 MBytes for the

16-core CMP.

We also examined the sensitivity of snapshot GC to L1 cache size, varying it from

32KB to 64KB and 128KB. Figure 6.7 shows the run-time overhead added to appli-

cation execution time. It is normalized to the total execution time of the applications

running with a 64KB L1 cache and without the GC. While the applications show

better performance with a bigger L1 cache in general, the variance is under 4% for

all cases except for Nullhttpd. The higher sensitivity for Nullhttpd is because it is

cache-bound when generating HTML pages.
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Figure 6.8: The run-time overhead caused by sequential call path profiler (Seq)
and snapshot call path profiler (MShot). It is normalized to application execution
time without profiling. For the sequential call path profiler, we use 1 core for both
application and profiling. For the snapshot call path profiler, we concurrently use 1
core for the application and 1 core for profiling.

6.6.3 Profiler Tests

The profiler evaluations consist of call-path profiling and memory profiling. Figure 6.8

shows the overhead added due to call-path profiling. It is normalized to the appli-

cation execution time without profiling. Prof is the time for running the profiler,

App for the execution of the application itself, and Snap the time to take a snap-

shot. The percentage in the parenthesis is the utilization of the auxiliary cores. The

non-concurrent implementation runs on the same core as the application and does

not use the additional core. The profiler is triggered 50K cycles after the last profil-

ing has completed to guarantee reasonable forward progress of the applications with

the non-concurrent implementation. Gzip, Pypy, and W3M experience the largest

performance improvements with snapshot profiling ranging from 68% (Pypy) to 75%

(Gzip). This result is important for the programs written in object-oriented language

since they typically have deeper call depth. This is due to the deep call graph (av-

erage depth of 14) for these applications. On the contrary, Mp3d, Radix, and Cfrac

have an average depth of 4 to 6 functions. Regardless of the applications’ call depth,
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Figure 6.9: The run-time overhead caused by the parallel memory profiler (Para)
and the snapshot memory profiler (MShot). It is normalized to application execution
time without profiling. Parallel applications run with 8 cores. The parallel memory
profiler stops the applications and run with 10 cores. The snapshot memory profiler
runs concurrently with 2 cores. Sequential applications run with 1 core. The parallel
memory profiler stops the applications and run with 2 cores. The snapshot memory
profiler run concurrency with 1 cores.

the snapshot call-path profiler adds negligible overhead to the application (less than

3%). Note that the profiling period we used here is shorter than a typical call-path

profiling period. In a 2GHz system, if the profiler is invoked every 1msec, it then it

runs every 2,000,000 cycles. This is 40× less often than the the frequency we used in

our tests. Still, we were able to maintain low profiling overhead which implies that,

given spare cores, profilers can run more often to provide more accurate information.

Figure 6.9 shows the overhead due to the memory profiler. It is normalized to

the application execution time without profiling. The profiler run every 10M cycles.

The snapshot memory profiler reduces the run-time overhead by 12% (RBtree) to

77% (Gzip). In this test, the App time itself has increased noticeably with both the

parallel memory profiler and the snapshot-based memory profiler. This is because of

contention for cache resources between application and profiler threads. The paral-

lel memory profiler uses the same L1 cache with the application and shows higher

overheads. The snapshot profiler shares only the L2 with application threads.
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Figure 6.10: The total execution time with the copy-on-write handler (COW) and
the snapshot-on-write profiler (MShot). It is normalized to application execution time
without write protection (100For copy-on-write, we use 1 core for both application
and copying. For snapshot-on-write, we concurrently use 1 core for application and
1 core for copying.

6.6.4 Snapshot-On-Write Test

To compare snapshot-on-write (SOW) using MShot to conventional copy-on-write

(COW), we used five scientific applications that stress both systems through accesses

to large data structures. Figure 6.10 shows the time breakdown for the applications

normalized to the total execution time of the applications running without copy-on-

write. In the figure, Copy is the time to copy a page, Pg Fault the time to invoke the

page fault handler, Snap the time to take a snapshot, and App the time to execute

the application code. The figure shows a very interesting result. SOW eliminates

the overhead of copy operations, providing improvements ranging from 5% (Equake)

to 85% (Swim). Moreover, it allows Radix, Swim, and Tomcatv to run faster than

they do without write protection as the SOW threads essentially provide L2 cache

prefetching for the application threads. Note that we used scientific applications with

high spatial locality in order to not penalize COW, which works poorly if only a small

number of words are used after copying a whole page. It turns out that high spatial

locality increases the benefits of prefetching from SOW as well. With a 100 cycle

memory latency in our system, the penalty of an L2 miss is comparable to that of

invoking a page fault handler.
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6.7 Related Work

Other than the related works described in Section 6.2.2, there are recent software im-

plementation proposals for mostly concurrent and parallel garbage collectors [156, 44,

66]. While they are competitive to MShot in terms of low runtime overhead, MShot

delivers more important benefit of allowing for algorithmic simplicity and easy code

management. There are recent advances in dynamic profiling such as SuperPin and

Shadow Profiling [152, 92]. However, SuperPin still reports overheads of 100% be-

cause it uses heavy-weight cloning/forking and because of the DBT overheads. MShot

might be able to help it with a light-weight consistent view on memory. Shadow Pro-

filing reports overheads but has only been evaluated with simpler analyses (e.g. count

basic blocks, rather than actually scanning through heap and stack).

6.8 Conclusion

In the chapter, we propose MShot as a system that provides a hardware-assisted

memory snapshot. The goal of MShot is to allow for algorithmic simplicity, easy code

management, and performance at the same time. MShot allows us to increase the

concurrency in software systems without introducing complex code to synchronize

accesses to shared data. We showed that MShot can be implemented in a cost-

effective manner when combined with a hardware TM architecture. The evaluation

result using snapshot for garbage collection, call-path profiling, memory profiling,

and copy-on-write show that MShot allows us to exploit additional cores in a CMP

to improve the system performance by eliminating almost all overheads due to such

system services.



Chapter 7

Accelerating SW Solutions Using

TM

7.1 Introduction

Computing systems have become an essential part of modern infrastructure, under-

lying communication, commerce, government, health care, education, and scientific

research. In many environments, reliability, security, and debugging are as important

as performance. In the past decades, there have been efforts to develop solutions

that independently provide system support for reliability, security, or debugging in

software and hardware [138, 114, 117, 36, 144, 160, 121, 122]. Software solutions can

flexibly provide various useful features at no hardware cost such as kernel protection

with virtual memory protection [144]. However, they have performance issues since

they have to rely on the commodity hardware primitives. Hardware solutions add

dedicated hardware resources to accelerate a specific feature. Still, the more highly-

tuned the hardware resources are for a specific feature, the harder they are to be

adopted to commercial systems due to the lack of generality.

In this chapter, we propose a scheme to accelerate software solutions for reliabil-

ity, security, and debugging with hardware resources for transactional memory. Our

proposal is based on two key observations. First, the software solutions for reliability,

125
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security, and debugging frequently require similar low-level features that are imple-

mented with software techniques such as virtual memory protection and dynamic

binary translation. Second, TM hardware resources can be reused to support the

same features with superior performance than the software techniques. The hard-

ware resources for TM have been designed for concurrency management and cannot

substitute a whole solution for reliability, security, and debugging. Nevertheless, the

key point of our proposal is to maintain the software solution for functionality and

use TM hardware to accelerate only their common case behavior.

We support four specific acceleration primitives for software solutions by leverag-

ing hardware resources for TM:

• Thread-wide isolated execution separates the result of thread execution

from the rest of system state. The primitive is used to isolate the execution of

faulty or untrusted code until its properties are verified.

• Fine-grain access tracking detects memory accesses that read from or write

to a specified address at cache-line granularity. The primitive allows for tracking

and preventing memory accesses to security critical data.

• User-level software handler is invoked when a software specified event occurs

such as an access to a watched memory address. In collaboration with access

tracking, this primitive provides a light-weight signaling mechanism.

• Process-wide checkpoint takes a register checkpoint in hardware and builds

memory checkpoint gradually by versioning data at cache-line granularity. The

primitive is used to roll back the execution of a program to a pointer of interest

or to a known safe point.

Compared to conventional software techniques such as virtual memory protection

and instrumentation using dynamic binary translation, the acceleration primitives

provide the following advantages for reliability, security, and debugging solutions.

First, they minimize the time and area overhead of data versioning by providing sup-

port in hardware and at cache-line granularity. Second, they avoid the performance
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and accuracy problems of false-sharing due to page-level tracking by tracking accesses

granularity of cache lines. Third, they eliminate the need for dynamic instrumenta-

tion of the application code in order to safely handle the concurrent execution of the

application with the reliability, security, or debugging solution. Finally, user-level

handlers eliminate the overhead of using OS mechanisms for signaling.

The rest of the chapter is organized as follows. Section 7.2 reviews software so-

lutions for reliability, security, and debugging. Section 7.3 explains the acceleration

primitives built over TM hardware. Section 7.4 explains how these primitives accel-

erate the software solutions, and Section 7.5 quantifies the performance advantages.

Section 7.6 discusses related works and Section 7.7 concludes the chapter.

7.2 Software Solutions

There has been significant research on software solutions for reliability, security, and

debugging. This section reviews these solutions and their performance bottlenecks.

Related hardware techniques are discussed in Section 7.6.

7.2.1 Reliability

Reliability solutions for backward error recovery reduce mean-time-to-recovery (MTTR)

by taking checkpoints periodically and by restoring the latest checkpoint when a fault

is detected [19, 78, 111, 27]. To avoid the runtime overhead of checkpointing the whole

program state, incremental techniques build the checkpoint gradually using virtual

memory protection [19, 78]. When a checkpoint is initiated, all pages in the pro-

gram’s address space are write protected. If the program attempts to modify a page

later, a protection error occurs and the page is copied to a log (copy-on-write). The

checkpoint overhead is reduced further by keeping the log in memory with diskless

checkpointing [111] or by using the fork system call [110]. Nevertheless, checkpoint-

ing techniques suffer from the time and area overhead introduced by virtual memory

protection. Page fault exceptions take hundreds of cycles to handle and cause signif-

icant performance issues for memory intensive applications. Tracking modifications
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at page granularity causes unnecessary logging of significant amounts of data if only

a small portion of each page is modified.

Software recovery techniques such as Swift-R and Trump recover from a single bit

fault in the functional units and pipeline registers of a processor by triplicating the

original instruction stream or by duplicating it with additional error recovery code

at the risk of widening the window of vulnerability [123, 26]. The results from the

replicated streams are compared and the correct result is decided by voting. While

requiring no dedicated hardware, these techniques suffer from the runtime overhead

of replicated execution.

Software fault isolation assigns a portion of the virtual address space (i.e., a fault

domain) to a software module and allows the module to access only its own domain

with address sandboxing [150]. While it effectively isolates a fault from the rest of

system, it introduces additional overhead for cross-domain communication. Since

each module can access only its own domain, a remote procedure call (RPC) is used

to copy data cross domains. The overhead increases in proportion to the size of shared

data, which is likely to grow as parallel programming becomes commonplace.

7.2.2 Security

There have been proposals to protect systems from buffer overflow attacks, a well-

studied but still common threat. StackGuard uses a software canary mechanism to

detect buffer overflow attacks [36]. Figure 7.1 shows how to detect a stack smash-

ing attack by inserting canaries adjacent to potential targets on the stack such as

return addresses or function pointers. Due to the monotonic nature of the string

and buffer operations used for stack smashing, an attack must overwrite the canary

before changing the protected data. A software implementation of canaries involves

checking if the value of the canary has been modified before every use of the protected

variable. Propolice is a similar idea but also performs stack variable relocation to hide

stack variable layout [113]. PointGuard protects function pointers in stack with the

same mechanism [35]. These are all practical solutions against buffer overflows which

introduce the runtime overhead of checking and manipulating software canaries. The
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Figure 7.1: Buffer overflow detection using canaries in StackGuard [36]. Canaries 1
and 2 protect the return address and function pointer from attacks 1 and 2 respectively
using the corresponding string variables.

overhead is proportional to the number of protected variables and can be low if only

a small number is protected.

Several proposals attempt to secure the OS kernel from faulty or malicious drivers

and plug-ins. Nooks uses virtual memory mechanism to provide protection domains

per driver in order to limit access to kernel data structures [144]. Illegal accesses by

an attacker are caught by page fault exceptions. Nooks introduces runtime overhead

when drivers modify kernel data legitimately. To guarantee the integrity of kernel

data, Nooks uses RPC to provide a copy of the kernel data for the driver and to copy

the final data back to the kernel domain when the driver completes its operation in

a secure and fault-free way. Depending on the size and complexity of kernel data

structures, the copy operation may be expensive (e.g., when copying a large B-tree).

Instead of using RPC, VINO and KeyKOS use object-based software transactional

memory to save safe data versions before modification [132, 50]. They introduce the

performance overhead of data versioning in software. Moreover, they increase the

complexity of code as they also require undo methods for all data modifications.

7.2.3 Debugging

Watchpoints provide a useful tool to track and catch incorrect memory accesses.

GDB leverages the small number of hardware monitors (e.g., 4 monitors in x86 sys-

tems) to support low overhead watchpoints [56]. For a larger number of watchpoints,
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GDB traps at every memory access and searches a software structure that tracks

watched addresses. To avoid the significant slowdown of trapping at every memory

access, EDDI [159] uses dynamic binary translation to introduce checking code that

searches the software structure and traps into the debugger only on actual accesses

to watchpoints. While more scalable than the original GDB approach, EDDI still

suffers from a 3× slowdown due to the additional instrumentation. EDDI also pro-

vides an optimization that uses virtual memory protection for coarse-grain detection

before instrumentation code is used to detect if the access is to an actual watch-

point. The data breakpoint scheme uses virtual memory protection in a way similar

to EDDI [149]. The bottleneck of these techniques is false sharing, as the debugger or

instrumentation code is invoked on any access to the page with a watched variable.

During debugging, programmers tiptoe around the point of failure in search of

the actual bug. Unfortunately, they often step past an interesting point before they

realize its importance. A bookmark allows users to mark a starting point before they

start to tiptoe. Having missed an important event, they can rollback execution to

the bookmark and resume execution without a complete restart. Step-back allows for

reverse execution to reach back to the interesting point. It uses the last bookmark

and automatically replays from there to the proper point of execution. Recap [108],

Bdb [17], and Jockey [127] use a fork system call to take a register checkpoint and

use copy-on-write at page granularity to log the memory image of the bookmark.

They log external events for replay as well. The longer a bookmark is maintained,

the larger the memory footprint they generate due to unnecessary data versioning at

page granularity.

Systems such as Memcheck [101] and Purify [115] have been proposed to help

detect memory errors. They use dynamic binary translation to introduce metadata

and code that check the validity of a memory access to every byte of memory. For

example, Memcheck adds a valid bit per memory byte and sets the bit when the byte is

allocated and resets it when freed. An access to freed memory is detected by checking

the corresponding valid bits. While providing a flexible and versatile platform for

debugging, these schemes introduce the runtime overhead of instrumentation, which

causes a slowdown of up to 20× [101]. Safemem uses the ECC bits in memory to
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detect memory leaks and corruptions [117]. To detect leaks, ECC bits are set during

resource allocation to enable the collection of usage statistics. Resources that are not

used for a certain period of time after allocation indicate a potential leak. Memory

corruption is detected by using the ECC bits to mark write-protected addresses.

The disadvantage of Safemem is that it takes 1 to 2 microseconds to set and reset

an ECC bit [117]. Exterminator uses software canaries with randomized values for

fine-grain detection of memory errors experiencing the common overhead of software

canary [104].

7.2.4 Opportunities for Acceleration

The solutions discussed provide useful functionality for reliability, security, and de-

bugging. Table 7.1 summarizes the software techniques used to implement the basic

features and the performance overhead they introduce. In this work, we provide

hardware acceleration for these features by leveraging the hardware resources for

transactional execution. Of course, the main challenge is to provide performance

improvements without compromising the flexibility and usefulness of these solutions.

7.3 Acceleration Primitives using TM Hardware

This section provides an overview of TM hardware and the acceleration primitives we

build on top of TM resources.

7.3.1 Acceleration Primitives

We propose to use hardware resources for TM to accelerate software solutions for

reliability, security, and debugging. Table 7.2 summarizes the interface and function-

ality of the four primitives we suggest. While TM resources may also support other

functions, we narrow the focus of this work to these primitives. Thread-wide isolated

execution separates the result of thread execution from the rest of system. Fine-grain

access tracking detects memory accesses to a specified address at cache-line granu-

larity. User-level software handlers are invoked on events such as the completion of
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Software Usage Performance Issues Used by
Technique
Virtual Process-wide data False sharing, Incremental,
Memory versioning Page-fault exception, Diskless,
Protection Data versioning at Probabilistic

page granularity checkpoint
Memory access False sharing, Efence, EDDI,
tracking Page-fault exception Data breakpoint

Dynamic Instruction stream Additional replicated Swift-R, Trump
Binary replication instructions
Translation Memory access Additional checking Memcheck, purify,

tracking instructions EDDI, GDB
Software Memory access Canary check and Exterminator,
Canary tracking manipulation StackGuard,

Propolice,
PointGuard

Object-based Isolated execution Logging safe data Vino, KeyKOS
SW TM per write
RPC Cross-domain Copying argument Software fault

communication and return value isolation, Nooks
Fork Register checkpoint, False sharing, Libckpt, Recap,

Process-wide System call overhead, Bdb, Jockey
data versioning Data versioning

at page granularity
ECC Memory access ECC manipulation, SafeMem

tracking ECC-error interrupt

Table 7.1: Software techniques used by software solutions for reliability, security, and
debugging and their performance issues.

isolated execution, the aborting of isolation execution, and the detection of an access

to a tracked address. Process-wide checkpoint takes register checkpoints in hardware

and builds memory checkpoint gradually by versioning data at cache-line granularity.

By glancing at the interface of the primitives, it is not surprising that TM hardware

resources can be reused to support their functionality using the architecture shown

in Figure 7.2. The rest of this section explains the exact use of TM resources for

each primitive. We attempt to support their functionality without modifying TM

hardware whenever possible.
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Primitive Interface Function
Thread-wide IS begin () Start isolating the current thread execution
Isolated from the rest of system.
Execution IS end () Merge the result of the isolate thread

execution to the rest of system.
IS abort () Discard the isolated thread execution.

Fine-grain AT set (addr, R/W) Monitor memory access to the cache line
Access including addr.
Tracking R/W is 0 to set read protection,

and 1 to set write protection.
AT reset Stop monitoring the cache line including addr.
(addr, R/W) R/W is 0 to reset read protection,

and 1 to reset write protection.
User-level Register hdr Register handler pointed by hdr ptr for
Software (hdr ptr, event type) event type.
Handler event type is either IS end, IS abort,

or access tracking.
Unregister hdr Unregister handler pointed by hdr ptr for
(hdr ptr, event type) event type.

Process-wide CKP take () Take a checkpoint of the current process
Checkpoint CKP release () Discard the current checkpoint

CKP restore () Roll back to the current checkpoint

Table 7.2: Four primitives for acceleration of software solutions

7.3.2 Thread-wide Isolated Execution

Thread-wide isolated execution is trivially implemented with TM resources since iso-

lation is one of the basic properties of transactional execution. IS begin, IS end, and

IS abort are directly mapped to transaction begin, end, and abort, respectively. The

challenge is to support the use of this primitive concurrently with memory trans-

actions in user code. It is reasonable to assume that user-defined transactions and

isolated code blocks are perfectly nested (i.e., the one fully encloses the other). The

rationale is that it is difficult to construct practical scenarios where sets of operations

must be atomic with respect to concurrency but non-atomic with respect to reliability,

or vice versa. If TM hardware provides support for nested transactions, we can use

these resources to allow for independent rollback of nested transactions and isolated

blocks. If there is no nesting support in the TM hardware, subsuming the code block
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Figure 7.2: TM hardware resources reused for accelerating software solutions. The
location of TM virtualization logic may change depending on virtualization mecha-
nisms.

within the transaction or the other way around is sufficient as long as software can

determine whether a conflict was due to an address accessed within the transaction

or within the isolated code block. If the code block is long enough to cause overflow,

we either rely on the TM virtualization mechanism or abort the isolated block and

falls back to the conventional techniques used for isolation in the software solutions

for reliability (e.g., checkpointing through virtual memory).
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Figure 7.3: Leveraging TM nesting support and handlers to implement fine-grain
access tracking.

7.3.3 Fine-grain Access Tracking

We use the TM conflict detection mechanism to implement fine-grain access tracking.

We take advantage of nesting support in TM hardware and dedicate the metadata

bits for one nesting level to address tracking as shown in Figure 7.3. Metadata bits of

the dedicated nesting level are set for cache lines of the monitored addresses with the

W bit set for writes and the R bit set for reads. An access to a monitored address is

detected similarly to a transactional conflict. Software can easily separate transaction

conflicts from monitored accesses by checking if the conflict is against the dedicated

nesting level. Since the metadata for TM and access tracking are separate, it is simple

to set and reset them independently as transactions begin/end or address protection

is turned on/off for various addresses. The only disadvantage is that the number of

hardware nesting levels available to TM is reduced by one. In Figure 7.3, we use

the lowest nesting level (i.e., level 1) for access tracking. This allows the transaction

nesting support to work exactly in the same way as before except for starting from

the next lowest nesting level (i.e., level 2).

If the TM hardware does not provide support for nested transactions, it is not

practical to implement access tracking on a core that is also executing a transaction

since the same metadata bits may be set and reset for both TM and access tracking.

To avoid aliasing, we suggest one software and one hardware solution. The software

solution is to reserve a core in the CMP system for access tracking. The metadata

bits available for conflict detection in this core are used exclusively for access tracking.

This may be the core that supports operating system and I/O tasks, which are likely
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to require separate core(s) in future CMPs [61]. The hardware solution is to add

a single hardware signature per core to separate address protection metadata from

transactional metadata. If the hardware resources are not enough to contain all

metadata bits set for access tracking, we either rely on the proposed mechanisms for

TM virtualization or fall back to the software techniques for access tracking for the

remaining addresses (e.g., virtual memory protection).

Most hardware TM designs, including hybrid schemes, provide instructions or

functions that map directly to the AT set and AT reset functionality. Early release

can be used for AT reset as well [84]. In the worst case, it should not be hard to add

the interface to set and reset metadata bits since the combinational logic manipulating

metadata bits already exists in TM hardware. There is no need to execute AT set or

AT reset operations in the same thread or processor that runs the monitored programs

since the coherence protocol guarantees that conflicts will be detected correctly across

the system. However, we need to have the option to turn on conflict detection within

a processor/thread to allow a memory access by a processor to find the metadata bits

set in its local caches and trigger a conflict. This feature is not needed by the base

TM functionality.

If hardware signatures are used to track the read-sets or write-sets of transac-

tions [25], software has to filter out false positives due to aliasing of monitored ad-

dresses. While signatures are only gang-cleared for transactional processing, the

AT reset operation needs to remove individual entries as well. If the signatures are

not based on counting Bloom filters [48], software should maintain a list of the mon-

itored address and reconstruct the signatures as needed when AT reset is invoked.

Reconstruction can be delayed to balance its overhead with the performance impact

of false conflicts. If there is a need for finer granularity than cache line for security

or debugging purposes, the hardware detects an access to monitored addresses at

cache-line granularity and software is used to provide word- or byte-level granularity.

Note that there is an interesting difference between the typical use of cache meta-

data bits for transactions and for access tracking. The metadata bits for transaction

are short-lived and related to recently accessed data. Because transaction overflow

mechanisms lead to increased overhead for TM systems, we should tune the cache
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eviction policy to avoid replacement of cache lines with active metadata. The meta-

data bits for access tracking are long-lived and attached to data accessed infrequently

or not supposed to be accessed. It indicates retaining the cache lines with the meta-

data may lead to poor utilization of the cache. An optimal eviction policy must take

into account the nature of the metadata bits when making replacement decisions.

7.3.4 User-level Software Handler

User-level software handlers are directly mapped to TM software handlers [84]. The

software handler for IS end is mapped to the commit handler. The handler for

IS abort is mapped to the abort handler. And the handler for access tracking is

mapped to the conflict handler. The same interface that registers and unregisters

TM handlers is used for Register hdr and Unregister hdr. Figure 7.3 shows how the

conflict handler is used as a handler for access tracking. When a conflict is reported, a

default handler checks the nesting level the conflict is detected against. If it is against

the nesting level dedicated to access tracking, the registered access tracking handler

is called. If not, the register handler for TM contention management is invoked.

7.3.5 Process-wide Checkpoint

Process-wide checkpointing is more complex than the other primitives since it is

not directly mapped to TM features. Our scheme uses a small software library that

synchronizes threads to build a checkpoint. At the beginning of a checkpoint triggered

by CKP take, all threads are synchronized with per-thread signals and use the lowest

nesting level transactions to take register checkpoints. If a thread already runs a

memory transaction, we either abort it or wait for it to complete.

The memory checkpoint is built gradually using the TM data versioning mecha-

nism. If TM hardware logs old values of data updated within a transaction, we build

the checkpoint by accumulating transaction logs. If a user transaction is encountered,

we simply initiate a new log to use in case the transaction is aborted. The old log

is not discarded and the new log is appended to the old one when the transaction

commits. No special support for nesting is necessary to support transaction after a
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checkpoint is initiated. Nevertheless, we must track the serializable commit order of

transactions across threads so that we can undo a collection of transactions if needed.

The checkpoint is restored with CKP restore by applying the accumulated logs in the

reverse order by taking into account the commit order of transactions across threads

If the TM hardware buffers new values until the transaction commits, we use

caches as temporal storage to contain the changes since the checkpoint. Conflicts

against the lowest nesting level metadata bits are ignored by the TM contention

manager since the bits are set only to distinguish data accessed after the checkpoint.

If a user transaction is encountered after the checkpoint is initiated, nesting support is

required. If the changes overflow the caches, we use the TM virtualization mechanism

to store new values in virtual memory [120, 29]. An alternative is to use a simpli-

fied virtualization mechanism that simply logs in virtual memory the value in main

memory about to be overwritten by the eviction due to the cache overflow. There is

a single process-wide log. The checkpoint is restored by invalidating all caches and

overflowed data. It is released by committing the buffered new data to the shared

state of the system in a manner similar to committing a transaction.

Some software solutions require escape actions that survive through CKP restore.

For example, the debugging solutions supporting reverse execution of programs may

want to keep the information about how to replay to the interesting point after the

checkpoint restored [108, 17, 127]. They can reserve a small memory area to store such

information and access the area with non-cacheable access. Non-cacheable accesses

bypass the TM hardware for data versioning in cache, and CKP restore does not

revert the modifications made to the area.

Note that the hardware support for checkpointing guarantees only restoration

of registers and memory. It is up to software to deal with external events. For

instance, software can use a framework like ReviveIO that provides revocable I/O

operations [94]. Exceptions such as page faults are expected and reproducible, but

interrupts are not. Hence, software must either take a checkpoint on each interrupt

or record them for replay purposes. In some case, software can exploit high-level

properties of the I/O system in order to simplify integration with the checkpointing
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mechanism. For TCP/IP connections, for example, software does not need to check-

point on interrupt or log incoming packets. Assuming a long enough timeout interval,

it may be sufficient to just defer sending acknowledgments until the next checkpoint.

If a checkpoint is restored, both the record of the received packets and the queue

of pending acknowledgments are rolled back, causing the system to behave as if the

network failed to deliver the packets. TCP/IP’s robust retransmission mechanism

will cause the packets to be retransmitted.

7.4 Accelerating SW Solutions

This section explains how the TM-based acceleration primitives in Section 7.3 are

used within software solutions for reliability, security, and debugging and what the

expected benefits are. The basic idea is to rely on software for flexible functionality

and to use the proposed primitives to accelerate the performance of the common case

behavior. Table 7.3 shows the common low-level features that the solutions require

for functionality and the hardware-assisted primitives that support the features with

superior performance than the alternative software techniques. If the hardware re-

sources used for the primitives are exhausted, we either rely on TM virtualziation

mechanisms or the original software techniques.

7.4.1 Process-wide Data Versioning

Process-wide data versioning is a key feature required by the reliability solutions that

recover errors backward with periodic checkpointing [111, 78, 27]. It builds directly

upon process-wide checkpoint in our scheme. CKP take is used to start the first check-

point. The next checkpoints are composed of CKP release followed by CKP take. Be-

tween checkpoints, data versioning is performed at cache-line granularity in hardware

out of the critical path of program execution. The hardware exhaustion for checkpoint

can be handled either by TM virtualization mechanisms [120, 29] or by shortening

the checkpointing interval. A short checkpointing interval reduces the recovery time

after restoring a checkpoint as well. However, it increases the checkpointing overhead
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Common Hardware-assisted Acceleration Primitive Alternative
Feature Thread- Fine- User- Process- Software
Requirement wide grain level wide Technique

Isolated Access Software Check-
Execution Tracking Handler point

Process-wide
√ √

Virtual memory
Data protection, fork
Versioning
Memory

√ √
Virtual memory

Access protection,
Tracking dynamic binary

translation, ECC,
software canary

Isolated
√ √

Object-based
Execution SW TM
Instruction

√ √
Dynamic binary

Stream translation
Replication
Cross-

√ √
Remote

domain procedure call
Communi-
cation

Table 7.3: Common feature requirements supported by the hardware-assisted accel-
eration primitives with superior performance than the alternative software techniques.

with frequent execution of CKP take. The software solutions should determine the

checkpoint interval that balances the TM virtualization overhead, MTTR, and the

checkpoint overhead. It is desirable to use an interval that causes the hardware ex-

haustion rarely to accelerate the solutions fully in hardware. Compared to virtual

memory protection, process-wide checkpoint accelerates the solutions by removing

most of false sharing, eliminating page fault exception, and reducing the log size sig-

nificantly. We compare process-wide checkpoint and virtual memory protection for

checkpoint quantitatively in Section 7.5.2.

While process-wide checkpoint supports process-wide data versioning efficiently,
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there are opportunities to reduce the checkpointing overhead further for certain com-

putation faults with thread-wide isolated execution. Programmers or compilers de-

clare a code fragment to be an isolated code block enclosed with IS begin and IS end.

During the execution of the code block, its output is isolated from the rest of the

system; other threads cannot see its memory updates until it completes. If an error

that affects a single isolated block is detected, the block can be rolled back with a

much lower cost than that of restoring a process-wide checkpoint. This dramatically

reduces the MTTR. Thread-wide isolated execution is useful for recovery from both

hardware and software errors. The isolated code blocks coexist with process-wide

checkpoints, so recovery is still possible for faults that encompass multiple isolated

blocks or that cannot be detected quickly. We show the performance benefit of using

thread-wide isolated execution for reliability in Section 7.5.2.

Process-wide checkpoint accelerates the debugging solutions that support book-

mark and reverse execution [110, 108, 17, 127]. A bookmark is created with CKP take,

restored with CKP restore, and discarded with CKP release. In comparison to the

fork system call, process-wide checkpoint supports faster register checkpointing and

memory data versioning in hardware. Reverse execution is done by restoring a book-

mark and moving forward to the point of interest. Escape actions to remember where

to move forward after restoring a checkpoint are done through non-cacheable access

as explained in Section 7.3.5

7.4.2 Memory Access Tracking

Memory access tracking is an essential feature for the security solutions that prevent

untrusted code from accessing important data illegally. It builds upon fine-grain

access tracking and user-level software handler in our scheme. For the solutions using

a software canary to prevent buffer overrun attacks, an aligned cache-line-sized space

is allocated next to return addresses and pointers in the stack in the same way as

a software canary is allocated [104, 36, 113, 35]. The space is write-protected with

AT set. A buffer overrun attack to compromise the return addresses and pointers

triggers the user-level handler registered for access tracking as explained in Figure 7.3.
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Inside the handler, the security solutions take a proper measure to deal with the attack

(e.g., killing the process). This mechanism eliminates the additional code to check

software canary values and improves performance as shown in Section 7.5.3.

Fine-grain access tracking helps debugging solutions to support a scalable watch-

point. Instead of using virtual memory protection [159, 149], watchpoint solutions set

read/write protection to watched addresses using AT set. This eliminates false shar-

ing at page granularity and page fault exception handling overhead. If the hardware

resources are exhausted due to lots of watchpoints, we either rely on TM virtualiza-

tion mechanism or fall back to virtual memory protection for the overflowed portion

of watchpoints. Some watchpoint solutions instrument trap instructions per memory

access after scanty hardware monitors are exhausted [56]. Fine-grain access tracking

provides scalable hardware watchpoints for the solutions to avoid trap instruction

instrumentation. We compare fine-grain access tracking, virtual memory protection,

and trap instruction instrumentation for watchpoint implementation in Section 7.5.4.

Some solutions instrument monitoring code with dynamic binary translation to

detect memory errors such as accesses to freed memory [101, 115]. Fine-grain access

tracking easily detects such accesses by setting write protection to freed memory

regions with AT set. The protection is reset with AT reset when the memory regions

are reallocated. This approach improves performance significantly by eliminating the

monitor code. We compare fine-grain access tracking, virtual memory protection,

and dynamic binary translation for watchpoint implementation and memory error

debugging in Section 7.5.4. For the solutions that use ECC bits for memory error

detection [117], fine-grain access tracking provides metadata bits in cache for faster

bit manipulation.

7.4.3 Isolated Execution

Security solutions using object-based software transactional memory for isolated ex-

ecution take direct advantage of the hardware support for isolated execution in our

scheme [132, 50]. Instead of software transactions, they use faster thread-wide isolated



CHAPTER 7. ACCELERATING SW SOLUTIONS USING TM 143

execution. Since transactions are short-lived in the common case [32], most transac-

tions should be able to run with hardware-assisted isolated execution. If the resources

are exhausted, they either rely on the TM virtualization mechanism [120, 29] or fall

back to the original object-based software TM [41]. Using the object-based software

TM as a backup system demands two versions of code: one for hardware TM and

the other with software barriers for software TM. An alternative is to use page-based

software TM that supports software transactions transparent to TM programs.

7.4.4 Instruction Stream Replication

Our scheme does not provide a feature to replicate instruction streams, but helps

reduce the number of instructions to be replicated for software fault recovery [26].

The basic idea is to mix forward recovery of software fault recovery and backward

recovery with thread-wide isolated execution. Assuming that faults are rare, we start

with backward recovery. A program is split into small isolated code blocks, each of

which starts with IS begin. The code blocks have duplicated instruction streams for

fault detection. If the results from duplicated instruction streams coincide, IS end

is called. If they differ, a fault is detected and IS abort is called to restart. Only

for the blocks with frequent faults, is forward recovery applied. The code blocks

have triplicated instruction streams that vote for the right result. The frequency

of failure for a block is tracked by IS abort handler. Switching to forward recovery

is done either by dynamic binary transaction [123] or with another version of the

code block generated at compile time if the instruction replication happens at source

code level [26]. Using dynamic binary translation, we can adjust the size of large

code blocks to avoid the hardware resource exhaustion for isolated execution. This

approach helps avoid code triplication in most cases.

7.4.5 Cross-domain Communication

Some security solutions provide multiple domains to isolate software modules [150,

144]. They use remote procedure call for cross-domain communication to preserve
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Feature Description
CPU 2GHz, single-issue, in-order x86 core
L1 Cache 64 KB, 4-way, 32B line, MESI, write-back,

1 cycle hit time, private
L2 Cache 8 MB, 8-way, 32B block, MESI, write back,

10 cycle latency, shared, 8 banks, bit vector of sharers
Memory 4 GB, 100 cycle latency
Interconnect Tiled network, 32B links, 3 cycles per hop

Table 7.4: Parameters for the simulated multi-core system.

data integrity of each domain with call-by-value semantics. Our scheme uses thread-

wide isolated execution and user-level software handler to accelerate cross-domain

communication. It allows call-by-reference semantics that hands over pointer to data

directly instead of copying data for faster cross-domain communication. A method

invocation to another domain starts with IS begin. During the isolated execution, old

safe values to be overwritten are saved through thread-wide isolated execution. After

the method invocation completes successfully, IS end is called. If a fault is detected,

IS abort is called to restore the safe values. IS abort handler is used to initiate

recovery procedure for the fault. This approach eliminates the runtime overhead of

copying data, which can be significant for complex data structures such as large trees.

It simplifies call/return stubs for cross-domain communication as well.

7.5 Performance Evaluation

This section evaluates the acceleration primitives quantitatively in the context of

reliability, security, and debugging. We explain our methodology of using a cycle-

accurate simulator to compare the primitives with software techniques and to analyze

them.

7.5.1 Methodology

We used a cycle-accurate CMP simulator for an 8-core x86 CMP system. Table 7.4

summarizes the basic parameters of the environment. All operations except loads



CHAPTER 7. ACCELERATING SW SOLUTIONS USING TM 145

and stores have a CPI of 1.0. However, all details of the memory hierarchy timings,

including contention and queuing events, are modeled. The shared L2 cache also acts

as a directory as each entry includes a bit-vector that identifies the L1 caches that

share the cache line. It takes 200 cycles to trigger page fault exception handler.

We implemented the acceleration primitives over a simulated TM system that has

the following hardware resources. It versions data lazily by using local caches as a

write buffer for an ongoing transaction [60]. Every entry in the L1 cache for a core

contains four pairs of metadata bits (R and W) that indicate if the line has been

read or written by a transaction at the corresponding nesting level [84]. Coherence

messages are looked up against these metadata bits to detect conflicts. A conflict

occurs when a shared request finds any of the W bits set or an exclusive request finds

any of the R or W bits set. If a transaction overflows the L1 cache, the transactional

state is virtualized in the following manner. The metadata bits are summarized in

a set of conservative signatures implemented by Bloom filters. Each core has four

pairs of signatures to summarize overflowed metadata (one R and one W signature

per nesting level) An overflowed transaction may experience some false conflicts due

to the inexact nature of Bloom filters. If a cache line that holds write-set data is

evicted (W bit set), it is written back to the L2 and/or main memory only after the

old values are copied into a per-thread undo-log in memory. This approach provides

full write buffer virtualization but introduces some runtime overhead when aborting

transactions that have overflowed their caches.

To implement the four primitives, we reserve the metadata bits of the lowest

nesting level for our scheme. If the primitives are rarely used, one can use a dynamic

scheme that allocates a nesting level for them on demand at each core. We modified

the software conflict handler to check the nesting-level of conflicts and to invoke a user-

level software handler as shown in Figure 7.3. Process-wide checkpoint flushes dirty

lines in caches during checkpointing and buffers modifications after checkpointing in

caches. The checkpoint restoration invalidates caches. If there are active transactions

when CKP take is called, they are allowed to complete before the checkpoint is taken.

We used 16 applications and one microbenchmark. Eight parallel applications
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Implementation MP3D RADIX TOMCATV SWIM EQUAKE
Technique

Process-wide 5.06% 1.96% 2.95% 1.66% 4.67%
Checkpoint
Software 30.19% 794.37% 556.89% 777.23% 301.49%

Checkpoint

Table 7.5: Runtime overhead of hardware-assisted process-wide checkpoint and soft-
ware checkpoint with virtual memory protection.

were used for reliability and debugging experiments: mp3d and radix from SPLASH-

2 [155]; swim, tomcatv, and equake from SPEComp [141]; and genome, kmeans, and

vacation from STAMP [23], a TM benchmark suite. The STAMP programs use trans-

actions for up to 95% of their execution time. For debugging, we used three applica-

tions: cfrac (factorization), mpeg2 (multimedia), and w3m (test-based web browser).

A microbenchmark is used to measure the overhead of randomly placed watchpoints.

For security experiments, four older versions of open source applications with known

vulnerabilities to buffer overflow attack were used: gzip (compression utility), poly-

morph (filename rewriter), ghttpd and nullhttpd (httpd servers). We compiled the

applications with GCC 4.3 on x86 Linux 2.6.9.

7.5.2 Evaluation of Reliability Support

We first compare our process-wide checkpoint with software checkpoint based on

virtual memory protection. The software checkpoint fields out write protection on

all pages and builds the checkpoint gradually by copying the pages to be written

when page fault exceptions are triggered. Checkpoints are taken periodically at every

50K cycles. Table 7.5 shows the overheads of two checkpoint techniques. Software

checkpoint adds 490.03% runtime overhead on average mainly due to page copying

overhead, which makes it impractical to use it at short intervals for many applications.

On the other hand, hardware checkpoint adds only 3.26% runtime overhead.

Figure 7.4 shows further analysis on process-wide checkpoint with fault injection,

thread-wide isolated execution, and TM programs. It shows the normalized execution

time of 8 applications in 4 configurations. Lower bars are better. The BASE bar shows
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Figure 7.4: Normalized execution time for checkpoint test in the context of reliability
support with 4 configurations: no checkpointing and no faults (BASE), process-wide
checkpointing only (PCP), recovery with process-wide checkpoint against faults (PR),
and additional thread-wide isolated execution for local recovery (LR). The execution
times are normalized to BASE which is always 100%. Checkpoints are taken at every
50K cycles. Faults are injected at every 1M cycles.

baseline performance without checkpointing and no injected faults. It is always 100%.

The PCP bar shows the overhead when a process-wide checkpoint is taken every 50K

cycles, the same configuration as in the previous test. No faults were inserted in

this case. The PR bar represents process-wide checkpoints at every 50K cycles and

transient faults injected randomly, one per 1M cycles on the average. The fault model

for the test assumes that main memory, cache, and registers used for checkpointing are

protected with ECC [42, 114]. The transient faults in computation or communication

(e.g., packet loss or logic error) are handled by restoring a checkpoint.

The LR bar is similar to PR, but also uses thread-wide isolated execution to sup-

port local recovery within each thread. The faults are recovered locally within an code

block isolated with thread-wide isolated execution only when fault detection occurs

before the code block completes. For the 5 non-transactional programs, isolated code

blocks were added to cover inner loop bodies. For the TM programs, user transaction

boundaries were used to define the isolated code blocks.

Figure 7.4 shows that the overhead of process-wide checkpoints (PCP) is less than

3.5% for most applications. At an interval of 50K cycles, the number of dirty lines

in the CMP is small and flushing them to memory is fast. Moreover, logging intro-

duces virtually no overhead as it happens rarely with 8MB L2 cache. When errors
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Implementation Technique Gzip Polymorph Ghttpd Nullhttpd
Fine-grain Access Tracking 0.2% 0.4% 0.3% 0.3%

StackGuard 3.1% 3.6% 3.3% 2.0%

Table 7.6: The runtime overhead of buffer overflow detection with fine-grain access
tracking and StackGuard.

are inserted every 1M cycles, the overhead of process-wide recovery from the latest

checkpoint (PR) is 20% to 30% for five programs and less than 10% for the rest. The

recovery overhead is primarily due to the requirement that caches should be invali-

dated during checkpoint restoration, causing all caches to be cold after recovery. The

overhead varies depending on the size of the working set that needs to be refetched

and the application’s inherent locality. When errors can be handled using the local

recovery with thread-wide isolated execution, the recovery overhead is dramatically

reduced as caches remain warm. Equake is an exception as the use of the isolated exe-

cution leads to frequent false conflicts across threads, introducing significant runtime

overhead that outweighs the recovery benefits. Our experiments show that process-

wide checkpoint and thread-wide isolated execution with hardware assist provide fast

mechanisms for error recovery in a cost-effective manner.

7.5.3 Evaluation of Security Support

We used user-level software handler and fine-grain access tracking to implement a

runtime scheme for buffer overflow detection. We modified GCC 4.3 to emit AT set

and AT reset instead of the software canaries provided by StackGuard [36]. Both

approaches detected the same vulnerabilities in our application set. Table 7.6 shows

the runtime overhead of each approach. The overhead of fine-grain access tracking is

almost an order of magnitude lower as it requires only two instructions per function.

In contrast, StackGuard introduces two instructions in the prologue and five in the

epilogue of every function call. The performance difference would be even more

dramatic if we also used canaries to protect other data such as function pointers for

improved security coverage. StackGuard requires several instructions for each read

or write access to a protected pointer. In contrast, fine-grain access tracking requires
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Implementation Technique Cfrac Gzip Mpeg2 W3M
Fine-grain Access Tracking 1.02× 1.01× 1.08× 1.06×
Dynamic Binary Translation 44.69× 44.24× 55.98× 32.15×

Table 7.7: The slowdown for debugging memory errors with fine-grain access tracking
and dynamic binary translation.

Duration L2 Size Tomcatv Swim Equake Vacation
1M 1MB 0.68MB 0.27MB 0.53MB 0.01MB

cycles 8MB 0.22MB 0.01MB 0.01MB 0.00MB
10M 1MB 5.17MB 8.38MB 2.76MB 0.36MB
cycles 8MB 1.20MB 3.95MB 0.22MB 0.00MB

Table 7.8: The storage overhead of parallel bookmark in main memory.

only one instruction when the pointer is allocated and one at deallocation time.

7.5.4 Evaluation of Debugging Support

We compared fine-grain access tracking and dynamic binary translation to catch mem-

ory errors that access freed memory bytes. A valid bit per memory byte is assigned.

The bit is set when the byte is allocated and reset when freed. A memory access to a

byte with the bit reset indicates a memory error. With fine-grain access tracking, the

bit is manipulated with AT set and AT reset and an illegal access is notified through

the user-level access tracking handler. For dynamic binary transaction, we added

instructions to check the bits on every memory access. The applications we used

do not have memory errors so that the test measures the runtime overhead without

errors. In Table 7.7, fine-grain access tracking shows negligible slowdown of 4% on

average since the applications do not allocate and free memory frequently so that the

overhead to set and reset the bits is low. On the other hand, the additional checking

instructions with dynamic binary translation are executed per memory access, which

leads to 44× slowdown.

We implemented and evaluated parallel bookmark with process-wide checkpoint.

The longer a parallel bookmark is maintained, the more memory is required to main-

tain the undo log for overflowed cache lines. Table 7.8 shows the main memory

overhead of parallel bookmark for the applications with the largest undo logs, as a
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Implementation 100 points 200 points 500 points 1000 points
Technique

Fine-grain Access 1.02 1.06 1.19 1.39
Tracking

Virtual Memory 1.46 1.81 2.56 3.02
Protection

Dynamic Binary 23.75 23.79 24.08 24.18
Translation

Table 7.9: The normalized execution time of watchpoint microbenchmark with three
watchpoint implementation: fine-grain access tracking, virtual memory protection,
and dynamic binary translation. The number of watchpoints per core has changed
from 100 to 200, 500, and 1000. The execution time is normalized to the execution
without watchpoint.

function of checkpoint interval and L2 cache size. It shows that the storage overhead

is reasonable in all cases. Even if a bookmark is maintained for 10M cycles for a sys-

tem with a 1MB cache, the debugger’s footprint increases by only 8MB in the worst

case. A larger L2 cache size helps significantly as it reduces the number of off-chip

evictions that lead to logging. With an 8MB L2 cache, the worst case requirement

drops to 4MB. This is encouraging as the current trend is toward increased on-chip

cache capacity for CMP systems.

To test watchpoints, we created a microbenchmark that places watchpoints and

accesses memory according to a pre-generated random sequence of addresses. Three

techniques to implement watchpoint are tested: fine-grain access tracking, virtual

memory protection that write-protects a whole page including a watched address,

and dynamic binary translation that instruments trap instructions to look up an ac-

cessed address in the list of watched addresses stored in virtual memory space. The

number of watchpoints per core was changed from 100 to 200, 500, and 1000. The

execution time is normalized to the execution without watchpoint. Hardware watch-

point scales well and shows under 40% runtime overhead for all cases. Watchpoint

with virtual memory protection shows up to 3× slowdown mainly due to the page

fault exception overhead. Watchpoint with dynamic binary translation suffers from

frequent traps and shows up to 24× slowdown on average. The trap overhead dom-

inates the execution time so that the overall overhead does not change much over
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different numbers of watchpoints per core.

7.6 Related Work

There have been efforts on hardware solutions for reliability, security, and debugging.

Unlike our scheme that targets common requirements, they are best tuned for a

specific feature with dedicated hardware resources.

SafetyNet [138] provides low-overhead protection from transient faults with re-

duced mean-time-to-recovery (MTTR). It supports multiple global checkpoints with-

out stopping execution to initiate one. A checkpoint is built gradually by logging

data in additional storage next to caches and in memory. After detecting a fault,

it rolls back to the last validated checkpoint by applying the logs. Revive [114] or-

ganizes main memory similarly to RAID in order to deal with both transient and

permanent errors in a directory-based system. It stops the system to start building

a global checkpoint. All dirty data in caches are flushed to memory to preserve data

safely. Data logging happens whenever dirty data are evicted to memory. Revive

recovers from a fault by invalidating dirty data in caches and applying the undo logs.

ReviveI/O [94] supports recovery of I/O resources such as network connections and

disks. It introduces a scheme to undo and redo I/O operations and builds upon Re-

vive to rollback memory state [114]. A monitor-and-recover programming paradigm

is used to enhance the reliability of software in [106]. The original code is executed

speculatively after taking a thread-wide local checkpoint. The code is allowed to finish

only when a corresponding check code running in parallel confirms its safe execution.

Otherwise, the original code rolls back to the local checkpoint.

Mondrian [154] provides a finer-grain memory protection mechanism that provides

multiple protection domains in a flexible way. It allows arbitrary permission control

down to the granularity of 32-bit words. Space overhead is reduced by permission

table compression, and runtime overhead is minimized by the use of a two-level per-

mission cache. The iWatcher system [160] is a good example of hardware support for

debugging. It provides a large number of hardware-assisted watchpoints and a flexi-

ble software handler mechanism to eliminate the overhead of dynamic code rewriting,
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helping to find more software bugs.

There have been proposals to use transactional memory for something other than

parallel programming. A recent study used TM to simplify the implementation of so-

phisticated compiler transformations [96]. Transactions simplify compensation code,

allow lazy verification of fast-path assertions, and provide aggregate fences.

7.7 Conclusion

In this chapter, we propose a scheme to accelerate software solutions for reliability, se-

curity, and debugging with hardware resources for transactional memory. We provide

four acceleration primitives leveraging TM hardware resources: thread-wide isolated

execution, fine-grain access tracking, user-level software handler, and process-wide

checkpoint. We qualitatively explain how the primitives accelerate software solutions

and quantitatively analyze the effectiveness of the primitives for acceleration. We

expect TM designers to consider the interesting use cases in the paper , which show

that TM hardware resources are beneficial not only for parallel programming but also

for software solutions designed for other important purposes.
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Conclusion

This thesis address the challenges to building an efficient and practical TM system

and explore the opportunities to use it to support system software and to improve

important system metrics other than performance. The contributions of the thesis

are the following.

• We analyze the common case transactional behavior of multithreaded programs.

We measure common-case characteristics of transactions to provide key insights

on the architectural support for efficient TM systems.

• We present eXtended Transactional Memory (XTM), a software-base TM virtu-

alization system using virtual memory support in the operating system. It vir-

tualizes all aspects of transactional execution (time, space, and nesting depth)

for practical TM systems.

• We suggest a practical solution to use TM for correct execution of multithreaded

programs within DBT frameworks. Memory transactions are used to eliminate

races involving metadata by encapsulating the data and metadata accesses in a

trace, within one atomic block.

• We present MShot, a hardware-assisted memory snapshot system using TM to

allow for algorithmic simplicity, easy code management, and performance at
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the same time. We use the hardware resource for TM to accelerate a memory

snapshot of arbitrary lifetime that consist of multiple disjoint memory regions.

• We propose a scheme to accelerate software solutions for reliability, security,

and debugging with hardware resources for TM. Four primitives are provided

for acceleration: thread-wide isolated execution, fine-grain access tracking, user-

level software handler, and process-wide checkpoint.

Overall, this thesis provides important information and novel techniques towards

the design of an efficient and practical TM system useful for multiple purposes. Sys-

tem designers can utilize these techniques to address TM implementation challenges

and justify the cost of hardware support for TM across multiple applications.

For future work, it is interesting to re-design the TM hardware resources for mul-

tiple purposes other than concurrency control. As shown in the thesis, the resources

are also useful for other important system features such as reliability, security, and de-

bugging. What if we design them from the scratch to serve other purposes? What are

the common set of hardware resources for the purposes? Do we provide the interface

to the resources other than transaction begin and end? There are many challenges

to design the versatile resources.

Another interesting work is to provide consistency to TM systems. The current

hardware TM proposals provide atomicity and isolation. While they are enough to

produce a serializable transaction history, there are cases that a strict serializability

is not required for correct execution of applications. For example, if an application

provides a set of rules that define consistent(or correct) states, a correct execution of

the application can be guaranteed by enforcing transactions to change the applica-

tion’s state from a consistent state to another consistent state. This may help TM

systems ignore unnecessary conflicts and improve performance.
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